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The benefit of Class-of-Service (CoS) is an important topic in the ‘‘Network Neutrality’’
debate. As part of the debate, it has been suggested that over-provisioning is a viable strat-
egy to meet performance targets of future applications, and that there is no need for to
worry about provisioning differentiated services in an IP backbone for a small fraction of
users needing better-than-best-effort service. In this paper, we quantify the extra capacity
requirement for an over-provisioned classless (i.e., best-effort) network compared to a CoS
network providing the same delay or loss performance for premium traffic. We first
develop a link model that quantifies the required extra capacity (REC). To illustrate key
parameters involved in analytically quantifying REC, we start with simple traffic distribu-
tions. Then, for more bursty traffic distributions (e.g., long-range dependent), we find the
REC using ns-2 simulations of CoS and classless links. We, then, use these link models to
quantify the REC for network topologies (obtained from Rocketfuel) under various scenar-
ios including situations with ‘‘closed loop’’ traffic generated by many TCP sources that
adapt to the available capacity. We also study the REC under link and node failures. We
show that REC can still be significant even when the proportion of premium traffic requir-
ing performance assurances is small, a situation often considered benign for the over-
provisioning alternative. We also show that the impact of CoS on best-effort (BE) traffic
is relatively small while still providing the desired performance for premium traffic.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Internet has been a tremendous success with large
numbers of day-to-day communication applications
. All rights reserved.
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migrating to it, as network connectivity and web-usage
have become nearly ubiquitous. With the massive deploy-
ment of residential broadband access, user expectation of
Internet services has moved from best-effort (BE) connec-
tivity to having reasonable performance and capacity for
all types of applications. Entertainment is also viewed by
many as a major application area taking advantage of IP
networks. Consumers would prefer to use a converged sin-
gle ‘‘pipe’’ for all their communication and entertainment
needs, if possible. Performance-sensitive applications like
video [3], games, and voice-over-IP (VoIP) are offered over
such a converged end-to-end IP network [4]. To satisfy
requirements posed by such applications, Internet Service
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Providers (ISPs) need to provision their networks to meet
the service level agreements (SLAs) of their business cus-
tomers, despite high and variable amounts of background
traffic from all customers. Such provisioning must also be
resilient to changes in customer demand, changes in appli-
cation mix and network failures. Customer experience
needs to be protected and predictable despite failures
causing traffic re-routing. ISPs indeed provision their
networks conservatively based upon predicted loads to
provide good service throughout, which makes most of
over-provisioning a practice of protection capacity.

There has been a wide ranging debate on the issue of
‘‘Network Neutrality’’ which involves both economic and
technical aspects [5,6]. One key technical aspect of the de-
bate is whether best-effort application traffic should be
carried along with other (so-called ‘‘premium’’) traffic for
which SLA commitments have been made (or are expected,
either explicitly or implicitly) without differentiation. At
one end of the opinion spectrum in the debate, it is sug-
gested that there should be no differentiation of traffic
and all performance requirements should be met only by
over-provisioning the network. The question, then, is
whether this can be done with a small amount of addi-
tional capacity or is there a need to significantly over-pro-
vision the network? Our study focuses on this specific
question. We compare a classless network which is over-
provisioned against an engineered network using per-class
queuing to offer Class-of-Service (CoS) (i.e., differentiated
service) and meet user expectations and SLAs. We recog-
nize that Quality-of-Service (QoS) has been extensively
studied for many years. However, quantifying the extent
of over-provisioning needed in a network to match the
SLAs achieved by a corresponding differentiated network
still needs to be addressed.

The hypothesis of this paper is that an over-provisioned
single-queue network service for meeting the SLAs of per-
formance-sensitive traffic and regular best-effort traffic is
inefficient (from a capacity viewpoint) compared to an
engineered network offering simple 2-queue CoS differenti-
ation. Though this basic fact is known in the network per-
formance evaluation community, our paper refines it to
identify parametric regions where this inefficiency exists
and is pronounced. We show that this inefficiency is signif-
icant even for moderate utilizations and becomes particularly
pronounced when premium traffic is a smaller fraction of the
overall traffic mix.

We model the basic SLA requirements that applications
may need, in terms of delay or loss. We then estimate the
required extra capacity (REC) for a classless link to match
the performance (in delay or loss) provided by its CoS-
based correspondent. We generalize this single link model
to an ISP network taking into account the network topol-
ogy, traffic matrices (based on a gravity model), and short-
est path routing.

We recognize that a dominant amount of traffic on the
Internet is from TCP traffic generated by applications that
are adaptive and not as sensitive to delay as application
traffic carried over UDP. The TCP source also adapts to
the available capacity, thereby reducing loss to the extent
possible, when operating in either a CoS or classless envi-
ronment. We examine the REC in these cases, where both
the best-effort (BE) and premium class traffic use TCP as
well as the case when only the BE class traffic uses TCP. Be-
cause TCP is mainly sensitive to loss, the emphasis of our
study of the REC with TCP traffic is primarily on achieving
the same packet loss probability with a classless network
as with a CoS network.

The rest of the paper is organized as follows: In the next
section, we first describe our modeling framework. Then,
to quantify REC, we detail link models for Poisson, MMPP,
and LRD traffic cases. By considering both delay and loss as
the performance targets, we provide a detailed discussion
of the link models’ implications in Section 4. In Section 5,
we extend the link models to a network model using sam-
ple ISP topologies. For performance ranges pertaining to
some legacy applications, we present the REC results for
these ISP topologies, followed by conclusions.

1.1. Contributions and Findings

Understanding the potential benefits of CoS provision-
ing and how best to dimension a network to accommodate
future growth in demands are topics explored extensively
by researchers. In this paper, we provide a different per-
spective on the value of providing CoS as the fraction of pre-
mium traffic changes. Building on this basic perspective, we
provide estimations on how much extra capacity would be
required (i.e., required extra capacity (REC)) at the link as
well as network levels, if the fraction of premium traffic
varies.

Our modeling effort develops an analytical and simula-
tion-based link model of REC, and then extends the link
model to a network model to provide estimates of ‘‘net-
work REC’’. Based on the quantitative modeling of several
ISP topologies obtained from Rocketfuel [7], we extensively
study REC within a network setting. The primary compo-
nent of our modeling effort that is novel is the network le-
vel model.

Our major contributions and findings are as follows:

� Analytic framework for quantifying REC. We provide a
simple analytic framework for quantifying the REC
as a function of the proportion of the traffic requir-
ing premium service, the utilization, and the perfor-
mance target.

� Quantifying REC in a network setting. We outline a
systematic way of extending the link level REC esti-
mation to a network setting.

� REC is higher when the proportion of traffic using the
premium class is smaller. Our network model analy-
sis provides insight into the significant REC needed
even when the proportion of premium traffic is small.
This result invalidates the common knowledge that
significant over-provisioning is only needed when
the premium traffic is a large proportion of the over-
all network traffic. Higher utilization and traffic
burstiness make REC even higher.

� Effect of long-range dependent (LRD) traffic. We show
that traffic patterns with more burstiness, as in LRD
traffic, cause REC to increase by orders of magnitude
in comparison to short-range dependent traffic like
a Markov-Modulated Poisson Process (MMPP) [8].
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LRD models are known to approximate the Internet
traffic at various time-scales [9–11]. Our results give
a glimpse of the increased capacity requirement as
burstiness increases.

� Effect of closed-loop (i.e., TCP) traffic. We found that
when the sources are adaptive, using TCP for both
the BE and premium class traffic, the REC for the
classless network is still significant. We ensure that
an appropriate share of the resource is available for
the BE class (rather than being starved out by a
pure-priority service) using a reasonable deficit-
round-robin [12] scheduling algorithm. We also
show that when the premium class traffic is non-
adaptive and the BE traffic is TCP, the extent of
REC grows even more.

� Impact on performance of the BE class. Previous work
has suggested [13] that a lower priority class may be
undesirably affected by a higher priority class. We
quantitatively show this impact, and observe that,
with the differentiation that CoS support provides,
the loss and delay impact on BE traffic is relatively
small while still providing the desired performance
for premium traffic.

� Failure analysis. Our network-level analysis includes
quantifying the REC when a link or node fails. We
show that substantial additional capacity may be
needed across a significant number of links to sup-
port the traffic being re-routed due to failures.
And, REC due to the incremental effect of failures
over-and-above the regular burstiness of traffic is
significant.

1.2. Related work

There is a vast body of network QoS literature studying
different queueing, scheduling and buffer management
mechanisms to allocate finite capacity and delay (given
an average utilization) amongst flows at a statistically mul-
tiplexed resource [14,15]. Recent work by Ciucu et al. [16]
proposes a provisioning strategy based upon statistical ser-
vice curve characterization and argues that scheduling has
little value added above such provisioning, when traffic is
shaped. In our work, a key difference is that we do not have
admission control or shaping/policing of input traffic. But,
the network must still honor premium-traffic SLAs. In this
context, we show that simple CoS scheduling is still valu-
able. CoS classes tend to be reprovisioned, but over longer
time-scales (min/h) in response to aggregate demand pat-
tern changes. The flow-aware networking approach [17,18]
suggests the use of implicit differentiation by using per-
flow queuing and per-flow admission control. In contrast,
our work focusses on a simple 2-class vs. 1-class model
at the aggregate level without admission control.

Consideration of the cost-effectiveness of over-provi-
sioning as an architectural paradigm was done earlier,
e.g., [19]. Recent work [20–22] examined the benefit of
over-provisioning to overcome traffic and revenue uncer-
tainty and to accommodate scaling up of the network,
while we examine the relative benefit of CoS support in
terms of capacity savings. An analysis similar to ours was
done by Sahu et al. [23] in comparing loss performance
of forwarding behaviors (i.e., discard eligibility vs. priority)
of the DiffServ architecture. Instead of services specific to
the DiffServ architecture, our work compares the classless
service to the class-of-service environment in general. We
provide the quantitative comparison at the edge-to-edge
(g2g) level with full consideration of network-specific is-
sues such as the topology and the traffic matrix. Rather
than the end-to-end (e2e) performance characteristics,
we focus on the g2g performance requested of a backbone
ISP within the context of classless vs. CoS provisioning. To
answer the question of ‘‘Would there be need for a large
amount of extra capacity in order to provide service to all
traffic with a performance similar to the premium class
quality in a CoS network?’’ from an ISPs point of view,
g2g is a reasonable granularity to work with as typical SLAs
are made over g2g performance measures.

Kelly [24] argues that queueing delays may become
small in comparison to propagation delays at higher link
speeds and suggests that differentiation between traffic
classes may become redundant. His study assumes that
the dominant end-to-end protocols are TCP-like adaptive
protocols, which are primarily sensitive to loss. However,
we believe that there will be aggregation of a large number
flows at the core of IP backbones and the overall perfor-
mance will be dependent more on the aggregate behavior
rather than on individual flow behavior. Further, recent
trends clearly show that there is a significant and growing
amount of RTP/UDP-based non-adaptive audio, video, and
gaming traffic on IP backbones [4].

In a similar vein, Gibbens et al. [13] conclude that differ-
entiated forwarding is unlikely to provide significant per-
formance distinction unless the higher class traffic
damages the lower class. Their focus is primarily on loss,
assuming that TCP is the dominant protocol. However,
we examine the impact on delay in addition to loss. We
show quantitatively that the increase in loss for BE in a
CoS network is negligibly small compared to a classless
environment running at the same utilization. We believe
this to be the case even if TCP is the dominant protocol,
especially at higher utilizations. Further, we show that pre-
mium services could be provided without necessarily hurt-
ing the lower class performance significantly, even for
medium utilizations with the proportion of premium class
traffic being small, which is the current operating region
for the Internet.
2. Model Framework

Our model framework enables a comparison of the
capacity required for a classless service vs. a Class-of-Ser-
vice (CoS) network with two classes for various ISP topol-
ogies. We start with a simple comparative model of the
two services at the link level, which poses the question:
‘‘How much extra capacity needs to be provisioned for
the classless service to meet the same performance (e.g.,
in terms of delay or loss) as the premium class traffic
achieves in a CoS link with the same aggregate (including
both premium and best-effort (BE)) traffic load?’’ To substan-
tiate this link model, we develop the relationship between
the required extra capacity (REC) and the following
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parameters: premium class performance (delay or loss)
and aggregate traffic load. We then extend this link-level
model to a network model where edge-to-edge (g2g) pre-
mium class performance goals are built upon link-level
performance goals through g2g paths. This enables us to
use the link-level REC model for calculating the needed ex-
tra capacity for each link in the network.

A key difference in our model from the existing work in
the literature is that we let the performance target move
rather than fixing it to a particular value. Our model takes
the performance achieved by the premium class of the CoS
as the basis and searches to answer the question: How
much more overprovisioning would we have to do with a
classless service if we were to provide the same perfor-
mance to all traffic? As it will become more clear later, this
model captures all ‘‘possible’’ cases in terms of the perfor-
mance target. By allowing a moving performance target,
we automatically eliminate the infeasible performance val-
ues (i.e., tighter than what can be achieved by a premium
class). Thus, our model is generic in quantifying the REC,
and finding the REC values for a particular performance
target is only a lookup from our model. Further, this allow-
ing a moving performance target is a more fair way of com-
paring the CoS and classless cases in terms of quantifying
the inefficiency of classless service, which is the main goal
of this paper.

2.1. Preliminaries

We start by considering two traffic classes on a CoS link:
premium class and best-effort class. We set a performance
target of delay or loss for the premium traffic on the CoS
link, and then seek to find the required extra capacity
(REC) for a classless link (which treats both traffic classes
equally) to achieve the same performance target for both
the traffic classes. Fig. 1 illustrates the comparison of the
two cases at the link level. Let the aggregate traffic rate be
kD to be served by a CoS link with a capacity of lD. Also let
a fraction of this aggregate traffic be premium class traffic
with a rate of kPrem = gkD while the remaining is best-effort
(BE) class traffic with a rate of kBE = (1 � g)kD. For the pre-
mium class traffic, we define a performance target f, in
terms of delay or loss.

Given the parameters as illustrated in Fig. 1, we formu-
late the necessary classless link capacity lN to achieve the
Premium
Class

Best-Effort
(BE) Class

D

Prem

BE

CoS (diff-serv) Link

D

Prem= g D

BE=(1-g) D

N=?

Classless (best-effort) Link

D Best-Effort (BE)

Fig. 1. Link-level comparison of two service types: CoS vs. classless.
same performance target f for the aggregate traffic kD.
From this, we can calculate REC for the classless link in
terms of rate as lN � lD (or as a percentage 100(lN/
lD � 1)). In this model, we use average delay ttarget or aver-
age loss probability ptarget as the performance target. With
loss, an additional parameter is the buffer size, which we
express as K for each of the traffic classes in the CoS link
and 2K for the aggregate traffic in the classless link. Notice
that, for a fair comparison, we use the same total buffer of
2K in both the CoS and classless cases.

Because non-preemptive priority queuing is a simple,
analytically tractable packet scheduling policy for CoS sup-
port, we base our analysis on it. We note that our estimates
of REC will be conservative when we assume that the
aggregate traffic (i.e., premium + BE) exhibits the same
relationship for the first two moments of the traffic (i.e.,
the relationship between the mean and the variance) in
each class. That is, if we are modeling the premium
class traffic with a Poisson process of rate kPrem = gkD and
the BE class traffic with a Poisson process of rate kBE =
(1 � g)kD, then we assume that the aggregate traffic for
the classless service is also a Poisson process with rate kD.

One issue of concern here is that the superposition of
two independent exponential streams yields a more bursty
traffic than the burstiness of individual traffic streams
[25,26]. Later in Section 3.2.6, we try relaxing our ‘superpo-
sition of the two Poisson flows’ assumption for the CoS
case, and show that REC becomes higher when the pre-
mium traffic has a less bursty (e.g., deterministic) distribu-
tion than the BE traffic as well as the aggregate traffic. So,
we use the same burstiness behavior for both the BE and
premium classes to be on the safe side and stay conserva-
tive in our REC estimates. On another note, it is also possi-
ble that multiplexing of many streams may compose a less
bursty aggregate stream if individual streams are non-
independent and appropriately scaled [27]. Such reduction
in burstiness will require aggregation of many streams to
attain limiting effects and is not applicable to our model
as our aggregation involves only two flows.

Different interpretations of ‘‘burstiness’’ exist in the
traffic modeling literature. Generally speaking, burstiness
refers to the bi-modal behavior of traffic where an on–off
structure exists in the arrival process. Burstiness from an
on–off arrival process can be captured by its counting
process, i.e., the time series showing the number of
arrivals per unit time. One can produce more bursty (in
terms of the packet count) traffic by controlling the
parameters of the on–off process or the number of on–
off processes as was shown in [25,26]. Since our work
is centered around the queueing behavior and perfor-
mance, we use the traffic streams counting process when
quantifying the performance metrics such as delay or
loss. So, as in [28], our usage of the term ‘‘bursty’’ refers
to the amount of variance in the traffic streams counting
process.
3. Link model

We develop our REC link model based on three differ-
ent traffic models: Poisson traffic (to provide us an initial



M. Yuksel et al. / Computer Networks 56 (2012) 3723–3743 3727
analytically closed-form understanding), a Markov-Mod-
ulated Poisson Process (MMPP) [8], and long-range
dependent (LRD) traffic. When estimating REC values
for a network, later in Section 5, we use the MMPP-based
link model for estimating the REC values on individual
links. This is a ‘‘conservative’’ choice since a more vari-
ant/bursty traffic yields larger REC values, as also verified
by our experiments in this paper. The counting process
for a short-range dependent (SRD) traffic model such as
MMPP has smaller variance in comparison to an LRD
traffic model. Literature showed that the Internet traffic
exhibits long-range-dependency and thus its counting
process has more variance than an SRD model like
MMPP or Poisson [28,29].

3.1. Analytical model: Poisson traffic

To illustrate the functional relationship between REC
and the other parameters, we analytically derive equations
for REC by assuming (for simplicity of analysis) Exponen-
tial service time (i.e., packet size) distribution. The Poisson
traffic and MMPP traffic models allow us to develop initial
analytical understanding of REC. In comparison to Poisson,
the MMPP traffic is still short-range dependent but allows
us to model more bursty scenarios. Since the MMPP traffic
is analytically tractable and can be made more bursty than
Poisson traffic, it also allows us to clearly observe the
trends in REC behavior, as burstiness increases.

We model the case when traffic is assumed to be Poisson
and the performance target is queueing delay (i.e., ttarget) or
packet loss probability (i.e., ptarget). Let lN be the required
capacity for the classless link to be able to match the pre-
mium class performance with CoS.

By using the M/M/1 and M/M/1/K relationships for non-
preemptive priority queueing, we first derive (details of
this derivation are in Appendix A) the performance (ttarget

or ptarget) for the premium class achieved by the CoS link:

ttarget ¼
1þ ð1� gÞq

1� gq

ptarget ¼
1� gq

1� ðgqÞKþ1 ðgqÞ
K

ð1Þ

where q = kD/lD is the aggregate traffic load at the CoS link,
and K is the buffer size available to each of the two CoS
classes separately.2 Notice that we express the delay ttarget

in terms of ‘‘packets’’. For the rest of the paper, we will
use this notion of delay, which is helpful especially for deriv-
ing conclusions on REC independent of the CoS link capacity
lD and the average packet size. Thus, once we set values for
g and q (and K for the case of loss), we also set the perfor-
mance target, which is the performance achieved by the pre-
mium class.

Following the performance target, we formulate REC (in
percentage) to match the performance in (1) with the
classless service:
2 We choose equal buffer sizes for each class to make sure that we only
quantify the effect of differentiation of forwarding.
RECdelay ¼ 100
ð1� gqÞ

1þ ð1� gÞqþ q� 1
� �

RECloss ¼ 100
qffiffiffiffiffiffi
gqp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgqÞKþ1

1� gq
2K

s
� 1

2
4

3
5 ð2Þ

Similar to the insensitivity results in queueing theory
[30,31], observe that both the REC (Eq. (2)) and the perfor-
mance targets (Eq. (1)) do not depend on the distribution
governing the service times, and are driven by only two
parameters: fraction of premium traffic g and link utiliza-
tion q. This insensitivity of REC to the service times holds
as long as the arrivals are Poisson and allows dimensioning
of the REC results for a desired performance target easily.
We will use this relationship to guide our observations
and plots later. Specifically, we will display the perfor-
mance targets (i.e., ttarget and ptarget) as shades of color/gray
on graphs plotting REC vs. g and q.

3.2. Simulation-based model: MMPP and LRD traffic

To approximate a scenario similar to IP backbone links,
we use LRD arrivals [28,29] and deterministic service time
distributions [32]. To calculate REC under LRD traffic, we
use a careful simulation-based method (detailed in Section
3.2.1) to empirically obtain the link-level estimates of REC.
We apply the same method to calculate the MMPP-based
REC link models. We parameterize the MMPP traffic gener-
ator so that it yields a conservative (less bursty than LRD).
We later use the LRD and MMPP link model results to
obtain estimates of REC in a network setting in Section 5.

To observe how REC behaves as the traffic becomes
more bursty, we first examine the case when the traffic
is characterized as an MMPP stream [8]. With an exponen-
tial service time distribution, the MMPP/M/1 model still al-
lows for analytical derivation of REC to obtain insights into
its behavior. The simplest MMPP traffic model can be
developed by means of two states (i = 1,2) each corre-
sponding to a particular sending rate ki of a Poisson pro-
cess. Let the average sending rate of the overall MMPP
traffic stream be kt and the sending rate of the first state
be a fraction 0 < a < 1 of the average rate (i.e., k1 = akt),
and the ratio of the traffic rates of the two MMPP states
is r = k2/k1. Specifically, we set the two traffic rates as

k1 ¼ akt

k2 ¼ arkt

where 0 < a < 1 and r > 1/a. In order to compose a traffic
stream with an average rate kt by using these MMPP state
sending rates, we have to set the state probabilities, p1 and
p2, as follows:

p1 ¼ ðar � 1Þ=ðar � aÞ
p2 ¼ ð1� aÞ=ðar � aÞ

Note that the product a r is a measure of burstiness,
since both a and r increases the variance of the MMPP traf-
fic [33]. Thus, the burstiness of the stream can be tuned via
the parameters a and r.

Due to the exponential inter-arrival times, MMPP gen-
erates a short-range dependent traffic stream which is
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conservative in terms burstiness in comparison to IP traffic
[28,29]. We use MMPP traffic to make a conservative esti-
mate of REC. Further, we used LRD traffic sources since the
literature suggests that the Internet traffic (beyond time-
scales of RTTs) can be modeled as LRD with the Hurst
parameter ranging roughly from 0.75 to 0.9 [10] (higher
values imply more burstiness). Also, we use deterministic
packet service time distributions for simplicity (considered
reasonable based on IP traffic [32]). We used the LRD traffic
generator from [34], which used aggregation of many
MMPP streams to establish long-range dependence in the
traffic [25]. The next subsections present the details of
the simulation-based calculation of REC and the results
for MMPP/M/1, MMPP/M/1/K, LRD/D/1, and LRD/D/1/K link
models.

3.2.1. Link model simulation and validation
In order to obtain an accurate link model for the LRD

and MMPP cases that are then used in the network-level
analysis, we used ns-2 simulations to calculate the REC.
We simulated both the CoS link and the classless link for
various q and g values, and matched the empirical perfor-
mance of the premium class in the CoS link to the empirical
performance of the aggregate traffic on the classless link.
To simulate the CoS link, we used non-preemptive priority
queuing of the flows from the two classes being served by
the link. For the classless link simulation, we used a FIFO
queue for the aggregate flow, which is the superposition
of the two flows of the CoS case.

In order to find the REC values by simulation, we
matched the performance (i.e., delay or loss probability)
experienced by the premium class flow in the CoS link with
the one experienced by the aggregate flow over the class-
less link, within a 1% margin of error. We first simulated
the CoS link for a given capacity (e.g., lD = 10 Mb/s), utili-
zation q = kD/lD, fraction of premium traffic g = kPrem/kD,
and buffer size K (if loss probability is the performance tar-
get). This empirically gave us the performance goal, i.e.,
tPrem or pPrem. We then matched this performance goal in
the classless link simulations, i.e., ttarget = tPrem ± 1%. To find
the classless link capacity lN required to match to the pre-
mium class performance, we iteratively updated lN and
observed whether the classless service performance
matches that of the premium class traffic in the CoS case.
Fig. 2 shows the detailed flowchart of this procedure of
searching the lN value that matches the performance of
the premium class. This search procedure involves two
phases. First, we increase the lN value to find a maximum
bound for it. Then, in the second phased, we apply a binary
search for a lN value that matches the performance of the
premium class in the CoS case.

To gain confidence, we repeated the classless and CoS
link simulations (shown as sharp rectangles in Fig. 2) and
used the average observed performance across repetitions.
Specifically, we repeated simulations 6 times for MMPP
traffic and 72 times for LRD traffic. We kept the simulation
length at 5000 s for MMPP traffic and 20,000 s for LRD traf-
fic. Fig. 4a and b show the 95% confidence interval of the
target delay values for MMPP/M/1 and LRD/D/1 link mod-
els respectively. Confidence intervals for the other link
model simulation were similar to the ones in Fig. 4.
3.2.2. Achieving a delay target: MMPP/M/1
By using simulation-based estimation of REC as de-

scribed in Section 3.2.1, we obtained REC values when
the average delay is the performance goal. For selected
burstiness cases (i.e., a and r), the graphs in Fig. 3a and
Fig. 5 plot REC as a function of link utilization q and pre-
mium traffic fraction g. The darkness of the REC surface
shows the target delay (i.e., ttarget also a function of q and
g) in terms of the number of packet service times. As we
go from Figs. 3a–5, the increased burstiness of the MMPP
traffic (i.e., the product ar) also causes the REC to become
significantly larger. To make the relationship clearer,
Fig. 3b and c plot REC in two dimensions against q and g
respectively, while keeping the performance target fixed.
So, the 3D graphs exhibit the REC trends as q and g varies.
To see the quantitative nature of REC for a given perfor-
mance target, we look at the ‘‘fixed-performance target’’
lines on the 3D surface.

As we see in Fig. 3b and c, the REC grows as the link uti-
lization becomes higher, but more so when the fraction of
premium traffic g is smaller. On the other hand, when the
traffic is predominantly of the premium class, there is less
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Fig. 3. DELAY – MMPP/M/1 link model with a = 0.5, r = 4: The darkness
(color) of the surface in (a) shows the target average delay, normalized in
units of packets. For example, ‘‘1000 packets of delay’’ equals to 819.2 ms
and 8.192 ms delay respectively for 10 Mbps and 1 Gbps links carrying
packets of size 1 KB. The colored lines, which are also shown in (b) and (c),
on the surface roughly show the points where the target delay is of a
certain number of packets, irrespective of link speeds. For example, the
purple line shows 1000 packets of delay. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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benefit from the differentiation. When the proportion of
premium class traffic is small, an arrival of that class at a
classless queue would have to be serviced quickly. Thus
the classless service would require a higher service rate
than the CoS-based service which would treat the
premium-class arrival with priority, keeping the delay
experienced by that arrival small. As a result, for the same
performance target, the REC is higher for smaller g, which is
especially clear from Fig. 3c. We believe this is important
as we anticipate that current networks will likely see only
a slowly increasing amount of premium class traffic. We
would like to note that even for large g values (e.g.,
g � 0.6) under a well-behaved traffic like MMPP, the REC
can be quite significant (e.g., 70%) at very relaxed perfor-
mance targets (e.g., ttarget � 500 packets) (see Fig. 3c).

3.2.3. Achieving a Loss Target: MMPP/M/1/K
We now look at the MMPP traffic case when the perfor-

mance goal is in terms of average packet loss probability,
i.e., ptarget. Note that the CoS link provides an equal buffer
size of K to each of the traffic classes, and the classless link
uses all the buffer (i.e., total of 2K) for the aggregate traffic.
Figs. 6 and 7 show the percentage REC for a range of a and r
combinations and buffer sizes. We used three buffer sizes
K = 10 ms, 25 ms, 100 ms to be independent of the link
speed. Further, to keep the delay sufficiently low for legacy
application requirements, these buffer sizes are reasonable
[35]. The darkness of the REC surface (scale shown in the
vertical bar on the right) shows the target average loss
probability (i.e., ptarget) percentage. As the burstiness of
the MMPP traffic increases, the REC also increases accord-
ingly. Our simulations treated loss probabilities less than
10�5 (i.e., 0.001%) as zero (marked with an ‘‘Insufficient
precision’’ label in Fig. 7) and the loss probability achieved
by the premium class is less than 10�5 in these flat regions.
Therefore, REC values for small g and q values will likely to
be higher than what is shown in Fig. 7.

From Figs. 6 and 7, we observe once again that the REC
grows with utilization, particularly when g is small. Also,
as one would expect, as we increase the amount of buffer-
ing K from 10 ms to 100 ms, the REC reduces, and the range
of utilization where there is little or no REC required also
slowly increases. As the utilization increases, the loss prob-
ability goes up (increasing darkness). If the acceptable
packet loss target is small, the REC also has to be higher.

3.2.4. Achieving a delay target: LRD/D/1
Fig. 8a shows the REC under LRD traffic when the per-

formance target is the average delay, ttarget. We use a Hurst
parameter value of 0.75. The traffic is therefore much more
bursty than the MMPP case. Notice that the vertical axis is
logarithmic, and the REC is much larger than in the case
where the arrival is MMPP. The higher burstiness in the
traffic results in a much higher capacity requirement for
the classless link to clear the backlog. Again, we observe
for a fixed ttarget that the REC grows as g decreases. An
important observation to make is that the REC can be quite
significant even when the proportion g is relatively
modest. Even at low utilizations, with g = 0.2, the REC can
be over 100%.

3.2.5. Achieving a loss target: LRD/D/1/K
Fig. 8b shows the REC for LRD traffic when the target is

again the average packet loss probability, with the same
assumptions about the buffer size, K = 100 ms, for the
CoS and classless cases as before. Again, we use a Hurst
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Fig. 4. Simulation confidence for link models: 95% confidence intervals of the target delay performance for the two largest g values. Confidence intervals for
other cases are smaller.

Fig. 5. DELAY – MMPP/M/1 link model with a = 0.5, r = 8: more bursty
traffic increases REC.

Fig. 6. LOSS – MMPP/M/1/K link model: the surface darkness shows the
target loss probability. The buffer size is K = 10 ms, and MMPP parameters
are a = 0.5 and r = 4. The colored lines on the surface roughly show the
points where the target loss probability is of a certain value. For example,
the blue line shows the points for 0.1% of average loss. (For interpretation
of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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parameter value of 0.75. We observe that the REC is much
higher now than the MMPP traffic case, confirming our
intuition that REC increases with more burstiness in the
traffic. It is also interesting that even with small g and
low utilization q, REC can be quite high, which we could
not observe in the MMPP/M/1/K model (Fig. 7) due to the
insufficient precision in the simulations. In the case of
LRD traffic, the simulation precision is enough to uncover
Fig. 7. LOSS – MMPP/M/1/K link models for various buffer sizes K = 25 ms and K
buffer is 2K by our model) for a 1 Gb/s link carrying 1 KB packets.
this interesting behavior. The reason behind this behavior
is that, at small g, the loss target is low (due to the small
proportion of premium traffic, the CoS network achieves
a very low loss probability for the premium traffic), and
the classless link has to have a significantly higher capacity
to match the stringent loss probability achieved by the
= 100 ms, roughly corresponding to 1500 and 6000 packets (since the total



Fig. 8. LRD-based link models: the surface darkness shows the performance target (delay or loss). The vertical axis is on logarithmic scale and the actual
REC values are much larger than the ones under MMPP traffic.
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premium class. As g gets larger, the loss target is higher,
and correspondingly the REC is lower. It is only when the
utilization gets close to 1 that the REC is high, even for a
large g.
3.2.6. Mix of distributions for premium and best-effort traffic
Realistic traffic for the premium class is likely to be less

bursty than the BE class traffic, since premium class typi-
cally serves multimedia applications with non-adaptive
smooth traffic behavior. We consider the effect of this less
bursty Premium traffic on our quantification of REC. Instead
of applying the same burstiness to both Premium and BE
class traffic, we used deterministic (i.e., constant-bit rate)
traffic for the Premium class and LRD with Hurst parame-
ter = 0.75 for the BE class in our simulations. Fig. 9 shows
the REC under this scenario. Interestingly, the performance
that Premium class achieves is a lot better (always under 2
packets of delay) in comparison to the case when premium
class is assumed to have the same burstiness as the BE class,
as shown in Fig. 8a. The performance of the premium class
gets worse only because of the non-preemptive queueing,
but that limits the degradation to about 0.5 packet delay.
When the premium class is less bursty, REC is roughly the
same (or slightly higher) when the fraction of premium
Fig. 9. DELAY – LRD/D/1 link model when the premium class traffic is
deterministic. Hurst parameter is 0.75.
class g is small. When g is larger, REC is significantly more
in comparison to Fig. 8a. The observation is that a less bursty
premium class traffic will only make the REC estimates higher.
Thus, for the rest of the paper, in order to not over-estimate
REC, we choose to make the assumption that premium class
and BE class traffic have the same level of burstiness.
3.3. Protocol effects: open- vs. closed-loop traffic

TCP is the dominant transport protocol in the Internet.
It adapts to the amount of capacity available for each indi-
vidual transport level connection by increasing or decreas-
ing the amount of load it puts into the network. It is
important to examine the effect on REC in the context
of such adaptive protocols. TCP is primarily sensitive to
packet loss and its adaptive nature depends on the feed-
back received in terms of the packet loss probability p.
The insights from [36] clearly showed that long-lived TCP
flows performance is mainly driven by loss. Thus, we use
packet loss probability experienced by long-lived TCP
flows as the key metric to estimate REC under closed-loop
traffic.

Since short-lived TCP flows typically operate with small
window sizes and often do not exit the Slow Start phase,
their performance is mainly dominated by timeouts in re-
sponse to losses [37]. Such timeouts happen due to TCPs
inability to employ Fast Recovery before it transmits a
minimum number of segments [37]. This high sensitivity
of short-lived TCP against losses has been tackled in vari-
ous ways such as queuing disciplines favoring short-lived
flows [38,39], changes to initial behavior of TCPs conges-
tion control algorithm [40], and explicit congestion notifi-
cations (ECNs) from the network [41,42]. For REC estimates
involving short-lived TCP flows, additional research be-
yond what we address below may be appropriate.

We examine the amount of REC by simulating a large
number of TCP-SACK connections sharing a bottleneck link.
First, we examine the case when both the best-effort and
premium class traffic use TCP. If we used a simple priority
queueing structure, the best-effort TCP traffic may be
starved. As such, the comparison of the two types of
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service (CoS vs. classless) would not be fair, and the REC ar-
rived at will be excessive. To avoid this, we use a Deficit
Round-Robin (DRR) queueing discipline [12] with equal
weights to premium and BE classes. We used g, the fraction
of premium traffic, to divide the TCP flows into premium
and BE classes, e.g., the premium class has 200 out of a to-
tal of 1000 TCP flows when g = 0.2. The buffer size for each
class was K = 122 packets (and 2K for the classless case),
compared to a bandwidth-delay product of 9.8 packets.
This works out to a buffer with a maximum queueing delay
of 100 ms for each class. As an example scenario, the end-
to-end RTT in our simulation setup was 8 ms. The bottle-
neck link capacity was 10 Mbps and the packet size was
1 KB. We purposefully set the buffer size to a large value
(i.e., more than 10-fold difference) in comparison to the
bandwidth-delay product, since we experiment with at
least 100 TCP flows. We sought to operate in a range where
the packet loss rates were small enough, and each TCP flow
operates in congestion avoidance mode for long enough to
achieve steady state.

Fig. 11a and b show the REC as the total number of TCP
flows and fraction of premium flows vary. A critical obser-
vation to make here is the fact that achieved loss rates are
much higher in comparison to the LRD traffic case in
Fig. 8b. Thus, the REC values shown in Fig. 11a and b are
significantly higher for the same loss performance target.
Further, Fig. 11b clearly shows that a lower ptarget results
in a higher REC, and to retain ptarget one can only support
smaller number of TCP flows with the classless service.

Thus, the results of our TCP experiments clearly show
that REC is higher for TCP traffic than for LRD traffic, with
everything else staying the same. So, again, we choose to
base our network-level REC estimates on MMPP and LRD
traffic for the sake of staying conservative in our REC
estimates.
4. Impact of CoS on best-effort

In this section, we examine the utility of even the sim-
ple non-preemptive priority based CoS service in retaining
the performance of best-effort traffic relative to the perfor-
mance achieved in the classless network. Fig. 10 shows the
operating regions of interest based upon the two key
parameters: the utilization, q, and the fraction of premium
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Fig. 10. CoS regions of interest.
traffic, g. Regions B (moderate q, low-to-medium propor-
tion of premium traffic g) and A (with a higher q) are of
interest, where CoS may help achieve premium traffic
SLAs. Note that at very low utilizations (regions C, F in
Fig. 10), there is little impact on best effort traffic from
the presence of CoS or premium traffic. Regions E and D
are of less interest here, since they involve high values of
g and high utilization, i.e., unlikely operating regimes in
the near-to-medium term.

The performance experienced by the best effort traffic
in a classless (CL) service is approximated by the BE perfor-
mance values when g � 0 (i.e., when there is little pre-
mium traffic). This is shown by the solid-line elliptical
regions marked as ‘‘Region CL’’ in Fig. 12. With the classless
service, premium class traffic would also suffer the same
delay and losses as shown in Region CL for any level of
the fraction g (and hence potentially not meet desired
SLAs).

Fig. 12 shows loss and delay for best effort (BE) for the
MMPP/M/1/K link model. Regions A, B and CL are overlaid
on these graphs. In regions A and B of Fig. 12a and b, we see
that BE performance with CoS (compared to the perfor-
mance achieved with an equivalent classless scheme
shown by region CL in the same figures) is not noticeably
degraded both in loss and delay. More specifically, best ef-
fort traffic does not suffer even when the utilization is high
(region A), for a premium traffic fraction (g) of up to 0.5–
0.6, a parameter that can be managed in practice by net-
work engineering. At the same time, in these scenarios
(especially in region A) CoS serves an essential purpose of
allowing premium traffic to meet performance require-
ments, despite burstiness in traffic and high utilization.
Observe also that this range of g is the same operating re-
gime we saw earlier that requires greater excess capacity in
the equivalent over-provisioned classless network. We rec-
ognize that BE traffic is likely to be loss sensitive rather
than being sensitive to increased delay.

As the fraction g of premium traffic increases close to 1,
and the link utilization (q) is also high, the best effort traf-
fic observes increased delay as shown in Fig. 12b. This is
because the effective per-packet service time for BE in
those regimes is higher due to CoS prioritization of pre-
mium traffic. However, loss for the BE traffic does not in-
crease substantially in the CoS case compared to the
classless case, even in these stressful regions as seen in
Fig. 12a.

To summarize the link-level results, we observe that
REC can be quite large. The REC was �100% even at a rea-
sonable average link utilization of 40%, for a relatively
small proportion (e.g., g < 0.2) of premium class traffic with
conservative assumptions on the burstiness of the traffic
(MMPP). Traffic burstiness increases the REC. Under similar
conditions, the REC under LRD is an order of magnitude
higher, i.e., �1000%.

5. Network model

We extend our model framework by generalizing the
single link model to a network model. We focus on devel-
oping our network model to reflect a typical ISP’s backbone
network. Crucial components of a network model include



Fig. 11. LOSS – protocol effects on REC: both premium and BE traffic are TCP in (a) and (b).

Fig. 12. Best-Effort (BE) class performance for the MMPP/M/1/K link model when MMPP’s burstiness is defined by a = 0.5 and r = 4.
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(i) a topology (i.e., adjacency matrix, link weights, link
propagation delays, link capacities) and (ii) a traffic matrix.
Given the topology and the traffic information, we then to
calculate REC for the complete network. We call this
required extra capacity for the complete network as ‘‘net-
work REC’’(NREC).

We first calculate a routing matrix R for the ISP network
from the link weight information. With a traffic matrix T,
we then calculate the traffic load pertaining to individual
links by taking the product of T and R. For each of these link
traffic loads, we apply the link model described earlier and
find the RECs for each individual link. Finally, we calculate
the network REC (NREC) by averaging the individual link
RECs across all links of the network. For NREC, there are
two possible ways of averaging the link RECs: (i) NRECA,
to calculate the ratio of the sum of the RECs of all links of
the entire network, and (ii) NRECI, to calculate the average
of the ratio of the REC of each individual link. Mathemati-
cally speaking, for a network with set of links L, if RECl

and cl represent the REC and the capacity of link l respec-
tively, then NRECA and NRECI are calculated as:
NRECA ¼
P

l2LclREClP
l2Lcl

NRECI ¼
P

l2LRECl

jLj

In brief, NRECA expresses the total extra capacity needed
to make the network as a whole meet the g2g performance
goals and NRECI expresses the average extra capacity needed
on each link of the network to meet the g2g performance
goals. For example, NRECI would likely reflect better the
situation when a link with a small capacity requires a sig-
nificant additional capacity (e.g., if it is the bottleneck).

Notice that NREC calculation is not just calculating
expectations over distributions of the link-level RECs. For
example, although the network topologies are available
through public sources, the traffic matrix and link capaci-
ties are generally not publicly available, and end-to-end
capacity estimation of individual links is not yet reliable.
Further, after estimating the product of the T and R matri-
ces, some links will be infeasible as their estimated capac-
ities may be lower than the estimated traffic load on them.
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5.1. Methodology

The goal of the network model is to determine the per-
centage additional capacity needed for a classless network
over a CoS network on an edge-to-edge (g2g) basis. For a
network with N nodes, L links, and F = N(N � 1) flows, let
TN�N be the traffic matrix. If there exists a positive flow
from ith node to jth node, then Ti�j is the traffic rate in
Mb/s from ith node to jth node. If not, then Ti�j is 0. Let
kF�1 be the traffic vector, which is the vectorized version
of TN�N such that k(i�1)N+j = Ti�j where i, j = 1, . . . , N and
F = 1, . . . , N(N � 1). Let RF�L be the routing matrix, where
Ri�j is 1 if the ith flow traverses the jth link. If not, Ri�j is
0. Also, let AN�N be the adjacency matrix, WN�N be the link
weight matrix, SN�N be the link propagation delay matrix,
and CN�N be the link capacity matrix. The network model
requires the following inputs:

� The traffic matrix: TN�N.
� Topology information: Adjacency matrix AN�N, link

weight matrix WN�N, link propagation delay matrix
SN�N, link capacity matrix CN�N.
� The link model: The link model formulates the REC

(lN � lD) for a given traffic load (i.e., kF�1) and perfor-
mance goal.
� Premium class performance: ttarget or ptarget, the perfor-

mance goal to be achieved.

The network model takes the following steps to calcu-
late the network REC (NREC):

� Step 1: Construct the routing matrix RF�L based on short-
est path first (Djiskstra’s) algorithm using the topology
information AN�N and WN�N.
� Step 2: Form the traffic vector kF�1 from TN�N.
� Step 3: Calculate the traffic load on each link by perform-

ing the matrix operation Q = RTk, where QL�1 is the link
load vector (in Mb/s).
� Step 4: Check the feasibility of the traffic load and rout-

ing. If any link’s capacity is less than the load onto that
link, then we fix the infeasibility by increasing the
capacity of that link.
� Step 5: Calculate the per-link REC by using Qi as the

total traffic rate for the ith link and the performance
goal ttarget or ptarget for that link i.
� Step 6: Calculate the network REC (NREC) by averaging

the per-link RECs from Step 5.
Table 1
Rocketfuel-based router-level ISP topologies.

ISP # of
Routers

# of
Links

Degree
(avg/max)

BFS distance
(avg/max)

Abovenet 141 922 6.6/20 2.3/4
Ebone 87 404 4.7/11 3.3/7
Exodus 79 352 4.5/12 3.0/5
Sprintlink 315 2334 7.4/45 2.7/7
Telstra 108 370 3.8/19 3.5/6
Tiscali 161 876 5.6/31 2.6/5
5.2. Topology

To obtain some of the topology information, we used
the Rocketfuel [7] data repository which provides router-
level topology data for six ISPs: Abovenet, Ebone, Exodus,
Sprintlink, Telstra, and Tiscali. Specifically, it provides A,
W, and S for the six ISPs, but an estimation of C is not pro-
vided. Table 1 shows a summary of the topology informa-
tion for the six Rocketfuel topologies. We updated the
original Rocketfuel topologies such that all nodes within
a PoP (assuming that a city is a PoP) are connected with
each other by adding links to construct at least a ring
among routers in the same PoP.

5.3. BFS-based link capacity model

In order to assign estimated capacity values for individ-
ual links of the Rocketfuel’s topologies, we use a technique
based on the Breadth-First Search (BFS) algorithm. We,
first, select the maximum-degree router in the topology
as the center node for BFS to start from. After running
BFS from the max-degree router, each router is assigned
a BFS distance value with respect to the center node. The
center node’s distance value is 0.

Given these BFS distances, we apply a very simple strat-
egy to assign link capacities: Let the BFS distances for rou-
ters i and j be di and dj respectively. For the links (i, j) and
(j, i) between the routers i and j, the estimated capacity Ci,j = -
Cj,i = j[max(di,dj)] where j is a decreasing vector of conven-
tional link capacities. In this paper, we used: j[1] = 40 Gb/s,
j[2] = 10 Gb/s, j[3] = 2.5 Gb/s, j[4] = 620 Mb/s, j[5] =
155 Mb/s, j[6] = 45 Mb/s, and j[7] = 10 Mb/s. So, for exam-
ple, a link between the center router and a router with BFS
distance 5 will be assigned 155 Mb/s as its estimated link
capacity. Similarly, a link between routers with distances 1
and 3 will be assigned with a capacity of 2.5 Gb/s.

The intuition behind this BFS-based method is that an
ISPs network would have higher capacity links towards
the center of its topology. It has been generally found that
the routers in the center of an ISP topology are more likely
to have a higher degree. This general intuition may be sup-
ported by the study in [43] showing that router technology
has been producing higher degree-capacity combinations
for the core routers internal to the backbone, which is par-
ticularly meaningful for our study since we consider the
backbone of an ISP rather than the customer-facing
interfaces at the edge of ISP topology. However, when
Min
degree

Min BFS
distance

# of Edge routers # of g2g flows

9 3 108 11,556
6 4 66 4290
6 4 60 3540
9 5 254 64,262
5 4 84 6972
8 4 125 15,500



3 The actual g2g delay will also include the g2g path’s propagation delay
(which is available from the Rocketfuel data).
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considering the large number of peering relationships that
edge routers have, the evidence for or against this intuition
is limited at this point. Notice that these link capacity esti-
mates are initial values, and will possibly change when the
model attempts to fix unfeasibility due to mismatch be-
tween these estimated link capacities and link traffic loads,
caused by the combination of the traffic load and the short-
est path routing.

5.4. Traffic model

A crucial piece in modeling a network is the workload
model, in particular the traffic matrix. Each flow in the net-
work model must reflect the traffic from one edge router to
another edge router. Thus, there are two important steps in
constructing a reasonable traffic matrix. First, we identify
the edge routers as a subset of routers in the Rocketfuel
topologies, which is detailed in Appendix B. Once edge rou-
ters are identified in a topology, we use the gravity model
[44,45] to construct a feasible traffic matrix composed of
edge-to-edge (g2g) flows, and the specifics of our method
to establish the gravity-based traffic matrix is detailed in
Appendix C.

5.5. Edge-to-edge (g2g) performance goal

To evolve from the link model of Section 3 to the net-
work model, we split the g2g performance goals for the
individual links of the g2g path. Determination of g2g per-
formance goals is driven by real-time applications such as
VoIP. Specifically, the maximum one-way delay, acceptable
for most interactive voice usage is about 150 ms. Based on
the analysis in [46], the delay budget for queueing in the
backbone network is approximately 10 ms after taking into
account propagation, coder, silence suppression, de-jitter
buffer and access network delays. Typically, the require-
ments for packet loss for encoded speech are 1% or less.
Thus, we use these ranges to set the g2g performance goals
in our network model analysis. As an example, a toll-qual-
ity IP Telephony service typically imposes performance
requirements. These include: (i) Low end-to-end packet
delay so that it does not interfere with normal voice con-
versations, and (ii) Low packet loss: so as to not perceptibly
impact either voice quality or the performance of other
equipments that use it as the underlying communication
medium, e.g. legacy fax.

While loss concealment algorithms can be used to
reproduce intelligible speech even with higher loss rates,
the resulting performance may often be considered to be
inadequate. However, in addition to such QoS needs under
typical conditions, premium application traffic also expect
to have their services protected under transient failure
conditions as well. While the above may be a worst-case
situation, it is important to note that interactive real-time
applications impose non-trivial constraints of loss and de-
lay on the network.

5.5.1. Apportioning delay
In order to split g2g delay target ttarget on individual

links, we simply divide the delay requirement equally on
each link of the path assuming that ttarget is only the delay
in queueing and insertion into the links.3 After splitting the
delay on individual links for all g2g flows, we collect the
tightest (i.e., minimum) delay requirement on each individ-
ual link among the delay requirements imposed by each g2g
flow traversing the link.

Let F be the set of all g2g flows and L be the set of all
links. Given the g2g delay requirement ttarget, we calculate
the delay requirement of flow f on the link i as:

tf ;i ¼
ttarget

lðf Þ ; f 2 F; i 2 L ð3Þ

where l(f) is the number of links the flow f traverses. Then,
for each link k 2 L, the delay requirement is:

t̂k ¼min
f2F

tf ;k:

When t̂k turns out to be unrealistically small, we set t̂k

to be the minimum possible, which is the packet service
time (based on the packet size and the link’s capacity.)

Though this method of calculating individual links’ de-
lay requirements from the g2g delay requirement ttarget is
plausible, better methods are possible. For example, after
determining that t̂k is tighter than a flow f’s delay require-
ment tf,k on the link k, it is possible to distribute the extra
delay margin tf ;k � t̂k for flow f to the links on f’s path other
than the link k. This would relax the delay requirement on
these other links and possibly affect the NREC results.
Although one can sketch such seemingly better ways of
distributing g2g delay requirements on individual links,
its affect on the end result will not be significant. Thus,
in this paper, we used this simple method of equally
apportioning the g2g delay requirement on individual
links.

5.5.2. Apportioning loss
We apply a similar procedure to apportion the g2g loss

probability target ptarget on individual links. Specifically, for
a flow f traversing l(f) links, we assign the survival proba-
bility to each link as the l(f) th root of the overall path’s sur-
vival probability 1 � ptarget. Thus, the loss probability
requirement of flow f on the link i is:

pf ;i ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ptarget

lðf Þ
q

; f 2 F; i 2 L: ð4Þ

We then collect the tightest loss probability require-
ment on each individual link among the loss probability
requirements imposed by each g2g flow traversing the
link. That is, for each link k 2 L, the loss probability require-
ment is:

p̂k ¼min
f2F

pf ;k:
5.6. Network model results

We now present the quantitative results on the network
REC (NREC) for the various Rocketfuel topologies. In order
to generate the NREC results, our network model uses link
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model results, presented in Section 3, for a given utilization
and performance target. We perform a lookup of the link
model simulation result and use linear interpolation on
the link model surfaces (e.g., Fig. 3a) with the available
datapoints. Sometimes, the link model surface might not
have the datapoint corresponding to the performance tar-
get and utilization combination. For example, the LRD/D/
1/K model in Fig. 8b does not have the datapoints for ptar-

get = 0.01% when the link utilization q is greater than 0.5.
In such cases, we conservatively assume that the link’s
REC is equivalent to the closest point on the surface, even
though the real REC value would be higher.

We calculate NREC both for MMPP traffic and LRD traf-
fic. The MMPP traffic allows us to observe NREC values un-
der smooth, well-behaved, and short-range-dependent
traffic with very conservative burstiness behavior. The
LRD traffic allows us to see how much larger REC would
become under more bursty traffic. In both cases, we use
conservative parameters for the traffic burstiness, i.e.,
a = 0.5, r = 4 for MMPP, and Hurst = 0.75 for LRD. The IP
traffic is often more bursty than this [9]. Also, when loss
probability is the performance goal, we use a buffer size
of K = 100 ms, which is conservative in comparison to con-
ventional buffer sizes on IP backbone links. Also, if we are
interested in keeping the g2g delay small, this is often
achieved by keeping the buffer size small [35].

Figs. 13 and 14 show the NREC values for the two ISP
topologies Exodus and Sprintlink, where the top row
shows the results for LRD traffic and the bottom shows
MMPP traffic. We do not include the results for the other
topologies as they are similar in behavior and also the ac-
tual values. The graphs in the figure show NRECI with solid
lines and NRECA with dashed lines. We show NRECs for five
levels of traffic load, which translates to different average
network utilizations for each ISP topology. For example,
the maximum traffic load we could carry with the Exodus
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Fig. 13. G2G DELAY – NREC against the target average g2g queueing delay und
dashed lines show NRECA.
topology resulted in 80% avg. utilization while the Sprint-
link topology had 68% avg. utilization.

Fig. 13 shows NRECs when the performance target is the
g2g queueing delay. It is clear that both NRECI and NRECA

increase as the average link utilization increases, especially
when the target average g2g queueing delay is smaller.
Also, as expected, LRD traffic results in an order of magni-
tude larger NRECs in comparison to the case with MMPP
traffic. For example, for a g2g queueing delay target of
5 ms and a 40% utilized Sprintlink network, NREC under
MMPP traffic is about 20% while it would be about 100%
with LRD traffic. This difference becomes more evident
when the target g2g queueing delay is smaller.

Fig. 14 shows NRECs when the performance target is the
g2g loss probability. Again, it is clear that both NRECI and
NRECA increase as the average link utilization increases.
For the LRD traffic, there is a flat region for the NREC values
when the target g2g loss probability is below 0.1%. This is
mainly due to the fact that our LRD/D/1/K link model
cannot capture very low loss probability targets with high
enough precision. If there was enough precision, we would
have observed that the NREC behavior consistently drops
with increasing target g2g loss probabilities, like in the
MMPP traffic case.

NRECA and NRECI are closer to each other for Sprintlink
than for the Exodus topology. This can be explained by the
fact that Sprintlink topology is more ‘‘meshed’’ with more
evenly distributed load across its links, yielding a situation
with fewer bottlenecks. Intuitively, in such a case, the re-
quired increase in capacity is focused on those few links,
which results in an imbalance between the two NREC
measures.

When the performance target is delay, NRECA becomes
larger than NRECI. The reason behind this is the apportion-
ment of the g2g performance target on individual links. As
can be seen from Eqs. (3) and (4), for a given overall perfor-
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Fig. 14. G2G LOSS – NREC against the average g2g loss probability under two kinds of traffic: MMPP vs. LRD. The buffer size at each link of the network is
K = 100 ms. The solid lines show NRECI while dashed lines show NRECA.
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mance target, the target queueing delay budget for an indi-
vidual link reduces as the number of links l on the g2g path
increases. That is, the longer the g2g path, the more strin-
gent the delay requirement on one of its links. Intuitively,
most of the g2g paths in the network topologies are short,
while only a few are long distance paths. Thus, the delay
apportionment naturally causes the links at the center of
the topology to have a tighter delay requirement.

6. NREC under failures

A crucial factor in an ISP’s network design is the toler-
ance to failures. We analyzed the behavior of NREC under
failures with the Rocketfuel ISP topologies. To see the ef-
fects of link failures, we recalculated the routing matrix
of the ISP’s new topology after a link failure, and then
recalculated the loads on individual links after rerouting
on alternate shortest paths. Based on the new link traffic
loads, we recalculated the NREC. For node failures, we as-
sumed that a node generating traffic (i.e., edge node) does
not fail, to assure that all the traffic before failure still gets
carried by the network after failure. This is appropriate to
make an fair comparison between the failure-free and
the failure cases of the same topology. Further, we focus
only on the g2g loss probability as the performance target
when considering the failure cases. To stay conservative in
our NREC estimates, we used the MMPP/M/1/K link model
with K = 100 ms, a = 0.5, and r = 4 (see Fig. 7b). Using the
LRD/D/1/K link model would certainly result in higher
NREC under failures.

One aspect of NREC analysis under failures is the need
to tackle link ’utilizations’ larger than 100%, since some
of the rerouted flows cause some links to get overloaded.
Our intent here is to estimate what would be the extra
capacity required to carry the increased offered load, hence
the need to estimate REC at higher ‘utilizations’. We used a
conservative linear extrapolation of the link model results
in order to perform the lookup for each link REC to calcu-
late the network REC after failures. To gain confidence in
the conservativeness of our extrapolation, we simulated
the MMPP/M/1/K link model up to 399% utilization which
explicitly showed a linear (sometimes super-linear) in-
crease in REC.

As shown in Fig. 15, we have observed that the increase
in NRECA and NRECI can be quite different when a link fail-
ure occurs. For example, for 66% utilized Exodus topology
with a 0.1% g2g loss probability performance target, the in-
crease in NRECA due to a link failure is 0.4% on average and
5.1% at maximum, while the increase in NRECI is 58.5% on
average and 1328.5% at maximum for the same scenario.
This means that the aggregate capacity of the entire
network needs to be increased up to an additional 5.1%
over-and-above the NREC pertaining to the topology without
a failure (examples of which are shown in Fig. 14).
Although this increase amount is small in percentage, it
corresponds to a considerable increase in the total network
capacity as this is the needed additional aggregate capacity
due to a single link failure. Also, high values of the needed
increase, NRECI, show that the impact on specific links can
be quite significant and that the larger REC is required
across several links. The increase in NREC due to node fail-
ures showed a very similar behavior (i.e., low NRECA and
high NRECI) with slightly larger values.

Another observation from our failure analysis is that
NRECA and NRECI may differ significantly across topologies.
For instance, for 66% utilization with a 0.1% g2g loss prob-
ability performance target, the maximum increase in
NRECA due to a link failure is 7.1% and 3.6% for Abovenet
and Tiscali respectively. The maximum increase in NRECI

due to a link failure under the same scenario is 742.2%
and 403.9% for Abovenet and Tiscali. This differing NREC
behavior across ISP topologies is mainly driven by the



Fig. 15. NREC after a link failure: values are over-and-above the NREC for the topology without failure. The top and the bottom rows show the maximum
and the average increase in NREC respectively. The traffic is MMPP with a = 0.5 and r = 4, and the buffer size at each link of the network is K = 100 ms. The
solid and dashed lines show NRECs when the target average g2g loss probability is 0.1% and 10% respectively. Note that the dashed and the solid lines
mostly overlap for NRECI.
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characteristics of the topologies, e.g., Exodus and Ebone are
more hub-and-spoke in comparison to the others.

7. Summary and discussion

There has been considerable work and debate on the
benefits of having a simple classless (i.e., best-effort)
service. However, the quantification of the amount of extra
capacity required of such a classless network to support
traffic that requires delay and loss service-level assurances
has not been explored in the past. In this paper, we have
quantified the required extra capacity (REC) for a classless
network to meet the same delay and loss assurances that
would be provided by a relatively simple two-class
network.

We first built an analytical framework to understand
the nature of REC for a link. We demonstrated the nature
of the ratio in simple analytic terms using an M/M/1 mod-
el. We then used a simulation-based calculation of link-
level REC under a more bursty but conservative 2-state
MMPP traffic arrival process, which exhibits a short-range
dependent traffic pattern. We observed that REC grows
with utilization, and is of particular concern when the pro-
portion of premium class traffic requiring delay or loss
assurances is small. To see the REC behavior under even
more bursty traffic with long-range dependence (LRD),
we used the same simulation-based REC calculation. We
showed that the REC under LRD traffic is an order of
magnitude higher than the REC estimates under the 2-
state MMPP traffic. We also investigated REC behavior un-
der closed-loop traffic composed of many TCP sources and
showed that REC is even higher than what was observed
under LRD traffic.

To show the behavior of REC network models for an IP
backbone, we outlined a method of quantifying the net-
work REC (NREC) from the network’s link-level RECs and
edge-to-edge performance targets. We observed that NREC
increases with the average utilization of the network and
as the relative proportion g of the premium traffic reduces.
Moreover, NREC grows rapidly as the acceptable delay and
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packet loss targets become tighter (smaller). So, for exam-
ple, with conservative assumptions on the burstiness of the
traffic (2-state MMPP parameters), NREC approaches 60%
even at reasonable average link utilizations of 60%, for a
relatively small proportion (e.g., 20%) of premium class
traffic. NREC becomes even higher when we use more bur-
sty traffic, like LRD. To understand the effect of failures on
NREC, we recalculated the NREC of an ISP’s topology after
link failures. We found that, in order for the classless ser-
vice to still satisfy the edge-to-edge performance targets
after a link failure, the network’s aggregate capacity (i.e.,
sum of all link capacities of the network) might have to
be increased by an additional 7% in the worst case and
0.5% in the average case, over-and-above the NREC for the
failure-free topology. We also found that each link’s indi-
vidual capacity would have to be increased by an addi-
tional 1,300% in the worst case and 70% in the average case.

In the future, as link speeds go up, the concern about
queueing delay may be less important, because the domi-
nant factor will be propagation delay. However, loss will
still be a concern, especially when these links (in the core
network) see a large aggregate number of flows, only some
of which will be ‘‘adaptive’’, like TCP. One way to reduce
loss is to increase buffering, but this increases delay [35].
Differentiating the delay-sensitive premium class traffic al-
lows us to both control delay and loss for the premium
traffic, without too much additional buffering. It also offers
the flexibility for the provider to provision additional buf-
fering for the BE traffic, to keep its loss probability within
desired limits. On the other hand, in a classless network,
the only option would be to increase the capacity enor-
mously (as demonstrated by our results), in order to en-
sure that the loss is maintained at small levels while still
not increasing queueing delay.

In our study, we have not collected distributional met-
rics (e.g., jitter or loss variation) during our simulation
experiments and worked with averages while estimating
REC. This is because we believe that average delay or loss
provides a more conservative (i.e., smaller) estimate of
REC in comparison to jitter or loss variation. We believe
that REC estimates would be higher for distributional met-
rics particularly when traffic patterns with higher variabil-
ity are considered. It would be useful to verify this
assumption by extending our efforts to distributional met-
rics other than averages. Consideration of such distribu-
tional metrics along with fine-grained traffic modeling
employing flow-level dynamics will shed more light into
the trends for REC. Enriching the REC estimation effort
with realistic models of flow arrivals and departures may
give rise to a better understanding of REC when the impact
on individual flows in a backbone are of concern. Though
such flow-level QoS provisioning issues were heavily stud-
ied in the literature, efforts pertaining to REC estimations
at that level are lacking.

Finally, in terms of the capacity needed to satisfy legacy
and future network applications in the Internet, our results
show that CoS in IP backbones is an order of magnitude
better than the classless (i.e., over-provisioning) approach.
However, further research is necessary to estimate the
monetary costs of the two approaches, as scheduling and
management costs need to be considered. Such economic
considerations will also be necessary to fully quantify
REC, or more generally ‘‘Required Extra Costs’’, for flows
or a set of flows on an end-to-end (e2e) basis. Models
involving inter-ISP economics and technological incompat-
ibilities will be needed to understand monetary costs for
attaining end-to-end performance measures. Though our
work certainly relates to the e2e performance provisioning
problem, we focus on what is at stake when only one part
of the problem is considered, i.e., a single ISPs required
investment into its network.
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Appendix A. Analytical derivation of REC under Poisson
traffic

In this section, we derive the link-level REC in analytical
terms for the two different performance targets: average
delay and average loss probability.

A.1. Achieving a delay target: M/M/1 model

The first scenario we derive is the case when traffic is
assumed to be Poisson and the performance target is
queueing delay, i.e., ttarget. Let lN be the required capacity
for the classless link to be able to match the premium class
performance with CoS. Since we are assuming that class-
less traffic is Poisson with a rate of kD, the delay achieved
by the classless service for the aggregate traffic will be
[47]:

tachieved ¼
1

lN � kD
ðA:1Þ

When the achieved delay tachieved is equal to the target de-
lay (i.e., ttarget = tachieved), the classless link capacity lN

equals the minimum required to satisfy the performance
goal:

lN ¼
1

ttarget
þ kD ðA:2Þ

This formulation for lN holds as long as the classless
service performance is equal to or better than the premium
class performance, i.e., tachieved 6 ttarget. For the purposes of
our comparative model, we will assume tachieved = ttarget

holds.
Eq. (A.2) shows that the REC depends on the rigor of the

performance goal 1/ttarget and the aggregate traffic rate kD

of the CoS link. However, not all values of ttarget might be
achievable for the premium class traffic at the CoS link.
The average delay that premium class experiences at the
CoS link is dependent on three factors: (i) the aggregate
traffic rate kD, (ii) the fraction g of the premium class traffic
in that aggregate, and (iii) the CoS link capacity lD.
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By using non-preemptive priority queuing, we can for-
mulate the delay for the premium class achieved by the
CoS link as [48]:

tPrem ¼
1
lD

1þ ð1� gÞq
1� gq

ðA:3Þ

where q = kD/lD is the aggregate traffic load at the CoS link.
By dividing (A.3) with the average packet service time (i.e.,
1/lD) we get the average backlog in front of an arriving
packet:

tPrem ¼
1þ ð1� gÞq

1� gq
ðA:4Þ

which expresses the delay in terms of ‘‘packets’’. This no-
tion of delay is helpful especially for deriving conclusions
on REC independent of the CoS link capacity lD and the
average packet size. Thus, once we set values for g, and
q, we also set the delay target, which is the delay achieved
by the premium class. By setting ttarget = tPrem, we obtain
the required classless capacity lN in terms of g,q, and lD:

lN ¼
lDð1� gqÞ

1þ ð1� gÞqþ kD ðA:5Þ

from which REC in percentage can be written as:

RECdelay ¼ 100
ð1� gqÞ

1þ ð1� gÞqþ q� 1
� �

ðA:6Þ
A.2. Achieving a loss target: M/M/1/K model

We now look at the case when the performance target is
determined in terms of average packet loss probability, i.e.,
ptarget. We establish our comparative model with one addi-
tional parameter, the buffer size K. We assume that CoS
link provides an equal buffer of K packets to both traffic
classes, and that the classless link uses both the buffers
(i.e., total of 2K packets) for the aggregate traffic. The aver-
age loss probability achieved by the classless service for
the aggregate traffic can be approximated by the tail prob-
ability of the queue (i.e., the probability that the queue
occupancy would be larger than the buffer size of 2K pack-
ets) [47]:

pachieved ¼
kD

lN

� �2K

ðA:7Þ

This approximation has negligible deviation from the
exact average loss probability formulation for M/M/1/2K
when the K value is sufficiently large, e.g., K > 10. Also,
the error in estimating the loss probability by means of this
tail probability is conservative in terms of REC, as the tail
probability is larger than the real loss probability for small
K values.

When the achieved loss probability pachieved is equal to
the target performance ptarget (i.e., ptarget = pachieved), the
classless link capacity is the minimum required to satisfy
the performance goal:

lN ¼ kD
1ffiffiffiffiffiffiffiffiffiffiffiffi
ptarget

2K
p ðA:8Þ

Similar to the previous case, Eq. (A.8) shows that the
REC depends on the rigor of the performance goal 1/ptarget

and the aggregate traffic rate kD of the CoS link. It now de-
pends on the available buffer size of the classless link, i.e.,
2K.

Not all ptarget values might be achievable for the pre-
mium class traffic at the CoS link. The average loss proba-
bility that the premium class experiences at the CoS link is
dependent on four factors: (i) the aggregate traffic rate kD,
(ii) the fraction g of the premium class in the aggregate
traffic, (iii) the CoS link capacity lD, and (iv) the available
buffer size K. With non-preemptive priority queuing we as-
sume for typical link speeds that the waiting time for an
arriving higher priority packet for the completion of ser-
vice of the current lower priority packet being transmitted
will be negligible. Thus, we can safely approximate the loss
probability for the premium class achieved by the CoS link
by the M/M/1/K formula [47]:

pPrem ¼
1� gq

1� ðgqÞKþ1 ðgqÞ
K ðA:9Þ

where q = kD/lD is the aggregate traffic load at the CoS link.
Once again, as with the delay case, the loss target is deter-
mined by the choice of g, q and K. By setting ptarget = pPrem,
we obtain the required classless capacity lN in terms of g,
q, lD, and K:

lN ¼
kDffiffiffiffiffiffi
gqp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgqÞKþ1

1� gq
2K

s
ðA:10Þ

from which REC in percentage can be written as:

RECloss ¼ 100
qffiffiffiffiffiffi
gqp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgqÞKþ1

1� gq
2K

s
� 1

2
4

3
5 ðA:11Þ
Appendix B. Edge router selection

To construct the set of edge routers in a given ISP topol-
ogy, we first apply two criteria:

� Criterion I: We include any router in the topology with a
degree less than Max Degree or BFS distance greater (see
Section 5.3 and Table 1) than Min BFS Distance.
� Criterion II: For each PoP, include at least one node if Cri-

terion I did not select one. Choose the node with mini-
mum degree within the PoP.

The intuition behind Criterion I is that nodes with smal-
ler degree or longer distance from the center of the topol-
ogy are more likely to be edge routers. For each of the
Rocketfuel topology, we identified Max Degree and Min
BFS Distance values so that the number of edge routers cor-
responds to 75–80% of the nodes in the topology.
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We would like to note that even after Criterion II there
still remains a small portion of links empty in the ISP topol-
ogy, as this was also observed in [49]. The reason behind
this is that the link weights measured by Rocketfuel are
just a snapshot of the real link weights which are changing
over time due to dynamism of routing. Another reason
could be the fact that ISPs are deploying such extra links
for backup purposes to increase tolerance to link failures.
After the edge selection criteria above, some of the possible
paths are eliminated and only g2g paths are left for traffic
generation. Table 1 shows the specific Min BFS Distance and
Max Degree values we used for each topology, and the
number of edge routers selected by these thresholds.

Appendix C. Feasible edge-to-edge traffic rates

Given that set of edge routers in an ISP topology is iden-
tified as in Appendix B, the next step in constituting a net-
work traffic model is to compose a feasible traffic matrix
that imposes a traffic flow on every g2g path. To do so,
we first construct an initial traffic matrix based on the
gravity model using populations of the cities, and then ad-
just the link capacities so that traffic load on individual
links are feasible.

C.1. Gravity model

The essence of the gravity model is that the traffic be-
tween two routers should be proportional to the multipli-
cation of the populations of the two cities where the
routers are located. This is inspired from the proportional-
ity of the attraction force to the masses of two objects.
Briefly, we used city populations to calculate the ‘‘mass’’
of each edge router and then calculated ‘‘mass-product’’
for each g2g path. We also use BFS-based link capacity
model (see Section 5.3) to guide assigning a traffic rate in
Mb/s to each g2g flow. The following steps detail our
method:

� Step 1: Calculate city populations. We used CIESIN [50]
dataset to calculate the city populations. CIESIN pro-
vides global population data in terms of a geographic
grid (i.e. longitudes and latitudes) with 2.5’ resolution.
In addition to the population of grid cell, CIESIN also
provides the land area within each grid cell. To calculate
the population of a city we started with the central loca-
tion of the city and spun on squares until a total land
area of 2500km2 is covered.
� Step 2: Calculate the ‘‘mass’’ of all edge routers. As there

may be multiple edge routers in the same city, we
equally divided the population of the city to each edge
router residing in that city. Then, we normalized the
population pertaining to each edge router with respect
to the edge router with the minimum population. This
normalized populations are the masses for edge routers.
� Step 3: Calculate the ‘‘mass product’’ for each g2g flow. Let

the mass for edge router i be Mi. Given the masses Mi

and Mj for the edge routers i and j,Ti,j must be propor-
tional to Mi,j = MiMj, which we call as the mass product.
� Step 4: Find the min-mass-product g2g flow. We identify
the g2g flow with minimum mass-product value. Let
this min-mass-product g2g flow, fu,v, be in between
the edge routers u and v. So, we represent the min-
mass-product with Mu,v.
� Step 5: Find the max possible rate of fu,v. We use the BFS-

based initial link capacities from Section 5.3 in Mb/s to
calculate the traffic rate for the min-mass-product g2g
flow fu,v. In other words, the traffic matrix entry Tu,v is
dependent upon the bottleneck capacity on the path
from u to v. To assure that there is a maximum limit
on link utilizations (to avoid links with 100% utiliza-
tions), we impose a constant factor to the bottleneck
capacity of the path u to v, i.e.,
Tu;v ¼ ĉu;v MAX LINK UTIL ðC:1Þ
where ĉu;v is the bottleneck capacity of the path from u
to v, and MAX_LINK_UTIL is the maximum possible link
utilization of our network model, which we set to 95%
in this paper. Notice that Tu,v is the basic unit flow rate
for the complete network model.
� Step 6: Assign g2g flow rates in Mb/s. We calculate the

g2g flow rate in Mb/s from edge router i to j as:
Ti;j ¼
Mi;j

Mu;v
Tu;v : ðC:2Þ
This method of generating traffic matrices based on
gravity models yields a power-law behavior in the flow
rates as was studied earlier [49,44].

C.2. Handling infeasible links

After the initialization of the traffic matrix as outlined
above, we still have to tackle the infeasible links as some
links may have traffic loads larger than their estimated
capacities. We increased the estimated capacity of the link
so that the link capacity is just enough for the traffic load
pertaining to it. We also assured that the highest link
capacity is 40 Gb/s and there is always extra capacity so
that the link utilization is never beyond MAX_LINK_UTIL.
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