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Abstract

Several congestion pricing proposals have been made in the last decade. Usually, however, those proposals studied optimal strategies and

did not focus on implementation issues. Our main contribution in this paper is to address implementation issues for congestion-sensitive

pricing over a single differentiated-services (diff-serv) domain. We propose a new congestion-sensitive pricing framework Distributed

Dynamic Capacity Contracting (Distributed-DCC), which is able to provide a range of fairness (e.g. max–min, proportional) in rate

allocation by using pricing as a tool. We develop a pricing scheme within the Distributed-DCC framework and investigate several issues such

as optimality of prices, fairness of rate allocation.

We also introduce two pricing architectures based on the manner of using pricing to control congestion: Pricing for Congestion Control

(PFCC) and Pricing over Congestion Control (POCC). PFCC uses pricing directly for controlling congestion, whilst POCC uses an

underlying edge-to-edge congestion control mechanism by overlaying pricing on top of it. We, then, adapt Distributed-DCC framework to

these architectures, and evaluate the two architectures by extensive simulation.
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1. Introduction

Implementation of congestion pricing still remains a

challenge, although several proposals have been made, e.g.

Refs. [1–3]. Among many others, two major implemen-

tation obstacles can be defined: need for timely feedback to

users about the price, determination of congestion infor-

mation in an efficient, low-overhead manner.

The first problem, timely feedback, is relatively very

hard to achieve in a wide area network such as the Internet.

In Ref. [4], the authors showed that users do want feedback

about charging of the network service (such as current price

and prediction of service quality in near future). However,

in our recent work [5], we illustrated that congestion control

by pricing cannot be achieved if price changes are

performed at a time-scale larger than roughly 40 round-

trip-times (RTTs). This means that in order to achieve

congestion control by pricing, service prices must be

updated very frequently (i.e. 2–3 s since RTT is expressed

in terms of milliseconds for most cases in the Internet). In

order to solve this time-scale problem for dynamic pricing,

we propose two solutions, which lead to two different

pricing ‘architectures’:

† By placing intelligent intermediaries (i.e. software or

hardware agents) between users and the provider. This

way it is possible for the provider to update prices

frequently at low time-scales, since price negotiations

will be made with a software/hardware agent rather than

a human. Since the provider will not employ any

congestion control mechanism for its network and try

to control congestion by only pricing, we call this pricing

architecture as Pricing for Congestion Control (PFCC).

† By overlaying pricing on top of an underlying congestion

control mechanism. This way it is possible to enforce

tight control on congestion at small time-scale, while

performing pricing at time-scales large enough for

human involvement. The provider implements a conges-

tion control mechanism to manage congestion in its

network. So, we call pricing architecture as Pricing over

Congestion Control (POCC).
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Big-picture of the two pricing architectures PFCC and

POCC are shown in Fig. 1. We will describe PFCC and

POCC later in Section 3.

The second problem, congestion information, is also very

hard to solve in a way that does not require a major upgrade

at network routers. However, in diff-serv [6], it is possible to

determine congestion information via a good ingress–

egress coordination. So, this flexible environment of diff-

serv motivated us to develop a pricing framework on it.

In our previous work [7], we presented a simple

congestion-sensitive pricing ‘framework’, Dynamic

Capacity Contracting (DCC), for a single diff-serv domain.

DCC treats each edge router as a station of a service

provider or a station of coordinating set of service providers.

Users (i.e. individuals or other service providers) make

short-term contracts with the stations for network service.

During the contracts, the station receives congestion

information about the network core at a time-scale smaller

than contracts. The station, then, uses that congestion

information to update the service price at the beginning of

each contract. Several pricing ‘schemes’ can be

implemented in that framework.

DCC models a short-term contract for a given traffic class

as a function of price per unit traffic volume Pv; maximum

volume Vmax (maximum number of bytes that can be sent

during the contract) and the term of the contract T (length of

the contract):

Contract ¼ f ðPv;Vmax;TÞ ð1Þ

Fig. 2 shows the big picture of DCC framework. Customers

can only access network core by making contracts with the

provider stations placed at the edge routers. The stations

offer contracts (i.e. Vmax and T) to fellow users. Access to

these available contracts can be done in different ways, what

we call edge strategy. Two basic edge strategies are

‘bidding’ (many users bids for an available contract) or

‘contracting’ (users negotiate Pv with the provider for an

available contract).

Notice that, in DCC framework, provider stations can

implement dynamic pricing schemes. Particularly, they

can implement congestion-based pricing schemes, if they

have actual information about congestion in network

core. This congestion information can come from the

interior routers or from the egress edge routers depending

on the congestion-detection mechanism being used. DCC

assumes that the congestion detection mechanism is able

to give congestion information in time scales (i.e.

observation intervals) smaller than contracts.

However, in DCC, we assumed that all the provider

stations advertise the same price value for the contracts,

which is very costly to implement over a wide area

network. This is simply because the price value cannot

be communicated to all stations at the beginning of each

contract. In this paper, we relax this assumption by

letting the stations to calculate the prices locally and

advertise different prices than the other stations. We call

this new version of DCC as Distributed-DCC. We

introduce ways of managing the overall coordination of

the stations.

As a fundamental difference between Distributed-DCC

and the well-known dynamic pricing proposals (e.g.

Kelly et al.’s proposal [8], Low et al.’s proposal [9]) in

the area lies in the manner of price calculation.

In Distributed-DCC, the prices are calculated on an edge-

to-edge basis, while traditionally it has been proposed that

prices are calculated at each local link and fed back to users.

To make it more concrete, Fig. 3a and b shows the case of

Fig. 1. Different pricing architectures with/without edge-to-edge congestion control.

Fig. 2. DCC framework on diff-serv architecture.
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Distributed-DCC and the case of Low et al.’s framework.

Gray nodes are the ones that participate in price calculation

for a user. In Distributed-DCC, basically, the links on a

flow’s route are abstracted out by edge-to-edge capacity

estimation and the ingress node communicates with the

corresponding egress node to observe congestion on the

route. Then, the ingress node uses the estimated capacity

and the observed congestion information in price calcu-

lation. However, in Low et al.’s framework, each link

calculates its own price and sends it to the user, and the user

pays the aggregate price. So, Distributed-DCC is better in

terms of implementation requirements, while Low et al.’s

framework is better in terms of optimality. Distributed-DCC

trades off some optimality in order to enable implemen-

tation of dynamic pricing. Amount of lost optimality

depends on the closed-loop edge-to-edge capacity

estimation.

The paper is organized as follows. In Section 3, we

position our work and briefly survey relevant work in the

area. In Section 3, we present PFCC and POCC pricing

architectures motivated by the time-scale issues mentioned

above. In Section 6 we describe properties of Distributed-

DCC framework according to the PFCC architecture. Then,

in Section 7, we revise Distributed-DCC’s definition in

Section 6 and adapt it to the POCC architecture. In other

words, we mainly define the Distributed-DCC framework in

Section 6, and then in Section 6 we add necessary

components to Distributed-DCC in order to adapt it to

POCC. Next in Section 5, we define a pricing scheme Edge-

to-Edge Pricing (EEP) which can be implemented in the

defined Distributed-DCC framework. We study optimality

of EEP for different forms of user utility functions and

consider effect of different parameters such as user’s budget,

user’s elasticity. In Section 8, according to the descriptions

of Distributed-DCC framework and EEP scheme, we

simulate Distributed-DCC in the two architectures PFCC

and POCC. With the simulation results, we compare

Distributed-DCC’s performance in PFCC and POCC

architectures. We finalize with summary and discussions

in Section 9.

2. Related work

There has been several pricing proposals, which can be

classified in many ways: static vs. dynamic, per-packet

charging vs. per-contract charging, and charging a priori to

service vs. a posteriori to service.

Although there are opponents to dynamic pricing in the

area [10–12], most of the proposals have been for dynamic

pricing (specifically congestion pricing) of networks.

Examples of dynamic pricing proposals are MacKie-

Mason and Varian’s Smart Market [1], Gupta et al.’s

Priority Pricing [13], Kelly et al.’s Proportional Fair Pricing

(PFP) [8], Semret et al.’s Market Pricing [3,14], and Wang

and Schulzrinne’s Resource Negotiation and Pricing

(RNAP) [2,15]. Odlyzko’s Paris Metro Pricing (PMP) [16]

is an example of static pricing proposal. Clark’s Expected

Capacity [17,18] and Cocchi et al.’s Edge Pricing [19] allow

both static and dynamic pricing. In terms of charging

granularity, Smart Market, Priority Pricing, PFP and Edge

Pricing employ per-packet charging, whilst RNAP and

Expected Capacity do not employ per-packet charging.

Smart Market is based primarily on imposing per-packet

congestion prices. Since Smart Market performs pricing on

per-packet basis, it operates on the finest possible pricing

granularity. This makes Smart Market capable of making

ideal congestion pricing. However, Smart Market is not

deployable because of its per-packet granularity (i.e.

excessive overhead) and its many requirements from routers

(e.g. requires all routers to be updated). In Ref. [20], we

studied Smart Market and difficulties of its implementation

in more detail.

While Smart Market holds one extreme in terms of

granularity, Expected Capacity holds the other extreme.

Expected Capacity proposes to use long-term contracts,

Fig. 3. Components of Distributed-DCC with Low et al.’s pricing framework in terms of price calculation.
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which can give more clear performance expectation, for

statistical capacity allocation and pricing. Prices are updated

at the beginning of each long-term contract, which

incorporates little dynamism to prices.

Our work, Distributed-DCC, is a middle-ground between

Smart Market and Expected Capacity in terms of granular-

ity. Distributed-DCC performs congestion pricing at short-

term contracts, which allows more dynamism in prices

while keeping pricing overhead small.

In the area, another proposal that mainly focused on

implementation issues of congestion pricing on diff-serv is

RNAP [2,15]. Although RNAP provides a complete picture

for incorporation of admission control and congestion

pricing, it has excessive implementation overhead since it

requires all network routers to participate in determination

of congestion prices. This requires upgrades to all routers

similar to the case of Smart Market. We believe that pricing

proposals that require upgrades to all routers will eventually

fail in implementation phase. This is because of the fact that

the Internet routers are owned by different entities who may

or may not be willing to cooperate in the process of router

upgrades. Our work solves this problem by requiring

upgrades only at edge routers rather than at all routers.

3. Pricing architectures: PFCC vs. POCC

In this section, we introduce two new pricing architec-

tures that are mainly motivated by time-scale problems

regarding control of congestion by pricing (details in

Section 1).

3.1. Pricing for Congestion Control

In this pricing architecture, provider attempts to solve

congestion problem of its network just by congestion

pricing. In other words, the provider tries to control

congestion of its network by changing service prices. The

problem here is that the provider will have to change

the price very frequently such that human involvement into

the price negotiations will not be possible. This problem can

be solved by running intermediate software (or hardware)

agents between end-users and the provider. The intermedi-

ate agent receives inputs from the end-user at large time-

scales, and keeps negotiating with the provider at small

time-scales. So, intermediate agents in PFCC architecture

are very crucial in terms of acceptability by users.

If PFCC architecture is not employed (i.e. providers do

not bother to employ congestion pricing), then congestion

control will be left to the end-user as it is in the current

Internet. Currently in the Internet, congestion control is

totally left to end-users, and common way of controlling

congestion is TCP and its variants. However, this situation

leave open doors to non-cooperative users who do not

employ congestion control algorithms or at least employ

congestion control algorithms that violates fairness objec-

tives. For example, by simple tricks, it is possible to make

TCP connection to capture more of the available capacity

than the other TCP connections.

The major problem with PFCC is that development of

user-friendly intermediate agents is heavily dependent on

user opinion, and hence requires significant amount of

research. A study of determining user opinions is available

in Ref. [4]. In this paper, we do not focus development of

intermediate agents.

3.2. Pricing over Congestion Control

Another way of approaching the congestion control

problem by pricing is to overlay pricing on top of

congestion control. This means the provider undertakes

the congestion control problem by itself, and employs an

underlying congestion control mechanism for its network.

This way it is possible to enforce tight control on

congestion at small time-scales, while maintaining human

involvement into the price negotiations at large time-

scales. Fig. 1 shows the difference between POCC (with

congestion control) and PFCC (without congestion

control) architectures.

So, assuming that there is an underlying congestion

control scheme, the provider can set the parameters of that

underlying scheme such that it leads to fairness and better

control of congestion. The pricing scheme on top can

determine user incentives and set the parameters of the

underlying congestion control scheme accordingly. This

way, it will be possible to favor some traffic flows with

higher willingness-to-pay (i.e. budget) than the others.

Furthermore, the pricing scheme will also bring benefits

such as an indirect control on user demand by price, which

will in turn help the underlying congestion control scheme

to operate more smoothly. However the overall system

performance (e.g. fairness, utilization, throughput) will be

dependent on the flexibility of the underlying congestion

control mechanism.

Since our main focus is to implement pricing in ‘diff-serv

environment’, we assume that the provider employs ‘edge-

to-edge’ congestion control mechanisms under the pricing

protocol on top. So, in diff-serv environment, overlaying

pricing on top of edge-to-edge congestion control raises two

major problems:

1. Parameter mapping. Since the pricing protocol wants

to allocate network capacity according to the user

incentives (i.e. the users with greater budget should

get more capacity) that changes dynamically over

time, it is a required ability set corresponding

parameters of the underlying edge-to-edge congestion

control mechanism such that it allocates the capacity

to the user flows according to their incentives. So, this

raises need for a method of mapping parameters of

the pricing scheme to the parameters of the underlying

congestion control mechanism. Notice that this type of
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mapping requires the edge-to-edge congestion control

mechanism to be able to provide parameters that tunes

the rate being given to edge-to-edge flows.

2. Edge queues. The underlying edge-to-edge congestion

control scheme will not always allow all the traffic

admitted by the pricing protocol, which will cause

queues to build up at network edges. So, management

of these edge queues is necessary in POCC archi-

tecture. Fig. 1a and b compare the situation of the

edge queues in the two cases when there is an

underlying edge-to-edge congestion control scheme

and when there is not.

Another problem is that the overall performance of the

system will be dependent on not only the pricing protocol’s

performance, but also the performance of the underlying

congestion control scheme. For instance, if the underlying

congestion control scheme does not allow the network to be

utilized more than 80% for some internal reason, then the

utilization provided by the overall system will be limited by

80%.

4. Distributed-DCC framework

Distributed-DCC framework is specifically designed

for diff-serv environment, because the edge routers can

perform complex operations which is essential to several

requirements for implementation of congestion pricing.

Each edge router is treated as a station of the provider.

Each station advertises locally computed prices with

information received from other stations. The main

framework basically describes how to preserve coordi-

nation among the stations such that stability and fairness

of the overall network is preserved. We can summarize

essence of Distributed-DCC in two items:

† Since upgrade to all routers is not possible to

implement, pricing should happen on an edge-to-

edge basis which only requires upgrades to edge

routers.

† Provider should employ short-term contracts in order

to have ability to change prices frequently enough

such that congestion-pricing can be enabled.

Distributed-DCC framework has three major com-

ponents as shown in Fig. 4: Logical Pricing Server (LPS),

Ingress Stations, and Egress Stations. Solid lined arrows in

the figure represent control information being transmitted

among the components. Basically, Ingress stations negotiate

with customers, observe customer’s traffic, and make

estimations about customer’s demand. Ingress stations

inform corresponding Egress stations about the observations

and estimations about each edge-to-edge flow.

Egress stations detect congestion by monitoring edge-to-

edge traffic flows. Based on congestion detections, Egress

stations estimate available capacity for each edge-to-edge

flow, and inform LPS about these estimations.

LPS receives capacity estimations from Egress stations,

and allocates the network available capacity to edge-to-edge

flows according to different criteria (such as fairness, price

optimality).

Below, we describe functions and sub-components of

these three components in detail. Also, to ease under-

standing of the framework, we show important parameters,

their symbols and their descriptions in Table 1.

4.1. Ingress station i

Fig. 5 shows sub-components of Ingress station i in the

framework. Ingress i includes two sub-components: Pricing

Scheme and Budget Estimator.

Ingress station i keeps a ‘current” price vector pi; where

pij is the price for the flow from ingress i to egress j: So, the

traffic using flow i to j is charged the price pij: Pricing

Scheme is the sub-component that calculates price pij for

each edge-to-edge flow starting at Ingress i: It uses allowed

flow capacities cij and other local information (such as b̂ij),

in order to calculate price pij: The station, then, uses pij in

negotiations with customers. We will describe a simple

pricing scheme EEP later in Section 5. However, it is

possible to implement several other pricing schemes by

using the information available at Ingress i: Other than EEP,

we implemented another pricing scheme, Price Discovery,

which is available in Ref. [21].

Also, the ingress i uses the total estimated network

capacity C in calculating the Vmax contract parameter

defined in Eq. (1). Admission control techniques can be used

to identify the best value for Vmax: We use a simple method

which does not put any restriction on Vmax; i.e. Vmax ¼

C p T where T is the contract length.

Budget Estimator is the sub-component that observes

demand for each edge-to-edge flow. We implicitly assume

Fig. 4. Components of Distributed-DCC framework. Solid lined arrows

represent flow of control information necessary for price calculation. In

PFCC architecture, communication with LPS must be at very short time-

scales (i.e. each short-term contract). However, in POCC, LPS is accessed

at longer time-scales (i.e. parameter remapping instants).
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that user’s ‘budget’ represents user’s demand (i.e. will-

ingness-to-pay). So, Budget Estimator estimates budget b̂ij

of each edge-to-edge traffic flow.1 We will describe a simple

algorithm that calculates b̂ij later in Section 4.4.1.

4.2. Egress station j

Fig. 6 shows sub-components of Egress station j in the

framework: Congestion Detector, Congestion-Based

Capacity Estimator, Flow Cost Analyzer, and Fairness

Tuner.

Congestion Detector implements an algorithm to detect

congestion in network core by observing traffic arriving at

Egress j: Congestion detection can be done in several ways.

We assume that interior routers mark (i.e. sets the ECN bit)

the data packets if their local queue exceeds a threshold.

Congestion Detector generates a ‘congestion indication’ if it

observes a marked packet in the arriving traffic.

Congestion-Based Capacity Estimator estimates avail-

able capacity ĉij for each edge-to-edge flow exiting at Egress

j: In order to calculate ĉij; it uses congestion indications

from Congestion Detector and actual output rates mij of the

flows. The crucial property of Congestion-Based Capacity

Estimator is that, it estimates capacity in a congestion-based

manner, i.e. it decreases the capacity estimation when there

is congestion indication and increases when there is no

congestion indication. This makes the prices congestion-

sensitive, since Pricing Scheme at Ingress calculates prices

based on the estimated capacity. An example algorithm for

Congestion-Based Capacity Estimator will be described

later in Section 4.4.2.

Flow Cost Analyzer determines cost of each traffic flow

(e.g. number of links traversed by the flow, number of

bottlenecks traversed by the flow, amount of queuing delay

caused by the flow) exiting at Egress j: Cost incurred by

each flow can be several things: number of traversed links,

number of traversed bottlenecks, amount of queuing delay

caused. We assume that number of bottlenecks is a good

representation of the cost incurred by a flow. In Appendix A,

we define an algorithm ARBE, which estimates number of

bottleneck traversed by a flow. ARBE outputs estimated

number of bottlenecks r̂ij traversed by the flow from ingress

i to egress j:

LPS, as will be described in Section 4.3, allocates

capacity to edge-to-edge flows based on their budgets.

The flows with higher budgets are given more capacity

than the others. So, Egress j can penalize/favor a flow by

increasing/decreasing its budget b̂ij: Fairness Tuner is the

component that updates b̂ij: So, Fairness Tuner penalizes

or favors the flow from ingress i by updating its

estimated budget value, i.e. bij ¼ f ðb̂ij; r̂ij; kparameterslÞ
where kparametersl are other optional parameters that

may be used for deciding how much to penalize or favor

the flow. For example, if the flow ingress i is passing

through more congested areas than the other flows,

Fairness Tuner can penalize this flow by reducing its

budget estimation b̂ij: We will describe an algorithm for

Fairness Tuner later in Section 4.4.4.

Egress j sends ĉijs (calculated by Congestion-Based

Capacity Estimator) and bijs (calculated by Fairness Tuner)

to LPS.

Table 1

List of parameters in Distributed-DCC framework

Parameter Symbol Description

Contract length (s) T Length of contracts

Observation interval (s) O Time-scale of observations at Egress

LPS interval (s) L Time-scale of communication between LPS and provider stations

Edge-to-edge price ($/Mb) pij Unit price for traffic flow from i to j

Budget estimation ($) b̂ij Estimation for budget of flow from i to j

Updated budget estimation ($) bij Budget estimation for flow from i to j adjusted by Fairness Tuner

Estimated network capacity (Mb/s) C Estimation for total network capacity

Estimated capacity (Mb/s) ĉij Estimation of available capacity for flow i to j

Allowed capacity (Mb/s) cij Capacity given by Capacity Allocator to flow i to j

Flow input rate at ingress (Mb/s) xij Arrival rate of flow i to j at ingress i

Flow output rate at egress (Mb/s) mij Departing rate of flow i to j at egress j

Estimated flow cost r̂ij Estimation for cost incurred by flow i to j

Fairness coefficient a Tuner for fairness type of Fairness Tuner

Fig. 5. Major functions of ingress i:

1 Note that edge-to-edge flow does not mean an individual user’s flow.

Rather it is the traffic flow that is composed of aggregation of all traffic

going from one edge node to another edge node.
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4.3. Logical Pricing Server

Fig. 7 shows basic functions of LPS in the framework.

LPS receives information from egresses and calculates

allowed capacity cij for each edge-to-edge flow. The

communication between LPS and the stations take place

at every LPS interval L: There is only one major sub-

component in LPS: Capacity Allocator.

Capacity Allocator receives ĉijs, bijs and congestion

indications from Egress Stations. It calculates allowed

capacity cij for each flow. Calculation of cij values is a

complicated task which depends on internal topology. In

general, the flows should share capacity of the same

bottleneck in proportion to their budgets. We will later

define a generic algorithm ETICA for Capacity Allocator in

Section 4.4.3.

Other than functions of Capacity Allocator, LPS also

calculates total available network capacity C; which is

necessary for determining the contract parameter Vmax at

Ingresses. LPS simply sums ĉij to calculate C:

LPS can be implemented in a centralized or distributed

manner (see Section 6.1).

4.4. Sub-components

4.4.1. Budget Estimator

At Ingress i; Budget Estimator performs a very trivial

operation to estimate budgets b̂ij of each flow starting at

Ingress i: The Ingress i basically knows its current price for

each flow, pij: When it receives a packet it just needs to

determine which egress station the packet is going to. Given

that Ingress i has the addresses of all the egress stations of

the same diff-serv domain, it can find out which egress the

packet is going to. So, by monitoring the packets transmitted

for each flow, the ingress can estimate the budget of each

flow. Let xij be the total number of packets transmitted for

flow i to j in unit time, then the budget estimate for the flow i

to j is b̂ij ¼ xijpij: Notice that this operation must be done at

the ingress rather than egress, because some of the packets

might be dropped before arriving at the egress. This causes

xij to be measured less, and hence causes b̂ij to be less than it

is supposed to be.

4.4.2. Congestion-based Capacity Estimator

The essence of Congestion-Based Capacity Estimator is

to decrease the capacity estimation when there is congestion

indication(s) and to increase it when there is no congestion

indication. In this sense, several capacity estimation

algorithms can be used, e.g. Additive Increase Additive

Decrease (AIAD), Additive Increase Multiplicative

Decrease (AIMD). We now provide a full description of

such an algorithm.

At Egress j; given congestion indications from Conges-

tion Detector and output rate mij of flows, Congestion-Based

Capacity Estimator implements the following algorithm for

each flow from Ingress i : Let O be observation intervals at

which the estimator makes an observation about congestion

status of the network. The estimator identifies each

observation interval as congested or non-congested. Basi-

cally, an observation interval is congested if a congestion

indication was received from Congestion Detector during

that observation interval. At the end of each observation

interval t; the estimator updates the estimated capacity ĉij as

follows:

ĉijðtÞ ¼
b p mijðtÞ; congested

ĉijðt 2 1Þ þ Dĉ; non-congested

(

where b is in (0,1), mijðtÞ is the measured output rate of flow

i to j during observation interval t; and Dĉ is a pre-defined

increase parameter. This algorithm is a variant of well-

known AIMD.

4.4.3. ETICA: Edge-to-edge, Topology-Independent

Capacity Allocation

Firstly, note that LPS is going to implement ETICA

algorithm as a Capacity Allocator (see Fig. 7). So, we

will refer to LPS throughout the description of ETICA

below.Fig. 7. Major functions of LPS.

Fig. 6. Major functions of egress j:
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At LPS, we introduce a new information about each

edge-to-edge flow fij: A flow fij is congested, if egress j has

been receiving congestion indications from that flow

recently (we will later define what ‘recent’ is).

Again at LPS, let Kij determine the state of fij: If Kij . 0;

LPS determines fij as congested. If not, it determines fij as

non-congested. At every LPS interval t; LPS calculates Kij

as follows:

KijðtÞ ¼
k̂; congestion in t 2 1

Kijðt 2 1Þ2 1; no congestion in t 2 1

8<
: ð2Þ

where k̂ is a positive integer. Notice that k̂ parameter defines

how long a flow will stay in ‘congested’ state after the last

congestion indication. So, in other words, k̂ defines the time-

line to determine if a congestion indication is recent or not.

According to these considerations in ETICA algorithm,

Fig. 8 shows states of an edge-to-edge flow given that

probability of receiving a congestion indication in the last

LPS interval is p: Gray states are the states in which the flow

is congested, and the single white state is the non-congested

state. Observe that number of congested states (i.e. gray

states) is equal to k̂ which defines to what extent a

congestion indication is recent.2

Given the above method to determine whether a flow is

congested or not, we now describe the algorithm to allocate

capacity to the flows. Let F be the set of all edge-to-edge

flows in the diff-serv domain, and Fc be the set of congested

edge-to-edge flows. Let Cc be the accumulation of ĉijs

where fij [ Fc: Further, let Bc be the accumulation of bijs

where fij [ Fc: Then, LPS calculates the allowed capacity

for fij as follows:

cij ¼

bij

Bc

Cc; Kij . 0

ĉij; otherwise

8><
>:

The intuition is that if a flow is congested, then it must be

competing with other congested flows. So, a congested flow

is allowed a capacity in proportion to its budget relative to

budgets of all congested flows. Since we assume no

knowledge about the interior topology, we can approximate

the situation by considering these congested flows as if they

are passing through a single bottleneck. If knowledge about

the interior topology is provided, one can easily develop

better algorithms by sub-grouping the congested flows that

are passing through the same bottleneck.

In short, the ETICA algorithm basically says that a flow

in one of its congested states gets a share3 of the total

capacity of the congested flows (i.e. Cc). If the flow is in its

in ‘non-congested’ state, then it uses its own capacity.

If a flow is not congested, then it is allowed to use its own

estimated capacity, which will give enough freedom to

utilize capacity available to that particular flow. Dynamics

of the algorithm will be understood more clearly after the

simulation experiments in Section 8.

4.4.4. Fairness Tuner

We examine the issues regarding fairness in two main

cases. We first determine these two cases and then provide

solutions within Distributed-DCC framework.

† Single-bottleneck case. The pricing protocol should

charge the same price to the users of the same bottleneck.

In this way, among the customers using the same

bottleneck, the ones who have more budget will be

given more rate than the others. The intuition behind this

reasoning is that the cost of providing capacity to each

customer is the same.

† Multi-bottleneck case. The pricing protocol should

charge more to the customers whose traffic passes

through more bottlenecks and cause more costs to the

provider. So, other than proportionality to customer

budgets, we also want to allocate less rate to the

customers whose flows are passing through more bottle-

necks than the other customers.

For multi-bottleneck networks, two main types of

fairness have been defined: max-min fairness [22], pro-

portional fairness [8]. In max–min fair rate allocation, all

flows get equal share of the bottlenecks, while in

proportional fair rate allocation flows get penalized

according to the number of traversed bottlenecks. Depend-

ing on the cost structure and user’s utilities, for some cases

the provider may want to choose max–min or proportional

rate allocation. So, we would like to have ability of tuning

the pricing protocol such that fairness of its rate allocation is

in the way the provider wants.

For a better understanding of proportional fairness and

max-min fairness, we study them in terms of social welfare

maximization with a canonical example in Appendix B.

To achieve the fairness objectives defined in the above

itemized list, we introduce new parameters for tuning rate

allocation to flows. In order to penalize flow i to j; the egress

Fig. 8. States of an edge-to-edge flow in ETICA algorithm. The states i . 0

are congested states and the state i ¼ 0 is the non-congested state,

represented with gray and white colors, respectively.

2 Note that instead of setting Kij to k̂ at every congestion indication, more

accurate methods can be used in order to represent self-similar behavior of

congestion epochs. For simplicity, we proceed with the method in Eq. (2).

3 Note that in this definition of ETICA, we defined this ‘share’ as the ratio

of bij=Bc which is based on fij’s monetary value with respect to monetary

value of all congested flows Fc: This is because our main goal is to ‘price’

effectively. However, one can define this share according to other criteria

(such as equal to all congested flows), which makes it possible to use

ETICA for completely rate allocation purposes.
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j can reduce b̂ij while updating the flow’s estimated budget.

It uses the following formula to do so:

bij ¼ f ðb̂ij; rðtÞ;a; rminÞ ¼
b̂ij

rmin þ ðrijðtÞ2 rminÞa

where rijðtÞ is the congestion cost caused by the flow i to j;

rmin is the minimum possible congestion cost for the flow,

and a is fairness coefficient. Instead of b̂ij; the egress j now

sends bij to LPS. When a is 0, Fairness Tuner is employing

max–min fairness. As it gets larger, the flow gets penalized

more and rate allocation gets closer to proportional fairness.

However, if it is too large, then the rate allocation will move

away from proportional fairness. Let ap be the a value

where the rate allocation is proportionally fair. If the

estimation rijðtÞ is absolutely correct, then ap ¼ 1: Other-

wise, it depends on how accurate rijðtÞ is.

Assuming that each bottleneck has the same amount of

congestion and capacity. Then, in order to calculate rijðtÞ

and rmin; we can directly use the number of bottlenecks the

flow i to j is passing through. In such a case, rmin will be 1

and rijðtÞ should be number of bottlenecks the flow is

passing through. ARBE, in Appendix A, calculates an

estimation for rij:

5. Edge-to-Edge Pricing Scheme

For flow fij; Distributed-DCC framework provides an

allowed capacity cij and an estimation of total user budget

b̂ij at ingress i: So, the provider station at ingress i can use

these two information to calculate price. We propose a

simple price formula to balance supply and demand:

p̂ij ¼
b̂ij

cij

ð3Þ

Here, b̂ij represents user demand and cij is the available

supply.

In Appendix C, we provided a detailed optimization

analysis of this EEP pricing scheme in Distributed-DCC

framework. We showed that the price calculation formula in

Eq. (3) is optimal for the well-known total user utility

maximization problem. We considered effect of different

utility functions and elasticities of users on optimal prices.

6. Distributed-DCC: PFCC architecture

In order to adapt Distributed-DCC to PFCC architecture,

LPS must operate on very low time-scales. In other words,

LPS interval must be small enough to maintain control over

congestion, since PFCC assumes no underlying congestion

control mechanism. This raises two issues to be addressed:

† In order to maintain human involvement into the system,

intermediate agents between customers and Ingress

stations must be implemented.

† Since LPS must operate at very small time-scales,

scalability issues regarding LPS must be solved.

As we previously said earlier in Section 3.1, we do not

focus on the first problem since it cannot be addressed

within this paper because of its large size and complexity.

So, we assume that customers are willing to undertake high

price variations, and leave development of necessary

intermediate agents for future research. We address the

second problem in Section 6.1.

6.1. Scalability

Distributed-DCC operates on per edge-to-edge flow

basis. There are mainly two issues regarding scalability:

LPS, the number of flows. First of all, the flows are not per-

connection basis, i.e. all the traffic going from edge router i

to j is counted as only one flow. This actually relieves the

scalability problem for operations that happen on per-flow

basis. The number of flows in the system will be nðn 2 1Þ

where n is the number of edge routers in the diff-serv

domain. So, indeed, scalability of the flows is not a problem

for the current Internet since number of edge routers for a

single diff-serv domain is very small. If it becomes so large

in future, then aggregation techniques can be used to

overcome this scalability issue, of course, by sacrificing

some optimality.

Scalability of LPS can be done in two ways. First idea is

to implement LPS in a fully distributed manner. The edge

stations exchange information with each other (similar to

link-state routing). Basically, each station will send total of

n 2 1 messages, each of which headed to other stations. So,

this will increase the overhead on the network because of

the extra messages, i.e. the complexity will increase from

OðnÞ to Oðn2Þ in terms of number of messages.

Alternatively, LPS can be divided into multiple local

LPSs which synchronize among themselves to maintain

consistency. This way the complexity of number of

messages will reduce. However, this will be at a cost of

some optimality again.

Since these above-defined scaling techniques are very

well-known, we do not focus on detailed description of

them.

7. Distributed-DCC: POCC architecture

In this section, we develop necessary components in

order to adapt Distributed-DCC framework to POCC

architecture. First, we will briefly describe an edge-to-

edge congestion control mechanism Riviera [23].

Then, we will address problems defined in Section 3.2

for the case of overlaying Distributed-DCC over

Riviera. This will fit Distributed-DCC to the POCC

architecture.
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Also, to summarize Section 6 and this section, Table 2

shows differences between Distributed-DCC’s PFCC and

POCC versions.

7.1. Edge-to-Edge Congestion Control: Riviera

We now describe overall properties of an edge-to-edge

congestion control scheme, Riviera [23], which we will also

use in our experiments later in the paper.

Riviera takes advantage of two-way communication

between ingress and egress edge routers in a diff-serv

network. Ingress sends a forward feedback to egress in

response to feedback from egress, and egress sends

backward feedback to ingress in response to feedback

from ingress. So, ingress and egress of a traffic flow keep

bouncing feedback to each other. Ignoring loss of data

packets, the egress of a traffic flow measures the

accumulation, a; caused by the flow by using the bounced

feedbacks and RTT estimations.

The egress node keeps two threshold parameters to detect

congestion: max_thresh and min_thresh. For each flow, the

egress keeps a variable that says whether the flow is

congested or not. When a for a particular flow exceeds

max_thresh, the egress updates the variable to congested.

Similarly, when a is less than min_thresh, it updates the

variable to not-congested. It does not update the variable if a

is in between max_thresh and min_thresh. The ingress node

gets informed about the congestion detection by backward

feedbacks and employs AIMD-ER (AIMD-Explicit Rate,

i.e. a variant of regular AIMD) to adjust the sending rate.

In a single-bottleneck network, Riviera can be tuned such

that each flow gets weighted share of the bottleneck

capacity. Every ingress node i maintains an additive

increase parameter, ai; and a multiplicative decrease

parameter, b; for each edge-to-edge flow. These parameters

are used in AIMD-ER. Among the edge-to-edge flows, by

setting the increase parameters ðaiÞ at the ingresses and the

threshold parameters (max_thresh and min_thresh) at the

egresses in ratio of desired rate allocation, it is possible to

make sure that the flows get the desired rate allocation. For

example, assume there are two flows 1 and 2 competing for

a bottleneck (similar to Fig. 9a). If we want flow 1 to get a

capacity of w times more than flow 2, then the following

conditions must be hold:

1. a2 ¼ w

2. max_thresh2 ¼ w max_thresh1

3. min_thresh2 ¼ w min_thresh1.

7.2. Distributed-DCC over Riviera

We now provide solutions defined in Section 3.2, for the

case of overlaying Distributed-DCC over Riviera:

1. Parameter mapping. For each edge-to-edge flow, LPS

can calculate the capacity share of that flow out of the

total network capacity. Let gij ¼ cij=C be the fraction of

network capacity that must be given to the flow i to :j

LPS can convey gijs to the ingress stations, and they can

multiply the increase parameter aij with gij: Also, LPS

can communicate gijs to the egresses, and they can

multiply max_threshij and min_threshij with gij:

2. Edge queues. In Distributed-DCC, ingress stations are

informed by LPS about allocated capacity cij for each

edge-to-edge flow. So, one intuitive way of making

sure that the user will not contract for more than cij is

to subtract necessary capacity to drain the already

built edge queue from cij; and then make contracts

accordingly. In other words, the ingress station

updates the allocated capacity cij for flow i to j by

the following formula c0ij ¼ cij 2 Qij=T ; and uses c0ij for

price calculation. Note that Qij is the edge queue

Table 2

Differences between Distributed-DCC’s PFCC and POCC versions

Distributed-DCC: PFCC Distributed-DCC: POCC

LPS must operate at

small time-scales

LPS may operate at

large time-scales

LPS must be scaled

because of its time-scale

It is not necessary

to scale LPS

Framework can achieve a

range of fairness in

rate allocation

Fairness of rate allocation

depends on the underlying

congestion control mechanism

Bottleneck queues at network

core are large

Bottleneck queues at network

core are small

Does not need to

manage queues at network

edges

Need to manage queues

at network edges

Fig. 9. (a) Single-bottleneck; (b) multi-bottleneck network for Distributed-DCC experiments.
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length for flow i to j and T is the length of the

contract.

An optional technique is as follows. Remember that

egress nodes reduce their capacity estimation for a flow to a

fraction of its current output rate, when a marked packet was

received in the last observation interval. So, when edge

queue exceeds a threshold, the ingress provider station can

mark the packets, which will indirectly reduce the capacity

estimation, and hence drain the edge queue.

8. Simulation experiments and results

We now present ns [24] simulation experiments for the

two architectures, PFCC and POCC, on single-bottleneck

and multi-bottleneck topology. Our goals are to illustrate

fairness and stability properties of the two architectures with

possible comparisons of two.

For PFCC and POCC, we simulate Distributed-DCC’s

PFCC and POCC versions which were describe in Sections

6 and 7, respectively. We will simulate EEP pricing scheme

at Ingress stations. List of items we will present in the

simulation experiments:

† Steady-state properties of PFCC and POCC architec-

tures: queues, rate allocation

† PFCC’s fairness properties: Provision of various fairness

in rate allocation by changing the fairness coefficient a

† Performance of Distributed-DCC’s capacity allocation

algorithm ETICA in terms of adaptiveness.

8.1. Experimental configuration

The single-bottleneck topology has a bottleneck link,

which is connected to n edge nodes at each side where n

is the number of users. The multi-bottleneck topology has

n 2 1 bottleneck links, that are connected to each other

serially. There are again n ingress and n egress edge

nodes. Each ingress edge node is mutually connected to

the beginning of a bottleneck link, and each egress node is

mutually connected to the end of a bottleneck link. All

bottleneck links have a capacity of 10 Mb/s and all other

links have 15 Mb/s. Propagation delay on each link is

5 ms, and users send UDP traffic with an average packet

size of 1000 B. To ease understanding the experiments,

each user sends its traffic to a separate egress. For the

multi-bottleneck topology, one user sends through all the

bottlenecks (i.e. long flow) while the others cross that

user’s long flow. The queues at the interior nodes (i.e.

nodes that stand at the tips of bottleneck links) mark the

packets when their local queue size exceeds 30 packets. In

the multi-bottleneck topology they increment a header

field instead of just marking. Fig. 9a shows a single-

bottleneck topology with n ¼ 3: Fig. 9b shows multi-

bottleneck topology with n ¼ 4: The white nodes are edge

nodes and the gray nodes are interior nodes. These figures

also show the traffic flow of users on the topology. The

user flow tries to maximize its total utility by contracting

for b=p amount of capacity, where b is its budget and p is

price. The flows’s budgets are randomized according to

truncated-Normal [25] distribution with a given mean

value. This mean value is what we will refer to as flows’s

budget in our simulation experiments.

Contracting takes place at every 4 s, observation interval

is 0.8 s, and LPS interval is 0.16 s. Ingresses send budget

estimations to corresponding egresses at every observation

interval. LPS sends information to ingresses at every LPS

interval. The parameter k̂ is set to 25, which means a flow is

determined to be non-congested at least after (please see

Section 4.4.3) 25 LPS intervals equivalent to one contract-

ing interval.

The parameter d is set to 1 packet (i.e. 1000 B), the initial

value of ĉij for each flow fij is set to 0.1 Mb/s, b is set to 0.95,

and Dr is set to 0.0005. Also note that, in the experiments,

packet drops are not allowed in any network node. This is

because we would like to see performance of the schemes in

terms of assured service.

8.2. Experiments on single-bottleneck topology

We run simulation experiments for PFCC and POCC on

the single-bottleneck topology, which is represented in

Fig. 9a. In this experiment, there are three users with

budgets of 30, 20, 10, respectively, for users 1, 2, 3. Total

simulation time is 15,000 s, and at the beginning only the

user 1 is active in the system. After 5000 s, the user 2 gets

active. Again after 5000 s at simulation time 10,000, the

user 3 gets active.

For POCC, there is an additional component in the

simulation: edge queues. The edge queues mark the packets

when queue size exceeds 200 packets. So, in order to

manage the edge queues in this simulation experiment, we

simultaneously employ the two techniques defined in

Section 7.2.

In terms of results, the volume given to each flow is very

important. Figs. 10a and 11a show the volumes given to

each flow in PFCC and POCC, respectively. We see the

flows are sharing the bottleneck capacity in proportion to

their budgets. In comparison to POCC, PFCC allocates

volume more smoothly but with the same proportionality to

the flows. The noisy volume allocation in POCC is caused

by coordination issues (i.e. parameter mapping, edge

queues) investigated in Section 7.

Figs. 10b and 11b show the price being advertised to

flows in PFCC and POCC, respectively. As the new users

join in, the pricing scheme increases the price in order to

balance supply and demand.

Figs. 10c and 11c show the bottleneck queue size in

PFCC and POCC, respectively. Notice that queue sizes

make peaks transiently at the times when new users gets

active. Otherwise, the queue size is controlled reasonably
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and the system is stable. In comparison to PFCC, POCC

manages the bottleneck queue much better because of

the tight control enforced by the underlying edge-to-edge

congestion control algorithm Riviera.

Fig. 12a–c shows the sizes of edge queues in POCC. We

can observe that users get active at 5000 s of intervals. We

observe stable behavior but with oscillations larger than the

bottleneck queue shown in Fig. 11c. This is because of

Fig. 10. Results of single-bottleneck experiment for PFCC.

Fig. 11. Results of single-bottleneck experiment for POCC.
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the tight edge-to-edge congestion control, which pushes

backlog to the edges. This suits to the big-picture of the two

architectures shown in Fig. 1.

Also, observe that the edge queues are generally much

lower than the threshold of 200 packets. This means that the

packets were marked at the edge queues very rarely. So, the

technique of marking the packets at the edges and reducing

the estimated capacity indirectly was not dominant in this

simulation.

8.3. Experiments on multi-bottleneck topology

On a multi-bottleneck network, we would like illustrate

two properties for PFCC:

† Property 1: provision of various fairness in rate

allocation by changing the fairness coefficient a of

Distributed-DCC framework (see Section 4.4.4)

† Property 2: performance of Distributed-DCC’s

capacity allocation algorithm ETICA in terms of

adaptiveness (see Section 4.4.3).

Since Riviera does not currently4 provide a set of

parameters for weighted allocation on multi-bottleneck

topology, we will not run any experiment for POCC on

multi-bottleneck topology.

In order to illustrate Property 1, we run a series of

experiments for PFCC with different a values. Remember

that a is the fairness coefficient of Distributed-DCC. Higher

a values imply more penalty to the flows that cause more

congestion costs. We use a larger version of the topology

represented in Fig. 9b. In the multi-bottleneck topology

there are 10 users and 9 bottleneck links. Total simulation

time is 10,000 s. At the beginning, the user with the long

flow is active. All the other users have traffic flows crossing

the long flow. After each 1000 s, one of these other users

gets active. So, as the time passes the number of bottlenecks

in the system increases since new users with crossing flows

join in. Notice that the number of bottlenecks in the system

is one less than the number of active user flows. We are

interested in the volume given to the long flow, since it is the

one that cause more congestion costs than the other user

flows.

Fig. 13a shows the average volume given to the long flow

versus the number of bottlenecks in the system for different

values of a: As expected the long flow gets less and less

capacity as a increases. When a is zero, the scheme

achieves max–min fairness. As it increases the scheme gets

closer to proportional fairness. Also note that, the other user

flows get the rest of the bottleneck capacity, and hence

utilize the bottlenecks.

This variation in fairness is basically achieved by

advertisement of different prices to the user flows according

to the costs incurred by them. Fig. 13b shows the average

price that is advertised to the long flow as the number of

bottlenecks in the system increases. We can see that the

price advertised to the long flow increases as the number of

bottlenecks increases.

Fig. 12. Edge queues in the single-bottleneck experiment for POCC.

4 It is still being studied by its developers.
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Finally, to illustrate Property 2, we ran an experiment

on the topology in Fig. 9b with small changes. We

increased capacity of the bottleneck at node D from 10

to 15 Mb/s. There are four flows and three bottlenecks in

the network as represented in Fig. 9b. Initially, all the

flows have an equal budget of 10. Total simulation time

is 30,000 s. Between times 10,000 and 20,000, budget of

flow 1 is temporarily increased to 20. The fairness

coefficient a is set to 0. All the other parameters (e.g.

marking thresholds, initial values) are exactly the same

as in the single-bottleneck experiments of Section 8.2.

Fig. 13c shows the volumes given to each flow, and

Fig. 13d shows the given volumes averaged over 200

contracting periods. Until time 10,000 s, flows 0, 1, and

2 share the bottleneck capacities equally presenting a

max–min fair allocation because a was set to 0.

However, flow 3 is getting more than the others because

of the extra capacity at bottleneck node D. This

flexibility is achieved by the freedom given individual

flows by the capacity allocation algorithm (see Section

4.4.3).

Between times 10,000 and 20,000, flow 2 gets a step

increase in its allocated volume because of the step increase

in its budget. In result of this, flow 0 gets a step decrease in

its volume. Also, flows 2 and 3 adapt themselves to the new

situation by attempting to utilize the extra capacity leftover

from the reduction in flow 0’s volume. So, flow 2 and 3 gets

a step decrease in their volumes. After time 20,000, flows

restore to their original volume allocations, illustrating the

adaptiveness of the scheme.

9. Summary and discussions

In this paper, we presented a new framework, Dis-

tributed-DCC, for congestion pricing in a single diff-serv

domain. Distributed-DCC can provide a contracting frame-

work based on short-term contracts between user appli-

cation and the service provider. Since contracts are short-

term, it becomes possible to update prices frequently and

hence to advertise dynamic prices. Particularly, on a totally

edge-to-edge basis, we described ways of calculating

congestion-based prices, which enables congestion pricing

in the proposed Distributed-DCC framework.

Main contribution of the paper is to develop an easy-to-

implement congestion pricing framework which provides

flexibility in rate allocation. We investigated fairness issues

within Distributed-DCC and illustrated ways of achieving a

range of fairness types (i.e. from max-min to proportional)

through congestion pricing under certain conditions. The

fact that it is possible to achieve various fairness types

within a single framework is very encouraging. We also

developed a pricing scheme, EEP, within the Distributed-

DCC framework, and presented several simulation exper-

iments of it.

By extensive simulations, we demonstrated that Dis-

tributed-DCC’s edge-to-edge capacity allocation algorithm,

ETICA, has dominant effects of Distributed-DCC’s per-

formance especially when ratio of flows’ budgets R is large.

Also, we introduced two pricing architectures based on the

manner of attacking the problem of congestion control by

pricing: PFCC and POCC. We adapted the Distributed-DCC

Fig. 13. Results of PFCC experiments on multi-bottleneck topology.
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framework to these architectures, and compared the archi-

tectures by simulation. We demonstrated that POCC is better

in terms of managing congestion innetwork core, while PFCC

achieves wider range of fairness types in rate allocation.

Future work should include investigation of issues

related to extending Distributed-DCC on multiple diff-

serv domains. One immediate question is that how will

the end-to-end service be priced? One way of doing this

is to make the Distributed-DCC domain end user is

connected to responsible for provisioning of end-to-end

service. Another way could be to design brokers that

offer end-to-end services by buying edge-to-edge services

from many Distributed-DCC domains at the background.

Another future work item is to implement soft

admission control techniques in the framework by tuning

the contract parameter Vmax: Currently, Vmax is set to

total network capacity, which allows each individual user

to contract up to the whole network capacity. This

sometimes (especially when new users join in) causes

users to contract for significantly larger than the network

can handle.

Several other improvements are possible to the frame-

work such as better capacity estimation techniques (see

Section 4.4.2), better budget estimation techniques (see

Section 4.4.1).
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Appendix A. Algorithm for Routing-sensitive

Bottleneck-count Estimation (ARBE)

Given a diff-serv network, we would like to estimate

number of bottlenecks each edge-to-edge flow is passing

through. The algorithm ARBE presented in this appendix

provides a solution to this problem.

Assuming that interior routers increment bottleneck-

count header field of packets when congested, ARBE

calculates the number of bottlenecks an edge-to-edge flow is

passing through. ARBE operates at the egress edge router.

Assuming that each bottleneck has the same amount of

congestion and also assume that they have the same

capacity. Let rijðtÞ be the number of bottlenecks the flow

from ingress i to egress j; fij; is passing through at time t:

ARBE operates on deterministic time intervals, and

calculates rijðtÞ as follows:

rijðtÞ ¼
r̂ijðtÞ; rijðt 2 1Þ # r̂ijðtÞ

rijðt 2 1Þ2 Dr; otherwise

(
ðA1Þ

where r̂ijðtÞ is the highest number of bottlenecks that flow

passed through in time interval t; Dr is a pre-defined value.

r̂ijðtÞ is updated at each packet arrival by simply equating it

to the maximum of its actual value and the bottleneck-count

header field of the newly arrived packet. Algorithm 1 shows

the pseudo-code for the algorithm.

Algorithm 1. Algorithm for Routing-Sensitive Bottleneck-

Count Estimation

ARBE(BCðtÞ; Dr)

{Dr is decaying step-size.}

{BCðtÞ is the maximum bottleneck-count received in the

last interval t:}

{BC is the actual estimation for bottleneck-count.}

if BCðtÞ . BC then

BC ˆ BCðtÞ

else

BC ˆ BC 2 Dr

end if

Realize that the bottleneck-count header field of the

packets are being incremented only if they are passing

through a congested bottleneck. It is possible that some of

the bottlenecks are not congested when a particular packet is

passing through them. For example, the bottleneck-count

header field of the packet may be incremented only three

times, although it actually passed through six bottlenecks.

So, it is necessary to bias the estimation to the largest

number of bottlenecks the packets of that flow have passed

recently.

Also as another issue, IP routing causes route of the flows

to change dynamically. To consider the dynamic behavior

of the routes, it is also necessary to decrease rij when rijðt 2

1Þ . r̂ijðtÞ: So, if the route of the flow has changed, then

after some time (depending on how large the Dr is) the value

of rij will decrease to the actual number of bottlenecks the

flow is passing through.

Appendix B. Max–min fairness, proportional fairness,

and social welfare maximization

Consider a multi-bottleneck network in which there is a

long flow that is crossed by n parallel flows. An example of

such a network is shown in Fig. 9b. Suppose all the

bottlenecks are equivalent in capacity, C: Intuitively,

whatever the long flow gets, all the parallel flows will get

the rest of the capacity. Let x0 be the capacity given to the

long flow and x1 be the capacity given to one of the parallel
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flows. Suppose that the utility of the long flow is u0ðx0Þ ¼

w0 logðx0Þ and the utility of one of the parallel flows is

u1ðx1Þ ¼ w1 logðx1Þ: Notice that w0 and w1 are the

sensitivity of the flows to capacity (also interpreted as

flow’s budget). Since the long flow is passing through n

bottlenecks, cost of providing capacity to the long flow is n

times more than cost of providing capacity to one of the

parallel flows. So, let cost of providing x1 to one of the

parallel flows be K1ðx1Þ ¼ kx1; and let the cost of providing

x0 to the long flow be K0ðx0Þ ¼ nkx0: Within this context,

the social welfare, W ; and its Lagrangian will be:

W ¼ w0 logðx0Þ þ nw1 logðx1Þ2 nkx0 2 nkx1

Z ¼ w0 logðx0Þ þ nw1 logðx1Þ2 nkðx0 þ x1Þ

þ lðx0 þ x1 2 CÞ

After solving the above Lagrangian, we get the following

solutions for x0 and x1 to maximize W :

x0 ¼
w0C

w0 þ nw1

x1 ¼
nw1C

w0 þ nw1

From the above result, we make two observations:

† First, if both the long flow and a parallel flow have equal

bandwidth sensitivity, i.e. w0 ¼ w1; then the optimal

allocation will be x0 ¼ C=ðn þ 1Þ and x1 ¼ Cn=ðn þ 1Þ:

This is the proportional fair case. So, proportional

fairness is optimal only when all the flows have equal

bandwidth sensitivity. As another interpretation, it is

optimal only if all the flows have equal budget.

† Second, if the long flow is sensitive to bandwidth n times

more than a parallel flow, i.e. w0 ¼ nw1; then the optimal

allocation will be x0 ¼ x1 ¼ C=2: This is the max–min

fair case. So, max-min fairness is optimal only when the

long flow’s utility is sensitive to bandwidth in proportion

to the cost of providing capacity to it. In other words, by

interpreting bandwidth sensitivity as the flow’s budget,

max–min fairness is optimal only when the long flow has

budget in proportion to the cost of providing capacity to

it.

Observations similar to above have been made in the

area, e.g. Refs. [8,26].

Appendix C. Optimization analysis of Edge-to-Edge

Pricing

In Section 5, we described a pricing scheme EEP, which

suits to the Distributed-DCC framework. The main idea of

the EEP is to balance supply and demand by equating price

to the ratio of users’ budget (i.e. demand) B by available

capacity C: Based on that, we used the pricing formula:

p ¼
B̂

Ĉ
ðA2Þ

where B̂ is the users’ estimated budget and Ĉ is the

estimated available network capacity. The capacity esti-

mation is performed based on congestion level in the

network, and this makes the EEP scheme a congestion-

sensitive pricing scheme (see Section 4.4.2).

In this appendix, we will provide theoretical proof that

Eq. (A2) is optimal in the case of logarithmic user utilities.

Further we will also show how to calculate optimal prices in

the case of non-logarithmic5 concave utilities.

We will also investigate users’ elasticity to price and

bandwidth. Specifically, we will first define different types

of user elasticities, and then look at effect of these

elasticities on optimal prices.

Also, note that optimization problem being solved is

based on the assumption that each link in the network has an

associated local price, just like in Low et al.’s [9] pricing

framework. Notice that this violates the fundamental design

principles of Distributed-DCC framework. This means our

optimization study of EEP here is theoretically correct while

Distributed-DCC framework trades off some optimality for

implementation purposes.

C.1. Problem formulation

We now formulate the problem of total user utility

maximization for a multi-user multi-bottleneck network.

Let F ¼ {1;…;F} be the set of flows and L ¼ {1;…;L}

be the set of links in the network. Also, let Lðf Þ be the set of

links the flow f passes through and FðlÞ be the set of flows

passing through the link l: Let cl be the capacity of link l: Let

l be the vector of flow rates and lf be the rate of flow f : We

can formulate the total user utility maximization problem as

follows:

SYSTEM :

max
l

X
f

Uf ðlf Þ

subject toX
f[FðlÞ

lf cl; l ¼ 1;…; L ðA3Þ

This problem can be divided into two separate problems by

employing monetary exchange between user flows and the

network provider. Following Kelly’s [27] methodology we

split the system problem into two:

The first problem is solved at the user side. Given

accumulation of link prices on the flow f ’s route, pf ; what is

the optimal sending rate in order to maximize surplus.

5 Note that non-logarithmic does not mean convex utility functions. Our

proofs are valid only for concave utility functions.
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FLOWf ðp
f Þ :

max
lf

Uf ðlf Þ2
X

l[Lðf Þ

pllf

8<
:

9=
; ðA4Þ

over

lf $ 0 ðA5Þ

The second problem is solved at the provider’s side. Given

sending rate of user flows (which are dependent on the link

prices), what is the optimal price to advertise in order to

maximize revenue.

NETWORKðlðpf ÞÞ :

max
p

X
f

X
l[Lðf Þ

pllf

subject toX
f[FðlÞ

lf # cl; l ¼ 1;…;L

over

p $ 0 ðA6Þ

Let the total price paid by flow f be pf ¼
P

l[Lðf Þ pl: Then,

solution to FLOWf ðp
f Þ will be:

lf ðp
f Þ ¼ U 0

f21ðpf Þ ðA7Þ

When it comes to the NETWORKðlðpf ÞÞ problem, the

solution will be dependent on user flows utility functions

since their sending rate is based on their utility functions as

shown in the solution of FLOWf ðp
f Þ: So, in the next sections

we will solve the NETWORKðlðpf ÞÞ problem for the cases

of logarithmic and non-logarithmic utility functions.

C.2. Optimal prices: logarithmic utility functions

We model customer i’s utility with the well-known

function6 [8,9,22,28]

uiðxÞ ¼ wi logðxÞ ðA8Þ

where x is the allocated bandwidth to the customer and wi is

customer i’s budget (or bandwidth sensitivity).

Now, we set up a vectorized notation, then solve the

revenue maximization problem NETWORKðlðpf ÞÞ

described in the previous section. Assume the network

includes n flows and m links. Let l be row vector of the flow

rates (lf for f [ F), P be column vector of the price at each

link (pl for l [ L). Define the n £ n matrix Pp in which the

diagonal element Pp
jj is the aggregate price being advertised

to flow j (i.e. pj ¼
P

l[LðjÞ pl) and all the other elements are 0.

Also, let A be the n £ m routing matrix in which the element

Aij is 1 if ith flow is passing though jth link and the element

Aij is 0, if not, C be the column vector of link capacities (cl

for l [ L). Finally, define the n £ n matrix l̂ in which

the diagonal element l̂jj is the rate of flow j (i.e. l̂jj ¼ lj)

and all the other elements are 0.

Given the above notation, relationship between the link

price vector P and the flow aggregate price matrix Pp can be

written as:

AP ¼ Ppe ðA9Þ

l ¼ ðl̂eÞT ¼ eTl̂ ðA10Þ

where e is the column unit vector.

We use the utility function of Eq. (A8) in our analysis. By

plugging Eq. (A8) in Eq. (A7) we obtain flow’s demand

function in vectorized notation:

lðPpÞ ¼ WPp21 ðA11Þ

where W is row vector of the weights wi in flow’s utility

function (A8). Similarly, we can write derivative of Eq.

(A11) as:

l0ðPpÞ ¼ 2WðPp2Þ21 ðA12Þ

Also, we can write the utility function (A8) and its

derivative in vectorized notation as follows:

UðlÞ ¼ W logðl̂Þ ðA13Þ

U 0ðlÞ ¼ W l̂21 ðA14Þ

The revenue maximization of Eq. (A6) can be re-written as

follows:

max
P

R ¼ lAP

subject to

lA # CT
: ðA15Þ

So, we write the Lagrangian as follows:

L ¼ lAP þ ðCT 2 lAÞg ðA16Þ

where g is column vector of the Lagrange multipliers for the

link capacity constrain.

By plugging Eqs. (A11) and (A12) in appropriate places,

the optimality conditions for Eq. (A16) can be written as:

Lg : CT 2 WPp21 ðA17Þ

LPp :2WðPp2Þ21PpeþWPp21e2WðPp2Þ21Ag¼ 0 ðA18Þ

By solving Eq. (A18) for Pp; we obtain:

Pp ¼ 0 ðA19Þ

Now, solve Eq. (A17) for Pp :

Pp ¼AðCTÞ21W ðA20Þ

Apparently, the optimization problem has two solutions as

shown in Eqs. (A19) and (A20). Since Eq. (A19) violates the

condition P. 0; we accept the solution in Eq. (A20).

We finally derive P by using Eq. (A9):

P ¼ ðCTÞ21We ðA21Þ6 Wang and Schulzrinne introduced a more complex version in Ref. [15].
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Since Pp ¼ ðPpÞT; we can derive another solution:

P ¼ A21WTC21ATe ðA22Þ

Notice that the result in Eq. (A21) holds for a single-

bottleneck (i.e. single-link) network. In non-vectorized

notation, this results translates to:

p ¼

X
f[F

wf

c

The result in Eq. (A22) holds for a multi-bottleneck

network. This result means that each link’s optimal price

is dependent on the routes of each flow passing through that

link. More specifically, the optimal price for link l is

accumulation of budgets of flows passing through link l (i.e.

WTAT in the formula) divided by total capacity of the links

that are traversed by the flows traversing the link l (i.e.

A21C21 in the formula). In non-vectorized notation, price of

link l can be written as:

pl ¼

X
f[FðlÞ

wf

X
f[FðlÞ

X
k[Lðf Þ

ck

C.3. Elasticity

The term elastic was first introduced to the networking

research community by Shenker [29]. Shenker called

applications that adjust their sending rates according to

the available bandwidth as ‘elastic applications’, and the

traffic generated by such applications as ‘elastic traffic’.

An example of such traffic is the well-known TCP traffic,

which is adjusted according to the congestion indications

representing decrease in the available bandwidth. Shenker,

further, called applications that do not change their

sending rates according to the available bandwidth as

‘inelastic’. So, this interpretation of elasticity is the same

as adaptiveness, i.e. an application is elastic if it adapts its

rate according to the network conditions, it is inelastic if it

does not.

The concept of elasticity originates from the theory of

economics. In economics, demand elasticity according to

price7 is defined as percent change in demand in response to

a percent change in price [30]. In other words, demand

elasticity is the responsiveness of the demand to price

changes. A formal definition of demand elasticity can be

written as [30]:

1 ¼
DXðpÞ=XðpÞ

Dp=p
ðA23Þ

where p is price, Dp is the change in the price, XðpÞ is user’s

demand function, and DXðpÞ is the change in user’s demand.

Eq. (A23) can be re-written as:

1 ¼
p

XðpÞ

dXðpÞ

dp
ðA24Þ

Given 1; the characteristic L1 of user demand is made

according to the following functional definition [30]:

L1 ¼

elastic; l1l . 1

unit elastic; l1l ¼ 1

inelastic; l1l , 1

8>><
>>:

So, Shenker’s interpretation of elasticity for user utility is

actually different from the real meaning of elasticity in

economics. Note that Shenker defined elasticity of user

utility (or application utility) according to bandwidth, let’s

call it e : Let uðxÞ be user’s utility if he is given x amount of

bandwidth. Then, following the argument in Eq. (A24), we

can write e as:

e ¼
x

uðxÞ

duðxÞ

dx
ðA25Þ

According to Shenker’s interpretation, the functional

definition for Le (i.e. characteristic of user’s utility

according to bandwidth) will be as follows:

Le ¼

inelastic; e ¼ 0

elastic; e – 0 & concave utility

not defined; e – 0 & convex utility

8>><
>>:

Obviously, Le is a lot different than L1: Basically, L1

interprets elasticity as responsiveness while Le does it as

adaptiveness.

We can construct the relationship between 1 and e ; given

that the user solves the well-known maximization problem:

max
x

{uðxÞ2 xp}

The solution to the above problem is u0ðxÞ ¼ p: So, given a

price p; the user selects his demand such that his marginal

utility equals to p: Based on that relationship between the

utility function uðxÞ and the demand function XðpÞ; we can

construct the relationship between the demand-price

elasticity 1 and the utility-bandwidth e elasticity. In the

next sub-sections we will formulate the relationship

between these elasticities.

C.3.1. Utility-bandwidth elasticity e

Let XðpÞ ¼ Ap1 where 1 – 0 and 1 – 21: Then,

p ¼ u0ðxÞ ¼ A21=1x1=1
; uðxÞ ¼ A21=1 1

1
þ 1

� �
x1=1þ1

7 Demand elasticity can be defined according to several things other than

price (e.g. time of service, delay of service). In the rest of the text, we will

refer to demand elasticity to price when we say demand elasticity.
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So,

e ¼
1

1
þ 1; 1 – 0 & 1 – 21

Fig. A1a plots e with respect to 1:

C.3.2. Demand-price elasticity 1

Let uðxÞ ¼ Bxe where e – 1: Then,

u0ðxÞ ¼ p ¼ Aexe21
; XðpÞ ¼

p

Ae

� �1=ðe21Þ

So,

1 ¼
1

e 2 1
; e – 1

Fig. A1b plots 1 with respect to e :

C.4. Optimal prices: non-logarithmic utility functions

In Section C.2, we derived optimal prices for the revenue

maximization problem NETWORKðlðpf ÞÞ: In that deri-

vation users demand-price elasticity 1 was 21 (see Eq.

(A11)), which means users had unit elastic demands. Now,

we re-perform the derivation by assuming that users have a

utility-bandwidth elasticity of e ; where users’ demand-price

elasticity is 1 ¼ 1=ðe 2 1Þ based on the study in the previous

section. Also, note that 0 , e , 1 must be satisfied in order

to make sure concavity of the utility function.

First, let B be row vector of the weights that are different

for each flow’s utility function, and B̂ be an ðn £ nÞ matrix in

which the element B̂jj is the weight of flow j and all the other

elements are zero.

We use a generic utility function. The function and its

derivative is as follows:

UðlÞ ¼ Bl̂e ðA26Þ

U 0ðlÞ ¼ Bel̂e21 ðA27Þ

According to the relationship between e and 1 described in

Section C.3.1, we can write the demand function and its

derivative as follows:

lðPpÞ ¼ e21eTB̂21Pp1 ðA28Þ

Similarly, we can write derivative of Eq. (A28) as:

l0ðPpÞ ¼ e211eTB̂21Pp121 ðA29Þ

For the revenue maximization problem, we again solve the

Lagrangian in Eq. (A16) but for the new demand function of

Eq. (A28). By plugging Eqs. (A28) and (A29) in appropriate

places, the optimality conditions for Eq. (A16) can be

written as:

Lg : CT 2 e21eTB̂21Pp1A ¼ 0 ðA30Þ

LPp : e211eTB̂21Pp121ðPpe 2 AgÞ þ e21eTB̂21Pp1e

¼ 0 ðA31Þ

By solving Eq. (A31) for Pp; we obtain:

Pp ¼
1

e
Age21 ðA32Þ

Now, apply Eq. (A32) into Eq. (A30) and we get:

1

e
Age21 ¼ eA21=1ðCTÞ1=1ðeTÞ21=1B̂ ðA33Þ

Substitute Eq. (A33) into Eq. (A32) and we obtain Pp :

Pp ¼ eA21=1ðCTÞ1=1ðeTÞ21=1B̂ ðA34Þ

From Eq. (A34) we obtain P :

P ¼ eA21Al1=1lððCTÞl1=1lÞ21ðeTÞl1=1lB̂e ðA35Þ

P ¼ eA21Al1=1lððCTÞl1=1lÞ21ðeTÞl1=1lðB̂l1lÞl1=1le ðA36Þ

The result in Eq. (A35) implies the same thing as in the case

of logarithmic utility functions except that the link

capacities must be taken more conservatively depending

on the elasticity (e or 1 by choice) of flows. Observe that as

flows demand-price elasticity 1 gets higher, the capacity

must be taken more conservatively based on the formula

ðCTÞl1=1l: Also observe that as flows utility-bandwidth

Fig. A1. Utility-bandwidth elasticity e and demand-price elasticity 1 with respect to each other.
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elasticity e gets higher, the capacity must be taken more

conservatively based on the formula ðCTÞl1=1l ¼ ðCTÞle21l:

Based on Eq. (A36) we can write the optimal price

formulas for single-bottleneck and multi-bottleneck cases,

respectively, as follows in non-vectorized form:

p ¼ e

X
f[F

wl1l
f

c

0
BBB@

1
CCCA

l1=1l

; pl ¼ e

X
f[FðlÞ

wl1l
f

X
f[FðlÞ

X
k[Lðf Þ

ck

0
BBB@

1
CCCA

l1=1l
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