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Abstract—In unstructured peer-to-peer (P2P) networks, the overlay topology (or connectivity graph) among peers is a crucial

component in addition to the peer/data organization and search. Topological characteristics have profound impact on the efficiency of

a search on such unstructured P2P networks, as well as other networks. A key limitation of scale-free (power-law) topologies is the

high load (i.e., high degree) on a very few number of hub nodes. In a typical unstructured P2P network, peers are not willing to maintain

high degrees/loads as they may not want to store a large number of entries for construction of the overlay topology. Therefore, to

achieve fairness and practicality among all peers, hard cutoffs on the number of entries are imposed by the individual peers, which

limits scale-freeness of the overall topology, hence limited scale-free networks. Thus, it is expected that the efficiency of the flooding

search reduces as the size of the hard cutoff does. We investigate the construction of scale-free topologies with hard cutoffs (i.e., there

are not any major hubs) and the effect of these hard cutoffs on the search efficiency. Interestingly, we observe that the efficiency of

normalized flooding and random walk search algorithms increases as the hard cutoff decreases.

Index Terms—Unstructured peer-to-peer networks, scale-free networks, power-law networks, search efficiency, cutoff.
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1 INTRODUCTION

IN decentralized P2P networks, the overlay topology (or
connectivity graph) among peers is a crucial component in

addition to the peer/data organization and search. Topolo-
gical characteristics have profound impact on the efficiency of
a search on P2P networks, as well as other networks. It has
been well known that a search on small-world topologies can
be as efficient as OðlnNÞ [1], and this phenomenon has
recently been studied on P2P networks [2], [3].

The best search efficiency in realistic networks can be

achieved when the topology is scale free (power law),

which offers search efficiencies like Oðln lnNÞ. However,

the generation and maintenance of such scale-free topolo-

gies are hard to realize in a distributed and potentially

uncooperative environments as in P2P networks. A key

limitation of scale-free topologies is the high load (i.e., high

degree) on a very few number of hub nodes. In a typical

unstructured P2P network, peers are not willing to maintain

high degrees/loads as they may not want to store large

number of entries for construction of the overlay topology.

Therefore, to achieve fairness and practicality among all

peers, hard cutoffs on the number of entries are imposed by

the individual peers, which makes the overall network a

limited one. These hard cutoffs might limit the scale-freeness

of the overall topology, by which we mean having a

network with a power-law degree distribution from which

an exponent can be obtained properly. Thus, it is expected
that the search efficiency reduces as the size of the hard
cutoff does. In this paper, we use the terms “scale-free
network with a hard cutoff” and “limited scale-free net-
work” interchangeably since we mean that the lower the
hard cutoff, the more limited the network.

The primary focus of this paper is to 1) investigate the
construction of scale-free topologies with hard cutoffs (i.e.,
there are not any major hubs) in a distributed manner
without requiring global topology information at the time
when nodes join and 2) to investigate the effect of these
hard cutoffs on the search efficiency.

The rest of the paper is organized as follows: First, in the
rest of this section, we provide motivation for this work,
outline key dimensions to be considered, and briefly indicate
major contributions and findings of the work. Then, we
survey previous work on P2P networks in Section 2. In
Section 3, we survey the previous work on scale-free topology
generation and cover two specific models that we use:
Preferential Attachment (PA) and Configuration Model
(CM). We introduce our practical topology generation
methodologies, Hop-and-Attempt PA (HAPA) and Dis-
cover-and-Attempt PA (DAPA), in Section 4. In Section 5,
we present our simulations of three different search algo-
rithms (i.e., Flooding (FL), Normalized Flooding (NF), and
Random Walk (RW)) on topologies generated by the models
PA, CM, HAPA, and DAPA. We conclude by summarizing
the work and outlining future directions in Section 6.

1.1 Motivation and Key Considerations

The search efficiency of small-world and scale-free topol-
ogies is well known. Although scale-free topologies are
superior in search efficiency, their hub-based structure
makes them vulnerable to threats and impractical due to
unfair assignment of network load on a very small subset of
all nodes. As peers in a P2P network are typically not fully
cooperative, protocols cannot rely on methods working
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with the full cooperation of peers. For example, peers may
not want to store a large number of entries for the
construction of the overlay topology, i.e., connectivity
graph. Even though the characteristics of the overlay
topology are crucial in determining the efficiency of the
network, peers typically do not want to take the burden of
storing an excessive amount of control information for
others in the network. The effect of this on the overlay
topology maintenance is that peers impose hard cutoffs on
the amount of control information to be stored. Since P2P
overlay topology generation and maintenance are very
important for realizing a scalable unstructured P2P net-
work, the focus of this paper is to investigate the effect of the
hard cutoffs on the overall search efficiency.

A key issue is the construction of scale-free overlay
topologies without global information. There are several
techniques to generate a scale-free topology [4], [5], which
rely on global information about the current network when a
new node joins. Such global methods are not practical in P2P
networks, and local heuristics in generating such scale-free
overlay topologies with hard cutoffs are the key issue, which
we investigate in this paper. In other words, each peer has to
figure out the optimal way of joining the P2P overlay by only
using the locally available (i.e., immediate/close neighbors)
information and also causing a minimal inefficiency to the
search mechanisms to be run on the network.

1.2 Contributions and Major Results

This paper touches an uncovered set of research problems
relating to trade-offs between the maximum number of
links a peer can (or is willing to) store and the efficiency of a
search on an overlay topology composed of such peers. We
defined the maximum number of links to be stored by peers
as the hard cutoff for the degree of a peer in the network as
compared to natural cutoff, which occurs due to finite-size
effects. Our contributions include the following:

. Scale-free topology generation methods. We studied two
well-known scale-free topology generation mechan-
isms (i.e., PA and CM) that use global information
about the overlay topology within the context of
unstructured P2P networks. We introduced two novel
mechanisms (i.e., HAPA and DAPA) that use local
topology information solely or partially.

. Search efficiency on scale-free topologies with hard cutoffs.
Through extensive simulations, we studied the
efficiency of FL, NF, and RW on the topologies
generated by the four mechanisms PA, CM, HAPA,
and DAPA.

. Guidelines for designing peer join algorithms for unstruc-
tured P2P networks. Our study yielded several guide-
lines for peers to join to a Gnutella-like unstructured
P2P network, so that the search performance of the
overall overlay topology remains high.

Our study of hard cutoffs resulted in several interesting
findings, some of which are listed as follows:

. Hard cutoffs may not always affect the search perfor-
mance adversely. We found that hard cutoffs may
actually improve the search performance, even
though the value of the power-law exponent in
the degree distribution of the topology might mean

otherwise. This is against the expected wisdom that
the power-law exponent is directly related to search
performance.

. Search performance depends on the combination of the
specific search algorithm and the topology. We showed
that search performance depends on the particular
search algorithm being used and on the topological
characteristics, including the exponent of the degree
distribution, connectedness (the minimum degree is a
measure for it in scale-free networks), hard cutoff, and
locality. Our simulation experiments clearly showed
that practical search algorithms like NF or repeated
RWs can perform better on scale-free topologies with
smaller hard cutoffs as long as peers join carefully,
e.g., as in HAPA and DAPA mechanisms.

. There exists an interplay between the connectedness and
the degree distribution exponent for a fixed cutoff. More
specifically, if connectedness is too low in the
topology, then one can improve search performance
by applying smaller hard cutoffs. As a particular
guideline for optimizing joining techniques of peers,
we showed that as long as every peer is required to
maintain a minimum of two to three links to the rest
of the network rather than just one link, it is possible
to diminish the negative effects of hard cutoffs on
search performance.

2 RELATED WORK

Our work is related to peer-to-peer (P2P) network protocol

designs and the topological analysis of complex networks.

Previous work on P2P network protocols can be classified into

centralized and decentralized ones. As centralized P2P protocols

(e.g., Napster [6]) proved to be unscalable, the majority of P2P

research has focused on decentralized schemes. The decen-

tralized P2P schemes can be further classified into subcate-

gories: structured, unstructured, and hybrid.
In the structured P2P networks, the data/file content of

peers is organized based on a keying mechanism that can

work in a distributed manner, e.g., Chord [7] and Kademlia

[8]. The keying mechanism typically maps the peers (or

their content) to a logical search space, which is then

leveraged for performing efficient searches. Another posi-

tive side of the structured schemes is the guarantees of

finding rare items in a timely manner. However, the cost

comes from the complexity of maintaining the consistency

of mapping the peers to the logical search space, which

typically causes a considerable amount of control traffic

(e.g., join/leave messaging) for highly dynamic P2P envir-

onments. Due to their capability of locating rare items,

structured approaches have been very well suited to a wide

range of applications, e.g., [9], [10], and [11].
In contrast to the structured schemes, unstructured P2P

networks do not include a strict organization of peers or

their content. Since there is no particular keying or

organization of the content, the search techniques are

typically based on flooding. Thus, the searches may take a

very long time for rare items, although popular items can be

found very fast due to possible leveraging of locality of

reference [12] and caching/replication [13].
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The main focus of the research on unstructured P2P
networks has been the trade-off between the state complexity
of peers (i.e., the number of records needed to be stored at
each peer) and flooding-based search efficiency. The minimal
state each peer has to maintain is the list of neighbor peers,
which construct the overlay topology. Optionally, peers can
maintain forwarding tables (also referred as routing tables in
the literature) for data items in addition to the list of neighbor
peers. Thus, we can classify unstructured P2P networks into
two based on the type(s) of state peers maintain: 1) per-data
unstructured P2P networks (i.e., peers maintain both the list
of neighbor peers and the per-data forwarding table) and
2) non-per-data unstructured P2P networks (i.e., peers main-
tain only the list of neighbor peers).

Non-per-data schemes are mainly Gnutella-like schemes
[14], where a search is performed by means of flooding
query packets. Search performance over such P2P networks
has been studied in various contexts, which includes pure
RWs [15], probabilistic flooding techniques [16], and
systematic filtering techniques [17]. Recent research also
recognized the fact that the overlay topology needs to be
organized with information about the underlying Internet
topology to achieve better routing performance [18],
although we focus on improving search performance with
better topology organization.

Per-data schemes (e.g., Freenet [19]) can achieve better
search performance than non-per-data schemes, though
they impose additional storage requirements to peers. By
making the peers maintain a number of <key; pointer>
entries, peers direct the search queries to more appropriate
neighbors, where “key” is an identifier for the data item
being searched, and the “pointer” is the next-best neighbor
to reach that data item. This capability allows peers to
leverage associativity characteristics of search queries [20].
Studies ranged from grouping peers of similar interests (i.e.,
peer associativity) [3], [20] to exploiting locality in search
queries (i.e., query associativity) [12].

Our work is applicable to both per-data and non-per-
data unstructured P2P networks, since we focus on the
interactions between search efficiency and topological
characteristics. Topology adaptation for better protocol
performance was studied in various contexts, such as
breaking or establishment of overlay links based on the
perceived load on peers [21], age of the peers [22], capacity
of the link [23], or lookup latency [24].

3 SCALE-FREE NETWORK TOPOLOGIES

Recent research shows that many natural and artificial
systems such as the Internet [25], World Wide Web [26],
scientific collaboration network [27], and e-mail network
[28] have power-law degree (connectivity) distributions.
These systems are commonly known as power-law or scale-
free networks since their degree distributions are free of
scale (i.e., not a function of the number of network nodes N)
and follow power-law distributions over many orders of
magnitude. This phenomenon has been represented by the
probability of having nodes with k degrees as P ðkÞ � k�� ,
where � is usually between two and three [4]. Scale-free
networks have many interesting properties such as high
tolerance to random errors and attacks (yet low tolerance to
attacks targeted to hubs) [29], high synchronizability [30],
and resistance to congestion [31].

The origin of the scale-free behavior can be traced back to
two mechanisms that are present in many systems and have
a strong impact on the final topology [4]. First, networks are
developed by the addition of new nodes that are connected
to those already present in the system. This mechanism
signifies continuous expansion in real networks. Second,
there is a higher probability that a new node is linked to a
node that already has a large number of connections. These
two features led to the formulation of a growing network
model first proposed by Barabási and Albert that generates
a scale-free network for which P ðkÞ follows a power law
with � ¼ 3. This model is known as PA (or a rich-get-richer
mechanism), and the resulting network is called the
Barabási-Albert network [4], [5].

In this study, we use a simple version of the PA model
[4]. The model evolves by one node at a time, and this
new node is connected to m (the number of stubs)
different existing nodes with a probability proportional to
their degrees, i.e., Pi ¼ ki=

P
j kj, where ki is the degree of

the node i. The average degree per node in the resulting
network is 2m, and the minimum degree is m. Fig. 1a
shows the degree distributions of scale-free networks
generated by the PA model with different m values. The
links are regarded as bidirectional links; however, the
results can easily be generalized to directed networks as
well [5]. The special case of the PA model is when the

GUCLU AND YUKSEL: LIMITED SCALE-FREE OVERLAY TOPOLOGIES FOR UNSTRUCTURED PEER-TO-PEER NETWORKS 669

Fig. 1. Degree distributions of the PA model. (a) P ðkÞ with hard cutoffs.

(b) P ðkÞ exponent versus cutoff.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on May 3, 2009 at 14:23 from IEEE Xplore.  Restrictions apply.



number of stubs is one (i.e., m ¼ 1) in which a scale-free
tree without clustering (loops) is generated.

Scale-free networks are very robust against random
failures and attacks since the probability to hit the hub
nodes (few nodes with a very large degree) is very small, and
attacking the low-degree satellite nodes does not harm the
network. On the other hand, deliberate attacks targeted to
hubs through which most of the traffic go can easily shatter
the network and severely damage the overall communica-
tion in the network. For the same reason, the Internet is
called “robust yet fragile” [32] or “Achilles’ heel” [29].

Scale-free networks also have small-world properties. In
small-world networks, the diameter or the mean hop distance
between the nodes scales with the system size (or the number
of network nodes)N logarithmically, i.e., d � lnN . The scale-
free networks with 2 < � < 3 have a much smaller diameter
and can be named ultrasmall networks [33], behaving as
d � ln lnN . When � ¼ 3 and m � 2, d behaves as
d � lnN= ln lnN . However, when m ¼ 1 and � ¼ 3, the
Barabási-Albert model turns into a tree, and d � lnN is
obtained. Also, when � > 3, the diameter behaves logarith-
mically as d � lnN . These relationships are summarized in
Table 1. Since the speed/efficiency of search algorithms
strongly depend on the average shortest path, scale-free
networks have much better performance in a search than
other random networks.

3.1 The Cutoff

One of the important characteristics of scale-free networks
is the natural cutoff on the degree (or the maximum degree)
due to finite-size effects. Natural cutoff can be defined as
[34] the value of the degree above which one expects to find
at most one vertex, i.e.,

N

Z1

knc

P ðkÞdk � 1: ð1Þ

By using the degree distribution for the scale-free network
and the exact form of probability distribution (i.e.,
P ðkÞ ¼ ð� � 1Þm��1=k�), one obtains

kncðNÞ � mN1=ð��1Þ; ð2Þ

which is known as the natural cutoff of the network. The
scaling of the natural cutoff can also be calculated by using
the extreme-value theory [35]. For the scale-free networks
generated by the PA model ð� ¼ 3Þ, the natural cutoff
becomes kncðNÞ � m

ffiffiffiffiffi
N
p

.

3.2 Preferential Attachment with Hard Cutoffs

The natural cutoff may not be always attainable for most of
the scale-free networks due to technical reasons. One main
reason is that the network might have limitations on the

number of links the nodes can have. This is especially
important for P2P networks in which nodes cannot possibly
connect many other nodes. This requires putting an artificial
or hard cutoff kc to the number of links one node might have.

In order to implement the hard cutoff in PA, we simply did
not allow nodes to have links more than a fixed hard cutoff
value during the attachment process. This modified method
generates a scale-free network in which there are many nodes
with degree fixed to a hard cutoff instead of a few very high
degree hubs and the degree distribution still decays in a
power-law fashion. The degree distribution of the PA model
with cutoff is slightly different than that of PA without a
cutoff in terms of exponent and an accumulation of nodes
with degree equal to the hard cutoff. The PA model, in its
original form, has a degree distribution exponent � ¼ 3 for
very large networks. However, when a hard cutoff is
imposed, it is observed that the absolute value of the degree
distribution exponent decreases as in Fig. 1b.

One can use the master-equation [36] approach to
analyze the effects of the hard cutoff on the topological
characteristics. We grow the network by introducing new
nodes one by one for simplicity. Each new node links to m
earlier nodes in the network. The probability that the new
node attaches to a previous node of degree k is defined to be
Ak=A, where Ak is the rate of attachment to a previous node,
and this rate depends only on the degree of the target
node, while A ¼

Pkc�1
k¼m AkNk is the total rate for all events,

and Nk is the number of nodes of degree k in the network.
Thus, Ak=A equals the probability for the newly introduced
node to attach to a node of degree k. The new feature that we
study is the effect of a hard cutoff in the degree of each node.
Once the degree of a node reaches kc, it is defined to become
inert so that no further attachment to this node can occur.
Thus, only nodes with degrees k ¼ m, mþ 1; . . . ; kc � 1 are
active. This restriction is the source of the cutoff in the
definition of the total attachment rate. We now study the
degree distribution, NkðNÞ, as a function of the cutoff kc and
the total number of nodes in the network N .

The master equations for the degree distribution can be
written by using the fact that Nk is proportional to N , and
thus, Nk ! Nnk and A! �N as

nk ¼
�mnm

� þ 1; k ¼ m;
ðk�1Þnk�1�knk

� ; k ¼ mþ 1; . . . ; kc � 1;
ðkc�1Þnkc�1

� ; k ¼ kc:

8><
>: ð3Þ

By the nature of these equations, it is evident that nkc is of a
different order than nk with k < kc. Starting with the
solution nm ¼ �=ðmþ �Þ, we can find nk by subsequent
substitutions. This recursive approach gives us a chance to
write nk values as products [36], and by converting these
products into Euler gamma functions, we show that nkc
scales as k�� , while for k < kc, nk scales as k�ð�þ1Þ. We can
obtain the coefficient � in A ¼ �N self-consistently from
A ¼

Pkc�1
k¼m Aknk � �N , or equivalently, � ¼

Pkc�1
k¼m Aknk. By

rewriting the sum above as a difference between two sums
with limits from the minimum degree to1 and from cutoff
to1 and by taking asymptotic limits [37] of large N and kc,
we get

� ! 2� 2m

kc
: ð4Þ
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This result shows that nk � k�ð3�2m=kcÞ for k < kc and
nkc � k�ð2�2m=kcÞ

c , confirming the change we observe in the
degree distribution exponent, as in Fig. 1b, for which we
rescaled the above equation with respect to the maximum
exponent one can get for this system size, which is
around 2.85.

3.3 Configuration Model (CM)

Given that the PA model yields lower degree distribution
exponents as the hard cutoff reduces, we were motivated to
work on the generation of power-law networks with
different exponents. In this manner, the spikes at the hard
cutoff value in Fig. 1a can be prevented, and a smooth power-
law distribution of degrees can be obtained. For this reason,
modified PA models such as nonlinear PA [36], dynamic
edge-rewiring, [5], and fitness models [38] have been
proposed. Here, we use the CM with a predefined degree
distribution to generate a static scale-free network [39].

CM was introduced as an algorithm to generate uncorre-
lated random networks with a given degree distribution. In
CM, the vertices of the graph are assigned a fixed sequence of
degrees fkigNi¼1, m � ki � kc, where typically kc ¼ N , chosen
at random from the desired degree distribution P ðkÞ and

with the additional constraint that the
P

i ki must be even.
Then, pairs of nodes are chosen randomly and connected by
undirected edges. This model generates a network with the
expected degree distribution and no degree correlations;
however, it allows self-loops and multiple connections when
it is implemented as described above. It was proved in [35]
that the number of multiple connections when the maximum
degree is fixed to the system size, i.e., kc ¼ N , scales with the
system size N as N3�� lnN . Since we work with hard cutoff
values typically less than the natural cutoff, the number of
multiple links is much less than the original CM for which
kc ¼ N [40]. After this procedure, we simply delete the
multiple connections and self-loops from the network, which
gives a very marginal error in the degree distribution
exponent. Deleting this discrepancies also causes some very
negligible number of nodes in the network to have degrees
less than the fixed minimum degree ðmÞ value (even zero), as
seen in Figs. 2a and 2b. One other characteristic of the CM is
that the network is not a connected network whenm ¼ 1, i.e.,
it has disconnected clusters (or components). For m > 1, the
network is most likely connected, having one giant compo-
nent including all the nodes.
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The main disadvantage of PA and CM methods is that
they require global knowledge about the network, i.e., the
degrees of all peers or the maximum/total degree, which
might be usually difficult to store and share by the nodes
for unstructured P2P networks. This motivated us to
modify the PA model so that it makes use of local
information as much as possible. In the next section, we
explore the local heuristics in creating scale-free networks
and introduce two new attachment models.

4 LOCAL HEURISTICS FOR SCALE-FREE OVERLAY

TOPOLOGY CONSTRUCTION

In the PA model, as outlined in the previous section, the
new node has to make random attempts to connect to the
existing nodes with a probability depending on the degree
of the existing node. To implement this in a P2P (or any
distributed) network, the new node has to have information
about the global topology (e.g., the current number of
degrees each node has for the PA model), which might be
very hard to maintain in reality. Such global topology
information is needed in the CM method as well.

Thus, in order for a topology construction mechanism to be
practical in P2P networks, it must allow joining of new nodes
by just using locally available information. Of course, the cost
of using only local information is expected to be loss of scale-
freeness (or any other desired characteristics) of the whole
overlay topology, which will result in the loss of search
efficiency in return. In this section, we present two practical
methods using local heuristics requiring partial or no global
information about the topology: HAPA and DAPA.

4.1 Hop-and-Attempt Preferential Attachment
(HAPA)

In this method, the new node randomly selects an existing
node and attempts to connect. Then, it randomly selects a
node that is a neighbor of the previously selected node and
attempts to connect. Thus, the new node hops between the
neighboring nodes by using the existing links in the
network and attempts to connect until it fills all its stubs,
i.e., the number of links it has reached m.

This hopping process gives a better chance to the new
node to find the high-degree hubs in the network than the
PA does since the hubs in scale-free networks are only a
couple of hops away from the low-degree nodes, and it is
less likely to find hubs by random node selection. There-
fore, some nodes in the network (probably, they are the
initial nodes, and their number is mþ 1 in this algorithm)
become dominant and attract almost all the nodes to
themselves and thus deserve the name superhubs. The
superhubs have degrees on the order of the network size. It
is easily seen that this procedure makes the topology of the
system a starlike topology if the network is not limited by a
cutoff. Naturally, without a hard cutoff, the degree
distribution is not a power law, and the average shortest
path/diameter is very small with respect to scale-free
networks generated by PA (see Fig. 2c). As shown in
Fig. 2d, when a hard cutoff is introduced, the degree
distribution gets closer to a power law having an exponent
� ¼ 3 but with possibly logarithmic factors, making a
degree exponent calculation very hard.

4.2 Discover-and-Attempt Preferential Attachment
(DAPA)

The DAPA model imitates the method for finding peers in
Gnutella-like unstructured P2P networks. First, we assume
that we have a network, called a substrate network, with a
predefined and preconstructed topology at hand. Then, we
construct an overlay network on this substrate by using the
PA method among the set of nodes visible/reachable to a
node (the horizon of the node) in a number of hops, which
we call local time to live (TTL) and represent with �sub. The
substrate network corresponds to the underlying Internet
connectivity among the nodes, and the nodes become peers
in an overlay network by reaching each other via the
substrate network. This process imitates the way Gnutella-
like overlay networks are established.

We use a two-dimensional geometric (euclidean) random
network (GRN) [41] with a giant component as a substrate
network. To construct a two-dimensional GRN, first, nodes
are randomly distributed on a unit square. Then, pairs of
nodes are linked if they are closer to each other than some
specific distance. GRNs have Poissonian degree distributions
with only one parameter, i.e., the average degree. The
average degree of a GRN depends on the specific distance
and system size, e.g., for the specific distance of 0.012 and the
system size 104, the network has an average degree of 4.5.
This specific distance is the critical distance beyond which
the network has a giant component. Throughout the paper,
we use a two-dimensional GRN as a substrate network with
an average degree of 10 and size 2N . We use a GRN as a
substrate network because it is topologically closer to real-life
nodes in the Internet than a regular or highly random
network. We could use also a two-dimensional mesh, but our
conclusions about the search efficiency would not change.

In DAPA, initially, a few nodes are randomly selected
from the substrate network and added to the previously
empty overlay network; then, these nodes are connected to
each other in the overlay network. At each step, one random
node is chosen in the substrate network, and let it send a
query to its neighborhood reachable in �sub hops to get a list
of peers in its horizon. Then, by using the rules of PA, the
new node connects to m peers with a probability propor-
tional to their degrees divided by the total degrees of the
peers in its horizon. If the number of peers in the horizon is
less than m, then the new node connects to all the peers it
can find. The nodes that can find at least one peer in their
horizon is added to the overlay network and becomes a
peer. A peer that belongs to the overlay network cannot be
selected again to look for new peers. This process is
continued until the number of peers in the overlay network
reaches the desired number of nodes.

The degree distribution of the network generated by the
DAPA model exhibits some interesting characteristics. For
small values of �sub, the nodes are shortsighted, i.e., they
cannot see enough peers in their short horizon, causing the
degree distribution to be exponential. For high-enough �sub
values, the degree distribution changes into a power law.
Thus, one can go from an exponential to a scale-free
network by playing with the measure of locality (�sub), as
can be seen in Figs. 2e, 2f, 2g, 2h, and 2i. As the hard cutoff
gets smaller, the difference between the degree distributions
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with different �sub becomes invisible. For higher values of m
(i.e., m > 1), it is possible to find peers with degree less than
m, as in Figs. 2g and 2h, since some nodes cannot find
enough peers in their horizon to fill all their stubs. The
degree distribution exponent has a similar behavior to PA
as we change the hard cutoff value, i.e., as the cutoff
decreases, the exponent increases (see Fig. 2i). The data in
Fig. 2i is very noisy, and the data points contain quite large
error bars because they are obtained from very scattered
degree distribution tails.

A comparison of different network generation models in
terms of locality can be seen in Table 2. When a peer is to
join the current overlay topology, PA and CM need global
information about the current topology, while HAPA and
DAPA methods use local information partially or mostly,
respectively. Therefore, HAPA and DAPA methods are
more practical in the context of unstructured P2P networks.

4.3 Effect of Hard Cutoffs on Topologies

Depending on the way one applies hard cutoffs to an
initially scale-free topology results in different topological
characteristics, such as the degree distribution, diameter (or
expected search efficiency). Table 1 summarizes the
interrelationship between these three dimensions that PA
models were studied in literature.

When we applied hard cutoffs to the regular PA
topologies, their degree distribution looked like a power-
law distribution except for a spike in the frequency of nodes
having a degree equal to the hard cutoff (see Fig. 1a). Unlike
the original PA topologies without any cutoff, these
topologies exhibit different power-law exponents when
the spike on the hard cutoffs is not taken into account. We
estimated the power-law exponents for these PA topologies
with hard cutoffs and plotted Fig. 1b, which shows the
power-law exponent of the degree distribution versus the
hard cutoff. As expected, Fig. 1c shows that the degree
distribution exponent � degrades to lower values when
harder cutoffs are applied, suggesting that search efficiency
(in connection with the diameter size) will also degrade for
smaller cutoffs.

CM does not allow changes in the degree distribution
exponent because the degree sequence is drawn from a
predefined distribution generated by using a specific degree
exponent (see Figs. 2a and 2b). The only change in degree
distribution exponent is due to the deletion of self-loops
and multiple connections, and this can be considered
negligible. It is also observed that applying harder (smaller)
cutoffs to the degrees decreases the probability to have self-
loops and multiple connections.

In the HAPA model, it is not even possible to say that we
still have power-law degree distributions. Without a hard
cutoff, the degree distribution decreases very fast as the

degree increases, and there are a few nodes with degree on
the order of the system size, i.e., starlike topology (see
Fig. 2c). Applying a cutoff destroys the starlike topology
and changes the degree distribution into one similar to a
power law with possibly cutoff-dependent logarithmic
corrections, as can be seen in Fig. 2d.

The DAPA model is qualitatively very similar to PA for
high-enough �sub values (see Figs. 2e, 2f, 2g, 2h, and 2i). The
small �sub makes the network an exponential one. By tuning
this parameter, one can change the degree distribution from
exponential to power law. As in the PA model, applying a
harder cutoff decreases the degree distribution exponent, as
can be seen in Fig. 2i.

5 SIMULATIONS

In P2P networks that do not have a central server, including
Gnutella and Freenet, files are found by forwarding queries
to neighbors until the target is found. In the previous
sections, in addition to studying well-known techniques
like PA and CM for scale-free topology construction, we
introduced new algorithms (i.e., HAPA and DAPA) with
the same purpose within the context of unstructured P2P
networks. Here, we study a number of message-passing
algorithms that can be efficiently used to search items in
P2P networks utilizing the power-law (the presence of
hubs) degree distribution in sample networks generated by
our topology construction algorithms. These algorithms are
completely decentralized and do not use any kind of global
knowledge about the network. We consider three different
search algorithms: FL, NF, and RW. The goals of our
simulation experiments include the following:

. Effect of hard cutoffs on search efficiency. Applying hard
cutoffs on power-law topologies reduces the degree
distribution exponent, which should affect the
search efficiency (i.e., the number of hits per unit time)
on such topologies. We are interested in observing
this effect for the three search algorithms on the
topologies constructed by our algorithms.

. Topology construction with global versus local informa-
tion. Though we showed in the previous section that
using local information when a peer is joining yields
a less scale-free topology, the effect of this on search
efficiency still needs to be shed light on. Our
simulations aim to investigate this too.

. Messaging complexity. One side effect of changing
topology characteristics is that it will affect the
messaging complexity (i.e., the number of messages per
search request) of the search algorithms. We would
like to observe this effect as well.

5.1 Search Algorithms

FL. FL is the most common search algorithm in unstruc-
tured P2P networks. In the search by FL, the source node s
sends a message to all its nearest neighbors. If the neighbors
do not have the requested item, they send on to their
nearest neighbors, excluding the source node (see Fig. 3a).
This process is repeated a certain number of times, which is
usually called TTL, and we represent it with � in this paper.
After a message is forwarded an amount of time equal to � ,
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it is discarded. Independent floods by the nodes make the
FL algorithm parallel. On the other hand, in this algorithm,
a large number of messages is created since the destination
node cannot stop the search. This corresponds to a complete
sweep of all the nodes within a �-hop distance from the
source. The delivery time in the search by FL is measured
by the number of intermediate links traversed and is equal
to the shortest path length. Since the average shortest path
for small-world networks, including scale-free ones, is
proportional to the logarithm of the system size N or even
slower, the average delivery time ðTNÞ is logarithmic as
well, i.e., TN ¼ logðNÞ.

The main disadvantage with FL is that it requires a large
amount of messaging traffic because most of the nodes are
visited and forced to exchange messages, which makes the
search by FL unscalable. Another disadvantage is that FL
has poor granularity, i.e., each additional step in the search
significantly increases the number of nodes visited [13]. Yet
the search efficiency of FL (i.e., the number of hits per
search) provides a way of determining how other realistic
and scalable search algorithms can perform in comparison
to the best possible, i.e., the search efficiency of FL.

NF. In the search by FL, when large-degree nodes (hubs)
are reached, the number of neighbors for the next step in FL
increases dramatically, leading to poor granularity. This
also causes a lot of shared edges, reducing the performance
in terms of the number of messages per distinct number of
discovered nodes. To overcome this problem, the search by
the NF algorithm was introduced in [16]. In NF, the
minimum degree m in the network is an important factor.
The NF search algorithm proceeds as follows: When a node
of degree m receives a message, the node forwards the
message to all of its neighbors, excluding the node that
forwarded the message in the previous step. When a node
with a larger degree receives the message, it forwards the
message only to randomly chosen m neighbors, except for
the one that forwarded the message. The NF mechanism is
illustrated in Fig. 3b. In this simple network with m ¼ 2, the
source node sends a message to its randomly chosen two
neighbors, and these neighbors forward the message to

their randomly chosen two neighbors. In the third step, the
message reaches its destination.

The NF search algorithm is based on the minimum
degree in the network. The fixed minimum degree is equal
to m by definition in PA and HAPA, whereas in CM an
DAPA, it is not guaranteed that the minimum degree will
be m. In CM, the deletion of self-loops and multiple links
might reduce the minimum degree to values less than m. In
DAPA, however, the minimum degree might be less than m
because of the short range of horizon for some peers that are
geographically far from others. But still, since the ratio of
nodes with degree less than m is small, we ignored them
and ran the NF algorithm based on the predefined
minimum degree value m.

RW. RW or multiple RWs have been used as an
alternative search algorithm to achieve even better granu-
larity than NF. In RW, the message from the source node is
sent to a randomly chosen neighbor. Then, this random
neighbor takes the message and sends it to one of its
random neighbors, excluding the node from which it got
the message. This continues until the destination node is
reached or the total number of hops is equal to � . A
schematic of RW can be seen in Fig. 3c. RW can also be seen
as a special case of FL where only one neighbor is
forwarded the search query, providing the other extreme
situation of the trade-off between delivery time and
messaging complexity. The RW search is inherently serial
(sequential), which causes a large increase in the delivery
time [42], [15]. In particular, computer simulations per-
formed on a generalized scale-free network with degree
exponent � ¼ 2:1, which is equal to the value observed in
P2P networks, yield the result [43] TN ¼ N0:79. Although the
RW search is worse than the FL search in scale-free
networks in terms of the time needed to locate a given
node, the average total traffic in the network is equal to TN
and therefore scales sublinearly with N , better than the
linear growth of the FL search.

5.2 Results

We simulated the three search algorithms FL, NF, and RW
on the topologies generated by PA, CM, HAPA, and DAPA
and provide results for all the combinations with various
hard cutoffs. Through the PA, CM, HAPA, and DAPA
methods, we generated topologies with 10,000 nodes. We
used different cutoff values from 10 to 100 (or just a few in
this range), in addition to the natural cutoff, i.e., no hard
cutoff. When generating DAPA topologies, we used �sub
values of 2, 4, 6, 8, 10, 20, and 50 with the expectation that a
larger �sub should yield better search efficiency. The
minimum degree values (or m) in our topologies were 1, 2,
and 3. We varied the � values of search queries in FL up to
the point we reach the system size, and for NF/RW, up to 10.
To compare search efficiencies of RW and NF fairly in our
simulations, we equated the � of RW searches to the number
of messages incurred by the NF searches in the same
scenario. Thus, for the search efficiency graphs of RW when
� is equal to a particular value such as four, this means that
the number of hits corresponding to that � ¼ 4 value is
obtained by simulating an RW search with � equal to the
number of messages that were caused by an NF search using
a � value of four. A similar normalization was done in [16].
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Another important point to note is that the number of hits in

RW and NF include the source node as well, which makes

the values one more than the usual.
Search efficiency. As � varies, Fig. 4a shows the number of

hits achieved by FL on various topologies with size N ¼ 104

generated by the PA method. To illustrate the effects of the

network size, we show FL results (scaled to one) for three

different system sizes in Fig. 5a. As can be seen in this figure,

scaled FL results show that as the system size gets larger, the

performance decreases relatively for m ¼ 1, but for larger

values of m, this effect disappears. Similarly, Figs. 4c and 4d

shows the search efficiency of FL on the topologies generated

by the CM. In both of these figures, as expected, when there is

no hard cutoff in the topology, the FL algorithm can achieve

higher search efficiency by capturing more of the peers in the

network for a specific � value. Also, the effect of imposing a

hard cutoff reduces when the minimum degree in the

topology is higher. One interesting feature of CM is that

when the minimum number of links is one (i.e., m ¼ 1), the

number of hits cannot reach the system size even for very

large � values because the network is not a connected one for

m ¼ 1. Fig. 4b shows a similar search efficiency behavior for

FL on HAPA topologies for a fixed-size network, and Fig. 5b,

for different network sizes with even more apparent effect of

hard cutoff. For small values of cutoff, PA and HAPA give

similar performance in FL, whereas for higher values of

cutoff, HAPA has better hit results due to the starlike

topology. The FL in DAPA is less efficient than that in PA,

although for higher values of �sub, it gets closer to PA, and the

efficiency of FL increases, as can be seen in Figs. 4e and 4f. We

did not show the FL results for different network sizes for CM

and DAPA because the behavior with respect to the network

size is virtually identical in all cases.

A minimum of three links for all peers eliminates the negative
effects of hard cutoffs. An interesting observation is that the
negative effect of hard cutoffs on the FL performance on the
PA and HAPA topologies can be easily reduced to negligible
values by increasing the number of stubs m (or connected-
ness). The number of stubs as small as three leaves virtually
no difference between the search performance of overlay
topologies with or without hard cutoffs. This result provides
the guideline that to achieve a better FL performance, a
requirement of having at least three links to the rest of the network
will be adequate to assure that no one else in the network will need to
maintain an unbearably large number of links. However, the
necessity of complete or partial global information about the
overall network when constructing a PA or HAPA topology is
a major discouragement of using them for generating overlay
topologies of unstructured P2P networks.

There exists an interplay between connectedness and the degree
distribution exponent for a fixed cutoff. As the DAPA method is a
purely local method, it is more interesting to observe search
performance on the DAPA topologies. Figs. 4e and 4f show
the FL performance on DAPA topologies generated with
minimum degrees (or numbers of stubs) of one and three,
respectively. In each of these figures, search performance is
shown for different �sub values: 2, 4, 6, 8, 10, 20, and 50.
Interestingly, when there is weak connectedness (i.e.,m ¼ 1),
Fig. 4e shows that imposing hard cutoffs improves the search
performance. This is due to the fact that hard cutoffs increase
the connectedness of the topology by moving the links that
would normally go to a hub in a topology without a hard
cutoff. However, when the number of stubs is larger (Fig. 4f),
we observe an interplay between the degree distribution
exponent and the connectedness for a fixed cutoff. We
observe that the improvement caused by hard cutoffs
depends on the value of the hard cutoff, suggesting that
reducing the hard cutoff value hurts the search performance
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after a while. That is, potential improvements by having smaller
hard cutoffs diminish as the performance starts to become dominated
by the degree distribution exponent rather than the connectedness.
Another observation to be made is that the impact of local
information plays a major role in the search performance, as
can be seen in Figs. 4e and 4f.

Hard cutoffs may improve search efficiency in NF and RW.
More interestingly, for NF and RW, improvements due to
having hard cutoffs are apparent in all three topology
generation methods, including the PA, regardless of the
number of stubs m. The only exception to this behavior is
the CM, as shown in Figs. 6b and 8b for NF and RW,
respectively. This means that practical search algorithms
like NF and multiple RWs are affected positively by having
hard cutoffs on the overlay topology. For NF, this is
evidenced in Figs. 6a, 6d, 6c, and 6f for the PA and HAPA
topologies, respectively. Having a little more local con-
nectivity to the network by having a minimum of two to
three links in every peer increases the search performance
rapidly for the same � values (i.e., by comparing Figs. 6a
and 6d). For RW, a very similar behavior is exhibited in
Figs. 8a, 8d, 8c, and 8f, with the only difference being that
the effect of hard cutoffs is more apparent due to the fact
that NF does better averaging of search possibilities. The
observed behavior of RW illustrates how good the effect of

hard cutoffs can be on the search performance. It is intuitive
that multiple RWs would perform more similar to NF in
terms of performance.

More global information is more important for search efficiency
when target connectedness is high. Fig. 7 shows the perfor-
mance of NF on various DAPA topologies with different
parameters. Figs. 7a and 7c shows the search performance
on a linear scale when m ¼ 1, while Figs. 7b and 7d show it
on a semilogarithmic scale when m ¼ 3. We observe again
that as the hard cutoff is getting smaller, the search
efficiency improves, regardless of the connectedness m.
Also, having a little better connectedness (e.g., m ¼ 3)
improves the search performance greatly. An interesting
observation is that when constructing the overlay topology,
having more information (i.e., larger �sub) about the global
topology (and, thus, more scale-freeness in the overall
topology) yields more important improvements on the
search performance for topologies with more connected-
ness, i.e., larger m. This means that for the purpose of
constructing topologies with better search performance,
when the target connectedness value is high, one needs to be
more patient and obtain as much information as possible
before finalizing its links to the rest of the peers.

DAPA with high �sub and HAPA models perform almost as
good as the CM with � ¼ 2:2. An interesting characteristic to
observe is how close the performance of DAPA and HAPA
is to the low-� CM for the NF and RW search algorithms.
Specifically, topologies generated by the CM do not have
spikes at the hard cutoff values (e.g., Fig. 1a) in their degree
distributions, in such a way that the links are configured in
the perfect manner to assure that no node has links more
than the target hard cutoff and the degrees of nodes follow
exactly the predefined power law. This can be seen by
comparing Figs. 2a and 2b with its counterparts Figs. 1, 2c,
2d, 2e, 2f, 2g, 2h, and 2i. As it can be seen in Figs. 6c and 6f,
with connectedness m ¼ 1, 2, and 3, HAPA performs
slightly worse than CM when using NF. Similarly, the
DAPA performance for moderate �sub values (e.g., six) is
very close to that of CM (e.g., Fig. 9). For small or no
connectedness m ¼ 1, the behavior is the same, in that the
DAPA and HAPA performance is close to the CM
performance, as shown in Figs. 7a and 7c, 6c, and 6b for
DAPA, HAPA, and CM, respectively.

We also simulated our search algorithms on networks with
different sizes such as N ¼ 5; 000 and N ¼ 20; 000. We
observed that for NF and RW atm ¼ 1, the results are almost
identical for different network sizes. At higher values of m,
the same exponential behavior observed but with a different
prefactor for each. Typically, higher m values allow NF and
RW algorithms to reach more distant nodes on larger
networks.

Messaging complexity. We also looked at the complex-
ity of messaging overhead for the search algorithm and
topology combinations. We specifically looked at the
average number of messages incurred by a search request.
As the FL algorithm is an extreme and is not scalable in
terms of messaging complexity, we did not study its
performance. In all cases, NF performs better than RW
consistently, though the difference between the two algo-
rithms diminishes as � increases for weak connectedness,
i.e., m ¼ 1. But, for stronger connectedness, i.e., m > 1, the
difference between NF and RW is more apparent. More
importantly, although the effect of hard cutoffs is negative
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Fig. 5. Scaled FL results for PA and HAPA models for different network

sizes. (a) PA. (b) HAPA.
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in terms of messaging complexity, we observed that this

negative effect is very minimal and negligible, given that

improvements on the search performance were observed

for smaller hard cutoffs.
Design guidelines and principles. Based on the ob-

servations we have made in our simulation experiments, we

outline the following design guidelines for constructing an

overlay P2P topology:

. Enforce establishing a minimum of three links to the rest
of the network when a peer is joining. Our results
showed that to achieve better flooding performance
a requirement of having at least three links to the
rest of the network will be adequate to assure that no
one else in the network will need to maintain an
unbearably large number of links.

. For weakly connected networks with a treelike topology,
apply smaller hard cutoffs. When the connectedness
of peers is weak (i.e., the number of links is one or
two), enforcing tighter hard cutoffs is better for
search performance. This will ensure that the
joining peers will attempt to connect to the peers
with perhaps a very small number of links, and

thus, this reinforcement will yield a topology with
better connectedness and search performance.

. For strongly connected networks, force the joining peers to
be more patient and collect more global information about
the existing network topology. Our results showed that
having more information (i.e., larger �sub) about the
global topology (and, thus, more scale-freeness in
the overall topology) yields more important im-
provements on the search performance for topolo-
gies with more connectedness, i.e., larger m. This
means that for the purpose of constructing topolo-
gies with better search performance, when the
existing network has peers with high connectedness,
the joining peers need to be more patient and obtain
as much information as possible before finalizing its
links to the rest of the peers.

6 SUMMARY AND DISCUSSIONS

We studied effects of the hard cutoffs peers impose on the

number of entries they store on the search efficiency.

Specifically, we showed that the exponent of the degree

distribution reduces as hard cutoffs imposed by peers

become smaller. We introduced new scale-free topology
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Fig. 7. NF results for the DAPA model. (a) m ¼ 1 and no cutoff. (b) m ¼ 1 and kc ¼ 10. (c) m ¼ 3 and no cutoff. (d) m ¼ 3 and kc ¼ 10.

Fig. 6. NF results for PA, CM, and HAPA. (a) m ¼ 1. (b) m ¼ 1. (c) m ¼ 1. (d) m ¼ 2 and m ¼ 3. (e) m ¼ 2 and m ¼ 3. (f) m ¼ 2 and m ¼ 3.
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generation mechanisms that use completely or partially local
information unlike traditional scale-free topology generation
mechanisms using global topology information. We showed
that topologies generated by our mechanisms allow better
search efficiency in practical search algorithms. Our study
also revealed that interplay between the degree distribution
exponent with a fixed hard cutoff and connectedness is likely
to occur when using our mechanisms.

Future work will include the study of join/leave

scenarios for the overlay topologies while attempting to

maintain the scale-freeness of the overall topology. The

challenge is to achieve minimal messaging overhead for

join/leave operations of peers while keeping the scale-

freeness in a topology with a hard cutoff. Another issue to

investigate is the heterogeneity of peers in terms of the load

they are willing to undertake. In our study, to observe the

fundamental effects of hard cutoffs, we considered the

baseline case where all peers apply a fixed hard cutoff. In

practice, to achieve better control and search efficiency,

many P2P protocols devise superpeers, which are desig-

nated for high loads. This situation can be reflected in the

hard cutoff distribution by assuming a different hard cutoff

for each peer. Such a study will require inference of realistic

hard cutoff distributions.
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[40] M. Catanzaro, M. Boguná, and R. Pastor-Satorras, “Generation of
Uncorrelated Random Scale-Free Networks,” Physical Rev. E,
vol. 71, p. 027103, 2005.

[41] J. Dall and M. Christensen, “Random Geometric Graphs,” Physical
Rev. E, vol. 66, p. 016121, 2002.

[42] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication Strategies in Unstructured Peer-to-Peer Networks,”
Proc. ACM Int’l Conf. Supercomputing (ICS), 2002.

[43] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman,
“Search in Power-Law Networks,” Physical Rev. E, vol. 64,
p. 046135, 2001.

Hasan Guclu received BS and MS degrees in
physics from Middle East Technical University,
Ankara, Turkey, in 1998 and 2001, respectively,
and the PhD degree in physics from Rensselaer
Polytechnic Institute, Troy, New York, in 2005.
He is an assistant professor in the School of
Mathematical Sciences, Rochester Institute of
Technology, Rochester, New York. Formerly, he
was a postdoctoral fellow at the Complex
Systems Group of Los Alamos National Labora-

tory, Los Alamos, New Mexico. His research is on complex networks and
their applications in peer-to-peer/sensor networks, computational epide-
miology, and parallel and distributed computation systems. He is a
member of the IEEE, the APS, Sigma Xi, and Sigma Pi Sigma.

Murat Yuksel received the BS degree in
computer engineering from Ege University, Izmir,
Turkey, and the MS and PhD degrees in
computer science from Rensselaer Polytechnic
Institute in 1999 and 2002, respectively. He is an
assistant professor at the University of Nevada,
Reno. His research is on various networking
issues such as wireless routing, free-space-
optical mobile ad hoc networks (FSO-manet),
network modeling and economics, peer-to-peer,

protocol design, and performance analysis. He is a member of the
IEEE, the ACM, and the Sigma Xi.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUCLU AND YUKSEL: LIMITED SCALE-FREE OVERLAY TOPOLOGIES FOR UNSTRUCTURED PEER-TO-PEER NETWORKS 679

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on May 3, 2009 at 14:23 from IEEE Xplore.  Restrictions apply.


