
446 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

Virtual Direction Multicast: An Efficient Overlay
Tree Construction Algorithm

Suat Mercan and Murat Yuksel

Abstract: In this paper, we propose virtual direction multicast
(VDM) for video multicast applications on peer-to-peer overlay
networks. It locates the end hosts relative to each other based on
a virtualized orientation scheme using real-time measurements. It
builds multicast tree by connecting the nodes, which are estimated
to be in the same virtual direction. By using the concept of di-
rectionality, we target to use minimal resources in the underlying
network while satisfying users’ quality expectations. We compare
VDM against host multicast tree protocol. We simulated the proto-
col in a network simulator and implemented in PlanetLab. Results
both from simulation and PlanetLab implementation show that our
proposed technique exhibits good performance in terms of defined
metrics.

Index Terms: Overlay multicast, path stretch, peer-to-peer, peer-
to-peer TV.

I. INTRODUCTION

RECENTLY emerged Internet applications such as Internet
protocol television (IPTV) [3]–[5] tele-conferencing and

online education requires group communication, also knownas
multicast. The fact that the Internet bandwidth has become ca-
pable of carrying data-rich multimedia applications brought the
expansion of Internet usage as well. The Internet protocol (IP)
convergence is progressing and content providers are increas-
ingly transporting multimedia content over the Internet. Mul-
timedia streaming and live video distribution applications such
as IPTV, peer-to-peer TV (P2PTV) [6], [7] are already consti-
tuting a significant portion of the Internet traffic and expected
to grow further in near future. This unavoidable trend of con-
verging video and multimedia traffic on to the Internet is calling
for mechanisms with efficient and scalable transfer of content to
many receivers from a single source. Such content delivery to
many receivers is desired to be seamless to the multi-provider
operation of the Internet.

Many researchers have put their research focus on achieving
a robust and efficient way of sending traffic via multicast. Net-
work layer multicast, a.k.a. IP multicast [8] attracted theatten-
tion for years; however, it has not become a widely used proto-
col because of its various deployment issues. IP multicast was
proposed to provide efficient group communication, and can be

Manuscript received August 26, 2014; approved for publication by Choong
Seon Hong, Division III Editor, August 5, 2015.

Parts of this work was published as conference papers in [1] and [2].
This work was supported in part by US NSF award 1321069.
Suat Mercan is with the Computer Engineering Department, Zirve University,

Kizilhisar, Gaziantep, 27260, Turkey. email: suat.mercan@zirve.edu.tr.
Murat Yuksel is with the Computer Science and Engineering Depart-

ment, University of Nevada Reno, Reno, Nevada, 89557, USA. email: yuk-
sem@cse.unr.edu.

Digital object identifier 10.1109/JCN.2016.000060

implemented by integrating additional algorithms and tables to
routers. Internet service providers (ISPs) are reluctant to sup-
port IP multicast because it introduces extra workload and com-
plicates network management. Since IP multicast does not get
much support from network operators, application layer mul-
ticast (ALM) [9]–[19] has emerged as a promising solution to
achieve the multicast functionality. The idea is to establish a vir-
tual network among end-hosts, each of which not only receives
the stream but also forwards to other end-hosts. ALM does not
require support from network layer routers. Only the end-hosts
constitute multicast group, which moves functionality from the
network layer to the application layer. This makes ALMs easy
to deploy across multiple ISP domains and underlying network
technologies. Although backbone-level multicast streaming ap-
plications such as IPTV will serve a particular need, overlay
multicast streaming will likely be the ubiquitous solutionto the
multimedia delivery to the end points.

Among other things, the key to the efficient overlay multicas-
ting is to constructing an efficient and robust overlay multicast
tree, which is a challenging task. An inefficient overlay tree may
cause multicast traffic to traverse the same underlying physical
links multiple times and defeat the whole purpose of multicas-
ting. Likewise, an unhealthy overlay tree may cause significant
disconnections and traffic loss when failures happen in the over-
lay and underlying network. Being able to respond to application
requirements and goals while keeping the overlay tree efficient
from the network’s perspective is one of the goals of this work.

In this paper, we propose a new P2P multicast streaming tech-
nique, called virtual direction multicast (VDM). VDM focuses
on tree construction method to reduce redundant data transmis-
sion and failure recovery to decrease data reception outageun-
der churn. We aim to find the most appropriate parent for a
peer so that data travels the minimum possible path. To con-
verge on a tree with a minimal source-receiver delay, we ex-
ploit round-trip times (RTTs) to measure “virtual distances” be-
tween peers. VDM uses an iterative approach by selecting a
child which is in the same “virtual direction”. The iterative pro-
cess continues until the best potential parent is found. Thekey
idea is to connect the nodes which are in the same virtual di-
rection so that we try to minimize the source-destination path
length for the overall multicast structure.

Key contributions and findings of our work are as follows:

• Virtual directions as a multicast embedding. We introduce the
idea of using virtual directions as an embedding to establish
overlay multicast trees. Even though the concept of virtual
directions was used for routing P2P networks earlier [20] us-
ing the concept for establishing multicast trees was not tried
before.

• Multicast tree construction using virtual directionality on a

1229-2370/16/$10.00c© 2016 KICS

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 447

line. We detail an overlay multicast tree construction algo-
rithm, VDM, using virtual directionality on one dimension,
i.e., a line. We inspect each possible case and illustrate how
an arbitrary overlay tree could be embedded as a set of one
dimensional relationships of virtual directions. We compare
VDM’s performance against the most similar overlay multi-
cast technique, Hessian message transport protocol (HMTP),
that uses delay-based proximity of the nodes to establish the
tree. Our results show that one dimensional embedding can
successfully outperform HMTP by using only one dimen-
sional virtual directions.

• Virtual directions customized for application needs. We de-
sign a way of generalizing the “distance” on virtual direc-
tions and abstract different metrics (delay or loss) to express
the virtual distance. Via this generalization, we show thatthe
overlay trees being calculated by VDM can be customized for
application sensitive to different performance metrics such as
delay or loss.

• Distributed implementation of VDM. We detail how join and
leave procedures could be done for VDM. We show that
VDM can survive well against churn in the P2P network. Fur-
ther, we implement VDM on PlanetLab and experiment with
real traffic streams showing its sustained performance on re-
alistic settings like the PlanetLab.
We organize our paper as follows: We start with a compre-

hensive discussion of key issues in designing overlay multi-
cast schemes and survey related work in Section II. Section III
gives a detailed description of our VDM protocol. Then, VDM
is compared to HMTP. Simulation setup and results of a com-
parative performance evaluation of VDM are presented in Sec-
tion IV. Section VI presents implementation and results on Plan-
etLab. Finally, in Section VII, we summarize our work with con-
clusions.

II. RELATED WORK

A. Overlay Multicast Issues

ALM is flexible and easy to deploy, but its performance heav-
ily depends on how the overlay multicast tree is constructed. The
common goal of all ALM methods is to obtain an efficient and
robust overlay multicast tree. However, the criteria for effective-
ness of the overlay multicast tree can be various depending on
the application goals. For example, live multimedia streaming
is a real-time application that requiresminimal delay, where the
delay is defined as the time needed for a packet to reach its re-
ceiver(s). The data packets should ideally traverse the minimum
path while being transferred from the source to the destinations;
however, the end-to-end delay might be longer due to a high
number intermediate nodes as a result of an inappropriate over-
lay structure. For such delay-sensitive applications, theoverlay
tree design should provide the minimum possible delay for each
multicast receiver.

Another challenge to be addressed in an ALM system is the
ad-hoc behavior of the members of the overlay tree. This is
particularly a major issue for P2P scenarios where members
of the overlay tree are not obligated to stay in the tree. Since
most of the P2P systems do not have membership requirements,
peers might join and leave at any time. This behavior, known

as churn, makes tree maintenance harder. Ungraceful exit made
by a peer may cause interruption of data reception at its de-
scendants. When such ungraceful exits happen, the orphan peers
need to be quickly reconnected to another parent. Long and fre-
quent data outage is not acceptable for real-time applications,
and thusrobustness against churn is of crucial importance for
overlay multicasting.

Moreover, large volume of data is transmitted in multimedia
applications, which requiresavoiding redundant transmission
of the multicast traffic. The reason for client/server modelnot
being feasible for these applications is that the data traffic has
to be sent to each receiver separately which uses up bandwidth
and server power. IP multicast is the best solution from thisper-
spective, if we disregard its deployment shortcomings on the
Internet. IP multicast prevents duplicate transmissions since it
constructs the multicast tree at the router level. So, ALM can-
not solve this problem as optimum as IP multicast, and causes
redundant transmissions due to overlapping of overlay links on
the same router level links. It is crucial to minimize the amount
of such redundant transmissions by efficiently constructing and
maintaining the overlay multicast tree.

One of the drawbacks of ALMs is being deprived of under-
lying network structure knowledge. This makes it hard to con-
struct efficient multicast data paths. This could be solved by do-
ing some on-the-fly measurements. Most commonly used tech-
nique is to measure distances between peers as RTTs. Some geo-
location techniques which estimate geographical locationof an
IP address, topology maps and network coordinate systems also
can be used to overcome this problem. In general, measurement
of underlying network and utilization of this information to con-
struct overlay tree is a key issue in ALM design.

B. Previous Work

Since the emergence of ALM concept, numerous algorithms
have been proposed using different techniques to achieve a suc-
cessful overlay tree for live video streaming. Overlay network
construction techniques can be classified into two main cate-
gories according to their structure [21]: mesh-based and tree-
based.

In the mesh-based approach, either nodes join to multiple dis-
joint trees (e.g., SplitStream [15] and ChunkySpread [16])or
choose a set of neighbors to create a mesh topology (e.g., Cool-
Streaming [22], Narada [10], MeshTree [23]). This approachis
known as a pull-based mechanism. An important characteris-
tic of the mesh-based approaches is their robustness to churn;
but they are more costly to maintain due to the higher control
overhead, which also limits scalability. They trade off more ro-
bustness with more overhead. In general, the mesh-based ap-
proaches are not satisfactory in terms of network resource us-
age and are wasteful in leveraging the underlying network band-
width.

In the tree-based approach (e.g., BTP [13], HMTP [14], Yoid
[9], TAG [24], OMNI [25]), nodes are organized in a tree struc-
ture rooted at the source. The nodes have parent-child relation-
ships. When a node receives a packet from its parent, it forwards
to children; which is also considered as a push-based mecha-
nism. The tree is extended when a new node joins the group. The
tree-based approach is efficient in terms of avoiding redundant

448 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

data transmissions; but, when a node leaves its offsprings and
peers may suffer from data outage. The tree must be repaired
quickly to reduce the data loss. So, the tree-based approaches are
not robust to churn relative to the mesh-based approaches. An-
other disadvantage is that while interior nodes are busy with for-
warding data, leaf nodes stay idle; which is an unfair mannerfor
members. The biggest advantage of the tree-based approaches
is their small maintenance overhead, which allows them to scale
to very large groups.

The tree-based approaches can be further subcategorized in
three different dimensions: single vs. multiple trees; single or
multiple layers in the data traffic; and with or without super
nodes. Multiple tree approaches establish multiple overlay trees
to deliver the data traffic. The approaches with multiple layers
code the multimedia data traffic into layers where the layer 0
provides the lowest quality and higher layers add more qual-
ity/resolution to the received traffic at the destinations.The ap-
proaches with super nodes assume that some nodes in the over-
lay network are willing to undertake more responsibility and are
more robust; and thus tailor the overlay tree construction mech-
anism based on the existence of such nodes.

Our approach, VDM, is asingle tree, one layer algorithm
without super nodes. We focus on the most fundamental prob-
lem of establishing a single tree with minimum number of re-
dundant (overlapping) links and minimal delay from the source
to the receivers. The closest prior work to ours is HMTP [14],
which aims to solve the same problem. We give a short descrip-
tion of HMTP here. We will discuss the differences in detail later
in subsection III-F. HMTP interconnects IP-enabled islands. If
IP multicast is available in any subnet, one node is selectedas
head to join the overlay tree and IP multicast is used in sub-
net. The key idea in HMTP is connecting nearby peers. When a
new peer wants to join, it contacts the source, and get list ofthe
children. By probing each child, it finds closest child to itself
in terms of delay. It repeats the same process with the closest
child. This iterative process is repeated until best potential par-
ent is found. HMTP also applies a tree refinement process. Each
node randomly selects a peer in its root path and look for if
any closer peer than its parent connected in meantime. This re-
finement process is repeated periodically. HMTP aims to reduce
routing inefficiency. It also proposes a foster child concept to
shorten startup time. A node connects root at the beginning to
start stream immediately. Then, it jumps to ideal parent when it
is found.

There also have been many proposals for establishing virtual
coordinate systems, e.g., [32]–[35]. They are widely used in P2P
systems either for file sharing or multicasting. These coordinate
systems rely heavily on the accuracy of reference points. Basi-
cally there exist landmark-based and decentralized approaches
to build the map. In the first one, an infrastructure node is used
as the reference point while any node can be used as the refer-
ence in the second approach. A new node contacts these refer-
ence points and tries to locate itself. Estimating locationof peers
will help the system to optimize the performance, but it willalso
require 2D or 3D embeddings of the network. So, virtual coordi-
nate systems are a stronger form of representation than our “vir-
tual directionality” embeddings of the network. Although they
will certainly result in better and more accurate representation

of the multicast tree at hand, they will also require more messag-
ing among siblings to figure out the 2D or 3D coordinates. Our
algorithm is not a coordinate system. But it tries to locate peers
by utilizing directionality concept with an iterative method. Our
goal is to reduce the complexity of 2D or 3D virtualization of
the network to a 1D space. Our key contribution is to show that
1D space can be effective, but may not be optimal, in virtually
embedding a network.

III. VIRTUAL DIRECTION MULTICAST

Overlay multicast is an application layer technique that estab-
lishes a virtual network by connecting end hosts using logical
links. Different dynamics play key role in designing an overlay
tree in such a virtual network. Our goal is to build a virtual net-
work confined to physical network. Even though our ultimate
goal is not to find minimum spanning tree (MST) for overlay
tree, we try to converge to MST as much as possible by using
local and simplistic methods that can be practical to implement.

One reason to use overlay multicast instead of unicast is to
relieve the network from redundant traffic. So, establishing a
multicast tree close to MST is important, but not the only and
ultimate goal. The overhead messages for constructing the tree
should not overwhelm the system, which would destroy the real
purpose of the overlay. On the other hand, the system design
should take other performance factors which are important for
users into account.

VDM is an overlay multicast algorithm. It builds a multicast
tree by making parent-child relationships between nodes which
are determined to be on the same virtual direction based on per-
formance of the connections between them. VDM uses a single
tree for multicast purpose. Each node has only one parent, but
might have more than one child.

It aims using resources more efficiently by building the mul-
ticast tree in a reasonable way by measuring inter-peer dis-
tances in a one dimensional directional abstraction and by using
fewer number of maintenance messages. It uses a decentralized
method for tree construction. Each peer contacts the sourceat
the beginning and finds a proper node to connect. VDM also
observes user expectations by trying to reduce startup timeand
reconnection time.

A. Protocol Description

A.1 Key Design Considerations

In an overlay network, converging to MST while observ-
ing other multicast requirements should result in better per-
formance in terms of resource utilization and overall multi-
cast quality. Overlay network is a degree-constrained envi-
ronment. Each node has a certain number of outgoing links,
and thus, the multicast tree must be constructed within this
degree constraint. Degree-constrained minimum spanning tree
(DCMST) problem is known to be NP-hard [26]. Additionally,
in a peer-to-peer network environment, the overlay tree changes
because of constantly new coming and leaving nodes. More-
over, network dynamics causes changes in path performances
between nodes and may require reconstruction of the overlay
tree for better performance.

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 449

�

��

������

��� ��

��

��
���

���

��� �� ��

��

���

������
�� ��

Fig. 1. Directionality on a line.

When we think all of these, calculating global MST is ex-
pensive and difficult. But, staying close to MST using simple
methods while satisfying other requirements is a better choice.
With using VDM that calculates virtual distances between the
overlay nodes in a 1-D space, we try to converge to MST in gen-
eral. In order to achieve this “directional” abstraction, we define
three succinct cases that will be explained later.

A key design component of VDM isdirectionality. We locate
a newly joining peer relative to existing peers with an iterative
process using this concept of directionality. We take the peers
three by three, and we estimate the location of the new peer
relative to the existing peers by comparing inter-peer distances.

In environments like P2P networks, churn is a major is-
sue. When peers are leaving or joining frequently, the perfor-
mance of the protocol depends heavily on being able to swiftly
switch to a new tree. Reevaluation of the overall multicast tree
requires a centralized approach and is typically not possible
within the very short period of time available for switchover. Our
directionality-based procedure is completely distributed and can
quickly establish a new and good performing tree with local re-
pair.

A.2 Virtual Directionality on a Line

VDM exploits virtual directions in order to organize
nodes. Suppose that there is a source, S, and an existing, E, node
which are already in overlay network. A new node, N, is going
to join the overlay tree. We measure the distances among these
three nodes. N could be in three different positions according
to S and E. Three nodes can form three combinations in linear
representation, i.e., a line.

Distances d1, d2, and d3 are RTTs measured by probing.
Longer distance is generally not equal to the sum of shorter
distances which seems equal in linear representation. We look
at the longest one to determine into what case the combination
falls. There are three cases:

Case I: Source is in the middle. In this case, a new direction
is created for N.

Case II: The new node is in the middle. N is placed between
S and E.

Case III: The existing node is in the middle. N is in the virtual
direction with S and E.

In order to make virtual direction concept more understand-
able, we try to show it on 2D in in Fig. 2. Dashed lines are the
ones that will be added. With this technique, we aim to minimize

Fig. 2. Directionality concept on 2D.

multiple packet transmission on the same link and resource us-
age in the network. If there has to be multiple packets on a link,
we try to find possible shortest one to minimize network usage.

B. Join Process

Algorithm 1 Join Procedure
1: S← source
2: N← newnode
3: Contact(S)
4: N pings S and all children of S
5: D(n)← Directional nodes
6: if D(n) is not empty (Case II or Case III exist) then
7: if D(1..n) is between S and N (All in Case III) then
8: S← closest(D(n)) (Select closest of Case III)
9: Contact(S) (Continue from closest one)
10: end if
11: if N is between S andD(1...n) (All in Case II) then
12: for D(1..n) do
13: if N has free degreethen
14: S becomes parent of N
15: N becomes parent ofD(i)
16: Update grandparent ofD(i)’s children
17: end if
18: end for
19: end if
20: if Case II and Case III togetherthen
21: S← closest(D(n)) (Select closest of Case III)
22: Contact(S) (Continue from closest one)
23: end if
24: else
25: if S has free degreethen
26: N connects to S
27: else
28: N connects to closest free child
29: end if
30: end if

A pseudo-code for the Join procedure is given in Algo-
rithm 1. Nodes store some state information to cope with the
protocol. Each node has children list and distances to them.They
also know their parent and grandparent. When a node wants
to join to the overlay tree, it sends a connection query to the
source. It gets the list of its children and learns RTT by prob-
ing to each child. During a join process, we first look for if

450 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

Fig. 3. A join example.

Case II or Case III exists among parent, an existing child and
new child. We may find only one of these cases, multiple of the
same case or two of them together.

If Case II or Case III is not found, it means that the new node
is not in the same direction with any of existing children in this
iteration. Then, it connects currently queried node if it has a
free degree (or outgoing interface). Otherwise, it connects to the
closest free child.

If we encounter Case III, we proceed to next iteration from
that child, and repeat the same procedure. If we have Case III
with more than one child at the same time, we select the closest
one.

If we find Case II which means the new node is between two
existing nodes (parent and currently checked child), then proper
connections are made, and join process is done. In some cases
we might have Case II with more than one existing child. Then,
we make connections as long as the new node allows. Since ev-
ery node stores grandparent information to use in case of par-
ent failure, grandparent information of existing child’s children
should be updated.

If we find Case II and Case III together, we continue with
Case III by selecting the closest one if more than one Case IIIis
existing.

When N eventually finds the correct node, it connects and
joins the session. A node can accept connections up to its max-
imum degree, which we call "degree_limit". Each node has a
pre-defined degree_limit. We assume that degree_limit of each
node is at least one. If the potential parent that new node de-
cided to connect reached its degree_limit, new node connects
to its closest child which can accept connection without break-
ing its degree_limit. The degree_limit expresses how much the
node is willing to take other peers’ load. Free-riders, for exam-
ple, have low (typically 1) degree_limit.

B.1 Join Example

We now illustrate how the cases defined above are utilized for
the join process in VDM. Let’s assume that we have an existing
tree with several children as in Fig. 3. S denotes the source and
others are children in the tree.

N in Fig. 3 attempts to join the multicast session. N contacts
the source by sendinginformation_request message. Source
replies this message withinformation_response which contains
children list and distances to them. N queries all children to
get distance information. When N starts receivinginforma-
tion_response messages from children, it starts to check de-
scribed cases. N does not have any information about C2 at the

beginning. It detects C1 which falls into Case III. After that N
continues its join process through C1. It gets children listfrom
C1. It receives distance information from C1’s children. While
checking these children, it will see that N is between C1 and
C2 which we call Case II. So, N will connect to C1 while C2
changes its parent from C1 to N. When the proper connections
are made, connection process is done.

C. Complexity Analysis

In this part, we analyze the complexity of our join algo-
rithm. A node who wants to join the session first contacts the
source and gets all children information. Based on this informa-
tion, it determines a direction to go. It will pick up one child and
repeat same procedure through that child if needed. This process
is repeated until the best potential parent is found.

For our analysis, we assume that each child has the same num-
ber of degree and it is a balanced tree. Let’s sayn is node degree
for one peer,N is the total number of nodes anda is tree depth.
It is possible to express the relationship between the number of
nodes and the rest of the parameters as:

N = n
a

. (1)

Then, the tree depth will be

a = log
n
(N) (2)

which is in the order ofO(logN).
In the worst case, if the node will join the tree at the leaf, the

number of nodes it has to contact,A, will be

A = nlogN. (3)

Since the time duration of the join procedure is directly de-
pendent on the number of nodes being contacted by the new
node, the complexity for join algorithm will be in the order of
O(n logN) which provides scalability and short startup time for
nodes. Note that this worst case complexity is valid for scenarios
with the maximum node degree beingn as well. For such cases,
the average time complexity will be lower thanO(n logN).

D. Reconnection

An overlay network is an ad-hoc environment, particularly
when it is a peer-to-peer overlay. The system depends on users
who receive the stream through each other. The users are freeto
join and leave the system at anytime. Even though some incen-
tive and punishment mechanism can be utilized to increase the
stability, adhocness (or churn) is still in the nature of thesystem.

Our algorithm builds a tree to transmit the streaming traf-
fic flow from source to each user. In this context, when a
node leaves the session, some orphan nodes occur within the
tree. These nodes have to find a new parent to continue receiv-
ing data.

In VDM, a peer is required to inform its children when it is
leaving. When an orphan child gets this leave message, it starts
the join process at its grandparent, Fig. 4. Since our algorithm is
using a single tree, quick reconnection is important to avoid high
loss. We start reconnection process at the grandparent instead of
the source to expedite the reconnection process. In that sense,

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 451

�

��

����

���

��

Fig. 4. Orphan nodes starts reconnection at grandparent.

�

�� ��

���

��

������

��

��� ������

��

��

��	�
��� ��	�
���� ��	�
�����

Fig. 5. Case II is existing with two different children in thesame iteration.

reconnection is basically same thing as the join process except
that it starts at the current grandparent. If both the parentand
the grandparent leave at the same time, which could occur very
occasionally, the orphan node goes to the source for reconnec-
tion. Since the reconnection starts at the grandparent, we expect
that it is accomplished in a very short period of time compared
to regular join process.

E. Corner Cases

In subsection III-B, we presented a simple example which in-
cludes only one case at a time to explain VDM’s join process.
We now explore exceptional scenarios to understand some cor-
ner cases take place where two cases (Case II and Case III) can
exist at the same time.

E.1 Scenario I: Two Case IIs

In this situation, N detects Case II with two children, Fig. 5.
N selects C1 or C2 as a child and P becomes parent. Then, if N
has a free degree, the other child connects to N. So, we get the
best solution in terms of local MST. Normally, in order to get
this solution, we should know the distance among all nodes. In
this case, we know all distances except C1-C2.

In order to know the distance between C1 and C2, (i) either
we should store this information (distance to sibling) and update
it when necessary or (ii) we should make another measurement
among siblings of P at the time of join. Nodes in the overlay join
at different times. We measure the distance, C1-C2, when C1 or
C2 is joining the tree. Then using this information we make the
connections. But, after that we don’t save the distance informa-
tion. The former approach, storing this information, increases
the amount of state information to be stored. Further, this in-
formation has to be updated all the time with new coming or
leaving siblings. All the siblings of a node might change with a
parent change which occurs if a node get connected with Case II
in between child and parent. This complicates maintaining this
state.

�

����

��� ���

��

��

���

��

��� ���

��

���

��	�
��� ��	�
���� ��	�
�����

Fig. 6. Case III is existing with two different children in the same iteration.

�

��

���

��

���

��

���

��

���

��	�
��� ��	�
����

Fig. 7. Case II is existing with one child and Case III is with another child in
the same iteration.

Second choice, new measurement among siblings, increases
the overhead of the system. For each join process, siblings
should communicate with each other.

In our proposed system, using 1-D abstraction, we reach de-
sired tree without storing extra information or using redundant
messaging. This case is handled in lines 9–11 in Algorithm 1.

E.2 Scenario II: Two Case IIIs

In this situation, Fig. 6, N detects Case III with two chil-
dren. We select the one which is closer to N. Then, we continue
the join process through that node. This case is handled in lines
7–9 in Algorithm 1.

E.3 Scenario III: One Case II and One Case III

In this situation, N has Case III with C1 and Case II with C2,
as shown in Fig. 7. In such a conflict, we choose Case III and
continue join process from C1.

This situation is a scenario that misses local MST in Fig. 7.
This problem can be resolved by using some more specification
in the design. When we do this, C3 in Fig. 8, if there is such a
node, is not able to find C2. So, it might cause other problems.
We don’t want the directions to diverge too much from its origi-
nal definition. As a result, we intentionally leave ScenarioIII as
it is. This case is handled in lines 20–22 in Algorithm 1.

E.4 Scenario IV: Hidden Grandchildren

Another example such a scenario where the joining node may
not find the closest node is presented here. In Fig. 9, the best
potential parent for N is C2. But, when N checks P’s children,
it will see C3 as a directional node and miss C2. This situation
can be prevented only by contacting grandchildren of P which
increases the overhead and time.

452 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

�
���

��

���

��

���

Fig. 8. C3 is not able to find C2 directionality divergence.

�

���

���

��

�����

Fig. 9. N needs to contact grandchildren of P to find C2.

Fig. 10. A scenario showing the difference between VDM and HMTP.

F. VDM versus HMTP

Overlay multicast is a well-studied area. Researchers have
developed numerous numbers of algorithms that have different
approaches as we mentioned some of them in Section II. All
of these techniques have their own advantages and disadvan-
tages. HMTP is one of these proposed techniques. Even though
we didn’t get inspired from this technique, we found that it is
similar to our proposed algorithm VDM. So, it is important to
make one-to-one comparison between VDM and HMTP to see
the differences and our superiorities.

VDM and HMTP use different approaches when building
multicast tree. HMTP focuses on closeness while VDM utilizes
directionality concept. In HMTP, a node finds closest node to
attach, then with periodic tree refinement process the tree is
tuned. In our protocol, we try to detect nodes which appears
in the same direction.

We look at Fig. 10. In phase 1, N comes to join to the over-
lay. With HMTP, N connects to P first, then C finds N by send-
ing a refinement message to its parent to see if there is a closer
node. The overlay tree is formed as in phase 3. But, by using
VDM we can directly detect the case and make proper connec-

tions. The disadvantage of using HMTP here is that since the
tree is degree constrained, desired connections may not be es-
tablished. If P cannot accept N because of degree limitation, the
opportunity to connect these three nodes in the best manner will
be missed. Another disadvantage of HMTP is that it has to use
periodic tree refinement to be able to detect closer child. Using
our directionality concept, we directly connect these three nodes
in best way without using any extra messaging.

VDM and HMTP have different refinement processes. HMTP
selects one node on its path to source, and starts the refinement
process from that node. HMTP uses refinement to complete the
join process. A node in HMTP has to do refinement to find a
closer sibling. But, VDM achieves the same thing without any
refinement. This requirement for HMTP exposes too high over-
head for the system. Our refinement purposes to adapt the tree
to changing conditions of the internet.

Refinement is a part of the join process for HMTP. Every node
has to check if there is a closer node. The time to converge to
a better tree depends on the frequency of these refinement mes-
sages. On the other hand, VDM achieves better tree without us-
ing refinement messages. So, VDM is very efficient in terms of
overhead when compared to HMTP.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We use NS-2 [27] to conduct simulation experiments for eval-
uating our protocol. We generated transit-stub model topology
consisting of 2,576 nodes using GT-ITM [28]. One of the nodes
is chosen as source for the multicast tree. The source is assumed
to be alive during the entire simulation time, and is known by
other peers. Randomly selected 500 of 2,576 nodes join to the
overlay multicast tree. We run the simulation for 10,000 s, and
dedicate 2,000 s for the join process at the beginning. We take
400 s as a time interval and define the churn based on that inter-
val. Based on the churn rate, a number of nodes join and leave
the tree. For example, if the churn rate is 5%, then 25 new nodes
join and 25 of the existing nodes leave in each time interval.We
uniformly pick the nodes to join and leave for modeling churn.

Even though previous work showed that most of the peers
tend to continue staying in the overlay and that a small portion
of the peers tend to frequently leave [29], we use a uniform prob-
ability of a peer node joining or leaving the overlay tree. The lit-
erature also showed that peers with more popular content tend to
be more stable [30], which implies the multicast nodes closer to
the source should be staying longer in the overlay. This further
implies that the peers closer to the tree leaves are more probable
to leave the overlay. So, our assumption of uniform sampling
of peers for join/leave is a conservative one [31], since it allows
testing of our protocols under adverse conditions where nodes
in the middle (or closer to the source) of the tree can leave atan
equal chance with the leaf nodes.

The number of nodes in the overlay is retained at 500 by the
end of the 400 s time interval. At the end of every time interval,
we give 100 s for tree to get stabilized, then we do the measure-
ments. We expose the tree to churn again in the next time interval
after the measurement. This process is repeated until the end of
the entire simulation time. For instance, the nodes are renewed

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 453

almost twice over lifetime under 10% churn. Some nodes may
join and leave several times while some never join. There is no
super node in that all nodes are considered equal. Degree_limits
of nodes are uniformly distributed within the range from 2 to5.

We simulated the protocols under different churn rates from
1% to 10%. We repeated the simulation experiments 32 times
for each churn rate, and we report 90% confidence intervals on
our results.

B. Performance Metrics

We are interested in efficiency of data delivery path and ser-
vice quality that end-users are experiencing. In order to quantify
these two targets, we focus on four performance metrics. Stress,
stretch and overhead are the major factors for data deliveryeffi-
ciency. Service quality is basically measured with loss rate and
delay.
• Stress: Stress is defined as the number of identical packets

transmitted on the same link. In IP multicast, stress is always
one since a packet goes through a link only once.

• Stretch: Stretch is the ratio of path length a packet is traveling
in the overlay multicast tree to that of in unicast. Unicast is
assumed to have optimal stretch.

• Messaging Overhead: We define overhead as the ratio be-
tween maintenance messages and data messages.

• Loss Rate: Loss rate at a peer is the ratio of number of lost
packets to the number of packets supposed to be received in
the peer’s lifetime.

C. Simulation Results

We show results of previously defined four metrics with
90% confidence interval. VDM is compared to IP multicast
with stress. It shows how much VDM converges to IP Multi-
cast. Stretch is comparing VDM to unicast. Unicast provides
smallest delay for peers. Overhead and loss cannot be avoided
especially under adhoc behaviors of peers. But they should be
kept minimal, and they should not increase exponentially with
churn rate.

In Fig. 11(a), we show stress vs churn rate. Stress is one of
the most important metric for resource usage efficiency. Aver-
age stress is around 1.6 for both VDM and HMTP. VDM gives
slightly better results. Stress doesn’t change significantly while
churn rate increasing for both protocols.

Fig. 11(b) shows stretch vs churn rate. Stretch is important
for efficient content delivery and efficient resource usage.VDM
outperforms HMTP in terms of stretch. Average stretch is
around 7 for VDM while it is around 12 for HMTP. Stretch is
slightly increasing with churn rate for both protocols.

Fig. 11(c) shows average loss rate for all nodes. End users
are especially interested in continuity and quality of stream-
ing. High loss rate dissatisfies end users. Average loss rateis
below 2% for VDM under 10% churn. In this simulation, we
do not apply link error which causes packets to be lost. So, all
packet loss is caused by disconnection of churn. That is why it
is so small when churn rate is low.

Fig. 11(d) shows the comparison between VDM and HMTP
for overhead. Overhead should be kept small to put less load
to network. It cannot be prevented from increasing with an in-
crease in churn rate, but it shouldn’t be exponential. Fig. 11(d)

10 20 40 50
1

1.2

1.4

1.6

1.8

2

30

Number of nodes

a
ti
o

 t
o

 M
S

T

VDM

Fig. 12. Comparison with MST.

depicts that overhead increases linearly as churn rate increases.
Overhead is around 2.2% for VDM when churn rate is 10%.
HMTP has to use refinement messages by definition which
causes high overhead ratio.

D. Comparison with Minimum Spanning Tree

With our algorithm we try to converge to MST while also try-
ing to satisfy other user requirements. In this part, we testour
algorithm to see how much it gets closer to MST. We do not ex-
pect VDM to find MST since there are some cases it does not
guarantee reaching MST for simplicity. To observe the poten-
tial of VDM, we do not apply the degree limitation. Further, the
degree-constrained MST is not practical [26]. Fig. 12 showsthe
ratio between the tree constructed by VDM and MST in terms
of the total weight of the trees, i.e., the sum of link costs. As
expected, the ratio is increasing when the number of nodes in-
creases. The promising insight is that VDM stays close to MST
with a ratio well below 2, and further, the increase in the ratio is
sub-linear as the number of nodes increases.

V. GENERALIZATION OF VIRTUAL DISTANCE

Live multimedia streaming is a real-time application that re-
quiresminimal delay, where the delay is defined as time needed
for a packet to reach its receiver(s). The data packets should
ideally traverse the minimum path while being transferred from
source to destination. Overlay tree design should provide possi-
ble minimum delay for each multicast receiver. However, delay
and loss rate between two nodes may be uncorrelated because
of background and cross traffic on routers. So, a peer might ex-
perience high loss rate on a good path in terms of delay. Sensi-
tivity of multimedia applications differs against variousnetwork
performance metrics such as delay, loss, or bandwidth. Thisre-
quires taking other factors into account when building overlay
tree.

A key property of VDM is the capability of virtualizing the
underlying network in different ways. It is possible to establish
“virtual directions" based on performance metrics delay, loss or
bandwidth. Different values of these metrics may produce dif-
ferent virtual distances and thus different overlay tree inour pro-
tocol. By generalizing and customizing virtual direction,we can

454 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

1 3 5 7 10
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

hurn (%)

tr
e
s
s

VDM

HMTP

1 3 5 7 10
5

10

15

hurn (%)

tr
e

tc
h

VDM

HMTP

(a) (b)

1 3 5 7 10
0

0.5

1

1.5

2

2.5

3

hurn (%)

o
s
s
 (

%
)

VDM

HMTP

1 3 5 7 10
1

2

3

4

5

6

hurn (%)

v
e
rh

e
a
d
 (

%
)

VDM

HMTP

(c) (d)

Fig. 11. VDM vs. HMTP: (a) Stress vs. time, (b) stretch vs. churn, (c) loss rate vs. time, and (d) overhead vs. churn.

�

��

��

��

���

�

��

��

��

��

��

��

����	
����
� ����
����
�
�

��

��

��

��

��

��

�����	
����
��
��	
����

(a) (b) (c)

Fig. 15. Overlay topology construction based on delay and loss: (a) A sample topology, (b) relative virtual distances, and (c) differently formed overlay trees.

Fig. 13. Delay and loss rate measurement among San Francisco, Boston and
Dallas

establish target specific overlay trees to improve some specific
performance metrics desirable by applications. Calculating the
virtual distance based on different criteria, but without proto-
col modification, makes the overlay multicast protocol satisfy

Fig. 14. Delay and loss rate measurement among Chicago, Tokyo and Johan-
nesburg

different quality expectations. Our key goal in this part isto au-
tomatically calculate overlay multicast trees such that they can
be seamlessly customized to applications’ performance goals.

In order to corroborate the generalization method, we took

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 455

simple measurement statistics from [36]. It shows latency and
loss rate among three cities in United States and in three differ-
ent countries. Values among San Francisco, Boston and Dallas
are shown in Fig. 13. Ratio among three values for latency and
loss rate is different, thus overlay tree to be constructed among
three nodes in these cities will be different. As another example,
we look at the measurements among Chicago, Tokyo and Johan-
nesburg, values are shown in Fig. 14, which also gives different
ratio for latency and loss rate.

We also took sample inter-PoP measurement dataset from
[37] which has latency and loss rate information. From this
dataset, we pick three points A, B, and C among the links whose
loss rate is not zero. We look at delay of A-B (d1) and B-C (d2),
and loss rate of A-B (l1) and B-C (l2). When we compare the
ratios d1/d2 and l1/l2, 44% of this dataset is inversely corre-
lated. And, the rest does not give the same ratio.

We illustrate a topology in Fig. 15(a). S is source, E is existing
child and N is a newcomer. Relative distances among these three
nodes might be different as shown in Fig. 15(b) when we do
distance measurement in terms of delay and loss. As a result,
overlay tree will be formed in different ways as in Fig. 15(c).
For this specific topology, this difference is caused by the traffic
characteristic on router R4.

We propose a generalized method of calculating overlay trees
to increase user-perceived quality of performance-sensitive ap-
plications. We define and use the concept of “virtual distance”
to determine “virtual direction” for constructing overlaytrees.
Abstracting applications’ sensitivity within the virtualdistances,
we aim to find the most appropriate parent for a peer accord-
ing to the application’s purpose. We embed the virtual distance
method in our protocol, VDM, and show that the protocol auto-
matically calculates overlay trees based on delay (VDM-D) or
loss (VDM-L), depending on which is more important for the
application under consideration.

A. Performance Evaluation of the Virtual Distance Concept

We evaluate the performance of VDM-D (delay-based) and
VDM-L (loss-based) in order to show the efficiency of the vir-
tual distance concept in automatically customizing the overlay
tree for application-specific performance goals. We analyze pro-
tocol behaviors as we vary the churn rate in the overlay network.

We use a similar setup with previous one for simulation ex-
cept that each physical link in topology is assigned a random
error rate between 0% and 2%. In this case, the topology con-
sists of 792 nodes, and randomly selected 200 of the 792 nodes
constitute the overlay multicast tree, and repeated the simula-
tion experiments 10 times instead of 32. We decreased network
size and number of experiments because we have loss in this
case and we had to send much more packets from source which
increased the size of trace file dramatically.

B. Simulation Results

We present results for performance comparison between over-
lay trees constructed using VDM-D and VDM-L. We investigate
the behavior of these metrics versus churn rate for both pro-
tocols. The variations especially in stretch and loss rate based
on utilized technique will affirm our proposal. We expect that
VDM-L reduces loss rate while trading off stretch and that

VDM-D gives better results for stretch.
In Fig. 16(a), we show stress vs churn. Stress is one of the

most important metrics for resource usage efficiency. Stress
does not change significantly while churn rate increasing. Av-
erage stress is around 1.5 and 1.7 for VDM-D and VDM-L,
respectively. The closeness of the stress for the two protocols
is expected as the virtual distance does not focus on the stress.
However, it is also expected that stress is a little higher inVDM-
L since delay is known to be more correlated with the physi-
cal distance between nodes, and thus the overlay tree becomes
closer to the IP multicast tree in VDM-D.

In Fig. 16(b), we show stretch vs. churn. Stretch is impor-
tant for efficient content delivery and efficient resource us-
age. Stretch does not get affected much with churn rate. Av-
erage stretch value is around 4 for VDM-D while it is around 7
VDM-L. We can infer from the graph that path length to source
for end-users is reduced when using delay as basis for distance
calculation. The results in Fig. 7 shows a clear differentiation of
the overlay tree based on which metric, delay or loss, the user
application might choose.

Fig. 16(c) shows average loss rate vs. churn. End-users
are especially interested in continuity and quality of stream-
ing. High loss rate dissatisfies end-users. Loss in this graph is
caused by packet drops over path and disconnection because of
churn. Packets are dropped over links according to their error
rate. Churn causes the loss rate to increase. The graph proves
that VDM-L improves the loss rate compared to VDM-D. Loss
rate for both could be considered high, but each link in this setup
is assigned a loss rate on purpose as we wanted to observe how
much customization the virtual distance concept can achieve in
terms of loss rate. To give an idea about how much excessive
loss the results have, we have plotted another result for “VDM”
where link error rates are set to 0%. In this case, loss rate is
caused only by disconnections and is relatively low compared
to the other two cases.

We finally looked at the overhead. We used the same number
of probing messages to measure delay and loss rate even though
delay can be measured with less number of messages. The over-
head for VDM-L is a little less the the VDM-D, because the
number of lost packets in VDM-L is fewer which makes de-
nominator greater in the definition. Fig. 16(c) depicts thatthe
overhead increases sublinearly as the churn rate increasessince
the nodes send additional probing messages to be able to recon-
nect.

Our concern was to obtain better performance results for cer-
tain types of metrics which may be more important for different
applications. When we think of all the results together, VDM-
D, uses delay for distance estimation, and improves stress and
stretch while giving higher loss rate. It could be used for delay
sensitive applications. On the other hand, VDM-L achieves bet-
ter performance in terms of loss rate. It can be chosen for more
delay tolerant but loss sensitive applications such as peer-to-peer
file sharing.

VI. PLANETLAB IMPLEMENTATION

We implemented VDM on PlanetLab [38] to be able to test it
under more realistic environment. For our experiments, we only

456 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

1 3 5 10 15 20
1

1. 2

1. 4

1. 6

1. 8

2

hurn(%)

tr
e

ss

VD M-L

VD M-D

1 3 5 10 15 20
0

1

2

3

4

5

6

7

8

9

hurn(%)

tr
e

tc
h

VD M-L

VD M-D

(a) (b)

1 3 5 10 15 20
0

1

2

3

4

5

6

7

8

hurn(%)

o
s

s
 r

a
te

VD M-L

VD M-D

VD M

1 3 5 10 15 20
0

0. 05

0. 1

0. 15

0. 2

hurn(%)

v
e

rh
e

a
d

VD M-L

VD M-D

(c) (d)

Fig. 16. VDM-D vs. VDM-L: : (a) Stress vs. churn, (b) stretch vs. churn, (c) loss rate vs. churn, and (d) overhead vs. churn.

used nodes in the United States. Also, we only use one node at
one site. To be able to get accurate results we applied several
filtering processes to select working nodes.

Main components of the implementation are illustrated in
Fig. 17.

Scenario: There is a list of nodes that works properly on our
local machine. We have a scenario generator which generates
the scenario file by using the node list and provided seeds. A
line in scenario file mainly has action type (join, leave), node
information and time for action.

VDMAgent: VDMAgent is uploaded to every node on Plan-
etlab. It carries out the core job of the protocol. When it receives
the connect message from the main controller, it contacts the
source which is known by each node. Then, VDMAgent using
the algorithm embedded inside finds an appropriate parent to
connect. After a node gets connected, VDMAgent keeps run-
ning and responds incoming information messages or connec-
tion requests.

Sender: Our system has single source which hosts the main
data stream. The source node sends this data to its chil-
dren. Other nodes transmits the data that they receive from their
parents. Sender is responsible to send the data at the origin.

Transceiver: Every node has this unit except the source. When
a node connects, the transceiver unit is started. The main job of
this unit is to catch incoming data messages and transmit them
to its children.

Main Controller: The Main controller is in charge of applying
the scenario in the input scenario file by communicating with
Planetlab nodes. The scenario file tells time, node and action for
each event in the simulation. There are mainly three different

Fig. 17. Main components of PlanetLab implementation.

control messages from the main controller to the nodes. The first
one is a connect message which alerts the node to connect to the
multicast session. Another one is the disconnect message that
tells the node to leave the session. The last message is terminate
which is sent to every node at the end of the session.

A. Experiment Setup

For this evaluation, we used nodes only in the United
States. We have identified a pool of working nodes that has
around 140 nodes. Each time we select 100 nodes from this
pool and run our experiment. We selected a node in Colorado
as the source. When we ran more than one experiment on the
same nodes at the same time, the performance got affected. So,
we ran experiments one by one. An experiment is taking 5,000 s
which is like a real session length since we are actually transmit-

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 457

ting a streaming traffic over the multicast tree. First 2,000s are
spent for join processes only. In the remaining 3,000 s, churn
takes place. The reality that we have to run each experiment
separately prevented us to run simulations many times. Eachex-
periment is run 5 times with different seeds. We show average
values of these 5 runs.

In PlanetLab implementation, we defined two more metrics
in addition to the previously defined one.
• Startup time: When a node receives a connect command, it

marks the time. When it is able to find a parent to connect and
establish the connection it checks time again. The difference
between two clock read is recorded as startup time for this
node.

• Reconnection time: When a node receives a leave notification
from its parent, it contacts its grandparent to rejoin the tree.
We measure the time required for reconnection for the nodes
whose parent leave.

B. Experiment Results

Fig. 18(a) shows average and maximum time needed for join
process. Number of nodes that a new joining node has to query
is increasing when number of nodes is increasing. This causes
startup time to increase. We calculated average and maximum
startup time. When number of nodes is 100, average time is
around 0.4 s. The maximum time is 1.5 s. These values are rea-
sonable to start receiving a stream. Maximum values are not re-
lated directly to number of nodes. Some nodes are responding
late to ping request which causes startup time to increase.

Reconnection time is not related to number of nodes since
orphan nodes start reconnection at their grandparent. Fig.5(b)
presents reconnection time versus number of nodes. Average
time is around 0.2 s. There is no dependency on number of
nodes. This 0.2 s interruption is experienced as jitter by user
if there is no buffer.

In Fig. 18(c), we present results that give stretch values ver-
sus number of nodes. We show four different measurements. In
some cases, nodes might have shorter path length to source
whey they use overlay routing. The bottom line shows aver-
age stretch values of these nodes. The value is around 0.9. It
means that these nodes receives stream with less delay than di-
rect connection to source. We show overall average stretch value
for all nodes. We also show average stretch values only for leaf
nodes. Leaf in tree structure can be considered as worst places to
be. Leaf nodes are expected long path length. Almost half of the
nodes are expected to be at the leaf position in the tree. When
we look at the average stretch for these nodes, it is a little higher
than the general average. We also look at maximum stretch val-
ues. It goes up to 3 when number of nodes is 100.

In Fig. 18(d), we show hopcount versus number of
nodes. Hopcount should increase with number of nodes. This
increase depends on node degree and proportional to log of num-
ber of nodes. Average value for all tree is around 4. If we look
at only leaf nodes, it is around 5 for number of nodes 100.

From Fig. 18(e), loss rate is increasing with number of
nodes. In this experiment, we keep churn rate same while in-
creasing number of nodes. So, number of joins and leaves is
getting higher. When number of nodes is high, even though re-
connection time doesn’t change, number of nodes affected from

a disconnection is high. This causes an increase in loss rate.
Overhead in Fig. 18(f) is increasing with number of

nodes. Number of nodes that a node needs to contact for a join
process is increasing. This causes an increase in overhead.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a new overlay multicast proto-
col, VDM, that uses directionality among nodes to construct
the multicast tree. By using the concept of directionality,VDM
attempts to build its overlay tree congruent to the underlying
network so that network resources are utilized efficiently while
satisfying end-users in terms of perceived quality. We analyzed
some corner cases one by one. Then we investigated complexity
of join process.

Simulation results showed that VDM achieves better perfor-
mance compared to HMTP in terms of various metrics like
stretch, loss and overhead. VDM improved the path stretch
which affects both overlay tree participants and physical net-
work. Another improved metric is packet loss that is important
for applications with real-time and/or reliable. We also showed
that VDM causes less messaging overhead, that is a key factor
for scalability of overlay multicast applications.

We also proposed a method to generalize the virtual dis-
tance between overlay nodes for automatically calculatingover-
lay trees custom to specific application performance targets. By
using the generalization concept, we aim to build target spe-
cific overlay trees that provide the ability to improve user per-
ceived quality for specific purposes. We used two different met-
rics, delay and loss, for calculating the virtual distancesand
experimented with two version of VDM: VDM-D and VDM-
L. Simulation results showed that VDM-D achieves better per-
formance in terms of path length and stress while degrading the
loss rate. On the other hand, VDM-L improves the loss rate per-
formance, as expected, by sacrificing from stress and stretch.

We also have implemented our protocol on PlanetLab which
gave us the opportunity to see real time characteristics of it. We
showed some statistics such as startup time, reconnection time
and stretch on PlanetLab.

The key insight of our work is that directionality may not
achieve the best, but allows finding a good and practical trade-
off between quality expectations and protocol overhead. Inte-
gration of directionality with other approaches involvingmore
special treatment of users quality expectations can be tried as a
future work. Integration of super-nodes and multi-tree designs
with VDM is a nice future work direction to take.

In reality most peers put a degree limit via their client soft-
ware. No peer wants to undertake the burden of other peers –
this is the typical behavior of a regular peer. We consideredthis
behavior via assigning a degree_limit for every peer. However,
super-peers will be different as they are more willing to take
the burden of others. Future work should explore a variety of
degree_limit patterns across the peers.

Another promising aspect to explore is to consider direction-
ality in more than 1 dimension. While extending VDM’s direc-
tional categorization of possible cases to two or more dimen-
sional spaces, keeping the protocol’s complexity at a practical
level will be the challenge. However, it may prove worthwhile

458 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 18, NO. 3, JUNE2016

20 40 80 100
0

0.5

1

1.5

2

60

umber of nodes

ta
rt

u
p
 t

im
e
 (

s
e
c
o
n
d
)

avg

max

20 40 80 100
0

0.5

1

1.5

60

umber of nodes

e
c
o
n
n
e
c
tio

n
 t

im
e
 (

s
e
c
o
n
d
)

avg

max

(a) (b)

20 40 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

60

umber of nodes

tr
e

tc
h

min

avg

leaf-avg

max

20 40 80 100
0

2

4

6

8

10

60

umber of nodes

o
p
c
o
u
n
t

avg

leaf-avg

max

(c) (d)

20 40 80 100
0

0.1

0.2

0.3

0.4

0.5

60

umber of nodes

o
s
s
 r

a
te

avg

20 40 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

60

umber of nodes

v
e
rh

e
a
d

avg

(e) (f)

Fig. 18. VDM on PlanetLab: (a) Startup vs. number of nodes, (b) reconnection vs. number of nodes, (c) stretch vs. number ofnodes, (d) hopcount vs. number of
nodes, (e) loss rate vs. number of nodes, and (f) overhead vs.number of nodes.

to explore the concept since there are increasingly more multi-
homed nodes on the Internet and 1-D directionality may become
limited in the long run.

Adapting the overlay tree construction to targeted application
metrics via the concept of generalized virtual distances deserve
further investigation. We showed that VDM adapts its overlay
tree for delay or loss by means of virtualizing the underlying net-
work based on delay or loss on the links. It will be interesting to
see how VDM performs when other link quality metrics are vir-
tualized as “virtual distances”, e.g., bandwidth, jitter,maximum
delay, maximum loss, and reliability.

Last but not the least, in wireless networks, the constraints are
different than wired networks. Although it may not be practi-
cal to directly apply VDM to the wireless networks, the general
idea can give insights and a modified version can be used for
overlay multicast construction in wireless networks. Since the
challenges in wireless networks are energy scarcity, low compu-

tation power and high mobility, reducing the overhead of VDM
against churn and dynamism will be of crucial importance. In
our algorithm, we start the join process from the source node
because that is the only one that we know. However, in wireless,
the new node and the source node may not be within each other’s
coverage areas. One approach could be to use the wireless signal
strengths, which are readily available via wireless transceivers,
to estimate the distance between nodes. After modifying this
join procedure, we might apply the directionality concept locally
to converge towards MST. One of the reasons that we are us-
ing 1D is avoiding sibling communication. For omni-directional
wireless, the 1D or 2D virtual directionality may prove to be
useful to construct a relative orientation within a neighborhood
of wireless nodes. With the increasing number of directional ra-
dio transceivers, this orientation could be improved.

MERCAN AND YUKSEL: VIRTUAL DIRECTION MULTICAST: AN EFFICIENT OVERLAY... 459

REFERENCES
[1] S. Mercan and M. Yuksel, “Virtual distance: A generalized metric for over-

lay tree construction,” inProc. IEEE ISCC, July 2012, pp. 193–198.
[2] S. Mercan and M. Yuksel, “Virtual direction multicast for overlay net-

works,” in Proc. IEEE IPDPSW, May 2011, pp. 1595–1601.
[3] IPTV News, [Online]. Available: http://www.iptvnews.net
[4] A. Mahimkaret al., “Towards automated performance diagnosis in a large

IPTV network,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4,
pp. 231-242, 2009.

[5] M. Cha, W. A. Chaovalitwongse, Z. Ge, J. Yates, and S. Moon, “Path
protection routing with SRLG constraints to support IPTV inWDM mesh
networks,” inProc. IEEE INFOCOM, 2006.

[6] P2PTV, [Online]. Available: http://en.wikipedia.org/wiki/P2PTV
[7] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo, “P2P-

TV systems under adverse network conditions: A measurementstudy,” in
Proc. IEEE INFOCOM, 2009.

[8] S. Deering and D. Cheriton, “Multicast routing in datagram internetworks
and extended LANs,”ACM Trans. Comput. Syst., vol. 8, no. 2, pp. 85–110,
1990.

[9] P. Francis, “Yoid: Extending the multicast Internet architecture,” white
paper, 1999.

[10] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
ACM SIGMETRICS Performance Evaluation Review, vol. 28, no. 1, 2000.

[11] D. Pendarakis, S. Shi, D. Verma, and M.Waldvogel, “ALMI: An applica-
tion level multicast infrastructure,”USITS, vol. 1, 2001.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1489–1499, 2002.

[13] D. Helder and S. Jamin, “End-host multicast communication using switch-
trees protocols,” inProc. IEEE/ACM CCGRID, 2002.

[14] Beichuan Zhang, Sugih Jamin, and Lixia Zhang “Host multicast: A frame-
work for delivering multicast to end users,” inProc. IEEE INFOCOM,
2002.

[15] M. Castroet al., “SplitStream: High-bandwidth multicast in cooperative
environments,”ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
2003.

[16] V. Venkataraman, P. Francis, and J. Calandrino, “Chunkyspread: Multi-
tree unstructured peer-to-peer multicast,” inProc. IPTPS, 2006.

[17] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
delaunay triangulation overlays,”IEEE J. Sel. Areas Commun., vol. 20,
no. 8, pp. 1472–1488, 2002.

[18] Y. Chawathe, S. McCanne, and E. A. Brewer, “RMX: Reliable multicast
for heterogeneous networks,” inProc. IEEE INFOCOM, 2000.

[19] X. Zhang, X. Li, W. Luo, and B. Yan, “An application layermulticast ap-
proach based on topology-aware clustering,”Comput. Commun., vol. 32,
no. 6, pp. 1095–1103, 2009.

[20] B. Cheng, M. Yuksel, and S. Kalyanaraman, “Virtual direction routing for
overlay networks,” inProc. IEEE P2P, 2009.

[21] M. Bishop and S. Rao, “Considering priority in overlay multicast protocols
under heterogeneous environments,” inProc. IEEE INFOCOM, 2006.

[22] X. Zhang, J. Liu, B. Li, and Y. Yum, “CoolStreaming/DONet: A data-
driven overlay network for peer-to-peer live media streaming,” in Proc.
IEEE INFOCOM, 2005.

[23] S.W. Tan, A. Waters, and J. Crawford, “Meshtree:A delay- optimised over-
lay multicast tree building protocol,” inProc. ICPADS, 2005.

[24] M. Kwonand and S.Fahmy, “Path-aware overlay multicast,” Comput.
Netw., vol. 47, no. 1, pp. 23–45, 2005.

[25] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,
“Omni: An efficient overlay multicast infrastructure for real-time applica-
tions,” Comput. Netw., vol. 50, no. 6, pp. 826–841, 2006.

[26] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness, San Francisco, CA: W. H. Freeman,
1979.

[27] The network simulator — ns-2, [Online]. Available: http://www.isi.edu/
nsnam/ns/

[28] Gt-itm: Georgia tech internetwork topology models, [Online]. Available:
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

[29] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer net-
works,” in Proc. ACM SIGCOMM, 2006.

[30] O. Herrera and T. Znati, “Modeling churn in p2p networks,” in Proc. IEEE
ANSS, 2007.

[31] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On unbi-
ased sampling for unstructured peer-to-peer networks,”IEEE/ACM Trans.
Netw., vol. 17, no. 2, pp. 377–390, 2009.

[32] T. Ng and H. Zhang, “A network positioning system for theInternet,” in
Proc. USENIX, 2004.

[33] L. Tang and M. Crovella, “Virtual landmarks for the Internet,” in Proc.
ACM SIGCOMM, 2003.

[34] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “VVivaldi:A decentralized
network coordinate system,” inProc. ACM SIGCOMM, 2004.

[35] M. Costa, M. Castro, R. Rowstron, and P. Key, “PIC: practical Internet
coordinates for distance estimation,” inProc. ICDCS, 2004.

[36] [Online]. Available: http://www.akamai.com/html/technology/dataviz2.html
[37] [Online]. Available: http://iplane.cs.washington.edu/
[38] [Online]. Available: http://www.planet-lab.org

Suat Mercan is Assistant Professor at Zirve Univer-
sity in Turkey. He received Ph.D. degree in Computer
Science at University of Nevada-Reno (UNR), Reno,
NV in 2011. He received his M.S degree in Electrical
and Computer Engineering from University of South
Alabama (USA), Mobile, AL in 2007. He received his
B.S. degree from Computer Engineering from Fatih
University, Istanbul, Turkey in 2005. His main re-
search interests are peer-to-peer networks, multicas-
ting in overlay networks, IPTV, content delivery. He
is a Member of IEEE.

Murat Yuksel is currently an Associate Professor at
the CSE Department of The University of Nevada -
Reno (UNR), Reno, NV. He was with the ECSE De-
partment of Rensselaer Polytechnic Institute (RPI),
Troy, NY as a Postdoctoral Research Associate and a
member of Adjunct Faculty until 2006. He received a
B.S. degree from Computer Engineering Department
of Ege University, Izmir, Turkey in 1996. He received
M.S. and Ph.D. degrees from Computer Science De-
partment of RPI in 1999 and 2002 respectively. His
research interests are in the area of computer commu-

nication networks with a focus on protocol design, network economics, wireless
routing, free-space-optical mobile ad-hoc networks (FSO-MANETs), and peer-
to-peer. He is a Member of IEEE, ACM, Sigma Xi, and ASEE.

