Table of Contents

Message from the Chair ...3
1. Faculty and Staff ..4
 1.1 Faculty ...4
 Tenured and Tenure-Track Faculty
 New Faculty Hires
 Teaching and Research Faculty
 Joint Faculty
 Faculty Awards and Honors ..11
 Fellows of Technical & Honor Societies
 Services of Professional Societies ..12
 University Honors and Award ..12
 1.2 Administrative and Technical Staff ..14
2. Academic Programs ...15
 2.1 Enrollment and Degrees Awarded ..15
 2.2 PhD Dissertation & MS Theses & Honors Theses ..18
 2.3 Courses Taught ..20
 2.4 Student Awards Received ...23
 2.5 Course and Program Development ..24
 2.6 Instructional Laboratories ..25
 2.7 Lectures and Seminars ..26
3. Research ..28
 3.1 Areas of Research ..28
 3.2 Research Laboratories ...29
 3.3 Publications
 Books ...34
 Book Chapters ...34
 Journal Publications (including those by undergraduate and graduate students)34
 Conference Papers with Proceedings ..40
 Conference Papers without Proceedings ...50
 Plenary and Invited Talks ...54
 Patents ...55
 Patent Applications ...56
 3.1 Research Expenditures and Funding ..57
 3.2 Externally Funded Research Centers ..59
4. Industry Partnership ...60
 The Industrial Advisory Board ..60

Edited by: Terrell Hodges
ECE, Senior Information Specialist
Message from the Chair

Three years ago, ECE department set its strategic goals; the first of them is to increase the size of our tenured/tenure-tracking faculty members from middle 20s to 40 because this increase enables us to further enhance education quality, to reduce the elevated student-to-faculty ratio, and to strengthen our research enterprise. In the past academic year, we have made several strides toward achieving this goal:

- 5 new faculty members (3 associate professors and 2 assistant professors) were hired this year, and our tenured/tenure-track headcount reached 32 after 5 year consistent efforts of hiring.
- Our faculty received national recognitions for their research and education activities, in particular, ECE department added 3 NSF CAREER awardees (including 2 new awards and 1 new hire) and 1 DoE Early Career awardee.
- Through a university-level competition, ECE department was awarded to lead the cluster of RISES (Resilient, Intelligent and Sustainable Energy Systems), and this cluster will not only add another 3 to 4 additional tenured/tenure-track faculty members to the department but also broaden the multidisciplinary reach of ECE research.

With the open positions already approved for hire over the next two cycles, we are confident to meet our goal of faculty expansion.

ECE staff and faculty continue to excel in delivering quality education and undertaking impactful research, as evidenced from the following qualitative measures:

- According to ASEE data, our undergraduate educational programs are among the top-10 most productive in the nation: 169 BSEE & 90 BSCpE are awarded this past academic year (an 84% increase in undergraduate degrees conferred since AY2010-2011).
- Our graduate programs continue to be efficient: 23 PhD degrees are conferred (increased from 19 in AY2010-2011).
- ECE new research funding is $6.4M (close to being tripled from $2.2M in AY2010-2011), and research expenditure is $4.4M (an 81% increase from $2.4M in AY 2010-2011).
- UCF belongs to T50 Index (the top 50 ECE programs) compiled by ECEDHA, the North America ECE department heads association. US News and World Report rankings are 66th (out of 139 ranked programs) for EE and 64th (out of 103 ranked programs) for CpE.

Looking forward, we are very excited about ECE and its future. Our department will continue its growth, ECE faculty (including 1 NAE member, 7 Fellows of IEEE and 7 NSF CAREER awardees) are highly dedicated and creative, and their hard work ensures that our students receive top-quality education and our research addresses critical needs of our time.

This edition of ECE annual report contains the list of our faculty, their expertise and accomplishments in scholarly activities, learning, and technology transfer. With support from our alumni and friends, we will strive to achieve excellence and make ECE the best it can be.

Zhihua Qu
Professor and Chair of ECE

October 19, 2016
1. Faculty and Staff

1.1 Faculty

Reza Abdolvand
Associate Professor
Ph.D., Electrical Engineering
Georgia Institute of Technology, 2008
Micro- and Nano-Electromechanical System, Micro-resonators for timing and data processing, resonant sensors
Reza.Abdolvand@ucf.edu

George Atia
Assistant Professor
Ph.D., Electrical Engineering
Boston University, 2009
Signal processing, Stochastic control, Wireless communications, Controlled sensing, Information theory, Detection and estimation
George.Atia@ucf.edu

Issa Batarseh
Professor
Ph.D., Electrical Engineering
University of Illinois at Chicago, 1990
Power Electronics, Energy Conversion and Grid-tied Inverters
batarseh@eecs.ucf.edu

Aman Behal
Associate Professor
Ph.D., Electrical Engineering
Clemson University, 2001
Robotics, Neural Modeling, Nonlinear Control and Identification, and Visual Servicing
abehal@eecs.ucf.edu

Ronald F. DeMara
Professor
Ph.D., Computer Engineering
University of Southern California, 1992
Computer Architecture, Intelligent Systems, Evolvable Hardware
demara@eecs.ucf.edu

Deliang Fan
Assistant Professor
Ph.D., Electrical & Computer Eng.
Purdue University, 2015
Ultra-low Power Brain-inspired (Neuromorphic), Nano-scale Physics Based Devices, Modeling and Simulations Low Power Digital and Mixed Signal CMOS Circuit Design
dfan@ucf.edu

Michael Georgiopoulos
Dean and Professor
Ph.D., Electrical Engineering
University of Connecticut, 1986
Machine Learning, Kernel Machines, Neural Networks, Neuro-Evolution, Pattern Recognition and applications
michaelg@eecs.ucf.edu

Xun Gong
Associate Professor
Ph.D., Electrical Engineering
University of Michigan at Ann Arbor, 2005
RF Microwave Millimeter wave Circuits, Integrated 3D High Q Resonators and Filters, Integrated Antennae
xun.gong@ucf.edu
Samuel M. Richie
Undergraduate Program Coordinator and Associate Professor
Ph.D., Electrical Engineering
University of Central Florida, 1989
Surface acoustic wave SAW device modeling, SAW device computer aided design, transversal filter design theory
richie@eecs.ucf.edu

Kalpathy Sundaram
Graduate Program Coordinator and Professor
Ph.D., Electrical Engineering
Indian Institute of Technology, 1980
Microelectronics, optoelectronic materials, thin films micromachining
sundaram@eecs.ucf.edu

Azadeh Vosoughi
Associate Professor
Ph.D., Electrical Engineering
Cornell University, 2006
Cyber-physical systems, Signal and information processing, Detection and estimation theory, Communication theory
azadeh@ucf.edu

Jun Wang
Associate Professor
Ph.D., Computer Science and Eng.
University of Cincinnati, 2002
Computer Architecture, OS and High Performance
juwang@eecs.ucf.edu

Lei Wei
Associate Professor
Ph.D., Electrical Engineering
University of South Australia, 1996
Mobile communications, wireless systems, error control coding, information theory, fast simulation, signal processing
lei@eecs.ucf.edu

Marwan Simaan
Professor
Ph.D., Electrical Engineering
University of Illinois at Urbana-Champaign, 1972
Optimization and control signal processing, telecommunication and knowledge based signal processing and control
simaan@eecs.ucf.edu

Wei Sun
Assistant Professor
Ph.D., Electrical & Computer Eng.
Iowa State University, 2011
Electric power and energy systems
sun@ucf.edu

Parveen F. Wahid
Professor
Ph.D., Electrical Communication Engineering
Indian Institute of Science, Bangalore, India, 1979
Antenna design and analysis, electromagnetics, microwaves
wahid@eecs.ucf.edu

Arthur Weeks
Associate Professor
Ph.D., Electrical Engineering
University of Central Florida, 1987
Biomedical sensors, patient monitoring, tele-healthcare image processing and wireless computing
weeks@eecs.ucf.edu

Thomas X. Wu
Professor
Ph.D., Electrical Engineering
University of Pennsylvania, 1999
Energy Device and System
tomwu@eecs.ucf.edu
NEW FACULTY HIRED DURING AY 2015/2016

Jiann S. Yuan
Professor
Ph.D., Electrical Engineering
University of Florida, 1988
Semiconductor device modeling, device and circuit simulation, analog digital circuit analysis and design
yuanj@eecs.ucf.edu

Aleksandar Dimitrovski
Associate Professor
Ph.D., Power Engineering
Ss. Cyril & Methodius University, Macedonia, 1997
Analysis of uncertain power systems; hybrid magnetic-electronic power controllers; power system protection
ADimitrovski@ucf.edu

Rickard Ewetz
Assistant Professor
Ph.D., Electrical Engineering
Purdue University, 2016
Computer Aided design for VLSI; physical design; optimization of large complex systems.
Rickard.Ewetz@ucf.edu

Yaser P. Fallah
Associate Professor
Ph.D., Electrical & Computer Eng.
University of British Columbia, 2007
Modeling of networked systems, wireless networks; autonomous and connected vehicles; intelligent transportation; vehicles safety and energy efficiency; distributed systems
Yaser.Fallah@ucf.edu

Murat Yuksel
Associate Professor
Ph.D., Computer Science
Rensselaer Polytechnic Institute, 2002
Networked and wireless systems; optical wireless; spectrum sharing, network economics and architectures; big-data and cloud networking
Murat.Yuksel@ucf.edu

Qun Zhou
Assistant Professor
Ph.D., Electrical Engineering
Iowa State University, 2011
Data Analytics in power systems; smart grid; renewable energy integration; power economics.
Qun.Zhou@ucf.edu
TEACHING & RESEARCH FACULTY

Zakhia Abichar
Lecturer
Ph.D., Computer Engineering
Iowa State University, 2010

Wireless networks, mobile computing, pervasive computing, human-computer interaction, innovative computing
zakhia17@eecs.ucf.edu

ChungYong Chan
Lecturer
Ph.D., Electrical Engineering
University of Mississippi, 2010

Linear phase FIR filter design using the Bayesian inference framework, Bayesian Time-Frequency Analysis, Room Acoustics, Landmine Detection
ChungYong.Chan@ucf.edu

John Edison
Visiting Instructor
M.S., Computer Engineering
University of Central Florida, 2013

Machine Learning, Intelligent Systems, Bioinformatics, Network Design
JEdison@knights.ucf.edu

Shady Elashhab
Lecturer
Ph.D., Electrical and Computer Engineering
Oakland University, 2009

Robust and Optimal Control of Dynamical System
selashha@ucf.edu

Azza Fahim
Lecturer
Ph.D., Electrical Engineering
Cairo University, 1984

Electromagnetic analysis of electric machines, Finite-element methods in the analysis and design of electric machine
azza@eecs.ucf.edu

Suboh Suboh
Lecturer
Ph.D., Electrical Engineering
George Washington University, 2010

Computer Architecture & Networking
Suboh.Suboh@ucf.edu

PROFESSOR EMERITUS

Nicolaos S.Tzannes
Professor Emeritus
Ph.D., Electrical Engineering
Johns Hopkins University, 1966

Communications, signal/image processing
tzannes@eecs.ucf.edu

Ronald Philips
Professor Emeritus
Ph.D., Engineering
Arizona State University, 1971

Propagation through random media, optical communications, laser radar and imaging through atmospheric turbulence.
Ronald.Philips@ucf.edu
JOINT FACULTY

Georgios Anagnostopoulos
Associate Professor
Florida Institute of Tech
Machine Learning, Artificial Neural Networks, Decision Trees, Evolutionary Computation, Data Mining
georgio@fit.edu

Ulas Bagci
Assistant Professor
Computer Science
Biomedical imaging, Computer Vision, Clinical Image Processing, and Statistical Machine Learning
mainak@cs.ucf.edu

Ladislau Boloni
Associate Professor
Computer Science
Distributed systems, network agents, ubiquitous computing, and knowledge representation
lboloni@cs.ucf.edu

Debashis Chanda
Assistant Professor
NanoScience, CREOL
Thin-film solar cells, study of light-matter interactions in artificially structured metal/dielectric structures
Debashis.Chanda@creol.ucf.edu

Mainak Chatterjee
Associate Professor
Computer Science
Network Science, Video over wireless, QoE, Applied game and auction theory, Dynamic spectrum access, Cognitive radio networks, ad hoc and sensor networks
mainak@cs.ucf.edu

David Click
Program Director
Solar Systems Research
Florida Solar Energy Center
daveclick@fsec.ucf.edu

Sasan Fathpour
Associate Professor of Optics, CREOL
Lasers, Semiconductor & Integrated Photonics, Nonlinear & Quantum Optics
fathpour@creol.ucf.edu

Peter Delfyett
University Trustee Chair & Professor of Optics, ECE & Physics
Ultrafast Photonics
delfyett@creol.ucf.edu

Neelkanth Dhere
Research Faculty and Professor
Solar Technologies Research
Florida Solar Energy Center
dhere@fsec.ucf.edu

Sasran Khondaker
Associate Professor
Department of Physics
Electron transport properties of nanoscale materials
saful@ucf.edu

Xiaoman Li
Associate Professor
Burnett School of Biomedical Sciences
xiaoman@ucf.edu

Patrick LiKamWa
Associate Professor of Optics, CREOL
Design, fabrication and testing of novel all-optical switching devices using III-V multi-quantum well semiconductors
patrick@creol.ucf.edu
CAREER and Young Investigator Awardees

National Science Foundation CAREER Award
- George Atia (new awardee)
- Yaser Fallah (new hire)
- Xun Gong
- Mingjie Lin (new awardee)
- Nazanin Rahnavaard
- Azadeh Vosoughi
- Jun Wang

Department of Energy CAREER Award
- Yier Jin (new awardee)
- Jun Wang

External Awards and Honors

NASA Research: 2015 PMM Science Team Award
- W. Linwood Jones

Fellows of Technical & Honor Societies

American Association for the Advancement of AAAS
- Issa Batarseh
- Zhihua Qu
- Marwan Simaan

American Institute for Medical and Biological Engineering
- Marwan Simaan

American Society for Engineering Education
- Marwan Simaan

Electrochemical Society
- Kalpathy Sundaram

IEEE Fellows
- Issa Batarseh
- W. Linwood Jones
- Juin J. Liou
Donna Malocha
Wasify Mikhael
Zihhua Qu
Marwan Simaan

Pegasus Professor

National Academy of Engineering Member
Marwan Simaan

National Academy of Inventors
Issa Batarseh
Marwan Simaan

Chair, Professorship, Endowed Professorship, University Professorship and Faculty Fellows

George Atia, Charles N. Millican Faculty Fellow
Michael Georgiopoulos, Pegasus Professor
Xun Gong, CAE Link Faculty Fellow
Mingjie Lin, SAIC Faculty Fellow
Jun J. Liou, Lockheed Martin St. Laurent Endowed Professor, Pegasus Professor
Donald Malocha, Pegasus Professor
Zihhua Qu, SAIC Endowed Professor, Pegasus Professor
Marwan Simaan, Florida 21st Century Chair Professor
Jun Wang, Charles N. Millican Faculty Fellow
Jiann S. Yuan, Pegasus Professor

Services of Professional Societies

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Professional Services</th>
</tr>
</thead>
</table>
| Issa Batarseh | • Educational Committee Member, IEEE PELS
 • Panel Member, NSF Career Award |
| Aman Behal | • Associate Editor, ASCE Journal of Aerospace Engineering |
| Ronald F. DeMara | • Associate Editor, IEEE Transactions on Computers |
| Xun Gong | • Associate Editor, IEEE Microwave and Wireless Component Letters |
| Yier Jin | • Associate Editor, IET Computers & Digital Techniques
 • Associate Editor, IEEE SMC Society Technical Committee on CCPS |
Newsletter

- Guest Editor, IEEE Transaction on Multi-scale Computing Systems

Wasfy Mikhael
- Membership Chair, IEEE MWSCAS Steering Committee
- Judge, IEEE MWSCAS Best Student Paper Award

Zhihua Qu
- Board of Directors, ECEDHA
- Board of Directors, SCEEE
- President, SECEDHA
- Associate Editor, IEEE ACCESS
- Associate Editor, Automatica

Nazanin Rahnavard
- Associate Editor, Elsevier Computer Networks Journal
- Guest Editor, Electronics Journal, Special Issue

Marwan Simaan
- Editorial Board, IEEE Access
- Editorial Advisory Board, IEEE Systems Journal
- Editorial Advisory Board, Integrated Computer-Aided Engineering

Azadeh Vosoughi
- Associate Editor, IEEE Transactions on Wireless Communications
- Associate Editor, IEEE Signal Processing Letters
- Associate Editor, IEEE Signal Processing Magazine

Parveen Wahid
- Associate Editor, Computer Applications in Engineering Education
- Associate Editor, IEEE Antennas and Propagation Magazine
- Associate Editor, International Journal on Antennas and Propagation

Jun Wang
- Associate Editor, IEEE Transactions on Cloud Computing

Thomas Wu
- Associate Editor, IEEE Transactions on Industrial Applications

Jiann-Shiun Yuan
- Editor, IEEE Transactions on Device and Materials Reliability

University Honors and Awards

Mingjie Lin
- UCF Tip Award 2016
- 2016 UCF Air Force Summer Faculty Fellowship

Wasfy Mikhael
- UCF Tip Award

Parveen Wahid
- CECS Office of Diversity and Inclusion-Trailblazer in CECS women Faculty Award

Xun Gong
- Reach for the Stars Award
- Research Initiative Award
1.2 STAFF

ECE ADMINISTRATIVE AND TECHNICAL STAFF

Diana Camerino
Graduate Admissions Specialist
diana@eecs.ucf.edu
Office: HEC-439E
Office Phone: (407) 823-3027

Theresa Collins
Coordinator
Accounting Services
theresa@eecs.ucf.edu
Office: HEC-438F
Office Phone: (407) 823-2637

Diane D'Avanzo
Coordinator
Academic Advising Services
Diane.D'Avanzo@ucf.edu
Office: HEC-346C
Office Phone: (407) 823-5459

David Douglas
Laboratory Manager
douglas@eecs.ucf.edu
Office: ENGR-465
Office Phone: (407) 823-5797

Kenneth Enloe
Program Assistant
kenloe@eecs.ucf.edu
Office: HEC-346B
Office Phone: (407) 823-5790

Steven Freund
Systems Programming Manager
sfreund@eecs.ucf.edu
Office: HEC-365
Office Phone: (407) 823-4697

Grissel Guzman-David
Administrative Assistant
gguzman@eecs.ucf.edu
Office: HEC-438E
Office Phone: (407) 823-0015

Charlese Hilton-Brown
Coordinator
Academic Advising Services
chilton@eecs.ucf.edu
Office: HEC-345F
Office Phone: (407) 823-2787

Terrell Hodges
Senior Information Specialist
thodges@eecs.ucf.edu
Office: HEC-438D
Office Phone: (407) 823-4587

Giji Skaria
Senior Engineer
skaria@eecs.ucf.edu
Office: ENGR-118
Office Phone: (407) 823-0536

Diana Camerino
Graduate Admissions Specialist
diana@eecs.ucf.edu
Office: HEC-439E
Office Phone: (407) 823-3027
2. Academic Programs

2.1 Enrollment and Degrees Awarded

Undergraduate: BSEE & BSCpE

The mission of the Department of Electrical and Computer Engineering (ECE) is to educate undergraduate and graduate students to become highly skilled in the principles and practices of computer engineering (CpE) and electrical engineering (EE). The Electrical Engineering Program is to develop and disseminate the theory and methods for the design, analysis, and implementation of the principles and practices in Electrical Engineering; and Computer Engineering Program is to develop and disseminate the theory and methods for the design, analysis, implementation, and improvement of computer hardware, software, and systems.

Enrollment in ECE undergraduate programs for Fall 2015 totaled 1487 students as listed below:

- BSEE Enrollment = 770
- BSCpE Enrollment = 717

The chart below shows undergraduate enrollment trend in EE and CpE from Fall 2009 to Fall 2015.

(Source: UCF Pegasus Mine Portal)
The ECE department awarded 259 Undergraduate degrees for AY 2015/2016, as listed below:

- BSEE: Degrees Awarded = 169
- BSCpE: Degrees Awarded = 90

Total Undergraduate Degrees awarded in ECE = 259

The chart below shows the degrees awarded for EE and CpE from AY 2009/2010 to AY 2015/2016.

Graduate: MSEE, MSCpE, Ph.D. EE, Ph.D. CpE

Fall 2015 Enrollment in ECE graduate programs totaled 316 students as listed below:

- MSEE Enrollment = 90
- MSCpE Enrollment = 48
- Ph.D. EE Enrollment = 131
- Ph.D. CpE Enrollment = 47

The chart below shows graduate enrollment in EE and CpE starting Fall 2009 to Fall 2015

(Source: UCF Pegasus Mine Portal)
The ECE department awarded 67 MS degrees and 23 Ph.D. degrees in AY 2015/2016 as listed below:

Total Masters Degrees awarded in ECE = 67
- M.S.EE: Degrees Awarded = 53
- M.S.CpE: Degrees Awarded = 14

The chart below shows M.S. degrees conferred from AY 2009/2010 to 2015/2016.

Total Doctoral degrees awarded in ECE = 23
- Ph.D.EE Degrees Awarded = 16
- Ph.D.CpE: Degrees Awarded=7

The chart below shows Ph.D. degrees conferred from 2008/2009 to 2014/2015.
2.2 PhD DISSERTATIONS & MS THESIS & HONORS THESIS

Ph.D. Dissertations during AY 2015 – 2016:

<table>
<thead>
<tr>
<th>Term</th>
<th>Last Name</th>
<th>First Name</th>
<th>Title</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2015</td>
<td>Manaffam</td>
<td>Saeed</td>
<td>Stability and Control in Complex Networks of Dynamical Systems</td>
<td>Vosoughi</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>Liu</td>
<td>Hanzhou</td>
<td>Design of High-Efficiency Rare-Earth Permanent Magnet Synchronous Motor and Drive System</td>
<td>Wu</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Al-Zahraimi</td>
<td>Daniel</td>
<td>Fast Online Diagnosis and Recovery of Reconfigurable Logic Fabrics using Design Disjunction</td>
<td>Demara</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>Gallagher</td>
<td>Daniel</td>
<td>Ulta-Wideband Spread Spectrum Communications Using Software Defined Radio and Surface Acoustic Wave Correlators</td>
<td>Malocha</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>Gallagher</td>
<td>Mark</td>
<td>Design, Fabrication, and Interrogation of Integrated Wireless SAW Temperature Sensors</td>
<td>Malocha</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Alzahrani</td>
<td>Ahmed</td>
<td>Design Disjunction for Resilient Reconfigurable Hardware</td>
<td>Demara</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Mcdowell</td>
<td>William</td>
<td>Vehicle Tracking and Classification via 3D Geometries for Intelligent Transportation Systems</td>
<td>Mikhail</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Shahrasbi</td>
<td>Behzad</td>
<td>Compressive Sensing and Recovery of Structured Sparse Signals</td>
<td>Rahnavard</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Shiradkar</td>
<td>Narendra</td>
<td>Predictive Modeling for Assessing the Reliability of Bypass Diodes in Photovoltaic Modules</td>
<td>Sundaram</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Fatemi</td>
<td>Hedy</td>
<td>Performance Optimization of Lateral-Mode Thin-Film Piezoelectric-on-Substrate Resonant System</td>
<td>Abdolvand</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Yin</td>
<td>Jiangling</td>
<td>Research on High-Performance and Scalable Data Analysis in Parallel Big Data Computing</td>
<td>Wang</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Khan</td>
<td>Saad Ahmad</td>
<td>Towards Improving Human-Robot Interaction for Social Robots</td>
<td>Boloni Behal</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Kritchanchai</td>
<td>Ekavut</td>
<td>RF Circuit Designs for Reliability and Process Variability Resilience</td>
<td>Yuan</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Padmanadbhan</td>
<td>Karthik</td>
<td>Study of Novel Power Semiconductor Devices for Performance and Reliability</td>
<td>Yuan</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Xi</td>
<td>Yunfeng</td>
<td>Design and Characterization of System Level Electrostatic Discharge (ESD) Protection Solutions</td>
<td>Liou</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Santos Garcia</td>
<td>Andrea</td>
<td>Investigation of the Effect of Rain on Sea Surface Salinity</td>
<td>Jones</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Gopi Krishna</td>
<td>Mohan Krishna</td>
<td>Energy-Aware Reconfigurable Logic Device Using Spin-Based Storage and Carbon Nanotube Switching</td>
<td>Demara</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Zhang</td>
<td>Tiantian</td>
<td>Model Selection via Racing</td>
<td>Georgiopoulos</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Modarres-Zadeh</td>
<td>Mohammad</td>
<td>Compressive Sensing and Recovery of Structured Sparse Signals</td>
<td>Rahnavard</td>
</tr>
</tbody>
</table>
MS Thesis during AY 2015 – 2016:

<table>
<thead>
<tr>
<th>Term</th>
<th>Last Name</th>
<th>First Name</th>
<th>Title</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 2015</td>
<td>Saidi</td>
<td>Pouria</td>
<td>Motor Imagery Classification Using Sparse Representation of EEG Signals</td>
<td>Atia Vosoughi</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>Robinson</td>
<td>Loren</td>
<td>General Vector Explicit - Impact Time and Angle Control Guidance</td>
<td>Qu</td>
</tr>
<tr>
<td>Summer 2015</td>
<td>Pyle</td>
<td>Steven</td>
<td>Self-Scaling Evolution of Analog Computation Circuits</td>
<td>Demara</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>Jabalameli</td>
<td>Amirhossein</td>
<td>Characterization of a Spiking Neuron Model via a Linear Approach</td>
<td>Behal</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Gopi Krishna</td>
<td>Mohan Krishna</td>
<td>Energy-Aware Reconfigurable Logic Device Using Spin-Based Storage and Carbon Nanotube Switching</td>
<td>Demara</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Prakash</td>
<td>Kiran</td>
<td>Smart Grasping Using Laser and Tactile Array Sensors for UCF-MANUS-An Intelligent Assistive Robotic Manipulator</td>
<td>Behal</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>Hajibabaei</td>
<td>Zahra</td>
<td>Impact of Wireless Channel Uncertainty Upon M-ary Distributed Detection Systems</td>
<td>Vosoughi</td>
</tr>
</tbody>
</table>
2.3 Courses Taught during AY 2015 – 2016

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 3123</td>
<td>Electrical Networks and Systems</td>
<td>Abdolvand</td>
</tr>
<tr>
<td>EEE 5356</td>
<td>Fabrication of Solid State Devices</td>
<td></td>
</tr>
<tr>
<td>EEE 4463</td>
<td>MEMS Devices and Applications</td>
<td></td>
</tr>
<tr>
<td>EGN 3211</td>
<td>Engineering Analysis and Computation</td>
<td>Abichar</td>
</tr>
<tr>
<td>EEL 4768</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>EEL 4742</td>
<td>Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>EEE 3342</td>
<td>Digital Systems</td>
<td></td>
</tr>
<tr>
<td>EEE 5542</td>
<td>Random Processes I</td>
<td>Atia</td>
</tr>
<tr>
<td>EEL 6537</td>
<td>Detection and Estimation</td>
<td></td>
</tr>
<tr>
<td>EEL 4515C</td>
<td>Digital Communications</td>
<td></td>
</tr>
<tr>
<td>EEL 3004</td>
<td>Networks</td>
<td>Batarseh</td>
</tr>
<tr>
<td>EEL 5669</td>
<td>Autonomous Robotics Systems</td>
<td>Behal</td>
</tr>
<tr>
<td>EEL 4612C</td>
<td>Intro to Modern & Robust Control</td>
<td></td>
</tr>
<tr>
<td>EEL 6621</td>
<td>Nonlinear Control Systems</td>
<td></td>
</tr>
<tr>
<td>EEE 3350</td>
<td>Semiconductor Devices I</td>
<td>Chan</td>
</tr>
<tr>
<td>EEL 4750</td>
<td>Digital Signal Processing Fundamentals</td>
<td></td>
</tr>
<tr>
<td>EEL 3004C</td>
<td>Electrical Networks</td>
<td></td>
</tr>
<tr>
<td>EEE 3307C</td>
<td>Electronics I</td>
<td></td>
</tr>
<tr>
<td>EEE 4309C</td>
<td>Electronics II</td>
<td></td>
</tr>
<tr>
<td>EEL 3657</td>
<td>Linear Control Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 3123C</td>
<td>Networks and Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 4906</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>EEL 3801C</td>
<td>Computer Organization</td>
<td>Demara</td>
</tr>
<tr>
<td>ECM 6938</td>
<td>Emerging Device Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>EEL 4912</td>
<td>Undergraduate Directed Research</td>
<td></td>
</tr>
<tr>
<td>EGN 3211</td>
<td>Engineering Analysis and Computation</td>
<td>Edison</td>
</tr>
<tr>
<td>EEL 4781</td>
<td>Computer Communication Networks</td>
<td></td>
</tr>
<tr>
<td>EGN 3211</td>
<td>Engineering Analysis and Computation</td>
<td>Elashhab</td>
</tr>
<tr>
<td>EEL 3123C</td>
<td>Networks and Systems</td>
<td></td>
</tr>
<tr>
<td>EEE 3342C</td>
<td>Digital Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 3470C</td>
<td>Electromagnetic Fields</td>
<td></td>
</tr>
<tr>
<td>EEL 3801C</td>
<td>Computer Organization</td>
<td></td>
</tr>
<tr>
<td>EEE 3307C</td>
<td>Electronics I</td>
<td></td>
</tr>
<tr>
<td>EEL 3657C</td>
<td>Linear Control System</td>
<td></td>
</tr>
<tr>
<td>EEE 6338</td>
<td>Advanced Topics in Microelectronics</td>
<td>Fan</td>
</tr>
<tr>
<td>EEL 4768</td>
<td>Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>EEL 6908</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>EEL 7919</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>EEL 4436C</td>
<td>Microwave Engineering</td>
<td>Gong</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL 5437C</td>
<td>Microwave Engineering</td>
<td></td>
</tr>
<tr>
<td>EEL 5630</td>
<td>Digital Control Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 3657</td>
<td>Linear Control Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 6674</td>
<td>Optimal Estimation or Control</td>
<td></td>
</tr>
<tr>
<td>EEL 5173</td>
<td>Linear Systems Theory</td>
<td></td>
</tr>
<tr>
<td>EEL 4890</td>
<td>Continuous System Simulation I</td>
<td></td>
</tr>
<tr>
<td>EEL 6908</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>EEE 5390</td>
<td>Full-Custom VLSI Design</td>
<td>Jin</td>
</tr>
<tr>
<td>EEE 6347</td>
<td>Trustworthy Hardware</td>
<td></td>
</tr>
<tr>
<td>EEE 4932</td>
<td>ST: Hardware Security and Trusted Circuit Design</td>
<td></td>
</tr>
<tr>
<td>EEK 4518</td>
<td>Satellite Communication</td>
<td>Jones</td>
</tr>
<tr>
<td>EEE 6558</td>
<td>Advanced Radar Systems</td>
<td></td>
</tr>
<tr>
<td>EEE 5557</td>
<td>Intro to Radar</td>
<td></td>
</tr>
<tr>
<td>EEL 5432</td>
<td>Satellite Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>EEE 3307C</td>
<td>Electronics I</td>
<td>Kim</td>
</tr>
<tr>
<td>EEL 5722C</td>
<td>FPGA Design</td>
<td>Lin</td>
</tr>
<tr>
<td>EEE 3342C</td>
<td>Digital Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 4783</td>
<td>HDL in Digital Design</td>
<td></td>
</tr>
<tr>
<td>EEL 3307C</td>
<td>Electronic Circuit I</td>
<td>Liou</td>
</tr>
<tr>
<td>EEL 6358</td>
<td>Advanced Semiconductor Devices I</td>
<td></td>
</tr>
<tr>
<td>EEL 3350</td>
<td>Semiconductors</td>
<td>Malocha</td>
</tr>
<tr>
<td>EEL 4750</td>
<td>Digital Signal Processing</td>
<td>Mikhail</td>
</tr>
<tr>
<td>EEL 4140C</td>
<td>Analog Filter Design</td>
<td></td>
</tr>
<tr>
<td>EEE 5513</td>
<td>Digital Signal Processing Applications</td>
<td></td>
</tr>
<tr>
<td>EEL 4938</td>
<td>Introduction to Smart Grid</td>
<td>Qu</td>
</tr>
<tr>
<td>EEL 3552</td>
<td>Analog and Digital Communication</td>
<td>Rahnava</td>
</tr>
<tr>
<td>EEL 6938</td>
<td>ST: Compressive Sensing</td>
<td></td>
</tr>
<tr>
<td>EEL 3004</td>
<td>Electric Networks</td>
<td>Simaan</td>
</tr>
<tr>
<td>EEL 6671</td>
<td>Modern and Optimal Control</td>
<td></td>
</tr>
<tr>
<td>EEL 3930</td>
<td>Networks and systems</td>
<td></td>
</tr>
<tr>
<td>EEE 3342C</td>
<td>Digital Systems</td>
<td>Suboh</td>
</tr>
<tr>
<td>EGN 3211</td>
<td>Engineering Analysis & Computation</td>
<td></td>
</tr>
<tr>
<td>EEL 3801C</td>
<td>Computer Organization</td>
<td></td>
</tr>
<tr>
<td>EEL 4742C</td>
<td>Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 6255</td>
<td>Advanced Power Systems Analysis</td>
<td>Sun</td>
</tr>
<tr>
<td>EEL 6269</td>
<td>Advanced Topics in Power Engineering</td>
<td></td>
</tr>
<tr>
<td>EEE 3307C</td>
<td>Electronics I</td>
<td>Sundaram</td>
</tr>
<tr>
<td>EEE 5352</td>
<td>Semiconductor Materials and Device Characterization</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Instructor</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>EEE 3350</td>
<td>Semiconductor Devices I</td>
<td></td>
</tr>
<tr>
<td>EEE 5332</td>
<td>Thin Film Technology</td>
<td></td>
</tr>
<tr>
<td>EEL 3004C</td>
<td>Electrical Networks</td>
<td>Vosoughi</td>
</tr>
<tr>
<td>EEL 5937</td>
<td>Communications and Networking for Smart Grid</td>
<td></td>
</tr>
<tr>
<td>EEE 6504</td>
<td>Adaptive Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>EEL 3004C</td>
<td>Electrical Networks</td>
<td>Wahid</td>
</tr>
<tr>
<td>EEL 5462</td>
<td>Antenna Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>EEL 3470</td>
<td>Electromagnetic Fields</td>
<td></td>
</tr>
<tr>
<td>EEL 3123</td>
<td>Networks and Systems</td>
<td></td>
</tr>
<tr>
<td>EEL 6760</td>
<td>Data Intensive Computing</td>
<td>Wang</td>
</tr>
<tr>
<td>EEL 4932</td>
<td>ST: Massive Storage and I/O for Big Data</td>
<td></td>
</tr>
<tr>
<td>EEL 6762</td>
<td>Performance Analysis</td>
<td></td>
</tr>
<tr>
<td>EEL 4309C</td>
<td>Electronics II</td>
<td>Weeks</td>
</tr>
<tr>
<td>EEL 3552C</td>
<td>Analog and Digital Communications</td>
<td>Wei</td>
</tr>
<tr>
<td>EEL 6504</td>
<td>Communication System Design</td>
<td></td>
</tr>
<tr>
<td>EEL 6530</td>
<td>Communication Theory</td>
<td></td>
</tr>
<tr>
<td>EEL 4914</td>
<td>ECE Senior Design I</td>
<td></td>
</tr>
<tr>
<td>EEL 4915L</td>
<td>ECE Senior Design II</td>
<td></td>
</tr>
<tr>
<td>EEL 4205</td>
<td>Electric Machinery</td>
<td>Wu</td>
</tr>
<tr>
<td>EEL 6482</td>
<td>Electromagnetic Theory I</td>
<td></td>
</tr>
<tr>
<td>EEE 4314</td>
<td>Device Electronics</td>
<td>Yuan</td>
</tr>
<tr>
<td>EEE 4309C</td>
<td>Electronics II</td>
<td></td>
</tr>
<tr>
<td>EEE 5378</td>
<td>CMOS IC Design</td>
<td></td>
</tr>
<tr>
<td>EEE 5353</td>
<td>Semiconductor Device Modeling and Simulation</td>
<td></td>
</tr>
<tr>
<td>EEL 4216</td>
<td>Fundamentals of Electric Power Systems</td>
<td>Zhou</td>
</tr>
<tr>
<td>EEL 4932</td>
<td>Special Topics – Global Energy Issues</td>
<td></td>
</tr>
<tr>
<td>EEL 3004C</td>
<td>Electrical Networks</td>
<td></td>
</tr>
<tr>
<td>EEL 4216</td>
<td>Fundamentals of Electric Power Systems</td>
<td></td>
</tr>
</tbody>
</table>
2.4 STUDENT AWARDS RECEIVED

Alvin Lehman Scholarship ... Stephen Pilcher

AT&T Wireless Scholarship .. Matthew Aberman
 Mineckson Deniss
 Deandra Dixon
 Brandon James
 Fatemah Yazdiananari

Professor James Beck Scholarship ... Ley Nezifort
 Nha Nguyen

Boeing Scholarship .. Akash Jinandra
 William Santos
 Robert Short

Daniel D. Hammond Engineering Scholarship Matthew Aberman
 (Undergraduate)
 Deandra Dixon
 Francis Jourdain
 Eric Buysinger
 Carla Majluf
 Kevin Leone
 Ley Nezifort
 Nha Nguyen

Daniel D. Hammond Engineering Scholarship Yu Bi
 (Graduate)
 Andrea Santos Garcia
 Nicholas Paperno
 Gonzalo Vaca Castano

David and Jane Donaldson Memorial Scholarship Navid Khoshavi Najafabadi

Duke Energy .. Wesley Mullins

Frank Hubbard Engineering Endowed Scholarship Yunfeng Xi
 David Clapp
 Mineckson Deniss

Kenneth Kiefer Scholarship ... Robert Short

Northrup Grumman Scholarship .. Aiman Salih
 Lucas Plager

Kris & Bill Sammons Engineering Scholarship Tasneem Ibrahim

Walt Disney World Scholarship .. Shayna Brock
 John Geiger
 Patrick Schexnayder
 Hieu Pham

William Horton Scholarship .. Fatemah Yazdiananari

FGLSAMP .. Desiree Dominguez
2.5 Course & Program Development

Some course and program details for AY 2015 – 2016

- Implementation of grade of C (2.00) or better for EEE 3342C Digital Systems, EEL 3004C Electrical Networks, EEL 3123C Networks and Systems, EEL 3801C Computer Organization, and EGN 3211 Engineering Analysis and Computation.

- Support university wide STEM Day through participation.
- BOG TEAm courses offered by UCF, USF and FIU.
2.6 Instructional Laboratories

Undergraduate/Graduate ECE Teaching Laboratories

<table>
<thead>
<tr>
<th>Name of Lab</th>
<th>Course Name</th>
<th>Location</th>
<th>Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Laboratory</td>
<td>EEL 3552C EEL 4140C EEL 4512</td>
<td>ENG I 471</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>EEL 4515C EEL 4612C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Systems Laboratory</td>
<td>EEL 3801C EEE 3342C EEE 4346</td>
<td>ENG I 257</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>EEL 4742C EEE 5390C EEL 5722C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE Laboratory at UCF West</td>
<td>EEL 3123C EEE 3307C EEE 3342C</td>
<td>VW11 244</td>
<td>750</td>
</tr>
<tr>
<td>ECE Laboratory at UCF West</td>
<td>EEL 3801C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Laboratory</td>
<td>EEL 3123C EEE 3307C EEL 3552C</td>
<td>ENG I 474</td>
<td>1305</td>
</tr>
<tr>
<td></td>
<td>EEE 4309C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave Laboratory</td>
<td>EEL 4436C EEL 5437C EEL 5439C</td>
<td>ENG I 461/A/B</td>
<td>1269</td>
</tr>
<tr>
<td>Senior Design Laboratory</td>
<td>EEL 4914 EEL 4915</td>
<td>ENG I 456</td>
<td>1305</td>
</tr>
<tr>
<td>Microelectronics Laboratory</td>
<td>EEE 5332C EEE 5356C</td>
<td>ENG I 163</td>
<td>1225</td>
</tr>
<tr>
<td>Microelectronics Probe Room</td>
<td>EEE 5332C EEE 5356C</td>
<td>ENG I 119-120</td>
<td>257</td>
</tr>
<tr>
<td>Medical Robotics Laboratory</td>
<td>(EEL 5690 not offered)</td>
<td>HEC 302</td>
<td>731</td>
</tr>
<tr>
<td>Characterization Laboratory</td>
<td>(EEE 5352 not offered)</td>
<td>HEC 406</td>
<td>656</td>
</tr>
<tr>
<td>SMART Lab</td>
<td>(None offered)</td>
<td>HEC 338</td>
<td>763</td>
</tr>
</tbody>
</table>

Laboratory & Support

- Continuously update teaching labs (over $700K since Fall 2010, funded by $90 for EE and $86 for CpE per student per term fee)
- Use of Smart Lab (computer lab) for ECE students.
2.7 Lectures and Seminars

<table>
<thead>
<tr>
<th>Guest Speaker</th>
<th>From</th>
<th>Title of Talk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gang Qu</td>
<td>University of Maryland</td>
<td>Cybersecurity for Internet of Things from Hardware Perspective</td>
</tr>
<tr>
<td>Dong S. Ha</td>
<td>Virginia Tech</td>
<td>Power Management Circuits for Piezoelectric Energy Harvesting</td>
</tr>
<tr>
<td>Tomas Korinek</td>
<td>Czech Technical University</td>
<td>Pre-Assessment of Radiated Fields from Small Electronic Submodules</td>
</tr>
<tr>
<td>Shaolei Ren</td>
<td>University of California, Riverside</td>
<td>Power Management in Multi-Tenant Data Centers and Beyond</td>
</tr>
<tr>
<td>David H. C. Du</td>
<td>University of Minnesota</td>
<td>Storage Research Trends in Big Data Era</td>
</tr>
<tr>
<td>Lihong Zhang</td>
<td>Memorial University of Newfoundland</td>
<td>Design-for-Manufacturability-Aware Automated Layout Retargeting for Analog and RF ICs</td>
</tr>
<tr>
<td>Laxmi N. Bhuyan</td>
<td>University of California</td>
<td>Energy Aware Network Computing: Packet Processing with Multicore Processors</td>
</tr>
<tr>
<td>Tao Shu</td>
<td>Oakland University</td>
<td>Data-Driven Context-Aware Wireless Networking</td>
</tr>
<tr>
<td>Asimina Kiourti</td>
<td>The Ohio State University</td>
<td>On-/In-Body Antennas, Sensors and a Novel Class of Textiles</td>
</tr>
<tr>
<td>Aatmesh Shrivastava</td>
<td>PsiKick, Charlottesville, VA</td>
<td>Ultra-low Power Circuits and Systems to Enable Energy Autonomous Electronics</td>
</tr>
<tr>
<td>Joe H. Chow</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Synchronized Phasor Measurement Data and their Applications in Power Systems</td>
</tr>
<tr>
<td>Changzhi Li</td>
<td>Texas Technical University</td>
<td>Radio Frequency Non-contact Sensing and Localization</td>
</tr>
<tr>
<td>Xue Shelley Lin</td>
<td>University of Southern California</td>
<td>Exploring Next-Generation Technologies for High-Performance Computing and Near-Threshold Computing Systems</td>
</tr>
<tr>
<td>Arindam Sanyal</td>
<td>University of Texas, Austin</td>
<td>Digital Enhancement Techniques For Data Converters In Scaled CMOS Technologies</td>
</tr>
<tr>
<td>Dimitra Psychogiou</td>
<td>Purdue University</td>
<td>Adaptive Transfer Function RF Filters for Emerging Wireless Systems</td>
</tr>
<tr>
<td>An Chen</td>
<td>GLOBAL FOUNDRIES</td>
<td>From Emerging Memories to Novel Architectures and New Functionalities</td>
</tr>
<tr>
<td>Yury Dvorkin</td>
<td>University of Washington</td>
<td>Grid-Scale Energy Storage Integration in Power Systems: Methods & Case Studies</td>
</tr>
<tr>
<td>Prasant Mohapatra</td>
<td>University of California, Davis</td>
<td>Smart-Sensing Using Smart-Sensors</td>
</tr>
<tr>
<td>Nilanjan Ray Chaudhuri</td>
<td>North Dakota State University</td>
<td>Hybrid AC - Multi-terminal DC Grids: Modelling, Analysis and Control</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Title</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>David Sheridan</td>
<td>Alpha and Omega Semiconductor, Inc.</td>
<td>High-Voltage SiC and GaN: Devices, Techniques, and Applications</td>
</tr>
<tr>
<td>Kai Ma</td>
<td>Qualcomm</td>
<td>Power Constrained Performance Optimization in Computer Systems</td>
</tr>
<tr>
<td>Thomas Lipo</td>
<td>Florida State University</td>
<td>Developments in Permanent Magnet Machine having Concentrated Windings</td>
</tr>
<tr>
<td>Yuanyuan Yang</td>
<td>Stony Brook University</td>
<td>Exploring Server Redundancy in Nonblocking Multicast Data Center Networks</td>
</tr>
<tr>
<td>Rickard Ewetz</td>
<td>Purdue University</td>
<td>Optimization of Large Complex Systems</td>
</tr>
<tr>
<td>Yaser P. Fallah</td>
<td>West Virginia University</td>
<td>Cyber-Physical Networked Systems for Vehicle Safety and Efficiency</td>
</tr>
<tr>
<td>Mehran Kermani</td>
<td>Rochester Institute of Technology</td>
<td>Reliable and Secure Cryptographic Hardware and Deeply Embedded Systems</td>
</tr>
<tr>
<td>Anhyan Bose</td>
<td>Washington State University</td>
<td>Evolution of Control for the Power Grid</td>
</tr>
<tr>
<td>Mahnoosh Alizadeh</td>
<td>Stanford University</td>
<td>Intelligent Infrastructure for a Sustainable Future</td>
</tr>
<tr>
<td>Toru Namerikawa</td>
<td>Keio University</td>
<td>Distributed Real-Time Pricing in Multi-period Electricity Market</td>
</tr>
<tr>
<td>Yu Hua</td>
<td>Huazhong University of Science and Technology</td>
<td>Deduplication-Aware Ecosystem: A Bottom-Up Approach</td>
</tr>
<tr>
<td>Mahdi Nazm Bojnordi</td>
<td>University of Rochester</td>
<td>Memory System Optimizations for Energy and Bandwidth Efficient Data Movement</td>
</tr>
<tr>
<td>Aleksandar Dimitrovski</td>
<td>Oak Ridge National Laboratory</td>
<td>Novel Hybrid Magnetic/Electronic Control Devices for Power Systems</td>
</tr>
<tr>
<td>Jie Wu</td>
<td>Temple University</td>
<td>Collaborative Mobile Charging and Coverage in Wireless Sensor Networks</td>
</tr>
<tr>
<td>Changhong Zhao</td>
<td>California Institute of Technology</td>
<td>Controlling Future Power Grid with Intelligent Endpoints</td>
</tr>
<tr>
<td>Murat Yuksel</td>
<td>University of Nevada</td>
<td>Multi-Element Optical Wireless Modules for Mobile Networking and Lighting</td>
</tr>
<tr>
<td>Qun Zhou</td>
<td>University of Central Florida</td>
<td>Economic Analysis for Transmission Operation and Planning</td>
</tr>
</tbody>
</table>
3. Research

3.1 Areas of Research

Computer Systems and Architecture (CSA)
- Data-intensive High Performance Computing, Massive Storage and File System, I/O Architecture
- Computer Architecture and Evolvable Hardware
- Secure, Trusted, and Reliable Processor and ASIC Design; Cyber Security and Cryptography

Cyber-Physical Systems (CPS) [Communication, Controls, Signal Processing, and Energy Systems] Networked Systems, Cooperative Control, Optimization and Games
- Autonomous Robotic Vehicles, Medical and Assistive Robotics
- Smart Grids, Distributed Generation and Optimization, Protection and Control
- Biomedical Devices and Control
- Digital Signal Processing
- Detection and Estimation, Communication Theory, Cognitive Radios and Networks
- Wireless Communication and Sensor Networks
- Machine Learning, Artificial Neural Networks, Distributed Decision

Electromagnetics and Optics (EO)
- Remote Sensing, Satellite Communications
- Microwave Sensors, Antennas, Phased Arrays and Integrated RF

Micro- and Nano-Systems (MNS)
- Power electronics, Power Semiconductor devices and ICs
- Optoelectronic Materials, Thin Films Micromachining
3.2 Research Laboratories

Advanced Microfabrication Support Laboratory – EGN I 122
Donald Malocha and Kalpathy Sundaram

This is a small laboratory used for prototyping and device integration. The laboratory can build small packages, test fixtures, microblasting of wafers. The room also provides support for repair and maintenance of the ECE cleanroom facility.

Antenna, RF and Microwave Integrated Systems Laboratory – HEC 428 & HEC 431
Xun Gong, Parveen Wahid, Raj Mittra

At ARMI Laboratory, we are performing research in applied electromagnetics and microwave engineering. We have active projects on the development of novel low-profile wireless sensors for harsh environment applications. Our research interests also include phased array antennas and beam steerable reflectarray antennas. We have been one of the pioneers in developing integrated filter/antennas and endeavor to further advance this technology. Finally, tunable and flexible microwave devices such as phase shifters, filters and antennas are under development at ARMI Laboratory to be employed in the next-generation conformal and deployable telecommunications systems.

Applied Electromagnetics Lab – HEC 203
Open for All Research Assistants

We focus on investigating advanced electric machinery for aerospace, industry, geology, medical and defense applications. Ongoing projects include high power density aircraft synchronous generator, switch reluctance motor for renewable energy system, high temperature permanent magnet motor, super high speed electric machine, low cost ultra-compact micro inverter, high performance electromechanical actuator, etc.

Artificial Intelligence Lab – HEC 303
Michael Georgiopoulos and Annie Wu

Conduct research in many aspects of AI, but are particularly interested in the following areas of Natural Language Processing.

- semantic interpretation
- syntactic parsing / scope
- word sense disambiguation
- sentiment analysis
- automatic discovery of selectional restrictions
- acquisition of knowledge from the Web or large corpora
- supervised approaches to semantic role and verbal predicate labeling

Assistive Robotics Lab – Research Pavilion 494
Aman Behal

Research is focused on the development of novel human-robot interface (HRI) designs to facilitate ADL (activities of daily living) tasks for individuals in wheelchairs navigating through arbitrary unstructured environments.
Central Florida Remote Sensing Laboratory – HEC 349
W. Linwood Jones

The Central Florida Remote Sensing Laboratory of the Electrical & Computer Engineering Department performs state-of-the-art research in the field of microwave remote sensing of atmosphere, ocean and land geophysical parameters. As electrical engineers, we participate in the development of advanced microwave remote sensing instruments and measurement techniques for the National Aeronautics and Space Administration (NASA), other federal governmental agencies and the U.S. aerospace industry. These microwave sensors have applications for environmental monitoring from earth-based, airborne and satellite platforms. Also, we participate on international science teams to develop geophysical data interpretation algorithms using the electrical engineering principles of electromagnetic fields theory, communications theory and digital signal processing. Current satellite remote sensing projects are: Ocean Vector Wind Science Team, Precipitation Measurements Mission Science Team, and Sea Surface Salinity Science Team.

Computer Systems & Architecture Laboratory - HEC 242
Ronald DeMara, Jun Wang, Mingjie Lin, and Yier Jin

In the Computer Systems and Architecture Laboratory, we are performing research in Reprogrammable Logic Devices, Evolvable Hardware, Multicore Processors, and Hardware Security. Research in Reprogrammable Logic Devices and Evolvable Hardware is focused on autonomously reconfigurable Field Programmable Gate Arrays (FPGA) devices in applications including signal processing and mission-critical processing systems. Novel FPGA architectural concepts are being developed to achieve survivability while sustaining nominal run-time throughput, despite unanticipated device defects using Adaptive Group Testing, Resource Fitness Escalation, and Consensus techniques. Multicore computer architecture research is focused on memory and cache protocols and their performance, multiprocessor simulation methodologies. It also covers hardware/software co-design ranging from mobile and low-power architectures such as Energy-efficient Embedded Computing to Scalable Web Services. Hardware Security research is focused on hardware Trojan Detection in digital and mixed-signal designs such as Wireless Cryptographic ICs. Resources range from FPGA development boards to Berkeley Emulation Engine testbeds, servers, and simulation tools.

Digital Signal Processing Laboratory – HEC 342
Wafsy Mikhael, George Atia and Azadeh Vosoughi

Research is conducted in digital signal processing of one and multidimensional signals and systems. Topics include Adaptive signal processing with communications applications such as IQ mismatch compensation, adaptive beam forming, channel identification, noise cancellation, etc……, efficient feature extraction of speech and image signals With applications such as signal compression, model and transform based signal representation, facial recognition, speaker Recognition, human action recognition, etc….., sparse signal processing with applications such as compressive sensing, network tomography, group testing, etc… and adaptive algorithms for real and complex signal and systems with applications such as error correction in interleaved analog to digital converters, interference suppression, signal Separation, signal enhancement, etc….

Florida Power Electronics Center – Research Park
Issa Batarseh

The Center's mission is to develop advanced energy conversion technologies for solar and other renewable sources through multidisciplinary engineering research and education in the field of power electronics. The research vision is to achieve significant improvements in power density, efficiency, reliability, and cost-effectiveness of electric energy processing systems by developing innovative topology and control techniques, power semiconductor devices, passive components, and packaging and system integration techniques.
Communication and Wireless Networks – HEC 331
Michael Georgiopoulos, Nazanin Rahnavard

The Communication and Wireless Networks Laboratory represents a group of faculty and students undertaking high quality research in intelligent systems. This lab is part of the Department of Electrical Engineering and Computer Science at the University of Central Florida in Orlando, FL. We take a broad interpretation of the term intelligent, but the large majority of our work involves artificial intelligence and all the technologies derived therefrom. Our focus is in using such technologies to build systems that encompass both hardware and software, and are of practical use in human endeavors.

Medical Robotics Laboratory – HEC 302
Zhihua Qu, Eytan Pollak, and Vipul Patel

The Medical Robotics Laboratory is to bring together a team of faculty from UCF and local hospitals, to educate our students the state-of-art techniques in medical robotic surgery, and to conduct multidisciplinary research in tele-surgery, mixed and augmented virtual reality, surgical simulation and rehearsal, virtual mentoring, and other technologies of medical robotics.

Micro/Nanoelectronics Design Laboratory – HEC 401
Juin J. Liou

Electrostatic discharge (ESD) is an event in which a finite amount of charge is transferred from one object to the other. The electrostatic charge generation results from either the triboelectrification process (i.e., transfer of electrons when two different materials are in contact) or the inductive process (i.e., separation of positive and negative charges due to an electric field). If a microchip or electronic system is subject to the ESD, then the huge current associated with the ESD event can likely damage the microchip and cause malfunction to the electronic system. It is estimated that about 35% of all damaged microchips are ESD related, resulting in a loss of revenue of several hundred million dollars in the global semiconductor industry every year.

The Micro/Nanoelectronics Laboratory at UCF has been working on ESD research work for more than 15 years, and the lab possesses several ESD specific equipment which can be used to conduct the testing and characterization of ESD protection structures. The group is aiming to design and implement effective and robust ESD protection solutions in Si CMOS, Si BiCMOS, SiGe, GaAs, and emerging technologies. Current industry partners include Analog Devices, Intersil, Maxim, and National Semiconductor.

Nano/MEMS Laboratory – HEC 406
Kalpathy Sundaram, Vikram Kapoor, Arthur Weeks

This laboratory is devoted to thin film materials and nano/microelectronic device characterization. Materials characterization focuses on optical properties of thin films using a Varian UV-Visible spectrophotometer. Resistivity studies of thin films can be performed from low temperature (20 K) to high temperatures up to 523 K. Device characterization include MOS CV and I-V studies using HP dedicated systems.

Secure CMOS Design Laboratory – HEC 425
Jiann S. Yuan, Yier Jin, Ronald DeMara

The Secure CMOS Design Laboratory is actively engaged in research of CMOS device and circuit reliability. Our radio-frequency integrated circuit design addresses device physics and reliability issues in the circuit operation environment. Process variability, temperature fluctuation, and supply voltage variations are accounted for in the design of wireless transceiver circuits, such as low noise amplifiers, voltage-controlled oscillators, and power amplifiers.
Microsystems Laboratory – HEC 404
Reza Abdolvand

In Microsystems Lab we utilize our collective intellectual capacities to extend the application of hybrid integrated micro-systems to new areas of technology. Our main focus is to understand the fundamental physics behind the operation of transducers at small scales and to optimize their performance for applications in the fields of radio-frequency, biomedical, and wireless sensing.

Power Systems Laboratory – HEC 302
Wei Sun

In the Power Systems Lab, we are working on different aspects of power systems including:
a) Optimal operation of transmission and distribution systems with high penetration of renewable energies
b) Stochastic modeling of power systems
c) Protection of PV farms
d) Real-time monitoring of transmission and distribution systems
e) Power system restoration and resilience analysis

Robotics Laboratory – EGN I 364
Zhihua Qu

The 400-sf Robotics Laboratory, housed at ENG I 364, conducts research in robotic manipulation, motion planning, and control. Topics include cooperative control of unmanned vehicles, teleoperation, coverage control, and novel energy-harvesting devices. Applications include medical surgical robots, mobile robotic platforms, and ocean wave energy generation devices.

Signals and Communication Laboratory – HEC 334
Lei Wei and Azadeh Vosoughi

The Advanced Communication Laboratory at Department of Electrical and Computer Engineering, The University of Central Florida, conducts researches in the areas of Wireless Communications, Emergency Communications, Error Control Coding, and Application of advanced coding theory in Bio-inspired system design, called General Purpose Representation and Association Machine (GPRAM). The Lab obtained funds from various sources, including NSF, US Homeland Security Department, FDOE, NASA/FSGC, US ARMY. Currently, his group is fully focusing on GPRAM machine prototype development.

Software Systems – HEC 231
Jun Wang

Our Computer Architecture and Storage System (CASS) laboratory has primary research interests which cover a wide spectrum in the areas of high performance and computer systems. A common thread among our research projects focuses on fast data accesses and resource sharing with cost- and energy-efficient management at different levels of memory and storage hierarchies in supercomputer, parallel and distributed computer systems. More recently, CASS research interests cover the areas of interdisciplinary computing, computer architecture, and low-power computing. A significant complimentary thread among CASS extensive research projects emphasize at developing new software tools and hardware platforms to stimulate advances in science and engineering research, where large digital data collections are increasingly prevalent. CASS research projects have been sponsored by several federal funding agencies such as National Science Foundation, Department of Energy, and NASA. In the last five years, the total amount of research funding is approximately $3.03M.
Solid State Devices Laboratory – EGN I 234
Donald Malocha

The solid state devices and systems laboratory (SSDSL) performs experimental and solid-state research in a broad range of technologies. The laboratory has been operational for over 25 years and has established a network of partnerships with industry and government groups. The laboratory has facilities for RF device probing for characterization in the 100 kHz to 6 GHz range, various vector and scaler analyzers, printed circuit board design and fabrication, wafer dicing and die bonding, and custom analysis, design, synthesis and measurement computer systems. The research emphasis of the laboratory is in solid-state bulk and surface acoustic wave technology for communication and sensors. In 2000, we were the 1st US group to fully characterize LGS, LGN and LGT piezoelectric material parameters over temperature, the group has invented and patented embodiments of RF orthogonal frequency coded (OFC) SAW tag and sensors, and is continuing research on passive wireless system and technology solutions for sensors. In conjunction with ECE’s microfabrication facilities, submicron devices can be produced, from mask to packaging, in a quick turn-around capability. Devices can then be fully characterized, tested, packaged and integrated into a wireless test system.

Systems & Controls Laboratory – HEC 434
Zhihua Qu, Marwan Simaan, and Michael Haralambous

The 400-sf Controls Laboratory, housed at HEC 434, conducts research in optimization and controls of cyber-physical systems. Topics include identification of dynamic systems, estimation of distributed networks, and distributed cooperative control of nonlinear heterogeneous systems, distributed game algorithms, and optimization of network topologies. Applications include biomedical devices, autonomous vehicle systems, solar-energy grid-tied systems, smart grids, and energy systems.
3.3 Publications

Books

J. J. Liou and S. K. Liaw (Editors), Recent Advances on Nano Devices and Sensors, 12 chapters, 250 pages, De Gruyter Publisher, Boston, Mar. 2016

Book Chapters

Journal Publications

Conference Papers with Proceedings

Conference Papers without Proceedings

Plenary and Invited Talks

21. Liou, J. J., “Compact modeling of MOS junction failure subject to ESD stresses,” Hong Kong University of Science and Technology, Hong Kong, China, August 2015.

22. Liou, J. J., “Electrostatic Discharge Protection in Emerging Technologies,” Tel Aviv University, Tel Aviv, Israel, March 2016.

23. Liou, J. J., “Electrostatic Discharge Protection in 28-Nm CMOS Technology Node and Beyond,” Peking University, Beijing, China, May 2016.

Patents

Liou, J. J., Novel Multi-Gate pHEMT Devices for On-Chip Electrostatic Discharge (ESD) Protection of Gallium Arsenide Integrated Circuits, Taiwan Patent Number I518,866

Patent Applications

Batarseh, I., “Modular Grid-Tied Multi-Pulse Inverter for a Distributed PV System,” Patent Application Number 2013284381 (AU) NAT 33164

Batarseh, I., “Modular Grid-Tied Multi-Pulse Inverter for a Distributed PV System,” Patent Application Number 13 808 682.2 (EU)

Liou, J. J., “No-Snapback SCR with Adjustable Trigger and Holding Voltages for High-Voltage ESD Protection Applications,” U.S. Patent, filed Oct. 2015

3.1 RESEARCH EXPENDITURES AND FUNDING

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>New</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-16</td>
<td>$6,417,905</td>
<td>$4,482,442</td>
</tr>
<tr>
<td>2014-15</td>
<td>$4,485,689</td>
<td>$4,609,599</td>
</tr>
<tr>
<td>2013-14</td>
<td>$5,812,129</td>
<td>$4,075,433</td>
</tr>
<tr>
<td>2012-13</td>
<td>$3,794,065</td>
<td>$2,959,504</td>
</tr>
<tr>
<td>2011-12</td>
<td>$3,020,782</td>
<td>$2,458,601</td>
</tr>
</tbody>
</table>

(Source: Aurora)

<table>
<thead>
<tr>
<th>PI</th>
<th>Title</th>
<th>Agency Name</th>
<th>Total Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdolvand, Dr. Reza</td>
<td>FHTC: Engineered Dielectric Layers for Enhanced Temperature Coefficient of Stiffness(ID: 1060152)</td>
<td>UCF/I-4</td>
<td>$12,636</td>
</tr>
<tr>
<td>Atia, Dr. George K</td>
<td>Exploiting Multidimensional Classical Optical Entanglement for Enhanced Spatial Scene Recognition(ID: 1056623)</td>
<td>University of Rochester</td>
<td>$58,800</td>
</tr>
<tr>
<td></td>
<td>I/UCRC Multi-functional Integrated System Technology (MIST)(ID: 1057009)</td>
<td>National Science Foundation (NSF)</td>
<td>$1,300</td>
</tr>
<tr>
<td>CIF: Small: Advanced Ion Channel Models for Neurological Signal Processing - Theory and Application to Brain-Computer Interfacing(ID: 1058266)</td>
<td>National Science Foundation (NSF)</td>
<td>$74,000</td>
<td></td>
</tr>
<tr>
<td>CAREER: Inference-Driven Data Processing and Acquisition: Scalability, Robustness and Control(ID: 1059110)</td>
<td>National Science Foundation (NSF)</td>
<td>$205,461</td>
<td></td>
</tr>
<tr>
<td>UNCOVER: Unconstrained Natural-light Coherency Vector-field-imaging by Exploiting Randomness(ID: 1059180)</td>
<td>Defense Advanced Research Projects Agency (DARPA)/DoD</td>
<td>$146,716</td>
<td></td>
</tr>
<tr>
<td>Batarseh, Dr. Issa E</td>
<td>OSD/NAVY SBIR Phase II - High-Density Soft-Switching Multi-Port Photovoltaic Power Manager(ID: 1057690)</td>
<td>Advanced Power Electronics Corporation (APECOR)</td>
<td>$74,854</td>
</tr>
<tr>
<td>Behal, Dr. Aman</td>
<td>CHS: SMALL: EMPOWERMENT OF DISABLED INDIVIDUALS VIA AN ADAPTIVE FRAMEWORK FOR INDIRECT HUMAN ROBOT INTERACTION (ID: 1068430)</td>
<td>National Science Foundation (NSF)</td>
<td>$315,616</td>
</tr>
<tr>
<td>DeMara, Dr. Ronald F</td>
<td>Trusted IoT using Cross-layer Leveraging of Reconfigurable Device Signatures(ID: 1060115)</td>
<td>University of South Florida</td>
<td>$25,000</td>
</tr>
<tr>
<td>Fan, Dr. Deliang</td>
<td>Self-sustained Spin-transfer Torque Devices based Brain-inspired Processor Powered by Energy Harvesting Technologies for Internet of Things Applications(ID: 1060721)</td>
<td>Office of Research & Commercialization</td>
<td>$7,500</td>
</tr>
<tr>
<td>Georgiopoulos, Dr. Michael</td>
<td>Central Florida - STEM Training Consortium (CF-STEM) - SightPlan(ID: 1058908)</td>
<td>SightPlan Inc.</td>
<td>$4,500</td>
</tr>
<tr>
<td></td>
<td>Central Florida - STEM Training Consortium (CF-STEM) Internship Funding - Design Launchers LLC(ID: 1059298)</td>
<td>Design Launchers LLC</td>
<td>$2,250</td>
</tr>
<tr>
<td>Name</td>
<td>Project Description</td>
<td>Award Amount</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Qu, Dr. Zhihua</td>
<td>Wireless Surface Acoustic Wave Sensor System for SHM(ID: 1058244)</td>
<td>$426,126</td>
<td></td>
</tr>
<tr>
<td>Malocha, Dr. Donald C</td>
<td>TTO: Malocha Auxiliary Balance Account(ID: 1059660)</td>
<td>$19,702</td>
<td></td>
</tr>
<tr>
<td>Liou, Dr. Juin J</td>
<td>Passive Surface Acoustic Wave Detector(ID: 1057583)</td>
<td>$495,001</td>
<td></td>
</tr>
<tr>
<td>Qu, Dr. Zhihua</td>
<td>Electric Vehicle Transportation Center (EVTC)(ID: 1055483)</td>
<td>$99,992</td>
<td></td>
</tr>
<tr>
<td>Jones, Dr. W Linwood</td>
<td>Observations of Ocean Surface Wind Speed and Rain Rate with the Hurricane Imaging Radiometer (HIRAD)(ID: 1049397)</td>
<td>$99,840</td>
<td></td>
</tr>
<tr>
<td>Jin, Dr. Yier</td>
<td>RF - International Workshop on Antenna Technology(ID: 1059868)</td>
<td>$13,206</td>
<td></td>
</tr>
<tr>
<td>Gong, Dr. Xun</td>
<td>Customizable Antenna Array Using Pixelated and Reconfigurable Slot-Ring Antennas[ID: 1057312](ID: 1057583)</td>
<td>$209,809</td>
<td></td>
</tr>
<tr>
<td>DURIP: Equipment to Characterize Microwave Components and Antennas above 110 GHz(ID: 1058074)</td>
<td>$400,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF - International Workshop on Antenna Technology(ID: 1059868)</td>
<td>Various</td>
<td>$13,206</td>
<td></td>
</tr>
<tr>
<td>J/UCRC Multi-functional Integrated System Technology (MIST)(ID: 1057009)</td>
<td>National Science Foundation (NSF)</td>
<td>$1,300</td>
<td></td>
</tr>
<tr>
<td>CAREER: iMPACT: Metaphysical and Probabilistic-Based Computing Transformation with Emerging Spin-Transfer Torque Device Technology(ID: 1058977)</td>
<td>National Science Foundation (NSF)</td>
<td>$211,100</td>
<td></td>
</tr>
<tr>
<td>REU Site: Research Experiences in the Internet of Things (IoT)(ID: 1059195)</td>
<td>National Science Foundation (NSF)</td>
<td>$105,100</td>
<td></td>
</tr>
<tr>
<td>Verification of IP Security and Trust[ID: 1060834]</td>
<td>University of South Florida</td>
<td>$15,000</td>
<td></td>
</tr>
<tr>
<td>Jones, Dr. W Linwood</td>
<td>Observations of Ocean Surface Wind Speed and Rain Rate with the Hurricane Imaging Radiometer (HIRAD)(ID: 1049397)</td>
<td>$99,840</td>
<td></td>
</tr>
<tr>
<td>Jin, Dr. Yier</td>
<td>RF - International Workshop on Antenna Technology(ID: 1059868)</td>
<td>$13,206</td>
<td></td>
</tr>
<tr>
<td>Gong, Dr. Xun</td>
<td>Customizable Antenna Array Using Pixelated and Reconfigurable Slot-Ring Antennas[ID: 1057312](ID: 1057583)</td>
<td>$209,809</td>
<td></td>
</tr>
<tr>
<td>DURIP: Equipment to Characterize Microwave Components and Antennas above 110 GHz(ID: 1058074)</td>
<td>$400,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF - International Workshop on Antenna Technology(ID: 1059868)</td>
<td>Various</td>
<td>$13,206</td>
<td></td>
</tr>
<tr>
<td>J/UCRC Multi-functional Integrated System Technology (MIST)(ID: 1057009)</td>
<td>National Science Foundation (NSF)</td>
<td>$1,300</td>
<td></td>
</tr>
<tr>
<td>CAREER: iMPACT: Metaphysical and Probabilistic-Based Computing Transformation with Emerging Spin-Transfer Torque Device Technology(ID: 1058977)</td>
<td>National Science Foundation (NSF)</td>
<td>$211,100</td>
<td></td>
</tr>
<tr>
<td>REU Site: Research Experiences in the Internet of Things (IoT)(ID: 1059195)</td>
<td>National Science Foundation (NSF)</td>
<td>$17,996</td>
<td></td>
</tr>
<tr>
<td>Liou, Dr. Juin J</td>
<td>RF: Design and Characterization of Electromagnetic Compatibility (EMC) for Integrated Circuits(ID: 1058405)</td>
<td>$52,000</td>
<td></td>
</tr>
<tr>
<td>Malocha, Dr. Donald C</td>
<td>Wireless Surface Acoustic Wave Sensor System for SHM(ID: 1058244)</td>
<td>$426,126</td>
<td></td>
</tr>
<tr>
<td>TTO: Malocha Auxiliary Balance Account(ID: 1059660)</td>
<td>Langley Research Center/NASA</td>
<td>$19,702</td>
<td></td>
</tr>
<tr>
<td>Passive Surface Acoustic Wave Detector(ID: 1057583)</td>
<td>Defense Intelligence Agency/DoD</td>
<td>$495,001</td>
<td></td>
</tr>
<tr>
<td>Qu, Dr. Zhihua</td>
<td>Electric Vehicle Transportation Center (EVTC)(ID: 1055483)</td>
<td>$99,992</td>
<td></td>
</tr>
<tr>
<td>Project Description</td>
<td>Funding Agency</td>
<td>Amount</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Foundations for Engineering Education for Distributed Energy Resources (FEEDER)</td>
<td>US Department of Energy</td>
<td>$438,474</td>
<td></td>
</tr>
<tr>
<td>(ID: 1055621)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel Guidance and Control Algorithms for Missile Defense Systems(ID: 1055654)</td>
<td>Coleman Aerospace</td>
<td>$80,000</td>
<td></td>
</tr>
<tr>
<td>FEEDER: Strategic Expansion to Achieve GEARED Goals (STEP) (ID: 1059230)</td>
<td>US Department of Energy</td>
<td>$222,852</td>
<td></td>
</tr>
<tr>
<td>An Intelligent Medical Robotic Device(ID: 1060156)</td>
<td>AVRA Medical Robotics, Inc.</td>
<td>$163,307</td>
<td></td>
</tr>
<tr>
<td>FHTC: Novel Guidance and Control Algorithms for Missile Defense Systems(ID: 1055539)</td>
<td>UCF/I-4</td>
<td>$80,000</td>
<td></td>
</tr>
<tr>
<td>Simaan, Dr. Marwan Foundations for Engineering Education for Distributed Energy</td>
<td>US Department of Energy</td>
<td>$41,759</td>
<td></td>
</tr>
<tr>
<td>Resources (FEEDER)(ID: 1055621)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun, Dr. Wei Collaborative Research: An Intelligent Restoration System for a Self-</td>
<td>National Science Foundation</td>
<td>$197,649</td>
<td></td>
</tr>
<tr>
<td>healing Smart Grid (IRS-SG)(ID:1059122)</td>
<td>(NSF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEEDER: Strategic Expansion to Achieve GEARED Goals (STEP) (ID: 1059230)</td>
<td>US Department of Energy</td>
<td>$44,570</td>
<td></td>
</tr>
<tr>
<td>IH: Building a Self-healing Smart Grid: From Data Centers to the Bulk Power System(ID: 1060702)</td>
<td>Office of Research & Commercialization</td>
<td>$7,500</td>
<td></td>
</tr>
<tr>
<td>Vosoughi, Dr. Azadeh Foundations for Engineering Education for Distributed Energy</td>
<td>US Department of Energy</td>
<td>$83,519</td>
<td></td>
</tr>
<tr>
<td>Resources (FEEDER)(ID: 1055621)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIF: Small: Advanced Ion Channel Models for Neurological Signal Processing -- Theory</td>
<td>National Science Foundation</td>
<td>$74,000</td>
<td></td>
</tr>
<tr>
<td>and Application to Brain-Computer Interfacing(ID: 1058266)</td>
<td>(NSF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Dr. Jun GOLD SALMON project(ID: 1052541)</td>
<td>NASA Shared Services Center</td>
<td>$292,239</td>
<td></td>
</tr>
<tr>
<td>SHF: Small: Multi-criteria optimization control for temperature constrained</td>
<td>National Science Foundation</td>
<td>$369,092</td>
<td></td>
</tr>
<tr>
<td>energy efficient data center using fuzzy decision making theory(ID: 1058278)</td>
<td>(NSF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE Oak Ridge Lab subcontract Multi-tiered Storage and software defined</td>
<td>Oak Ridge National</td>
<td>$58,736</td>
<td></td>
</tr>
<tr>
<td>networking (ID: 1060197)</td>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weeks, Dr. Arthur R Wireless Surface Acoustic Wave Sensor System for SHM(ID:</td>
<td>Albido Corporation</td>
<td>$142,042</td>
<td></td>
</tr>
<tr>
<td>1058244)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Surface Acoustic Wave Detector(ID: 1057583)</td>
<td>Defense Intelligence Agency</td>
<td>$55,000</td>
<td></td>
</tr>
<tr>
<td>Wu, Dr. Xinzhang (Thomas) Thermal Management of Electromechanical Actuator for</td>
<td>North Carolina A&T State</td>
<td>$12,500</td>
<td></td>
</tr>
<tr>
<td>Flight Control Surfaces(ID:1057673)</td>
<td>University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSD/NAVY SBIR Phase II - High-Density Soft-Switching Multi-Port Photovoltaic Power</td>
<td>Advanced Power Electronics</td>
<td>$74,854</td>
<td></td>
</tr>
<tr>
<td>Manager(ID: 1057690)</td>
<td>Corporation (APECOR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Management of Electrical Actuation via Enhanced Air Circulation(ID:</td>
<td>Rini Technologies, Inc.</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>1055596)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three Dimensional FEA Modeling and Permanent Magnet Motor(ID: 1059826)</td>
<td>Calnetix, Incorporated</td>
<td>$1</td>
<td></td>
</tr>
<tr>
<td>Yuan, Dr. Jiann-Shiun I/UCRC Multi-functional Integrated System Technology (MIST)(</td>
<td>National Science Foundation</td>
<td>$32,500</td>
<td></td>
</tr>
<tr>
<td>(ID: 1057009)</td>
<td>(NSF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/UCRC Multi-functional Integrated System Technology (MIST)(ID: 1057009)</td>
<td>Various</td>
<td>$120,000</td>
<td></td>
</tr>
<tr>
<td>Securing the Internet of Things (IoT) from the Hardware and Architecture</td>
<td>University of South Florida</td>
<td>$12,500</td>
<td></td>
</tr>
<tr>
<td>Perspectives(ID: 1060140)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, Qun FEEDER: Strategic Expansion to Achieve GEARED Goals (STEP) (ID: 1059230)</td>
<td>US Department of Energy</td>
<td>$44,570</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$6,417,905</td>
<td></td>
</tr>
</tbody>
</table>

(Source: Aurora)

3.2 Externally Funded Research Centers

- FEEDER funded by DoE
- EVTC funded by US DoT
- NSF I/UCRC funded by NSF
4. Industry Partnership

The Industrial Affiliates Board (IAB)

The EECS Industrial Advisory Board meeting was held on May 20th, 2016 at Harris Corporation Engineering Center room 101. The meeting was held to collaborate on research areas and enhancing the quality of CpE and EE undergraduate and graduate academic programs.

2016 EECS Industrial Advisory Board Members

Michael Biscoe, Duke Energy
Mike Braden, Orlando Health
Herb Gingold, G5 Engineering Solutions
Paul R. Grimes, Leidos
George Gurlaskie, Duke Energy
Jeff Hays, Northrop Grumman
Richard Hull, United Technology
W. Joel D. Johnson, Harris Corporation
Douglas L. Juul, Lockheed Martin Missiles and Fire Control
Carol Kiron, Northrop Grumman
Donna M. Kocak, Harris Corporation
Carlos Leon-Barth, Applied Visual Technology - AVT Simulation
Jose Nunes, NASA
Jim Vinson, Intersil
Robert Reedy, Florida Solar Energy Center