
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Path approximation for multi-hop wireless routing
under application-based accuracy constraints q

Mustafa O. Kilavuz, Murat Yuksel ⇑
Computer Science and Engineering Department, University of Nevada – Reno, Reno, NV 89557, USA

a r t i c l e i n f o

Article history:
Received 20 June 2010
Received in revised form 3 August 2011
Accepted 19 September 2011
Available online 1 October 2011

Keywords:
Application-based routing
Top-down design
Trajectory-Based Routing

a b s t r a c t

Provisioning of rich routing building blocks to mobile ad hoc networking applications has
been of high interest. Several MANET applications need flexibility in describing paths their
traffic will follow. To accommodate this need, previous work has proposed several viable
routing schemes such as Dynamic Source Routing (DSR) and Trajectory-Based Routing
(TBR). However, tradeoffs involved in the interaction of these routing schemes and the
application-specific requirements have not been explored. Especially, techniques to help
the application to do the right routing choices are much needed. In this paper, we consider
techniques that minimize routing protocol state costs under application-based constraints.
We study the constraint of ‘‘accuracy’’ of the application’s desired route, as this constraint
provides a range of choices to the applications. As a crucial part of this concept, we inves-
tigate the tradeoff between the size of packet headers (needed to store end-to-end paths)
and the network state (needed to store routing tables). We, then, apply the concept to the
case of TBR with application-based accuracy constraints in obeying a given trajectory. We
begin with simple discrete models to clarify the tradeoff between the packet header size
and the network state. We show that the problem of accurate approximation of a trajectory
(a.k.a. an application-specific end-to-end path) with the objective of minimizing the cost
incurred due to header size and network state is difficult to solve optimally. We design
an exhaustive search method as well as a genetic algorithm to find the optimum solution.
We also develop heuristics solving this problem with smaller computational complexity
and illustrate their performance. Finally, we explore ways of customizing our trajectory
approximation framework for power-scarce or memory-scarce networking scenarios.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

As the reach of networked devices increases, the net-
work infrastructure needs to support application-specific de-
signs due to the increased variety of reached applications.
This need is more pronounced in sensor networks,
especially in terms of the routing functions provided by

the network. To accommodate various application-specific
routing needs, the expressiveness of the routing interface
must be at sufficient granularity. The typical wireless
routing interface has been a shortest-path interface with
simplistic primitives: Send(src,dst,data) and Receive

(src,dst,data). Recently, there have been a lot of efforts
in improving this interface with an ‘‘options’’ argument in
the primitives, i.e., Send(src,dst,data,options) and
Receive(src,dst,data,options). Recent work [2,3]
tackled this problem in the general routing context without
customizing it for multi-hop wireless routing.

In terms of application-specific routing functions, previ-
ous work showed that very flexible routing functions can
be implemented [4,5] by using network-specific properties

1389-1286/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.09.013

q Earlier version of this work appeared in [1] as a conference paper. This
work is supported in part by the US National Science Foundation award
0627039.
⇑ Corresponding author.

E-mail addresses: mkilavuz@cse.unr.edu (M.O. Kilavuz), yuksem@
cse.unr.edu (M. Yuksel).

Computer Networks 56 (2012) 345–364

Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet



Author's personal copy

such as geographic routing [6] capability. Such routing
functions enabled application-specific traffic engineering
[7], e.g., load-balancing among multiple paths instead of
a single shortest-path. On the other side, over a network
where several routing options are provided, applications
face the problem of selecting the right options and appro-
priately identifying their constraints, such that applica-
tions’ goals are met. Some recent work pinpointed the
complexity of this issue within limited contexts, e.g., min-
imal/maximal exposure path selection [8].

Though provisioning of rich routing building blocks to
multi-hop wireless networking applications is of high
interest, application-specific requirements and constraints
emphasize the challenge of designing routing schemes. It is
a major challenge to include application-based ‘‘con-
straints’’ (which can be of various type such as path qual-
ity, path accuracy, and path cost/price) as an additional
argument to the routing primitives, which we investigate
in this paper. In particular, we investigate tradeoffs in-
volved in the interaction between wireless routing and
the application-specific constraints. Especially, low-com-
plexity techniques to help the application to do the right
routing choices are much needed, as the time to make such
routing decisions is very minimal for mobile nodes [9]. We
consider the concept of minimizing of routing state under
application-specific path constraints; and how this concept
can guide the investigation of various inter-layer design is-
sues from a top-down perspective where applications are
offered more flexibility in expressing their desires or
needs. We, particularly, focus on finding the right tradeoffs
in function placement among the application and the rout-
ing layers, such that the overall cost of two conflicting
goals is minimized: (i) accommodating application’s
end-to-end requirements with maximum quality and (ii)
performing routing with minimum state and resource
costs.

We base our study to the key optimization problem of
minimizing routing state costs under application-specific
constraints. Specifically, we formulate the problem of min-
imum cost (i.e., the state to be stored) Trajectory-Based
Routing (TBR) [4,5] under application-specific constraint
of ‘‘path accuracy’’. That is, we consider an application
which desires its packets to follow a trajectory with a
bounded error in obeying the trajectory. We illustrate
how such a constraint can be quantified. In TBR, as shown
in Fig. 1, the application at the source node embeds a de-
sired ‘‘ideal trajectory’’ into packets’ headers. This ideal tra-
jectory is to be followed by the packets. The intermediate
nodes are assumed to be able to decode the ideal trajectory
from the packet header and decide which neighbor to

forward the packet next such that the packet obeys the
ideal trajectory as much as possible. Though TBR can imple-
ment highly flexible routing options, the decision to select
the next neighbor optimally can be quite time consuming
which breaks the basic premise of simple packet forward-
ing. Thus, approximating the ideal trajectory is needed so
that the nodes can work on the ‘‘approximate trajectory’’
rather than the ideal trajectory which can be quite compli-
cated depending on the application needs. The approximate
trajectories can be a concatenation of several pieces of
‘‘easy to handle’’ trajectories such as a line, a polynomial
curve, or a Bézier curve. Then, this approximate trajectory
is used to make forwarding decisions for the ‘‘actual trajec-
tory/route’’, as illustrated in Fig. 2.

From a larger point of view, our work aims to approxi-
mate a path under application-specific constraints. The goal
is to perform this path approximation such that the routing
overhead is minimized while the application-specific con-
straints are strictly followed. Particularly, we formulate
the trajectory approximation problem as a combinatorial
optimization problem, and show that it is NP-hard. In our
formulation, we allow a number of representations to be
used to approximate a portion of the trajectory, such as
straight lines, polynomial curves, or Bézier curves. We carry
the trajectory approximation problem to a discrete space
and outline an exhaustive search algorithm (with pruning)
that guarantees finding the global optimum. Since this tra-
jectory approximation is supposed to be frequently per-
formed (i.e. whenever there is data to be sent with TBR)
at the source node where the application resides, the com-
putational complexity of the solution is of high importance.
Thus, to reduce the computational time requirements of
our solution, we map the problem to a genetic algorithm
and design two heuristics as well.

In brief, contributions of this paper include:

� The concept of minimizing routing state under application-
based constraints. We applied this concept on the partic-
ular problem of minimizing TBR state under applica-
tion-based accuracy constraints.
� Formulation of the trajectory approximation problem min-

imizing the routing state. We formulated the problem of
generating an approximate trajectory within an
application-defined error bound such that TBR state
(i.e., the aggregate of packet header length and
network/router state) is minimized.
� Proof that the trajectory approximation problem is NP-

hard.
� Solutions to solve the trajectory approximation problem.

We designed an exhaustive search algorithm, a genetic

Fig. 1. Trajectory-Based Routing (TBR) framework.

346 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

algorithm, and two heuristics to solve the trajectory
approximation problem.
� Customized the trajectory approximation problem for

power-scarce networks. We increased the perceived cost
of packet header length and illustrated how the approx-
imate trajectories should be changed in a power-scarce
network.

The rest of the paper is organized as follows: First in
Section 3, we describe the TBR in detail. We outline the
problem of approximating an ideal trajectory under appli-
cation-specific accuracy constraint in Section 4. Then, Sec-
tion 5 details four methods to solve the approximation
problem. We present results of our simulation experiments
in Section 6 and summarize our work in Section 7.

2. Related work

There has been a lot of recent interest mobile ad hoc
networks (MANETs) [10–13,6,14], and sensor networks.
Main focus of MANET research has been on scalability
and complexity issues raised due to underlying dynamism,
specifically on routing. Routing tackles the problem of
establishing an indirection from a persistent name (or ID)
to a locator. In today’s routing, this indirection translates
to IP address prefix being the ID and next hop router being
the locator. Routing protocols such as AODV [11], DSDV
[15], and others, facilitate this indirection by building
and maintaining routing tables that map destination IDs
to next-hop IDs based on node or link state information.
Dealing with such dynamic indirections usually involves
delaying the creation of the ID-to-location mapping (a.k.a
‘‘late-binding’’), and reducing the number and dynamism of
bindings (e.g., using hierarchy [12,16] or consistent hash-
ing [17,14] or filtering [18]). MANET routing has grown
into two subclasses: proactive routing [15] (using early
binding) and reactive or on-demand routing [10,11] (involv-
ing late-binding).

2.1. Application-based routing

Application-based routing and network design, the most
relevant to our work, has been of a key focus area in sensor

networks research. Though providing routing expressive-
ness and flexibility to user applications has been of a great
interest [19–21], application-based networking and routing
has been mainly studied in the context of sensor networks.
Active networking [22] and cognitive networking [23] are
efforts towards the same goal of customizing network
behavior for various user applications. In the general con-
text of routing, defining application-specific custom routes
through user-defined routes [24], through a declarative
language [2,3,25], or through concatenations of several
user-chosen contracts [26] have attracted interest. How-
ever, these efforts either require significant router compu-
tation or autonomous system level route descriptions,
both are impractical in wireless routing.

The very first application-based wireless routing work
was an extreme scheme of Dynamic Source Routing
(DSR) [10], which gives a full flexibility to the user applica-
tion to define the routes. Since DSR could not scale to suf-
ficient number of nodes, schemes like Trajectory-Based
Routing (TBR) [4] and landmark selection [27] were pro-
posed to reduce the packet header costs and yet still give
reasonable flexibility for users to define their desired
routes as trajectories. Recent wireless routing studies fo-
cused on customizing routing metric for applications [28]
and centralized optimization of routing for application-
based goals [29,30]. Our work introduces a new knob of
‘‘application-specific constraints’’ into the routing inter-
face, while considering routing state scalability issues.

2.2. State scalability and complexity

Scaling challenges in terms of network size are ad-
dressed to a limited extent by building hierarchies (e.g.,
ZRP [12], Adaptive Clustering [31,32]). Caching or replica
usage is common in all dynamic networks to leverage
locality of reference. Protocols like HSLS (Hazy Sighted Link
State [18]), Fisheye [16] and DREAM [13] filter updates
sent to remote nodes. GLS [14], GHT [33], and MAP [34]
use geographical/geometric forwarding and consistent
hashing techniques to scale. However, hierarchies and
link-states become harder to maintain with increase in
mobility, traffic load and network size [18].

MANETs tend to take advantage of geography or location
information to help scale routing and reduce the complexity

Fig. 2. Ideal, approximate, and actual trajectories.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 347



Author's personal copy

of state maintenance. Geographic routing in MANETs is
attractive because forwarding is achieved by using cartesian
properties (like direction and distance). When a next hop is
unavailable, several fallback mechanisms are available
[6,35,36]. ID-to-GeoLocation is still a problem. DREAM
[13] achieves this by proactive flooding of mappings and
LAR [37] uses reactive flooding. LANMAR [38] employs a
hierarchy to avoid global flooding, but is susceptible to
nodes at the top of the hierarchy being mobile. Terminodes
routing [39,40] uses a fixed set of geographic points (an-
chors) to guide remote forwarding. Hubaux et al. suggest
placing the ID-to-location mappings at geo-locations de-
rived from a hash of the ID. As networks become larger
and denser, maintaining each entry in the routing table be-
comes increasingly more costly. Additionally, as node mobil-
ity increases, increased node location/link information
dissemination further adds to overhead. This phenomenon
led to several studies of probabilistic schemes [41,42].

2.3. Constrained routing

Finding paths within a set of constraints has been studied
extensively in the areas of QoS routing and traffic engineer-
ing [43]. Most of these investigations focused on achieving
delay-constrained least-cost (DCLC) routing in wireline net-
working, since real-time multimedia applications care
much about the maximum end-to-end delay. The main tar-
get of these schemes has been to find a path so that the end-
to-end path delay is capped with pre-defined value and
approximation error from the DCLC path is bounded with
a pre-defined ratio. Achieving polynomial time heuristics
to such NP-hard multi-constraint routing problems received
a lot of attention, but the focus mainly stayed in wireline
networking [44,45] with some recent expansion to the sta-
tionary multi-hop wireless networking [46,47].

Our work relates to this literature since we are trying to
approximate an ideal trajectory (i.e. end-to-end path) with-
in an accuracy constraint explicitly defined by an applica-
tion. We show how our problem set can be reduced to the
constrained shortest path problem. A crucial difference is
that, however, our goal is not to minimize the approxima-
tion error but rather the aggregate routing state costs. Since
we consider a MANET environment, time complexity of the
heuristics is of essence and thus we do not focus on achiev-
ing a bound on the approximation error. The heuristics de-
signed by Chen et al. [45] are similar to ours in that they also
try to reduce the granularity of the discretization step by
either randomizing the discretization points or selecting
them according to the end-to-end path delay via combina-
torial optimization. The difference in our problem, however,
is that the underlying graph is unknown at the beginning,
and the heuristic has to devise calculations to explore the
graph since the edge weights correspond to the applica-
tion-specific costs (i.e., path accuracy) between two points
on the path. Our heuristics also leverage the end-to-end
path characteristics such as the trajectory length, but apply
a very different process to find the approximate path. Par-
ticularly, we devise recursive inspection of the path to find
the minimum number of discretization points (i.e. split
points) to achieve an explicit accuracy constraint.

3. Trajectory-Based Routing and accuracy constraint

3.1. Ideal, actual, and approximate trajectories

Trajectory-Based Routing (TBR) [4,5] suggests that the
source node encodes the trajectory into packet headers,
and then intermediate nodes forward the packets accord-
ing to the trajectory decoded from their headers so as to
make them traverse the source-defined trajectory as much
as possible. The ‘‘ideal trajectory’’ is received from the user
application which is the demanded path of the traffic flow.
In Fig. 2, the ideal trajectory is shown as a hand-drawn
curve. This ideal trajectory can be formed based upon the
user application’s goals, but the network routing still has
to determine the best way of attaining the goal of forward-
ing the packets along this ideal trajectory.

Since the trajectory will be encoded into the packet
headers, the ideal trajectory needs to be represented by for-
mulations which can be understood by all nodes in the net-
work. Implementing very complex trajectory decoding
hardware at every node is not practical, and thus these tra-
jectory representations must be of simple type such as a
straight line, a polynomial curve, or a Bézier curve. This
means that the ideal trajectory may not be representable
exactly, depending on how complex the ideal trajectory
is. Thus, instead of representing the exact ideal trajectory,
we focus on generating an ‘‘approximate trajectory’’ which
is easier to represent, however it has slight differences than
the ideal trajectory. To give the user application a knob on
how the routing function generates this trajectory, we con-
sider the limits of the difference between the ideal trajec-
tory and the approximate trajectory is given by the user
application as an ‘‘accuracy constraint’’.

Although the approximate trajectory is optimized in the
best way under the constraints, it is still sometimes too
complex to encode the whole trajectory into the packet
headers. Hence, the approximate trajectory is divided into
small pieces that each piece can be encoded into packet
headers separately. To manage this, some special interme-
diate nodes (SINs) [5] are selected around the points where
the approximate trajectory is divided. The SINs store the
information of the trajectory piece starting from that point
only. The packets departing from the source receives only
the information about the first piece. When they reach
the end of this piece, they acquire the next piece’s routing
information from the corresponding SIN. They keep chang-
ing the routing information in their headers whenever they
visit another SIN until they reach the destination. For exam-
ple, in Fig. 3, the approximate trajectory is divided into two
pieces, the SIN is located at the point which we call the split
point. The routing information stored in the packet headers
and the routing tables in the SINs are ‘‘costs’’ of maintaining
this TBR session. This cost can be translated into other
dimensions such as power consumption of the TBR session.
We call the cost caused by the routing information (source,
destination, next hop, trajectory representation etc.) stored
in the packet headers as packet header cost and by the rout-
ing information stored in the SINs as network state cost.

Various trajectory-based forwarding (TBF) techniques
were proposed [4,5] to manage the packet traffic over the

348 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

approximate trajectory. Depending on the density and
placement of the nodes, the packets may not follow the
approximate trajectory exactly. Thus, the ‘‘actual trajec-
tory’’ the packets follow may be different than the approx-
imate trajectory as shown by arrows in Fig. 2. In this paper,
we do not focus on the actual trajectory the packets take,
but rather focus on generating the best possible approxi-
mation of the ideal trajectory such that the actual trajec-
tory will have the highest likelihood of being close to the
ideal trajectory with a minimal routing state cost.

3.2. Application scenarios

Being able to route on a curve or ideal trajectory, Trajec-
tory-Based Routing (TBR), is needed for several multi-hop
wireless network protocols and applications [4,5]. TBR is
a geographic routing protocol, and thus, requires each node
to have localization capability. In return to this cost, TBR
provides great advantages to wireless applications. We dis-
cuss some of them below.

3.2.1. Location-specific sensing
In a wireless sensor network deployed over a large geo-

graphical area, it is desirable to make location-specific
sensing or data collection. Being able to measure tempera-
ture around a lake or within layers of a mine are examples
of such sensing applications needing the capability of rout-
ing on a curve. The capability of defining accuracy of the
approximate trajectory further enables such sensing appli-
cations to make measurements within a pipe around the
ideal trajectory, as illustrated in Fig. 5.

3.2.2. Avoiding obstacles or hostile areas
Several multi-hop wireless applications can utilize the

capability of routing on a curve with a particular accuracy
in order to avoid an area of interest of disinterest. A battle-
field application trying to send sensitive information to a
destination might desire to avoid a hostile area through
which the information should not traverse. Similarly, a
peer-to-peer smartphone application might go around a
void area composed of an obstacle such as a big park by
routing on a curve.

3.2.3. Source and multi-path routing
Being able to routing on a curve brings two key capabil-

ities which are otherwise not possible in a mobile ad hoc
multi-hop wireless network.

First, by defining a routing curve it is possible to achieve
source routing by defining a ‘‘fixed’’ path from a source to a
destination. Though DSR achieves source routing in mobile
ad hoc networks, it still needs to update the state once inter-
mediate nodes in the network change. By fixing a curve,
which is defined by coordinates, it is not necessary to update
the curve definition even if an intermediate node moves
away from the curve. So, TBR is more scalable in achieving
source routing in a multi-hop wireless network. However,
the cost is the fact that nodes must have localization service
or hardware, which has become ubiquitous recently.

Second, by defining multiple routing curves between a
source-destination pair, it is possible to achieve multi-path
routing in a multi-hop wireless network. Such multi-path
routing capabilities are available in wireline networking
via layer 2 technologies like MPLS. TBR is a very promising
approach towards achieving multi-path routing in a highly
dynamic multi-hop wireless network. An application can
define these multiple paths such that they have minimal
overlap and potentially achieve higher aggregate end-to-
end throughput.

3.2.4. End-to-end traffic engineering
Capabilities such as scalable source routing and multi-

path routing allow end-to-end traffic engineering and load
balancing strategies which are otherwise not practical in a
dynamic multi-hop wireless network. Intuitively, if all
source-destination pairs use shortest-path routing with a
single end-to-end path, then a congested hot spot emerges
in the middle of the multi-hop wireless network. Existing
solutions to this load balancing problem typically involves
heavy centralized computations which can only work
when the multi-hop wireless network is stationary or very
close to stationary. By dynamically adjusting traffic rates
on each end-to-end trajectory as well as the shape of the
trajectories, it is possible to more evenly distribute the
traffic load on the network nodes in a completely end-to-
end basis.

4. Trajectory approximation problem

4.1. System model

When a trajectory is approximated by a series of repre-
sentations, each piece of the trajectory is associated with
some cost in terms of packet header length and network
state. We construct the problem of minimizing this aggre-
gate state cost of the whole trajectory while satisfying the
application-defined accuracy constraint. We define the
constraint as the error by which the approximate trajec-
tory can deviate from the ideal trajectory. Each piece of
the approximate trajectory has an error value that it con-
tributes to the total error of the whole approximate trajec-
tory. The accuracy constraint plays the role of restricting
the total error of the whole approximate trajectory. We
make the following modeling assumptions for the
problem:

� There are k choices for representing a given piece of the
trajectory. These are denoted as r1,r2, . . . ,rk, where ri is

Fig. 3. Packet forwarding in TBR.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 349



Author's personal copy

the representation selected for the ith piece of the tra-
jectory. The representations are well-defined lines such
as a straight line, a polynomial curve, or a Bézier curve.
� The space in which the trajectory exists is discretized,

and there are a maximum of m split points (excluding
source and destination), or m + 1 pieces into which the
trajectory can be split into.
� Since each piece of the trajectory is represented using a

single type of representation, we construct a matrix Q of
dimensions (m,k), where Qij is a binary variable denot-
ing which representation is used for a particular piece
of the trajectory. This implies that at most a single entry
in a row is equal to 1.
� If the algorithm selects a particular representation ri for

a piece of the trajectory, then it makes use of a subrou-
tine to compute the error associated with the represen-
tation. This error is calculated such that ri is fit to its
corresponding piece of the ideal trajectory with the
least error possible by using algebraic equation solving
methods [48].
� There is a packet header cost CP and a network state cost

CN for each piece of the trajectory, depending on the
representation used for the piece of the trajectory being
considered.
� The split points are chosen such that each piece of the

trajectory has the same or similar length, which means
that the packet header cost CP and the network state
cost CN are independent of the length of the correspond-
ing piece of the trajectory. This is a simplifying assump-
tion and we will later illustrate in Section 6.2.2 how it
can be relaxed in a realistic scenario.

We can now formulate the following binary program:

min
Xm

i¼1

Xk

j¼1

CPðjÞQ ij þ CNðjÞQ ij ð1Þ

subject to :
Xm

i¼1

Xk

j¼1

eðQ ijÞ 6 E ð2Þ

Xk

j¼1

Q ij 6 1 8 i ¼ 1 � � �m ð3Þ

Q ij 2 f0;1g: ð4Þ

In the formulation (1)–(4), the constraints (2) denote the
error associated with the representation of each piece of
the trajectory. In constraints (2), the sum of the errors
must not exceed an application-defined error E which we
assume is an input to the problem. The constraint (4) just
states that Qij is a binary variable. Note that, of the m split
points available, we do not necessarily use all of them to
approximate the trajectory, which is captured in con-
straints (3). If a split point i is not to be used as part of
the solution, then

Pk
j¼1Q ij will be 0, which still satisfies

the constraint (3). Even though there are m split points
available for approximating the trajectory, the best solu-
tion to the problem might not need to use all of the m split
points. Such cases can happen when the ideal trajectory is
simple (e.g. very similar to a straight line) or the accuracy
constraint is loose (i.e. large error/deviation from the ideal

trajectory is allowed by the application). In such a case,
there might be too many split points than needed, and
the best approximation to the ideal trajectory might only
need a subset of the available split points.

4.1.1. NP-hardness
The formulation above can be modeled using a graph on

m + 2 vertices (including source and destination nodes),
with edges between all nodes (complete graph on m + 2
vertices) implying that any of these edges can be chosen
in an approximation of the trajectory, subject to the error
constraint. Next, we allow multiple edges between two ver-
tices, each edge corresponding to one type of approxima-
tion for the corresponding portion of the trajectory. The
edges are associated with an error measure as well as a cost
due to Cp and CN. While the formulation in (1)–(4) is node
based, the edge formulation is implicit. For example a solu-
tion which selects some l 6 k equal to 1 for some node i, and
all other entries in the matrix as 0, implies that the approx-
imation are the edges (s, i) and (i, t) where s and t are source
and destination nodes respectively.

By considering the errors associated with edges as
‘‘weights’’ and the state costs as ‘‘costs’’, we note that the
problem of finding the approximate trajectory giving mini-
mum state cost (while satisfying the accuracy constraint) is
identical to the shortest weight-constrained path, which is a
well known NP-Complete problem [49]. This is represented
diagrammatically in the Fig. 4. In Fig. 4, each edge is associ-
ated with a cost as well as a representation error. This is rep-
resented on the edges (S,1) as (CS1,ES1) and (1,2) as (C12,E12),
though all edges are associated with such numbers.

4.2. Cost calculations

The costs CP and CN in the objective (1) represent the
cost incurred for selecting an approximation for a given
portion of the trajectory. We devised a realistic method
to calculate these costs in terms of actual bytes. For each
representation we calculate how many bytes we have to
store additionally in the packet header (i.e., CP) and in the
intermediate nodes (i.e., CN). In the rest of the paper, we
consider three different representations. The more com-
plex the representations are, the more costly they will be.
Below are the three representations we use:

� Line, y = ax + b: Two end points (x1,y1) and (x2,y2) are
enough to express a line. We assume that each param-
eter is a double. Considering each double takes 8 bytes,
the space needed to express a line is 4 � 8 = 32 bytes.
� 2nd degree polynomial curve, y = ax2 + bx + c: For a 2nd

degree curve, we have to store x1, x2, a, b, and c. We
do not need y1 and y2 since they can be calculated by
putting x1 and x2 into the equation. Thus, the space
needed for a 2nd degree polynomial curve is
5 � 8 = 40 bytes.
� 3rd degree polynomial curve, y = ax3 + bx2 + cx + d: Simi-

larly, for a 3rd degree curve, we have to store x1, x2, a,
b, c and d. Again, we do not need to store y1 and y2.
So, the space needed is 6 � 8 = 48 bytes.

For each segment we calculate the total cost as the sum
of CP and CN, both of which are dependent to the cost of the

350 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

representation used. Let the representation cost of rj be Rj,
i.e., 32 or 40 or 48 bytes. Then, we can rewrite the aggre-
gate cost as cpRj + cNRj, where cP and cN are the weight con-
stants of the packet header and the network state costs
respectively. Depending on the application and the context
in which TBR session is taking place, these constants may
depend on the lengths of the trajectories, the average traf-
fic flow over the network, number of connections etc. Un-
less otherwise said, we assume that cP = cN = 1. We will also
show how different weights effect the structure of the
approximate trajectory.

4.3. Error measures for trajectory approximation

In order to let the user application express its accuracy
constraint as well as to determine the quality of our trajec-
tory approximation, we define a way of quantifying the
trajectory approximation error. We assess the approximate
trajectory, by means of an aggregate error, which is the
sum of the errors in representation of each piece. We de-
fine the error in terms of the deviation area, i.e., the total
area between the ideal trajectory and the approximate tra-
jectory. To make it more generic we defined the error in

percentage instead of any unit of area. Of course, for that,
we have to define what ‘‘100% error’’ is, which we think
that should be something intuitive. For that, we draw pro-
jections of the ideal trajectory above and below it by leav-
ing a constant distance in between. We, then, define ‘‘100%
error’’ as the area between the two projections. As shown
in Fig. 5, we defined the distance between the ideal trajec-
tory and a projection as 50 pixels in our experiments. So,
100% error is (50 + 50) � width unit area. This distance
can be different according to the size of the space and
might be defined as a percentage of the height of it. For in-
stance, 1/4 or 1/8 of the height of the space.

5. Methods to solve the problem

As the trajectory approximation is an NP-hard problem,
fast solutions are needed. In practice, this problem will be
solved pretty frequently by the nodes where applications
reside. In general, before data transmission starts in an
end-to-end session using TBR, this trajectory approxima-
tion problem must be solved. Note that such implementa-
tion of the trajectory approximation will not require an
ongoing communication to individual nodes that may be
residing along the end-to-end trajectory. First, the approx-
imate trajectory will be calculated at the source node.
Then, the information for each segment of the approximate
trajectory can be conveyed to the related SINs along the
trajectory via a ‘‘probe’’ packet before the data transmis-
sion starts. The probe packet will contain all the informa-
tion about the whole approximate trajectory. Once each
SIN knows the specifics of the trajectory representation
in the next segment, it will be able to forward individual
data packets based on the positions of its neighbors and
forwarding needs (e.g., faster forwarding or more accurate
forwarding) determined by the application. A detailed dis-
cussion and evaluation of such implementation issues are
available in [5].

Interval

2

3

DS

CS1,

ES1

(

1

2

3

C12, E12(

(S) Destination

(D)
Complete Graph on 5 vertices

1

)

)

Source

Discretization

Fig. 4. A sample graph formulation of the discretized trajectory approximation problem.

Fig. 5. The application-based accuracy constraint is defined in terms of
error from the ideal trajectory.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 351



Author's personal copy

As shown in Fig. 1, in our trajectory approximation
techniques, we do not consider the positions of the actual
nodes in the network while solving the optimization prob-
lem. However, it is possible to make our approach applica-
ble to a real network as long as the resolution of the split
points is made compatible with the density of the nodes
in the actual network. For example, if the resolution of
our discretization is not finer than the average distance be-
tween two neighbors (i.e., a measure of node density), then
the SINs our techniques choose will most likely have at
least one actual node residing close to them. To guarantee
availability of at least one actual node close to the SINs,
maximum distance between two neighbors can be used
as the threshold for our discretization resolution.

We now outline four techniques to perform the trajec-
tory approximation: An exhaustive search technique guar-
anteeing the best solution, a genetic algorithm providing
very good solutions in shorter running times, and two heu-
ristics providing solutions in very short running times.

5.1. Exhaustive search with pruning

This algorithm tries all possible combinations of split
points, representations, and chooses the best possible solu-
tion yielding the minimum routing state cost within the
accuracy constraint. With sufficient resolution in the discrete
space, this algorithm is guaranteed to find the optimum solu-
tion. First we select the possible split points on the trajectory.
The distance between any consecutive split points must be
the same on the x-axis and should be small enough to make
it possible to find the best solution. However, the number of
these points should be small enough to have a reasonably
short running time. The exponential growth of the running
time prevents us to have too many of these points.

The algorithm selects a subset of all possible split
points, where the selection is denoted by a binary value
(1: selected, 0: ignored) for each possible split point. These
points will be used as the end points of the segments of the
estimate trajectory. That is, 1 means that the correspond-
ing point is selected as a split point, while 0 means that
the corresponding point is ignored. So, a representation
that is fit between two consecutive split points forms a
segment of the approximate trajectory. For every segment,
a representation with its own error and cost values will be
chosen. The approximate trajectory formed by these repre-
sentations which is below the tolerated error bound and
has the minimum aggregate cost will be chosen as the best
solution.

An example is shown in Fig. 6. 2 of 19 possible split
points are selected. Including the source and destination
points we have 4 points which are the end points of 3 seg-
ments that we will represent by one of the 3 representa-
tions, i.e. line, or a second or third degree curve. Here, a
2nd degree curve, a line and a 3rd degree curve forms
the approximate trajectory.

We applied pruning [50] method to reduce the running
time by pruning non-optimal solutions whenever possible.
Specifically, we begin from the source point and go up to
the destination point by giving 0 or 1 to each bit. When we
give 1, we branch our searching tree for every type of repre-
sentation. When we put a representation, we calculate the
total error and the total cost so far (including the preceding
segments). If we have already exceeded the error bound or
the cost of the current best solution (if there is any), we stop
looking for a solution having the current bit sequence. Be-
cause it is obvious that whatever value the rest of the bits
get, we will not be able to find a good solution.

5.2. Genetic algorithm

Genetic algorithms (GAs) are search algorithms based
on the mechanics of natural selection and genetics [51].
We have a population of members that each member has
a chromosome which stores an approximate trajectory
with the representations to be used and a fitness value
showing the quality of the member. In every step, a new
generation is generated by coupling the current members.
After some time, the best member is selected as the best
solution.

Assume we have N possible split points, as shown in
Fig. 7, each of which can be selected for approximating
the trajectory. Similar to the exhaustive search approach,
the first bit is the source point’s followed by N bits for N
possible split points, and another bit follows them for the

Fig. 6. Split points, trajectories, and selection bits.

Fig. 7. A sample chromosome in GA solution to the trajectory approximation problem.

352 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

destination point. The bits for source and destination are
always 1. We included them in the chromosome for the
ease of computation and implementation purposes. The
remaining part of the chromosome has 2 bits for each of
the possible split points and the source point, which makes
total of 2(N + 1) bits. These 2 bits define which representa-
tion will be used between the consecutive split points. 00
and 01 represent a line, while 10 represents a 2nd degree
curve and 11 represents 3rd degree curve. If there were
more than four possible representations, then we would
need more than 2 bits for each point. For example, in
Fig. 7, the first segment of the approximate trajectory is a
2nd degree curve between the source point and the first
split point. A 3rd degree curve follows it between the first
and the second split points. Line is omitted.

The initial generation is filled with members who have
a chromosome of 3N + 4 random binary numbers. The
members of the next generation are generated as follows:
We choose 2 parents with roulette selection [51], i.e., the
probability of the members to be chosen is proportional
to their fitness values which are the aggregate cost of that
member + handicap for the members exceeding the error
bound. This way, better members are more likely to be
chosen for crossover. We apply single point crossover
and obtain two child members, and the best two among
the parents and children are selected for the next genera-
tion. We keep doing this until the next generation is fully
generated. Furthermore, we applied one bit mutation after
the crossover to increase diversity.

The feasible members in the population are the ones
which satisfy the error bound. There are also unfeasible
members which exceeds. These have a handicap in their
fitness values which makes them less likely to be chosen
for the next generation. We keep them in the population
because they might lead to a very good solution with only
very little changes. Besides, in some of the generations
(especially the initial ones) there might not even be any
feasible solutions. When the stopping condition is satisfied,
the best feasible member having the least cost is selected
as the best solution.

5.3. Greedy Heuristic 1: Equal Error Heuristic (EEH)

This algorithm is the fastest and the blindest one. The
aim is to distribute the target error bound for the overall
trajectory to its parts as equally as possible. We apply a
recursive procedure of finding the best fitting representa-
tions and, if necessary, splitting the trajectory into smaller
pieces. If the error bound is passed for a piece of the trajec-
tory even if the best fitting representation is being used,
then that piece of the trajectory is split into equal length
smaller pieces so that it may become possible to approxi-
mate the smaller pieces within the error bound. Since the
error bound is defined as a percentage, it is possible to
evaluate each piece of the trajectory independently and
test if the approximation for that piece of the trajectory
stays within the overall error target. The intuition is that
if each part of the trajectory is approximated with at most,
for instance, 5% error, then the whole trajectory is assured
to be approximated with at most 5% error.

First, we try to approximate the whole trajectory at once
with the best possible representation. If the trajectory is
above the error bound, we divide the trajectory into two
or more pieces, where the number of pieces might be
decided according to the error of that segment. For example,
a segment with a very high error might be divided into more
than 2 pieces at once. Every piece is equal in size on the x-
axis. Then, we find the best representations to fit on each
segment. We keep dividing the segments recursively that
are over the error bound which is the same for all segments
in percentage.

Fig. 8 shows an example application of the Equal Error
Heuristic (EEH) on a sample trajectory. In (a), the heuristic
first tries to find a representation for the whole ideal tra-
jectory that stays within the error bound of 20%. It fails
to do so, and then in (b), it splits the whole trajectory into
two segments. Since both segments are under the error
bound, the heuristic terminates with the approximate tra-
jectory produced. If any of these two segments failed the
error bound criteria, they would have been further split
into two sub-segments as well.

Algorithm 1: Pseudocode for Equal Error Heuristic
(EEH)

EqualError (idealtrj,errorbound)
1: trj[0] BestFit (idealtrj.x1, idealtrj.x2,errorbound)
{An apprx. trajectory for the whole ideal trajectory}

2: n 1
3: s 0
4: while s < n do
5: if OffLimit (trj[s],errorbound) then {If over the
error bound, divide into two sub-segments}

6: for i n down to s + 1 do {Shift segments
right in trj}

7: trj[i + 1] trj[i]
8: end for
9: n n + 1
10: seg trj[s]

11: trj[s] BestFit (seg.x1, (seg.x1 + seg.x2)/
2,errorbound) {Left sub-segment}

12: trj[s + 1] BestFit ((seg.x1 + seg.x2)/
2,seg.x2,errorbound) {Right sub-segment}

13: else
14: s s + 1
15: end if
16: end while

Algorithm 1 shows a pseudocode for the iterative
implementation of Equal Error Heuristic, where the Equal-
Error heuristic function gets two parameters, the ideal tra-
jectory (idealtrj) and the error bound in percentage
(errorbound), and produces an approximate trajectory for
the ideal trajectory under the error bound. trj is the
approximate trajectory formed of segments while n is the
number of segments in trj. At line 1, BestFit function re-
turns the least cost representation under the error bound
between idealtrj.x1 and idealtrj.x2 which are the x coordi-
nates of the end points of the ideal trajectory. If there are
no representation possible under the error bound, it re-
turns the one with the least error. The loop at line 4 goes

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 353



Author's personal copy

through all the segments in trj. Line 5 checks if a segment is
over the error bound. If it is, then this segment is to be di-
vided into two smaller segments. Lines 6–9 shift the seg-
ments in trj to open space for one more segment. Lines
10–12 divide the segment into two equal sub-segments
in length on the x-axis and puts them in trj. Later they will
be checked if they are over the error bound or not. Line 14
moves to the next segment if the current segment is under
the error bound.

5.4. Greedy Heuristic 2: Longest Representation Heuristic
(LRH)

This algorithm places the segments of the approximate
trajectory one by one. The main idea is to choose the lon-
gest possible representation below the error bound for
the next segment until we reach the end of the ideal trajec-
tory. Starting from the shortest interval (in terms of number
of split points) for the next segment, the interval is in-
creased every time until we cannot find a suitable fit any-
more. The last suitable one is chosen for that segment.
Then, we try to find a representation for the segment start-
ing from the end point of the last segment we have decided.

For example, in Fig. 9, for the first segment we initialize
the interval to [0,5]. We assume that the step size is 5 for
the sake of a clear figure. As long as we find a representation
to fit into the current interval we increase it by 5, i.e., [0,10],
[0,15] and [0,20]. When we realize that the representation
in [0,20] exceeds the error bound, we store the representa-
tion in [0,15] as the first segment of the approximate trajec-
tory. Then, we start from the end of the first segment and
keep looking for the next segment in [15,20], [15,25],
[15,30] etc. Since the segment in [15,35] is not suitable,
the second segment is going to be the one in [15,30]. The
algorithm runs until we reach to the end of the ideal trajec-
tory. The step size of 5 for this example can be larger. This
way the algorithm will run faster, but since the resolution
will be reduced the algorithm will less likely to find better
solutions. On the other hand, reducing it will make the algo-
rithm run slower for better approximation.

Algorithm 2: Pseudocode for Longest Representation
Heuristic (LRH)

LongestRepresentation (idealtrj,errorbound)
1: n 0
2: last idealtrj.x1

3:seg BestFit (idealtrj.x1, idealtrj.x1 + 1,errorbound)
{Init. first segment}

4: for x idealtrj.x1 + 1 to idealtrj.x2 do
5: oldseg seg {Store the last feasible segment}
6: seg BestFit (last,x,errorbound) {Produce a
longer segment}

7: if OffLimit (seg,errorbound) then {If over the
error bound, use the previous one}

8: trj[n] oldseg
9: n n + 1

10: last x � 1
11: seg BestFit (last,x,errorbound) {Init. next

segment}
12: end if
13: end for
14: trj[n] seg {Add the last segment}
15: n n + 1

Algorithm 2 shows a pseudocode for the Longest Repre-
sentation Heuristic (LRH), where LongestRepresentation
function gets two parameters, the ideal trajectory (idealtrj)
and the error bound in percentage (errorbound), and pro-
duces an approximate trajectory for the ideal trajectory un-
der the error bound. trj is the approximate trajectory
formed of segments while n is the number of segments in
trj.last keeps the position of the end point of the last seg-
ment placed in trj. Lines 1–2 initialize n and last. Line 3 ini-
tializes seg to a line of length 1 on x-axis. This type of line is
assumed to be always under the error bound. The loop start-
ing at line 4 goes through the split points on the ideal trajec-
tory from idealtrj.x1 + 1 to idealtrj.x2. Line 5 stores the last
feasible segment in oldseg. Line 6 sets seg to the representa-
tion returned by the BestFit function which is the least cost
representation under the error bound between last and x. If
there is no representation possible under the error bound,
the function returns the one with the least error. Line 7
checks if seg is over the error bound or not. If so, lines 8–9
place the oldseg into trj and lines 10–11 produce a segment
for the interval right after oldseg. Finally, lines 14–15 place
the last segment into trj which was ignored in the loop.

5.5. Analysis

The proposed algorithms have three parameters affect-
ing their time complexity as well as solution quality: (i) N,
the number of possible split points (a.k.a. the resolution at
which our approximation algorithms work within), (ii) E,
the error bound given by the application, (iii) a, the com-
plexity of the ideal trajectory, and (iv) d, the distance in
pixels between two consecutive split points on the x-axis.
Nd gives a measure of the length of the ideal trajectory.

5.5.1. Resolution difference
We first examine and formalize the resolution differ-

ence and its effects on the algorithms. The distance be-

Fig. 8. Equal Error Heuristic divides the approximate trajectory into two
pieces since approximation for the whole trajectory exceeds the error
bound.

354 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

tween two consecutive split points, d, is measured on the
resolution of the space where the ideal trajectory is de-
fined. For an ideal trajectory spanning N � 1 split points,
the total x-axis length will be Nd. This resolution difference
is illustrated in Fig. 10.

The effect of this resolution difference can be formal-
ized if the ideal trajectory complexity, a, is taken into ac-
count. Assuming that the ideal trajectory’s derivative on
the y-axis is bounded by tan a, we formulate the maximum
possible error between two consecutive split points, as
shown in Fig. 11. In order to sketch a scenario where the
maximum possible error takes place between the ideal
and the approximate trajectories, we should be using the
simplest representation, a line, between the split points Si

and Si+1. Since the derivative on the y-axis is bounded by
tana, the largest area between the ideal and the approxi-
mate trajectories can happen only when the ideal trajec-
tory diverges by the longest possible vertical distance
and joins back to the other end of the line where the next
split point resides. The ideal trajectory should reach the
farthest vertical point by the middle of the line on the
approximate trajectory, so that it can travel back to the line
before reaching the next split point. Then, the longest ver-
tical divergence will be:

B ¼ d
2

tan a: ð5Þ

Lemma 1. The maximum approximation error between two
consecutive split points, emax, is O(d2tana), when the deriv-
ative of the ideal trajectory on the y-axis is bounded by tana.
Proof. Depending on the derivative characteristics of the
ideal trajectory on the x-axis, the largest error (i.e. the area
between the ideal and the approximate trajectories) is
bounded by the rectangle with edges d and B. Since such
a rectangle would be unrealistic, we assume that the ideal
trajectory is elliptic.1 The area of such an half ellipse is pAB,
which evaluates to

emax ¼ pd2

4
tan a ð6Þ

as can be observed from Fig. 11. h

Theorem 1. The maximum approximation error, Emax, for an
ideal trajectory spanning N � 1 split points is O(N2 d2 tana),
when the derivative of the ideal trajectory on the y-axis is
bounded by tana.

Proof. The proof is an extension of Lemma 1. When the
whole ideal trajectory is considered, the largest possible
area between the ideal and the approximate trajectories
can be modeled as a scaled up version of the half ellipse
shown in Fig. 11. The length of the straight line from the
source to the destination of the ideal trajectory will be
Nd. This makes the area of the half ellipse as

Emax ¼ p ðNdÞ2

4
tan a ð7Þ

which is O(N2 d2 tana). h

The approximation error stated by Theorem 1 does not
indicate the performance with respect to the optimum
solution to our trajectory approximation under applica-
tion-based accuracy constraints. Rather, the theorem gives
insight about how close the approximate trajectory can be
away from the ideal trajectory. Depending on the applica-
tion-specific accuracy constraint E and the representation
costs of the individual segments of the approximate trajec-
tory, the optimum solution can be such that the represen-
tation cost (i.e. routing state) is very small but the
approximation error is very high since the application al-
lows such high approximation errors by defining a large E.

5.5.2. Time complexity
Intuitively, N is directly related to the running time of

the algorithms. However, the effect of E and a to the run-
ning times is probabilistic and not intuitive.

5.5.2.1. Exhaustive search. The exhaustive method gives
two different values for each of the possible split points
and tests the solution. This brute force algorithm is obvi-
ously running in O(2N). However, the pruning for the algo-
rithm is what makes it tractable for the problem and
reduces the running time dramatically. The possibility of
pruning happening is dependent on the values of E and a.

Fig. 9. (a) Longest Representation Heuristic tries to find the longest
representation under the error bound starting from the left most point. (b)
After the first segment is set, it looks for the next segment starting right after.

Fig. 10. The resolution difference between the ideal trajectory and the
space where the approximate trajectory is computed.

1 The rest of the analysis works in the same manner if we had chosen a
rectangle. The conjectures out of the analysis do not change because of the
choice of elliptic curve.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 355



Author's personal copy

Although we experimentally observed that pruning helps
the running time significantly, the worst case time com-
plexity for exhaustive search is O(2N).

5.5.2.2. Genetic algorithm. The GA’s parameters are mostly
constants. The number of elements in the pool and the
number of generations are constant values. However, the
length of a chromosome is 3N + 2. Since all the operations
on the chromosomes (i.e., the crossover and generation of
an approximate trajectory) are linear, the time complexity
of GA is O(N).

5.5.2.3. Greedy heuristics. Our heuristics aim to find a good
solution within a very short period of time. So, the time
complexity is crucial for their design.

Theorem 2. LRH running time is O(N).

Proof. The LRH algorithm inspects each split point by cal-
culating the error and cost representing the segments of
the end-to-end trajectory. For each split point, it calculates
the error and the cost from the source node. The trajectory
complexity a or the error bound E do not affect the running
time of the LRH algorithm. This is illustrated by loop at
lines 4–13 of Algorithm 2, which iterates N times regard-
less of the error bound E or the trajectory complexity a.
Thus, the running time is of O(N) for LRH. h

The EEH algorithm looks at a segment of the ideal tra-
jectory and recursively decides if it needs to divide the seg-
ment further or not based on the approximation error of
the segment. Assuming that the finest points where EEH
can divide are the split points, the worst case scenario is
when EEH divides at every possible split point. This intui-
tively gives a running time complexity of O(N logN). How-
ever, more stringent bounds on the time complexity of EEH
are possible since the probability that EEH will divide its
segment is less than 1.

Lemma 2. The probability that EEH will divide the ideal
trajectory segment at its ith step, qi, is dependent on the ratio
C = E/Emax.

Proof. The EEH algorithm tries to distribute the applica-
tion-specific error bound, E, equally across the approxi-
mate trajectory. So, if it needs to divide an ideal
trajectory segment at its ith step into smaller segments,
it also divides the error bound to allocate the error to the
smaller segments. Assuming that EEH divides by two at
each step, the number of recursive steps (i.e., levels) will
be log2 N and the error bound for a segment at the ith step
of the algorithm will be:

Ei ¼
E

2i
; i ¼ 0 . . . log2N: ð8Þ

Let ei be the random variable for the actual amount of
error between the ideal trajectory segment and the approx-
imate trajectory at the ith step of EEH. If ei is greater than Ei,
then EEH needs to divide the segment further into two at the
ith step. We, then, write the probability that EEH will divide
the segment in two smaller parts at the ith step as:

qi ¼ P½ei > Ei� ¼ 1� P½ei 6 Ei� ¼ 1�
Z Ei

0
f ðeiÞdei; ð9Þ

where f(ei) is the probability density function for ei.
For an ideal trajectory with an x-axis length of Nd, the

x-axis length of the segment at the ith step will be Nd/2i,
i = 0, . . . , log2 N. Revising (7) with Nd/2i as the base of the
half-ellipse, the maximum error from the ideal trajectory
segment at the ith step will be:

Emax
i ¼ p

4
Nd

2i

� �2

tan a ¼ Emax

22i
; i ¼ 0 . . . log2N: ð10Þ

This means that ei is in the range 0; Emax
i

� �
. Assuming that

f(ei) is Uniform in 0; Emax
i

� �
and Ei 6 Emax

i ; qi evaluates to
the following:

qi ¼ 1� 2i E
Emax ; i ¼ 0 . . . log2N; ð11Þ

which proves that qi is directly dependent on the ratio
C = E/Emax in addition to i. h

The assumption that Ei 6 Emax
i is conservative and does

not invalidate the analysis for the worst case running time
as qi is supposed to be zero for the cases when Ei > Emax

i .
Further, the assumption of Uniform distribution of the er-
ror ei makes the worst-case analysis conservative as well
since any other distribution with a skew towards smaller
error values would result in a lower qi.

Lemma 2 verifies a few intuitions. It is clear from (11)
that the probability of dividing into smaller segments
tends to 1 either the error bound E or the ideal trajectory
complexity a increases. More specifically, limE?0qi = 1
and lima?p/2qi = 1. Furthermore, larger C causes qi to re-
duce, which means smaller running time complexity for
EEH. The ratio C expresses how the error bound, E, and
the amount of possible unit error due to the complexity
of the ideal trajectory, Emax, stand with each other. A large
E may not always result in a larger qi, or vice versa. Rather,
the ratio between E and Emax determines the behavior of qi.

Fig. 11. Maximum error between two split points when the ideal
trajectory’s complexity is bounded with the angle a.

356 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

Lemma 3. The number of computations at the ith recursive
step of EEH is /(i) = 1 + 2qi/(i + 1).

Proof. Given the probability that EEH divides the segment
into two at its i recursive step, qi, from Lemma 2, it
becomes possible to formulate the number of computa-
tions that needs to take place at the ith recursive step, /
(i), as a recurrence relation. First, at each step, there will
be one computation to evaluate if EEH needs to divide
the segment further down or not. If EEH does need to
divide the segment further, then it will embark two recur-
sive branches down, hence the factor of 2. This recursive
relationship intuitively, then, becomes:

/ðiÞ ¼ 1þ 2qi/ðiþ 1Þ; i ¼ 0 . . . log2N: � ð12Þ

Theorem 3. EEH running time is O(NlogN � c), where c = E/
emax.

Proof. Solving the recurrence relation (12), the number of
computations EEH will perform, U, can be derived as:

U ¼ 1þ
Xlog2N

i¼0

2iþ1
Yi

j¼0

qj; ð13Þ

Conservatively assuming that the product of probabilities
above is a sum, U evaluates to:

U ¼ 3þ Nlog2N � C
16N2

3
� 4N þ 2

3

" #
; ð14Þ

¼ 3þ Nlog2N � c
16
3
� 4

N
þ 2

3N2

� �
; ð15Þ

which clearly indicates that EEH running time is bounded
by O(N logN � c). h

Similar to C, the ratio c is a reverse-indicator of the dif-
ficulty of the trajectory approximation problem. Larger c
means that the application allows larger error bound with
respect to the unit approximation error, emax, and that the
difficulty of the problem decreases. So, Theorem 3 verifies
the intuition that EEH running time reduces as the prob-
lem’s difficulty decreases. The theorem also clearly shows
that EEH running time is strictly bounded O(N logN) no
matter how difficult the problem is. That is limE?0U = N-
log2 N and lima?p/2U = N log2 N.

Theorem 4. EEH running time is O(1) if C P 1.

Proof. The EEH running time is O(1) if the inequality U 6 1
satisfies. Substituting (14) for U and solving for C, we
obtain:

C P
12Nlog2N þ 6

16N2 � 12N þ 2
: ð16Þ

The right hand side (RHS) of (16) goes to 0 as N tends to1.
Further, the RHS is less than or equal to 1 as long as N P 1,
which is always true as there has to be at least one split point
for the algorithm to work. This completes the proof. h

The result of Theorem 4 is that the running time com-
plexity of EEH will not be dependent on N if the applica-
tion-defined error bound E is greater than or equal to the
maximum possible approximation error that can be caused
by the complexity of the ideal trajectory, Emax. That is, if the
application is allowing C = 100% approximation error, then
EEH runs with O(1). More aggressive numbers can be ob-
tained from the RHS of (16) when a minimum value for N
is considered. Table 1 outlines such cases where minimum
Gamma and N values are calculated to assure O(1) complex-
ity for EEH. The table shows that EEH needs to work with a
resolution of 101 split points (i.e., it needs to be able to di-
vide the ideal trajectory at 101 different points) to find a
solution in O(1) time if the application is given the ability
to define an approximation error bound as little as 5%.

6. Performance evaluation

We performed performance evaluation of the four algo-
rithms from Section 5 by applying them on several
trajectories with varying complexity. The goal of our
experiments is twofold:

� Algorithm performance comparison: Observe perfor-
mance of our heuristics and the genetic algorithm in
terms of quality of their trajectory approximation and
their running time.
� Path customization to different networks: Illustrate that

our optimization framework can be customized for a
power-scarce or memory-scarce network by changing
the weight of the packet header cost in the aggregate
routing state cost.

6.1. Experimental setup

In our experiments, we used a 400 � 400 pixel area,
where the trajectories are placed. The source node of a
trajectory is at a random place on the y-axis with x = 0.
Similarly, the destination node is at a random place on
the x = 400 line. The trajectory between the source and
destination nodes is made up of small line segments, con-
catenated to construct the complete trajectory. We param-
eterized the trajectory generation procedure in terms of
how variant the trajectory should be. We call this parame-
ter as the complexity of the trajectory which can take val-
ues in [0,180]. The complexity parameter defines the
maximum angle value (in ‘‘degrees’’) between each pair
of consecutive line segments. The higher this parameter
gets the more complex (zigzag) the trajectory will be. If

Table 1
Various conditions satisfying O(1) complex-
ity for EEH.

Minimum C Minimum N

1.00 1.0
0.50 3.8
0.25 11.4
0.10 41.0
0.05 100.6
0.01 711.4

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 357



Author's personal copy

this parameter is set to 0 then the angle between the line
segments will be 0, which will produce a straight line.

In the experiments we have tried different error bound
and trajectory complexity parameters. We used 4 different
error bound values (i.e., 5, 10, 25 and 50) and 18 different
trajectory complexity values (i.e., from 10 to 180 increas-
ing with a step of 10). For each error bound and trajectory
complexity pair, we produced 32 different trajectories with
random seeds (which are used to randomize the angle be-
tween two consecutive line segments of a trajectory) and
applied the four trajectory approximation algorithms on
each of them. We report show 90% confidence intervals
on our results over these 32 trajectories. We now present
the rest of our experimental setup specific to each of the
four algorithms.

6.1.1. Exhaustive search
In the exhaustive search, we set the number of possible

split points to 19. So, the maximum number of segments
that the trajectory can have is 20, which means that the
shortest segment can be 20 pixels wide. We could not in-
crease the number of split points because of the time lim-
itation. Even with this set up it sometimes took many
hours just for one run.

6.1.2. Genetic algorithm (GA)
First thing to note about GA is the fact that it includes a

few random factor, unlike the other three algorithms. So,
we ran our GA 32 times on each trajectory and report the
average result of those 32 realizations. The other three
algorithms do not need this since they do not have a ran-
dom factor.

We used the following parameters to tune our GA
implementation:

� Population size: 300.
� Crossover probability: 0.99.
� Mutation probability: 1.

These are values that we found out after running many
experiments and believe are the near optimum for our
problem. The mutation probability we found to be the best
is surprisingly high, which yields more diverse solutions
faster (i.e. better exploration of the search space). To make
our GA implementation comparable with the exhaustive
search method, we used 19 possible split points. However,
as will be seen in the results, it is possible to use a lot more
split points (e.g., 200) and get good solutions in a very
short time unlike the exhaustive search.

We have observed the GA results for different stopping
conditions. We ran the experiments for up to 20, 50, 100,
200, 300, 1000, and 10000 generations. In most of the cases
the GA finds the best solution before 50 generations. After
100 generations we observed that almost nothing changes.
So, we decided to stop a GA run after 300 generations.

6.1.3. Greedy Heuristic 1: Equal Error
We divided the segments into 2 pieces every time and

used the representation which gives the smallest error
for the corresponding piece of the trajectory.

6.1.4. Greedy Heuristic 2: Longest Representation
We set the step size to 1 to get the best result. Since,

running time is not that much of an issue for this heuristic,
we kept the step size small. For long or complex trajecto-
ries, one might want to increase the step size to reduce
the computation time, though with a loss in optimality of
the path approximation.

6.2. Results and Discussion

6.2.1. Comparison of Exhaustive Search, GA, and Heuristics
We compared the algorithms in three measures: the

aggregate cost, the area difference from the ideal trajec-
tory, and the running (computation) time. We present
the results for error bounds 5%, 25% and 50% only as the re-
sults for other error bounds exhibit similar trends. We ran
the experiments for a resolution of 20 split points over the
400 � 400 pixel area, which means that the approximate
trajectory can at most have 19 segments.

In Fig. 12, the plots at the left column show the aggre-
gate cost for trajectories with different complexity values.
We see that the Exhaustive Search (ES), genetic algorithm
(GA) and the Longest Representation Heuristic (LRH) give
similar results. We know that, for the given resolution, ES
finds the optimum solution with the smallest cost under
the given error bound. Since GA and LRH have the same
resolution with ES, we can say from the graphs that they
perform pretty well. Our LRH performs actually slightly
better than GA (in Fig. 12(a) and (b)), particularly for larger
complexity in the ideal trajectory. However, the Equal Er-
ror Heuristic (EEH) performs noticeably worse than the
other three algorithms, with emphasized disadvantage as
the complexity increases.

By comparing Fig. 12(a)–(c), a clear trend we can see,
for all algorithms, is that increased complexity of the ideal
trajectory increases the cost of the approximated trajectory.
The reason is that the optimization process has to split
the ideal trajectory to smaller and more number of seg-
ments in order to be able to represent each segment with
a smaller cost representation. This causes increased num-
ber of segments with similar complexity, and thus an in-
creased total cost for the approximating the ideal
trajectory. Further, tighter error bound (determined by
the application) clearly worsens the optimum solution to
the trajectory approximation problem, i.e. decreased error
bound increases the cost of the approximated trajectory. This
is due to the fact that smaller error bound forces complex-
ity of segment representations to be higher, which then in-
creases the aggregate cost.

The graphs at the right column of Fig. 12 show the devi-
ation area (in pixel2) of the approximate trajectory, i.e. the
area between the approximate and the ideal trajectory. The
deviation area is actually showing the approximate trajec-
tory’s error from the ideal trajectory. Thus, it is a measure
of how close the approximate trajectory is to the ideal one.
Remember that the trajectory approximation problem is
not to minimize the deviation area, but to minimize the
cost of representing the approximate trajectory which is
deviating from the ideal trajectory up to an error bound de-
fined by the application. So, the optimum solution to the
trajectory approximation should, intuitively, lie in the re-

358 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

gion where the approximate trajectory deviates from the
ideal one with a deviation error as close as possible to
the error bound. The deviation area results in Fig. 12 veri-

fies this intuition since all the three well performing algo-
rithms (i.e., ES, GA, LRH) yield high deviation areas while
the worst (in terms of the cost) algorithm (i.e. EEH) yield

Fig. 12. Results of trajectory approximation: Left – aggregate routing state cost vs. Trajectory complexity; Right – The area difference from the ideal
trajectory vs. Trajectory complexity.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 359



Author's personal copy

low deviation areas. The difference is noticeable, of course,
only when the complexity of the ideal trajectory is high.

Lastly, Fig. 13 shows the running time of the algorithms
for different error bounds. It is clear that ES is not practical
with several seconds of running time, though it finds the
optimum solution in terms of routing state cost. Under
5% error, the ES takes several hours to run, particularly
for cases with high complexity in the ideal trajectory. The
other extreme is EEH, which runs in almost no time. EEH
may not be a suitable choice because its performance (in
terms of routing state cost) is too low. However, it might
be a viable choice where time is very crucial and routing
state cost is not much of an issue. The other heuristic,
LRH, runs in a very short period of time, mostly under
100 ms. LRH achieves very good (sometimes better than
GA) routing state costs too. So, LRH seems to give best re-
sults for the time spent for computation. With the current
experimental set up, GA takes about 100s since it is run-
ning 300 generations regardless of the results found. It is
possible to tune the GA such that smaller amount of time
spent for computation with an increase in the routing state
costs. Such a well-tuned GA can be quite useful for the ini-
tial approximation of the trajectory. Overall, the LRH algo-
rithm runs in reasonably short time, while giving pretty
good performance in minimizing the routing state cost.

6.2.2. Path customization to power-scarce networks
Being able to customize the end-to-end path for differ-

ent environments is a key capability. We evaluated our
optimization framework to observe if it can generate cus-
tomized paths depending on how the packet header and
the network state costs are calculated. We ran experiments
for a customized objective (1) of cost and observed how
the solution is adjusted to the new definitions. Specifically,
we focused on the tradeoff between packet header cost and
network state cost. It is well-known that data transmission
consumes larger power than storing the data [52,53]. Thus,
we aim to customize our framework such that the approx-
imate trajectory is calculated while trying to reduce the
amount of packet header state. We include the length of
the trajectory segments the packets have to traverse as a
weighting factor in our objective (1).

This means that we have two cases to compare in calcu-
lating our routing state cost objective: length independent
calculation and length dependent calculation. The length

independent calculation is what we used in the above
experiments, i.e., for every segment of the approximate
trajectory, the packet header cost is the same as the base
cost of the representation no matter what the length of
that segment is. If it is a straight line then CP = 32 bytes.
In the length dependent calculation, we assume that for
long segments of trajectories the packets have to go
through more than one node and we calculate cost for
every node passed through. This per segment cost is, then,
dependent to the density of the nodes, which we assumed
equal to the resolution of our trajectory approximation. For
example, for the resolution of 20 split points, we assumed
that for every 20pixels the packets visit another node. This
means that for a 2nd degree curve which is 148 pixels long,
8 nodes will be passed, and so CP will be 32 � 8 =
256 bytes.

Comparing the length dependent vs. independent cases,
we observed the number of segments in the approximate
trajectory and the average complexity of the representa-
tions used. To obtain finer granularity results, we increased
the resolution of the approximation problem to 100 split
points, which means that the approximate trajectories
can have up to 99 segments at maximum. Since the ES is
intractable for such a high resolution,2 we used our GA
implementation to calculate the approximate trajectories.
To make sure that the GA finds good solutions to the trajec-
tory approximation at this high resolution, we increased its
run time to 5000 generations.

For ideal trajectories with different complexities and
different error bounds, we measured and plotted the
number of segments as well as the complexity of segment
representations (in terms of the number of bytes used for
the representation) in the approximate trajectories, all of
which are shown in Fig. 14. We see that whatever the error
bound is, the length dependent calculation (the dashed
lines) causes the trajectories to have more segments and
be formed by less complex representations. The reason is
that, in this calculation the weight of packet header cost
is increased and the optimization framework tends to re-
duce the packet header cost by increasing the network
state cost. As an example, in Fig. 15, the left picture shows
the approximate trajectory generated with length indepen-

Fig. 13. Results of trajectory approximation: computation time vs. trajectory complexity.

2 Even a single run of the trajectory approximation using ES takes weeks
to complete at this resolution.

360 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

dent calculations. It is made up of 3 curves and 1 line. On
the other hand, the approximate trajectory generated with
the length dependent calculations, on the right, has more
segments and most of them are lines. This clearly shows
that it is possible to customize our trajectory approxima-
tion framework such that the approximate trajectory gen-
erated by the optimization process is tuned for different
resource constraints.

We, now, test if our path approximation methodologies
can ‘‘effectively’’ customize the solution for different
weights of packet header state and network state costs. No-
tice that such weight assignment is not the same as the
length dependent or independent calculations we explored
in the previous subsection. The choice of length dependent
or independent was a binary parameter; however, these
weights are much more expressive parameters to the opti-
mization process.

The weight setting capability allows the applications to
feed these weights depending on the circumstances where
the routing is taking place. If, for example, the network
components are running on highly limited power, then
the application could assign a larger weight value to the
packet header cost in (1). Likewise, if the network compo-
nents do not have enough memory to store routing state
information, then the application could give a larger
weight value to the network state cost.

Using a resolution of 200 split points, we ran our GA opti-
mizations (with 5000 generations) for different weight val-
ues and observed if the number of segments per trajectory
and the complexity of representations in a trajectory change
based on the weights. We particularly want to see if it is pos-
sible to customize the characteristics of the approximated
trajectory by simply changing one parameter in the optimi-
zation formulation, which is the weight of the packet header
cost. We tried the weight settings of (1,99), (50,50), and
(99,1), where each pair’s first and second elements corre-
spond to the packet header the network state costs respec-
tively. Fig. 16 shows the results of these experiments for
three different complexity values of the ideal trajectory.

Overall, we can observe the trends that the number of
segments in the approximate trajectory increases as the
weight of the packet header cost increases. Likewise, in-
crease in the weight of the packet header cost causes the
complexity of the segment representations to reduce.
Though the negative correlation between the complexity
of the segments and the weight of the packet header cost
is not that apparent, the positive correlation between the
number of segments and the weight of the packet header
cost is considerably apparent. This is more noticeable in
the cases with smaller error bounds and larger complexity
in the ideal trajectories. Smaller error bounds force the
approximation process to search in a narrower set of pos-
sible solutions where finding the tradeoff between the
number of segments and the complexity of the segment
representations become a critical one. Similarly, higher
complexity in the ideal trajectory narrows the search space
for solutions where this tradeoff is emphasized.

7. Summary and future work

In this paper we presented an optimization framework
minimizing routing state under application-based con-
straints. We formulated the problem of generating an
approximate trajectory within an application-defined error
bound such that the total state cost of performing Trajec-
tory-Based Routing over a multi-hop wireless network
minimized. We showed that this approximation problem

Fig. 14. Customization of the routing state costs for a power-scarce network. Cost of packet header state can be made dependent on the length of trajectory
piece the packets have to travel.

tnednepeDhtgneLtnednepednIhtgneL
Ideal Trajectory
Approximate Trajectory

Fig. 15. Sample runs for different cost calculations. Trajectory complex-
ity: 120, error bound: 25%.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 361



Author's personal copy

is NP-complete and hard to solve with regular brute force
methods. To solve the problem, we devised four algorithms
each having its advantages and disadvantages, and com-
pared their performance and applicability in a multi-hop
wireless network. We also showed that our problem is cus-
tomizable for different contexts such as a power-scarce
sensor network or memory-scarce network.

The work in this paper is only one important part of the
whole framework, and many new dimensions and exten-
sions can be performed as future work. For instance, inclu-
sion of these path approximation methodologies into the
larger framework with trajectory-based forwarding under
a real user application is of high interest and deserves a full
inspection. The whole framework can be tested where
there are more than one connection at a time and node
mobility exists. Considering the trajectory approximation
problem, there are still points to be improved as well.
New representations like B-spline and Bézier curves can
be used for more flexible and optimum approximations.

Another key future work is to explore the cases where it
is possible to tackle all stages of our approach at once. In
our formulation, we focused on the trajectory approxima-
tion problem with the assumption that an ideal trajectory
is available and the underlying network is reasonably well
populated to achieve forwarding very close to the approx-
imate trajectory generated by our methods. The actual
positions of the nodes will change the optimum solution
to the trajectory approximation problem. However, such
treatment of the trajectory approximation problem neces-
sitates the node positions to be stationary (or very close to
stationary) and available at the source node. Considering a
network with sizable dynamism in its topology (and the
node positions), we chose to stage the problem into three
parts (see Fig. 1): (i) definition of the ideal trajectory, (ii)
trajectory approximation, and (iii) trajectory-based for-
warding (TBF). It is of high interest to integrate these
stages and solve them jointly for cases where they may
be applicable.

Fig. 16. Path customization: Correlation between the number and complexity of segments in the approximate trajectory and the weight of header cost.

362 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364



Author's personal copy

References

[1] M.O. Kilavuz, M. Yuksel, Minimizing multi-hop wireless routing state
under application-based accuracy constraints, in: Proceedings of
IEEE MASS, Atlanta, GA, September 2008.

[2] B.T. Loo, J.M. Hellerstein, I. Stoica, R. Ramakrishnan, Declarative
routing: Extensible routing with declarative queries, in: Proceedings
of ACM SIGCOMM, 2005.

[3] D. Chu, L. Popa, A. Tavakoli, J.M. Hellerstein, P. Levis, S. Shenker, I.
Stoica, The design and implementation of a declarative sensor
network system, in: Proceedings of ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2007.

[4] D. Niculescu, B. Nath, Trajectory based forwarding and its
applications, in: Proceedings of ACM MOBICOM, 2003.

[5] M. Yuksel, R. Pradhan, S. Kalyanaraman, An implementation
framework for trajectory-based forwarding in ad-hoc networks, Ad
Hoc Networks, Elsevier Science 4 (1) (2006) 125–137.

[6] B. Karp, H. Kung, GPSR: Greedy perimeter stateless routing for
wireless networks, in Proceedings of ACM/IEEE MobiCom 2000,
August 2000.

[7] L. Popa, A. Rostami, R. Karp, C. Papadimitriou, I. Stoica, Balancing the
traffic load in wireless networks with curveball routing, in
Proceedings of ACM MOBIHOC, 2007.

[8] G. Veltri, Q. Huang, G. Qu, M. Potkonjak, Minimal and maximal
exposure path algorithms for wireless embedded sensor networks,
in: Proceedings of ACM SenSys, November 2003.

[9] V. Muthusamy, M. Petrovic, H.-A. Jacobsen, Effects of routing
computations in content-based routing networks with mobile data
sources, in: Proceedings of ACM MOBICOM, 2005.

[10] D.B. Johnson, D.A. Maltz, Dynamic source routing in ad hoc wireless
networks, in: Imielinski, Korth (Eds.), Mobile Computing, vol. 353,
Kluwer Academic Publishers., 1996.

[11] C. Perkins, E. Belding-Royer, S. Das, Ad hoc on-demand distance
vector (aodv) routing, IETF RFC 3561, July 2003.

[12] P. Sinha, S. Krishnamurthy, S. Dao, Scalable unidirectional routing
with zone routing protocol, in: Proceedings of Wireless
Communications and Networking Conference (WCNC), 2000, pp.
1329–1339.

[13] S. Basagni, I. Chlamtac, V. Syrotiuk, B. Woodward, A distance routing
effect algorithm for mobility (DREAM), in: Proceedings of ACM/IEEE
MobiCom 98, October 1998, pp. 76–84.

[14] J. Li, J. Jannotti, D. De Couto, D. Karger, R. Morris, ‘‘A scalable location
service for geographic ad-hoc routing, in: Proceedings of the 6th
ACM International Conference on Mobile Computing and
Networking, August 2000, pp. 120–130.

[15] C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers, ACM
SIGCOMM CCR (1994).

[16] G. Pei, M. Gerla, T.-W. Chen, Fisheye state routing in mobile ad hoc
networks, in Proceedings of Workshop on Wireless Networks and
Mobile Computing, 2000, pp. D71–D78.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A
scalable Peer-To-Peer lookup service for internet applications, in:
Proceedings of the 2001 ACM SIGCOMM Conference, 2001, pp. 149–
160.

[18] C. Santivanez, R. Ramanathan, Hazy sighted link state (hsls) routing:
A scalable link state algorithm, BBN Technologies, Cambridge, MA,
Tech. Rep. BBN-TM-1301, 2001.

[19] G.B. Folland, Real analysis: Modern Techniques and Their
Applications, Wiley, New York, 1999.

[20] Tropos debuts spectrum and application based routing engine for
wireless mesh networks, <http://www.convergedigest.com/
Wireless/broadbandwirelessarticle.asp?ID=20664>.

[21] J. Follows, D. Straeten, Application-Driven Networking: Concepts
and Architecture for Policy-Based Systems, IBM Red Book, 1999.

[22] S. Bhattacharjee, K. Calvert, E. Zegura, Active networking and end-to-
end arguments, IEEE Network Magazine (1998).

[23] Q. Mahmoud, Cognitive Networks: Towards Self-Aware Networks,
Wiley-Interscience, 2007.

[24] X. Yang, D. Clark, A. Berger, NIRA: a new inter-domain routing
architecture, IEEE/ACM Transactions on Networking 15 (2007) 775–
788.

[25] T.G. Griffin, J.L. Sobrinho, Metarouting, in: Proceedings of ACM
SIGCOMM, 2005.

[26] M. Yuksel, A. Gupta, S. Kalyanaraman, Contract-switching paradigm
for internet value flows and risk management, in: Proceedings of
IEEE Global Internet Symposium, 2008.

[27] N. Milosavljevic, A. Nguyen, Q. Fang, J. Gao, L. Guibas, Landmark
selection and greedy landmark-descent routing for sensor networks,
in: Proceedings of IEEE INFOCOM, 2007.

[28] M. Perillo, W. Heinzelman, DAPR: A protocol for wireless sensor
networks utilizing an application-based routing cost, in Proceedings
of IEEE WCNC, June 2004.

[29] A. Alippi, G. Vanini, Application-based routing optimization in static/
semi-staticwireless sensor networks, in: Proceedings of IEEE
PERCOM, 2006, pp. 47–51.

[30] C. Gui, P. Mohapatra, Virtual patrol: A new power conservation
design for surveillance using sensor networks, in: Proceedings of
IPSN, 2005.

[31] C.R. Lin, M. Gerla, Adaptive clustering for mobile wireless networks,
IEEE Journal on Selected Areas in Communications 15 (7) (1997)
1265–1275.

[32] A.B. McDonald, T.F. Znati, A mobility-based framework for adaptive
clustering in wireless ad hoc networks, IEEE Journal on Selected
Areas in Communications 17 (8) (1999) 1466–1487.

[33] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker,
Ght: A geographic hash table for data-centric storage in sensornets,
in: Proceedings of the First ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), 2002.

[34] J. Bruck, J. Gao, A.A. Jiang, Map: Medial axis based geometric routing
in sensor network, in: Proceedings of ACM MOBICOM, 2005.

[35] B. Leong, S. Mitra, B. Liskov, Path vector face routing: Geographic
routing with local face information, in: Proceedings of ICNP, 2005, p.
147158.

[36] F. Kuhn, R. Wattenhofer, A. Zollinger, Worst-case optimal and
average-case efficient geometric ad-hoc routing, in: Proceedings of
4th ACM Int. Symposium on Mobile Ad-Hoc Networking and
Computing (MobiHoc), 2003.

[37] Y.-B. Ko, N.H. Vaidya, Location-aided routing (LAR) in mobile ad hoc
networks, in: Proceedings of MOBICOM, 1998, pp. 66–75.

[38] G. Pei, M. Gerla, X. Hong, Lanmar: Landmark routing for large scale
wireless ad hoc networks with group mobility, in: Proceedings of
Mobihoc, 2000.

[39] L. Blazevic, J.-Y.L. Boudec, S. Giordano, A scalable routing scheme for
self-organized terminode network, in: Proceedings of the
Communication Networks and Distributed systems modelling and
Simulation conference (CNDS), 2002.

[40] L. Blazevic, S. Giordano, J.-Y.L. Boudec, Anchored path discovery in
terminode routing, in: Proceedings of the Second IFIP-TC6
Networking Conference (Networking 2002), 2002.

[41] G.B. Giannakis, Modeling and optimization of stochastic routing for
wireless multi-hop networks, in: Proceedings of IEEE INFOCOM, 2007.

[42] U. Acer, S. Kalyanaraman, A. Abouzeid, Weak state routing, in:
Proceedings of ACM MOBICOM, 2007.

[43] R.G. Garroppo, S. Giordano, L. Tavanti, A survey on multi-constrained
optimal path computation: exact and approximate algorithms,
Computer Networks 54 (17) (2010) 3081–3107.

[44] G. Xue, W. Zhang, J. Tang, K. Thulasiraman, Polynomial time
approximation algorithms for multi-constrained qos routing, IEEE/
ACM Transactions on Networking 16 (2008) 656–669.

[45] S. Chen, M. Song, S. Sahni, Two techniques for fast computation of
constrained shortest paths, IEEE/ACM Transactions on Networking
16 (1) (2008) 105–115.

[46] Z. Li, D. Li, M. Liu, Interference and power constrained broadcast and
multicast routing in wireless ad hoc networks using
directional antennas, Computer Communications 33 (12) (2010)
1428–1439.

[47] W. Yang, W. Liang, J. Luo, W. Dou, Energy-aware online routing with
qos constraints in multi-rate wireless ad hoc networks, in:
Proceedings of International Wireless Communications and Mobile
Computing Conference, 2010.

[48] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in C, second ed., Cambridge University Press, 1992.

[49] E.P. Crescenzi, V. Kann, A compendium of np optimization problems,
<http://www.nada.kth.se/viggo/problemlist>.

[50] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics,
Springer, 1999.

[51] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison Wesley, MA, 1989.

[52] J.-C. Chen, K.M. Sivalingam, P. Agrawal, Performance comparison of
battery power consumption in wireless multiple access protocols,
Wireless Networks 5 (6) (1999) 445–460.

[53] C.E. Jones, K.M. Sivalingam, P. Agrawal, J.C. Chen, A survey of energy
efficient network protocols for wireless networks, Wireless
Networks 7 (4) (2001) 343–358.

M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364 363



Author's personal copy

Mustafa O. Kilavuz is a graduate assistant
pursuing Ph.D. at the CSE Department of the
University of Nevada – Reno (UNR), Reno, NV.
He received a B.S. degree from Computer
Engineering Department of Bilkent University,
Ankara, Turkey in 2006. He received an M.S.
degree from Computer Science and Engineer-
ing Department of UNR in 2009. His research
interests are in the areas of wireless routing
and robotics.

Murat Yuksel is an Assistant Professor at the
CSE Department of The University of Nevada –
Reno (UNR), Reno, NV. He was with the ECSE
Department of Rensselaer Polytechnic Insti-
tute (RPI), Troy, NY as a Postdoctoral Research
Associate and a member of Adjunct Faculty
until 2006. He received a B.S. degree from
Computer Engineering Department of Ege
University, Izmir, Turkey in 1996. He received
M.S. and Ph.D. degrees from Computer Science
Department of RPI in 1999 and 2002 respec-
tively. His research interests are in the area of
computer communication networks with a

focus on protocol design, network economics, wireless routing, free-
space-optical mobile ad hoc networks (FSO-MANETs), and peer-to-peer.
He is a senior member of IEEE, life member of ACM, and a member of
Sigma Xi and ASEE.

364 M.O. Kilavuz, M. Yuksel / Computer Networks 56 (2012) 345–364


