
* Copyright © 2009 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

259

USING ROLE PLAY FOR AN UPPER LEVEL CS COURSE*

Michael Leverington and Murat Yüksel
Computer Science and Engineering

Department
University of Nevada, Reno

Reno, Nevada 89557
michael@edtech-teched.com

775 784 - 1414

Michael Robinson
Curriculum, Teaching, and Learning

Department
University of Nevada, Reno

Reno, Nevada 89557
robinson@unr.edu

775 682 - 7531

ABSTRACT
This paper reports on initial experiences with using role play interaction in an
upper level operating systems (OS) course. Three role play scenarios were
implemented related to multi-programming, concurrency and synchronization,
and a culminating experience that included several OS transactions with
emphasis on input and output (I/O) operations. Students reported better
understanding of the concepts, and stated appreciation for the chance to see
some of the abstracted components made more concrete. The activities are
discussed, the initial student feedback is provided, and future plans for
improvement and further implementation of these and other scenarios in the
future are briefly presented.

INTRODUCTION
The research [2,10,11] shows what experienced teachers already know related to

teaching difficult concepts in any course. It takes student involvement and interaction to
support learning and to elicit evidence that this has happened. In addition, a specific kind
of student involvement or interaction called role play has become popular among
Computer Science (CS) educators in recent years. Role play can be an effective
educational tool because it allows student interaction and involvement by having them
"act out" physical and/or conceptual components of a given system. While role play can
be used in almost any environment, CS educators use role play for teaching concepts such
as software engineering [9], introductory CS (CS1) [6], and more specifically for teaching
Object Oriented Programming (OOP) concepts [1].

JCSC 24, 4 (April 2009)

260

A variety of research related to the examples provided above was easily found, but
there was little research or reporting on attempts to teach upper level technically-oriented
courses using role-play activities, such as the Principles of Operating Systems course.
There are some good reasons to consider role-play in this particular course, and at least
a few interesting ways to implement it as will be presented in this report. The paper
begins by discussing the problem and the need for the teaching process, and continues
with a brief discussion of the implementation of three different role-play activities. In the
concluding remarks, future plans for extension and adaptation of role-play activities in
the course will be briefly presented.

THE LEARNING PROBLEM
Operating Systems (OS) on general purpose computers are developed and

implemented to manage everything that the computer is able to do for a given user, which
includes interacting through the keyboard, mouse, and monitor, managing data storage
systems at various levels, scheduling and managing the processor, and correctly and
appropriately interacting with hardware and software systems that may be added or
removed at any time. In order to evaluate, analyze, or learn about a system with this level
of complexity, it is unreasonable to try to understand all of its parts. Indeed, it is
impossible to do so in a reasonable period of time. For this reason, the entire OS software
must be considered as a package consisting of several abstracted layers and subsystems.
This creates difficulty for educators, even in the upper levels of a Computer Science
program.

Teaching and Learning Abstraction
Students in this course are at least in their third year, but more likely in the fourth

year of their degree program, or they are graduate students. Given their previous
coursework and experiences, it should be expected that they have worked with abstracted
components. However, while they may have had experience with abstracting data and
other functionality, it may be difficult to learn concepts relating to unfamiliar systems
unless the students are allowed to interact with and discuss the components inside [4]. In
any event, teachers report problems unless a balance can be struck between teaching the
abstract and the application [3]. In this case, the balance must be found between fully
abstracting a part of the OS or fully exposing the concrete components of that system.

Concept Difficulties
One of the primary realities is that the OS course, like many others in Computer

Science, contains a significant amount of topical content, as mentioned previously. It
would be difficult to teach this or many other CS courses without using lecture for much
of the content. To its credit, lecture can be quite effective when well developed and well
implemented. In this particular case, there was evidence of student learning to both depth
and breadth in this course. However, both informally through verbal interactions, and
formally through quizzes and examinations, there was evidence that the students were
struggling with some of the course concepts. The course Instructor, who has extensive

CCSC: Southwestern Conference

261

teaching experience with several courses including OS, was looking for ways to improve
his students' learning.

A Possible Solution
Schoenfeld [12] argued that metacognition and appropriate belief systems are

critical to problem solving. Metacognition is considered to be the set of cognitive tools
that manage and organize the students' learning strategies, among other things. Belief
systems are fundamental to the learning process, and have been constructed by students
as a result of their previous experiences, sometimes in concert with, and sometimes in
spite of, their formal learning. It is these belief systems that are relied upon when students
attempt a problem-solving activity.

Others package and apply cognition, metacognition, and affective components into
an acronym called BACEIS (Behavior, Affect, Cognition, Environment, Interacting,
Systems) [7,8] and argue that the affective experience, in addition to the cognitive
activities, is a major contributor toward solving problems. In order to activate the
necessary student cognitive and metacognitive involvement in their learning, and to either
inculcate new knowledge and/or overcome improperly constructed prior learning,
students must appreciate the value and personally incorporate the reality of the concept(s)
being taught.

Role play is a way to respond to these identified needs. The affective element is
supported when the students have the opportunity to break away from the normal
classroom activities and try out new things, and when they experience the exhilaration
of deeper understanding of a concept with which they previously had been struggling. In
addition, cognitive elements are challenged significantly when the students must
tactically figure out what their next step or steps should be for the given OS circumstance.

It also requires significant metacognitive analysis and reflection to observe,
interpret, and organize their knowledge as they watch and/or participate in the activities
needed to manage a working operating system. In addition, out of much of the research
related to beliefs and student ideas, it is known that direct contact with concepts or
concept representations that present clear, unambiguous results will strongly support new
concept learning, and/or diminish previously held misconceptions [5,13].

Finally, when reviewing the concepts taught in the OS course, it seemed that there
were a few that offered excellent opportunities for role play, comparable, at the upper
level, to the concepts taught with role play at lower levels [8]. Among those were some
of the concepts with which students were struggling. It was decided to give role play a
try in this course.

THE ROLE PLAYS
For reasons of development time, and again because class and lecture time is

precious, it was decided to limit the pilot study to three for the first time, and some simple
preliminary analysis and evaluation activities of the role play were developed to assist

JCSC 24, 4 (April 2009)

262

with deciding whether to continue with this study. The three role plays are described
below, and some student feedback and analysis is provided thereafter.

Role Play 1: Multiprogramming
The first activity involved studying the creation and implementation of processes

using the fork function, and sometimes the exec family of system calls. The fork operation
is a little complicated to begin with since it returns two different values to the two
different processes that exist after the call. Students need to recognize which process gets
which response and by itself, this is not terribly difficult. However, once the two
processes start implementing further actions, including possibly creating more processes,
tracing the code and the results of the code activities becomes more complicated.

For the activity, two research staff established themselves as the system processor
and the operating system software working together while the students played the role of
processes. The course Instructor did not play a role so that he could be free to observe,
interact with, and query the students. The role play itself involved running three sample
sets of program code in a step-wise fashion so that students could see the actions and
consequences of each segment of code. The first set of code was very simple, and is
shown in Figure 1 below.

1
2
3
4
5

printf("Process begins\n");
pid1 = fork();
printf("One fork completed\n");
pid2 = fork();
printf("Second fork completed\n");

Figure 1: Simple Code Segment

The code in Figure 1 was given to the students to let them practice the forking action
in advance. Using randomly drawn numbers, a student was first called to a section of the
chalkboard where she placed her Process ID (PID) value (i.e., her randomly assigned
number) at the top of a section of the chalkboard, and she then played the role of the
process. The operating system (OS) and processor would direct her to take one step at a
time which was made easy to follow by placing line numbers beside each step of code.
The process called the output action (i.e., "printf"), and then implemented the first fork
operation.

At this point, another student was randomly called to another section of the
chalkboard. Each student was then directed to take one or two steps at a time by the
OS/processor. All the students could see that the new person's return value "pid1" would
be zero while the original person's "pid1" was assigned the PID of the new process. Later,
both processes would call a fork operation again, adding two more students to the play.

CCSC: Southwestern Conference

263

1
2

3

4
5

6

7

printf("Process begins");
pid1 = fork();

if(pid1 > 0)
 {
 printf("First Parent ID: %i\n", pid1);
 waitpid(pid1, NULL, 0);
 }

if(pid1 == 0)
 {
 printf("First Child ID: %i\n", pid1);
 }

Figure 2: Decision-Making Code Segment

Although it is not complete, the code in Figure 2 provides an example of the
increase in complexity of decision-making and action for the students to follow. A second
fork operation was implemented after this code with second "parent" and "child" output
displays. The students were stepped through this code one process and one line at a time,
observing the "wait" conditions, but not having to deal with which process stopped first.
The third scenario placed the forking operations inside some other tests and a loop, and
in this case, the students had to figure out where and how the processes -- that now had
exit code in them -- were stopped.

Role-Play 2: Concurrency

The second activity involved concurrency and synchronization issues. Like the first
activity, concepts and actions that are not easy to visualize and/or comprehend were
targeted. In a format comparable to the previous activities, concurrency issues appear to
happen in parallel, and it is sometimes difficult for students to follow all the action that
is occurring. When race conditions become part of the problem, and common data
quantities are being manipulated and possibly corrupted by more than one code segment,
the overall operation can become confusing to students who are new to learning about
operating systems.

The concurrency and synchronization activities were comparable to the
multiprogramming activities in the sense that the activity was started with small code
segments, and the students became the active threads. In this code, three threads were
spawned and joined, and it was different in its actions in that "reader/writer" activities
were implemented that would have parallel threads managing some incoming and
outgoing data..

Initially, students were provided code that implemented given functions as threads
and rejoined the threads upon completion. As before, the students would go to the
chalkboard acting as threads, but this time, they had to manage both local and global data
in addition to implementing their other specified actions. After running a few steps into
the threaded code to see the process work, the OS/processor then stepped the threads
through in such a way as to corrupt the outgoing data.

The second scenario included using the same code but implementing functions that
disabled the interrupts before and after the critical code sections. Subsequent scenarios

JCSC 24, 4 (April 2009)

264

followed, including test-and-set (TSL) operations and the use of semaphores to protect
the operations.

Role Play 3: I/O Operations
The third activity started out with a focus on identifying response- and reaction-

time differences related to I/O operations and devices. Examples would be: 1) system bus
memory access to the processor compared to loading hard drive data to memory through
the I/O bus with or without Direct Memory Access (DMA) support; 2) access or response
time of the hard drive or a CD-ROM drive related to the other system components such
as the buses, the memory or the processor; and 3) interrupt actions from a variety of
sources, including I/O devices and the DMA controller. In the course of developing these
things, it was found that most of the internal hardware and operating system interactions
would be presented. This was acceptable because it was near the end of the semester and
the overall OS actions could be reviewed.

Several student desks and chairs were set up at the front of the classroom organized
in generally the same way a high-level computer structure might be set up. Once the
desks and chairs were placed, the students were invited to fill them. A "loading the
kernel" script was prepared in advance, but the students were informed that they would
have to learn their tasks and become much more autonomous in their actions once the
"computer" was booted.

3 x 5 index cards were used as data with one color representing interrupts, one color
representing data quantities for the OS, and two other colors for programs that would be
loaded. The students worked through "loading" the kernel and some supporting OS
components so they would become comfortable with their roles, and they were then
informed that the user had requested to load and run a program. A time-step display was
provided on the classroom screen, and the index cards were passed between students over
the data buses with one time step allowing one bus location movement. The scenarios
included one data-intensive program and one I/O intensive program; the operational
differences between these two programs became clear as the activity progressed.

DISCUSSION AND CONCLUSIONS

The feedback from the students was virtually all positive. More importantly, some
of the student comments directly responded to the issues upon which these activities were
designed. One comment, "I didn't understand how processes worked before this activity.
I thought that all processes executed simultaneously but couldn't see how that was
possible. Now I understand the stepping is crucial to how they are executed", provided
evidence that the student really needed to see the process in action, and at length, to
understand it. Another one, "Sometimes it feels like we aren't even talking about a real
thing since I can't take it apart or put it together. Seeing how an OS works was
tremendously helpful", speaks directly to the challenge stated at the beginning of this
paper that is related to making some of the high-level abstractions concrete. Still another
comment states the same thing: "Seeing people as processes made more sense than some
abstract "process", and when the other students made a mistake, I was usually thinking
the same thing, so it helped me see what I was doing wrong or assuming".

CCSC: Southwestern Conference

265

Those comments that were not completely positive were made by individual
students who felt that they had already come to understand the material: "I understood
most of the details prior", and "I already realized it, but if I hadn't, this would definitely
have helped". All comments were collected anonymously along with short questionnaires
that also demonstrated positive student feedback. This data will be added to future
feedback quantities as triangulation components as the research on these activities
evolves.

This was a first attempt at using role play to teach critical components of this upper-
level course. However, there is enough positive feedback to support further pursuit of this
activity-based approach. From the experience, it has been recognized that more initial
training should be given to the students so they become more comfortable and more
fluent with their roles. It was also found that even though the scripting must be kept pretty
tight, some students suggested that they be challenged to come up with the next steps.

There were some students who commented that the operation appeared
disorganized. Video recordings had been made and were reviewed for two of the
activities, and some on-the-fly adjustments were observed. However, it did not appear
that there were serious management flaws in the operation. However, it is theorized that
these role-play activities might be the very first interactive kinds of activities that some
of these students have experienced, and they simply might not be familiar with how a
classroom alternative to lecturing might look.

The other improvements that can be made are mostly logistical adjustments made
in response to student feedback. Outside of direct student feedback, future plans include
pre/post quizzes and exam topic comparisons to previous (i.e., non-interactive) student
groups will be studied. This was not implemented for the first pass so that the process
could be refined and fluent before it was evaluated. Future plans also include memory
management and processor scheduling activities. The student feedback and evidence of
improved understanding seems to support further implementation of this strategy.

REFERENCES
[1] Bennedsen, J., Caspersen, M.E., Programming in context - a model-first

approach to cs1, ACM SIGCSE Bulletin, 36, (1), 477-481, 2004.
[2] Black, L., Interactive whole class teaching and pupil learning: theoretical and

practical implications, Language and Education. 21, (4) 271-283, 2007.
[3] Carbone, A., Mannila, L., Fitzgerald, S., Computer science and it teachers'

conceptions of successful and unsuccessful teaching: a phenomenographic study,
Computer Science Education. 17, (4), 275-299, 2007.

[4] Darling-Hammond, L., Bransford, J., Preparing Teachers for a Changing World,
San Francisco, CA: Jossey-Bass, 2005.

[5] Donovan, M.S., Bransford, J.D., How Students Learn: Mathematics in the
Classroom, Washington, D.C.: The National Academies Press, 2004.

[6] Goode, J., Increasing diversity in k-12 computer science: strategies from the
field, ACM SIGCSE Bulletin, 40, (1), 362-366, 2008.

JCSC 24, 4 (April 2009)

266

[7] Hartman, H.J., Metacognition in Learning and Instruction, Norwel, MA: Kluwer
Academic Publishers, 2001.

[8] Hartman, H.J., Sternberg, R.J., A broad baceis for improving learning,
Instructional Science, 21, (5), 401-425, 1992.

[9] Henry, T.R., LaFrance, J., Integrating role-play into software engineering
courses, J. of Computing Sciences in Colleges, 22, (2), 32-38, 2006.

[10] Holt, L.C., Kysilka, M.L., Instructional Patterns: Strategies for Maximizing
Student Learning, Thousand Oaks, CA: SAGE Publications, 2005.

[11] Kane, L., Educators, learners and active learning methodologies, Int J. of
Lifelong Education, 23, (3), 275-286, 2004.

[12] Schoenfeld, A., Mathematical Problem Solving, Orlando, FL: Academic Press,
1985.

[13] Smith, J.P. III, diSessa, A.A., Roschelle, J., Misconceptions reconceived: a
constructivist analysis of knowledge in transition, The J. of the Learning
Sciences, 3, (2), 115-163, 1993.

