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A Duality Model of TCP and Queue
Management Algorithms
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Abstract—We propose a duality model of end-to-end congestion aggregate source utility subject to capacity constraints. We will
control and apply it to understand the equilibrium properties of  interpret source rates as primal variables, congestion measures
TCP and active queue management schemes. The basic idea is 1%s dual variables, and TCP/AQM protocols as distributed

regard source rates as primal variables and congestion measures as_ . I-dual algorith ¢ ve thi timizati bl d
dual variables, and congestion control as a distributed primal-dual primal-dual algorithms 10 solve this optimization problem an

algorithm over the Internet to maximize aggregate utility subject itS associated dual problem (Section I1). Different protocols,
to capacity constraints. The primal iteration is carried outby TCP  such as Reno, Vegas, RED, and REM [1], [2], all solve the

algorithms such as Reno or Vegas, and the dual iteration is carried same prototypical problem with different utility functions,
out by queue management algorithms such as DropTail, RED or 54 we derive these functions explicitly (Sections 11l and 1V).
REM. We present these algorithms and their generalizations, de- Moreover, all these protocols generate congestion measures
rive their utility functions, and study their interaction. ’ e ] >
(Lagrange multipliers) that solve the dual problem in equilib-

rium.

The model implies that the equilibrium properties of a large
network under TCP/AQM control, such as throughput, delay,
|. INTRODUCTION queue lengths, loss probabilities, and fairness, can be readily un-

ONGESTION control is a distributed algorithm to shar erstood .by studying the underlying pptimization probl_em (see
network resources (called “links” in this paper) amon ter sections and [19]). Morgover, since thg problem is a con-
competing sources. It consists of two components: a source ve program, these properties can be efficiently computed nu-

gorithm that dynamically adjusts rate (or window size) in rerpenc;ally. , . L

sponse to congestion in its path, and a link algorithm that u t is possmle_ to 90 betwee_n u_t|I|ty maximization ar_1d
dates, implicitly or explicitly, a congestion measure and sends i?P/AQM _E?JgOI’Ithm.S in both d|rgct|ons. We can st.art .W'th
back, implicitly or explicitly, to sources that use that link. Onthgeneral utility functions, e.g., tailored to our applications,

current Internet, the source algorithm is carried out by TCP, aﬁad then derive TCP/AQM algorithms to maximize aggregate

the link algorithm is carried out by (active) queue manageme t{lity, as dong in, €9, [12], [13], [1.7]’ [20], and [22]. Qon-
(AQM) schemes such as DropTail or RED [7]. Different Ioroto\_/ersely, and historically, we can design TCP/AQM algorithms
then reverse-engineer the algorithms to determine the

cols use different metrics to measure congestion, e.g., TCP R _ N . RO .
[11], [26] and its variants, use loss probability as congestié‘r?derl.ymg utility functions they implicitly opF|m|ze anq the

measure, and TCP Vegas [5], it turns out, uses queueing de ociated dual problem, as we do here and in [19]. This is the
as congestion measure [19]. Both are implicitly updated at th8 squence of end-t(t)-eni.c?]nttrﬁl. "T’ZIF?ngI as{ﬂe end-t?-epd
links and implicitly fed back to sources through end-to-end lo gngestion measure 1o whic € aigorithm reacts 1S

or delay, respectively. In this paper, we present a general momaq sumof the constituent link congestion measures, such an

of end-to-end congestion control and apply it to understand twéerpretgtlon IS Va“d' . . .
In Section V, we discuss the interaction of generalized Reno

equilibrium properties of the closed-loop systems specified by " .
vgrious TCPp/A(SM protocols P sy P a¥gorlthms, and that of Reno and Vegas. It will become clear that

The basic idea is to regard the process of congestion contf 'rness of TCP algorithms should not be defined solely in terms

as carrying out a distributed computation by sources and lin ether they receive the same ethbn_qm_rates, as cpmmonly
over a network in real time to solve a global optimizatio one in the literature, because the equilibrium bandwidth allo-

problem formulated in [12]. The objective is to maximizé:ation generally also depends on AQM, network topology, and
routing, etc. We will conclude in Section VI with some insights

from the duality model and limitations of this work.
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S of sources indexed hy. Each source uses a sef, C L of possiblyocc. If (x5, 0) is an equilibrium pointf(zs, 0) = zs,

links. The setd.; define anL x S routing matrix then define
gL el fs(zs) = 0. (6)
*= 0, otherwise.

Define the utility function of each sourceas
Associated with each soureseis its transmission rate,(t) at .
timet, in packets/s. Associated with each lihis a scalar con- Us(zs) = / fs(xs)dzs, zs >0 (7
gestion measurg;(t) > 0 at time¢. Following the notation of :
[24], lety,(t) = 3, Risx.(t) be the aggregate source rate dhat is unique up to a constant.
link 7 and letg, () = 3", Rispi(t) be the end-to-end congestion Being an integral,U, is a continuous function. Since
measure for source. In vector notation, we have{ denotes fs(7s) = qs > 0 for all z,, U is nondecreasing. It is reason-
transpose) able to assume that, is a nonincreasing function—the more
severe the congestion, the smaller the rate. This implies that
y(t) = Rx(t) and q(t) = RTp(t). U, is concave. Iff, is strictly decreasing, thel, is strictly
~concave sinc&/!(z;) < 0. An increasing utility function im-
Hfsrle:ﬂ?(t) = (zs(t), s € §) andq(t) = (qs(t), s € S) arein  pjies a greedy source—a larger rate yields a higher utility—and
R andy(t) = (yi(t), I € L) andp(t) = (pi(t), I € L) are  concavity implies diminishing return.
in ER‘JFL' (R4 denotes nonnegative real). Souscean observeits  Now, consider the problem of maximizing aggregate utility
own ratez(¢) and the end-to-end congestion measufe) of formulated in [12]:
its path, but not the vectar(t) or p(¢), nor other components

of ¢(t). Similarly, link I can observe just local congestigiit) P Us(zs) subjectto Rz < c. (8)
and flow ratey,(t). s
The source rate,(t) is adjusted in each period according td he constraint says that, at each linkhe flow ratey; does not
a functionF, based only om:,(t) andq,(t): For all s exceed the capacity;. An optimal rate vector:* exists since
the objective function in (8) is continuous and the feasible so-
zs(t+ 1) = Fy(zs(t), qs(t))- (1) lution set is compact. It is unique if, arestrictly concave. As

_ _ ) ) ) ~the sources are coupled through the shared links (the capacity
The link congestion measuge(t) is adjusted in each period constraint), solving for* directly, however, may require coor-
based only onp(¢) and y(t), and possibly some internal gination among possibly all sources, and hence is infeasible in
(vector) variablev;(t), such as the queue length at linkThis 5 |arge network. The key to understanding the equilibrium of
can be modeled by some functiof@;, H;): For alll (1)—(3) is to regard:(t) as primal variableg(¢) as dual vari-
ables, and F,G) = (Fs,Gi,s € S,1 € L) as a distributed

pi(t+1) =Gi(y(t), pi(t), vi(t)) @ primal-dual algorithm to solve the primal problem (8) and its
ot +1) = Hi(yi(t), pi(t), vi(t)) (3) Lagrangian dual (see [17)).
where@, is nonnegative so thaf(¢) > 0. Here,F, models TCP min max(Us(zs) — 2sqs) + Zplcl. 9)
algorithms (e.g., Reno or Vegas) and;, H;) model AQMs p20 5 2,20 !

(e.9., RED, REM); see the next section. We will often refer (e the dual variable is a precise measure of congestion in
AQMs by G, without explicit reference to the internal variablgne network. The dual problem has an optimal solution since

vi(t) or its adaptationt;. o _ the primal problem is feasible. We will interpret the equilibria
We assume that (1)—(3) has a set of equilisiap). Afixed (.« *, ) of (1)~(3) as solutions of the primal and dual problem,

point of (1) defines an implicit relat_ion between an equilibriun 4 that(F, G) iterates on both the primal and dual variables
ratez, and an end-to-end congestion measpre together in an attempt to solve both problems.
We summarize the assumptions@n G, H) as follows.

zs =F,s Lssy s )-
(e: ) Cl: Foralls € S andl € L, F, andG,; are nonnega-

AssumeFs is continuously differentiable andlF; /dqs # 0 in tive functions. Moreover, equilibrium points of (1)—(3)
the open setl := {(xs, ¢s)|zs > 0, ¢s > 0}. Then, by the exist.
implicit function theorem, there exists a unique continuously C2: For alls € S, F, are continuously differentiable and
differentiable functionfs from {z; > 0} to {¢gs > 0} such 0F;/0qs # 0in {(zs, ¢s)|zs > 0, ¢s > 0}; more-
that over, fs in (4) are nonincreasing.
C3: It pr = Gilyr, pi, vi) andor = Hi(yi, pi, i), then
qs = fs(zs) >0 (4) y < ¢ with equality if p; > 0.

_ _ _ C4: Foralls € S, f are strictly decreasing.
around a fixed point. To extend the mapping betwegandq.  condition C1 guarantees that(t), p(t)) > 0 and(z*, p*) > 0.
to the closure of4, define C2 guarantees the existence and concavity of utility fundtign
. _ C3 guarantees the primal feasibility and complementary slack-
1+(0) = inf{g, > 0 F(0,g,) = 0} ) ness of(z*, p*). Finally, condition C4 guarantees the unique-
2We abuse notation to udeandsS to denote both sets and their cardinality. Ness of optimal:*.
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Theorem 1:Suppose assumptions C1 and C2 hold. Let Note that the definition of utility functio/, depends only
(z*, p*) be an equilibrium of (1)—(3). Thefz*, p*) solves on TCP algorithmF. The role of AQM(G, H) is to ensure
the primal problem (8) and the dual problem (9) with utilitithat the complementary slackness condition of problem (1)—(3)
function given by (7) if and only if C3 holds. Moreover, ifis satisfied (condition C3). The complementary slackness has a
assumption C4 holds as well, théR are strictly concave and simple interpretation: AQM should match input rate to capacity
the optimal rate vectar™* is unique. to maximize utilization at every bottleneck link. Any AQM that
Proof. The discussion after the definition (7) Gf proves stabilizes queues possesses this property [see (16) below] and
the second claim when C4 holds, so we only prove the firgenerates a Lagrange multipljgrthat solves the dual problem.
claim. In the following sections, we apply Theorem 1 to interpret
By duality theory (e.g., [4, Proposition 5.1.5]x*, p*) is TCP Reno with RED and with REM, and TCP Vegas with Drop-
primal-dual optimal if and only ifz* is primal feasiblep* is Tail. We first derive an algorithm modéF’, G, H) from pro-
dual feasible, complementary slackness holds, and tocol description, and then use (7) to derive the utility function
U, which the protocol implicitly optimizes. The results are sum-

o = argmax Lz, p”) (10)  marized in Table I.
wherelL is the Lagrangian of (8) defined as
Ill. RENO/AQM
L(z,p) = Z Us(zs) + sz <Cz - Z stxs> . For TCP, we only model the congestion avoidance phase and
s 1 s ignore other (important) aspects such as slow-start and fast re-

Hence, to prove the first claim, we only need to establish (1djansmit/fast recovery. For AQM, it is useful to distinguish be-
Now tween measure of congestion and feedback of congestion mea-
sure. TCP Reno, for instance, uses loss probability as a measure

max L(z,p*) = max U,(z,) + Zp;k c — Z Rz, of congestion. The value of this congestion measure can be fed
20 ©2,0 . B back to sources either by dropping packets or setting an ECN

S

bit with this probability. In this paper, we are concerned with
= Z max (Us (zs) — x5 Z Rz.q)}“) the design of congestion measure and its equilibrium properties,
s o= 1 and our AQM models do not capture the feedback mechanism.
+ me' We will henceforth use “marking” to refer to either dropping a
l

packet or setting an ECN bit.
By construction ofU,, we have from (4) and (7) that, for any

equilibrium at whichz* > 0, (z*, p*) A. (F, G, H) Model
U (27 — Y~ SR 1 In this section, we present models of TCP Reno, RED, and
J(w0) = ful@)) =00 = Z 1sP1 - A1) ReMm. The implications of these models will be given in the
l

following section and in the conclusion.
Note that if¢; = 0, then (11) holds by (6). I£ = 0, we have e only model the average behavior of AIMD and do not
from (5) differentiate between TCP Reno [26] and its variants such as
NewReno, SACK, etc. All these protocols (henceforth referred

! *
Us(0) = £+(0) < g5 (12) to as “Reno”) increase the window by one every round-trip time
but (11) and (12) imply that if there is no mark in the round-trip time and halve the window
ol otherwise. There are two versions of multiplicative decrease.
(z*, p*) <0 Older variants of Reno halve the window every time a mark
9z, is detected, whereas new versions of Reno halve the window

with equality if 2% > 0. SinceL(x, p*) is concave inz, this only once if there is one or more marks in a round-trip time.
is the necessary and sufficient Karush—-Kuhn—Tucker conditidee will call the former version Reno-1 and the latter Reno-2; as
for 2* to maximizeL(x, p*) overz > 0. Hence, the proof is we will see below, they have slightly different utility functions
complete. m and fairness properties. For both versions, we interpret packet
Hence, various TCP/AQM protocols can be modeled as difiarking probability as a measure of congestion.
ferent distributed primal-dual algorithri8, G, H)tosolvethe  Under DropTail, a packet that arrives to a full buffer is
global optimization problem (8) and its dual (9), with differentiropped. We do not know a convenient expression for the
utility functionsUs. This computation is carried out by sourceslynamics of marking probability. A model of loss rate that has
and links over the Internet in real time in the form of conge$een used, e.g., in [8] and [13], is that for a bufferless queue,
tion control. Theorem 1 characterizes a large class of protocpls + 1) = [1 — ¢/ > z(¢)]*. This model is suitable for the
(F, G, H) that admits such an interpretation. This interpretg@enalty function approach to solving (8), but not the duality
tion is the consequence of end-to-end control: It holds as longagsproach because of the feasibility constraint. Hence, we only
the end-to-end congestion measure to which the TCP algoritipnesent models for RED and REM.
reacts is thesumof the constituent link congestion measures, Let w,(¢) be the window size. LeD, be the equilibrium
under some mild assumptions on the TCP and AQM algorithmsund-trip time (propagation plus equilibrium queueing delay),
that are typically satisfied (assumptions C1-C3). which we assume is constant, as customary in the literature, e.g.,
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TABLE |
SUMMARY OF DUALITY MODEL OF TCP/AQM ALGORITHMS. NOTATIONS ARE EXPLAINED IN SECTIONSIII AND IV

TCD
Reno-1 | F,(xy(t). q.(1)) [1:5(1) i ;%(,‘5(1);,;‘,(1)} |

Utility 2 an ! ((f20.0,)

Reno-2 | F(xs(1). g (1)) [J;s(n) b lnbenln ;:;q,,,(x);lef(r,)]

159

Utility 1IT log 2;*5’13
z,(t) +pz il z,(t) <F(1)
Vegas Fo(zs(t), qs(1)) zy(t) — gz if @ (t) > T (1)
z4(t) ’ otherwise
Utility v dgloga,
AQM
0 n(t+1)<b
. . o (rt+1)-b by<nmt+1)<b
RED | Gu(t) p@y o) | { 2000280 s s
1 ri(t+1) > 2b

Hy(yi (), pu(t), v (1) | bt + 1) = [bu(t) + wi(t) — e]”
ri(t+1) = (1= ap)ri(t) + arby(t)
REM | Gi(yi(t). pi(t). vy(2)) | 1= ¢mC+D
Hi(yi (). pe(t),v(t)) | oot + 1) = [bu(t) +yu(t) —e] 7
it 4+ 1) = [ri(t) +y(aabi(t) +yi(t) — c)]”
Delay | Gi(w(t), (), () | plt +1) = [p(t) + 22 — 1]*

[14], [21]. Letz,(t) defined byzs(¢) = ws(t)/ D, be the source Then the source algorithifi; (z4(t), ¢s(¢)) of Reno-1 is given
rate at timet. The time unit is on the order of several round-trifby

times and source rate,(¢) should be interpreted as the average

rate over this time scale. Dynamics smaller than the time scalems(t +1) = |z,(t) +

1—q.(t) 2 +

 time _ el 2 meo)| . s

of a round-trip time is not captured by the fluid model. 5 3

A.1 Reno-1:Letp,(t) be the marking probability atlinkat  The quadratic term signifies the property that, if rate doubles,

timet. We make the key assumption that the end-to-end markigigs multiplicative decrease occurs at twice the frequency with
probabilityq (¢) to which the source algorithm reacts is the sufyice the amplitude.

of link marking probabilities A.2 Reno-2:Reno-2 increments the window by one per
round-trip timeD, if there is no mark, and halves the window
gs(t) = Zstpz(t)- (13)  once in each round-trip time if there are one or more marks.
! We model this as follows. In each periedwhich is on the

This is reasonable whem;(t) are small, in which case or.derofafey\./ round-triptimes),thewindowincreaseslb;ps
w® = 1 -y (= p®) ~ Sy p;(t) In period? with probability 1 — ¢.(¢) and decreases B, (t)/3D, with

s - €L - €L, ) ' ility ¢ 7l i -to- ili

it transmits at raters(¢) packetsper unit time, and receives probability g, (t), where_qs(t) IS th_e en(_j to-end probability
(positive and negative) acknowledgments at a roximatet atat leastone packet is marked in periagdn the path ofs.

P 9 9 PP ain, letp;(t) denote the probability that a packet is marked

the same rate, assuming every packet is acknowled_g_ed. atlink ! in periodt, andqg(t) be the end-to-end packet marking
average, sourcereceivesr,(t)(1 — ¢s(t)) number of positive robability given by (13). We model(#) as
acknowledgments per unit time and each positive acknowl" Y9 y ' '

edgment increases the windaw; (¢) by 1/ws(t). It receives, Gs(t) = ws(t)qs(t)
on averagez(t)q.(t) negative acknowledgments (marks) per

unit time and each halves the window. Hence, in petiothe Where w,(#) is the window size. This would be justified if
net change to the window is roughly packets in the same window are marked independently of each

other and the packet marking probabiligy(¢) is small, in
4w (t) which casej,(t) = 1 — (1 — q,(2))"®) ~ wy(t)qs(t).
3 Then, the average change in window size in peticd

1 R 2w (t)
SThe factor is motivated by considering a single Reno flow, where on a D. (1—qs(t)) — 3D as(t)
smallertime scale than that of the fluid model, the window oscillates between $ s
%ws(f) and%ws(f) with an average ofv, (¢). It is more customary to replace _ 1 —ws (t)qS(t) 2 " + ¢
the factor% by 1 in the literature, as we will do in Section V. D, - gqs( >x5( )ws( )

zs(t)(1 = g5(1)) -

- xs(t)qs(t) :

N | =

ws(t)
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Hence, the source algorithm,(z,(t), ¢s(t)) for Reno-2 is for some constant > 0. The version with nonzero target queue
given by IengthBl and linear marking probability is equivalent to the PI
n controller of [10]. Other proposed AQMs, such as Adaptive Vir-
(b4 1) = (o) + 1- xs(lt))zqs(t)Ds B gqs(t):vf(t) . Eg?l Queue of [13], can also be modeled in the form of (2) and
. , , (15)_ Equations (16), (19), and (20) or (21) define the model
A.3 RED: RED [7] maintains two internal variables, the ln-(G- H) for REM.
stantaneous queue lengifit) and average queue lengtht). /

They are updated according to B. Utility Functions of Reno

bi(t+1) = [bi(t) + m(t) — ] (16) In this section, we deri\{e the utility functions of Reno-1 and
r(t+1) = (1 — ag)ri(t) + abi(t) 17) Reno-2 and show that, with RED or REM, they solvc_a both Fhe

primal and dual problem. Note that all results of this section
whereq; € (0, 1). Then (the “gentle” version of) RED marksapply to a network that containsoth Reno-1 and Reno-2
a packet with a probability;(¢) that is a piecewise linear in- sources anhiothRED and REM links.

creasing function of(t): Lemma 2: The functions(F, G, H) that model Reno-1,
Reno-2, RED, and REM [(14)—(21)] satisfy conditions C1, C2,
0, i) < by and C4.
pi(ri(t) = b)), b, <mi(t) < b Proof: Clearly, condition C1 is satisfied. For both Reno-1
pi(t) = pa(ri(t) — b))+, By < mi(t) < 2 (18)  and Reno-2, when, > 0, F, is continuously differentiable and

0F,/0qs # 0. For Reno-1

1, ri(t) > 2 X
where = gppryg fs(zs). (22)
o = For Reno-2
by — b 3
s — =! Js\Ts). 23
and 4 2sDs(225:Ds + 3) f(ws) (23)
l=-my Hence, fs(z5) is strictly decreasing for both Reno-1 and
P2 = b Reno-2, implying strict concavity of their utility functions.
_ _ Hence, conditions C2 and C4 are both satisfied. |
Equations (16)—(18) define the modét, H) for RED. Combining (22) and (7), the utility function of Reno-1 (14) is

A.4 REM: REM [1], [2] also maintains two internal vari-
ables, instantaneous queue lengtft) and a quantity called

VB2 \F
“price” r;(t). As in RED, b;(¢) is modeled by (16); the price Uslws) = D, tan gsts ' (24)

r(t) is updated according to

Similarly, from (23), the utility function of Reno-2 (15) is

r(t+1) = [r(t) +y(abi(t) + a(t) — e)]* (19) 1 z.D
Us(zs) = — log i (25)
wherey > 0 anda; > 0 are constants. It marks packets with a D, 2z:Ds +3
probability that is exponential in price(t): Note that the utility functions of Reno-1 and Reno-2 imply that,
_ —r(t) unlike Vegas, it is possible for a source that traverses many bot-
pt)=1-¢ (20)  tieneck links to receive zero bandwidth (when its end-to-end

where¢ > 1 is an REM parameter. In practice, (19) can bBice is one unit). , ,
replaced by The following result applies Theorem 1 to Reno with RED

or with REM. It implies that the equilibrium queue length with
7 + RED depends on the problem instance (network topology.
t+1) = [r(t) + bi(t) — bi) + yi(t) — : '
i ) [rl( ) (abilt) = bi) + i (?) cl)] routing, number of sources, etc.) and RED parameters, and
hence, inevitably grows as load increases. RED parameters

whereb; > 0 is a target equilibrium backlog. A largér gen- oo tuned. statically or d callv. to red ibri
erally yields a higher utilization especially when the queue o2 be tuned, statically or dynamically, to reduce equitibrium
dqueue length, but only at the expense of potential instability;

cillates widely [1], [2]. With this version, the equilibrium queue o
length in Theorem 3 below i = b (19) corresponds to set.S€e Example 1 below. In contrast, the equilibrium queue length
ting b =0 with REM is zero regardless of load.

Exponential marking probability (20) is useful for estimating Theorem 3: o
end-to-end pric&",, r(#) at the source. Since this isnot 1) Let («7, p*) be an equilibrium of a network that con-
used by Reno, other increasing functions can also be used, as t@ins both Reno-1 and Reno-2 sources and both RED and
explained in [1] and [2]. For instance, the marking probability ~ REM links. Then(z*, p*) solves the primal (8) and the
can be linear in price;(t) dual problem (9), with utility functions given by (24) for _
Reno-1 and (25) for Reno-2 sources. Moreover, the equi-
pi(t) = min{pr(t), 1} (21) librium rate vector:* is unique.
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2) If link [ implements RED, then the equilibrium queue Remarks: 1)Relations (22) and (23) imply that Reno-1 and
lengthb; satisfiesb; > b, at links withp; > 0 Iflink [  Reno-2 discriminate against sources with lafgg as is well
implements REM, theh; = 0. known in many previous studies, e.g., [6], [7], [14], and [21].

Proof: By Lemma2, C1, C2, and C4 are satisfied by coniVoreover, (22) for Reno-1 can be rewritten as
binations of (14)—(21). Given an equilibriua*, p*), to show —
that it is primal-dual optimal, we need to check that C3 is also Ty = \/;% L4 ~ \/5% L
satisfied. From (16)y7 < ¢ with both RED and REM and, s s s Vs
hence, primal feasibility is satisfied. Suppgse> 0. If link [ in packets per unit time, when probabilify is small, a relation
implements RED, then from (17) and (18) widely observed previously. Some authors, e.g., [3] and [10],
assume that Reno increases its window by 1 every round-trip

bi=ri>b 20 (26) " time deterministically. This corresponds to repladihg- gs())
butb; > 0implies thaty; = ¢;. Iflink I implements REM, then by 1in (14), which holds when the marking probability is small.
pf > 0impliesr; > 0 and hence, from (19) This model givest, = /3/2/Ds,/qs, with a corresponding
utility function
aibf +y; — ¢ =0. (27)
We knowy; < ¢. If yf < ¢, then (16) implies thati; = 0, but Us(zs) = —s/l; (28)

this contradicts (27). Hencg; = ¢; (andb; = 0). We have thus
shown that complementary slackness is satisfied with both REB used in [13] and [20] (ignoring a constant term). For Reno-2,
and REM and, hence, C3is satisfied dnd, p*) is primal-dual (23) can be approximated by

optimal. 3 3
Moreover, (26) also shows that > b, whenp; > 0 with qs = — ~ o=
RED. With REM, the preceding argument shows thfat= 0. s Do(2ws D +3) - 20303
This Comp|etes the proof. m When?sts > 3, or WheﬁqS is small. Then Reno-2 has the

Example 1—Reno/RED at a Single Lin€onsider a single same utility function as Reno-1 given by (28).
link with capacityc shared by a set of Reno-1 sources with 2) By duality theory, given a dual optimal the rate vector
round-trip delaysD,. From (22) and); = ¢;, the equilibrium < givén by
rates are

— Ts = U;_l(qs) (29)
N D
Ts = D. ¢ is the (unique) optimal rate vector, whefe= 3", R;.p;. The
o ) S rate adjustment process of Reno, (14) or (15), can be regarded
and the equilibrium marking probability is as asmoothedrersion of this strategy, in the following sense.
. 3 >0 Letz,(t) = U."1(qs(t)) be the target rate determined by (29),
922D + 3 givenp(t), using the utility function of Reno-1 or Reno-2. Then

_ 1 using (24) for Reno-1, we have
whereD = (3, D;') . If the sources are Reno-2 instead,

then the equilibrium rates are the same [use (23)], but the
marking probability

1 [31—gs(t)
D\ 2 qs(t)

Ts(t) = U, V(g5 (1) =

*

+ >0 We can then rewrite the rate adjustment (14) in terms of the
2¢2D" + 3¢D target rater,(t) as

is typically lower since:D is usually greater than one packet. 25(t) , ) +
If RED is used, the equilibrium probability* determines the zs(t+1) = {l’s(t) = (@3(t) - ‘Ts(t)):| :
equilibrium queue length through the marking probability func-

tion. Inverting (18), we have (sind¢ = 7 andp* > 0) Hence, in;tead of setting the ratg(t + 1) directly to the target
rate@,(t) in one step, Reno-1 moves the current raj&) to-

b — b+ 070}, if0<p; <my ward the target rat&(¢) by adding an amount proportional
CT b+ gt — ), iy < pf <1 to the difference of their squares, (¢)(z2(t) — x2(t))/3. For

S

_ Reno-2, from (23), the target ratg(¢) must satisfy
In particular, as the number of sources increaskggcreases,
and, hence, botlp; andb; increase. Indeedy; under RED gs(t) = = _3 )
grows toward twice the maximum threshold as load increases: Ts(t)Ds(225(8) Ds + 3)
Hence,F; in (15) can be rewritten in terms of the target rate
T,(t) as

lim b} = lim b = 2b;.
D—0 p*—1

To reduce equilibrium queue length, a largem; (max_p) and zo(t+1)

a smallb; (max_th) should be used, but this increases the slope ) +
. i 1 25(t)(2x5(t)Ds + 3)

p1 and compromises stability; see [15]. Hence, RED parameters = |zs(t) + D2 - = 57 (D + 3

can be tuned either to maintain stabildy reduce equilibrium s Ts(8)(2T5(t) Ds + 3)

gueueing delay. m e, increase rate if;(¢) < 7s(t) and decrease otherwise.
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3) The approach taken here follows that in [18] where quede Reno-Like Algorithms
management mechanisms are modeled entirelydhy H;). In Consider algorithms that increase the tatét) by a (z(t))

contrgst, the model in [16]. inclu_d.es the marking probability, oach positive acknowledgment and decrease it,by, (t))
function as a part of’;, making utility function dependent on g, aach mark. Thef, in (14) and (15) are generalized to

AQM as well as TCP algorithms.
zs(t+ 1) = [25(2) + (1 — qs(t)) w5 (t) s (245(2))
IV. VEGAYDROPTAIL — (V) (1) Bs (2 ()] . (33)

A duality model of Vegas has been developed and vaIidatggr example, Reno-1 is a special case witiiz,) = 1/z, D2

in [19]. In this section, we summarize the main results. We COthﬂS(:ps) _ ,/2 (see footnote 3). We will index these algo-
sider the situation where the buffer size is large enough to 3¢ by their increase—decrease functions, 4. )
commodate the equilibrium queue length so that Vegas sourceg (33), we have in equilibrium s

can converge to the unique equilibrium. In this case, there is no
packet loss in equilibrium. _ as(zs) = fu(a) (34)
It is shown in [19] that Vegas uses queueing delay as conges- @ = as(zs) + Bo(mg) = 7F

tion measurep;(t) = b;(t)/c;, whereb(t) is the queue length o L
in periodt. The update rule is, therefor&; (v;(¢), p:(t)) given and, hence, the utility function is

by (dividing both sides of (16) by;) Us(z,) = / as(zs) dz,. (35)
(®) n J as(zs) + Bs(xs)
p(t+1)= [Pz(t) + lc—l - 1} : (30) A source algorithn{a,, 3) is said to beTCP-friendlyif its

equilibrium rate coincides with Reno’s. In the following, we will
Hence, AQM for Vegas does not involve any internal variableuse Reno-1 in the definition of TCP-friendliness; however, an
Givenp(t), or ¢s(t), letZs(t) given by analogous analysis applies to Reno-2.
Equating (14) for Reno-1 and (34), we see that an algorithm

T (t) = O‘S(Ci; (31) (as, Bs) is TCP-friendly if and only if (see footnote 3)
ds
as(zs) 2
be the target rate, whetg is a parameter of Vegas adglis the s (T3) + Bs () T 242D
round-trip propagation delay of sourgeassumed to be known gy o o o
by s. The update rule for source rate is thEf(z(t), gs(t)) as(rs) 2 36
given by Bs(xs) — x2D? (39)

1 Hence, TCP-friendliness of a Reno-like algorithm depends on
D2 1(@s(t) = zs(t) (32) the increase—decrease functions only through their ratio.

As an illustration, we consider a class of Reno-like algorithms
called binomial algorithms in [3]. These algorithms are indexed
by a pair(k, [) and correspond to

2o (t+1) = z,(t) +

wherel(z) = 1if z > 0,—1if z < 0,and 0 ifz = 0. In equilib-
rium, we haver, = T, = asds/qs. HenceUl(zs) = asds/xs
or Us(zs) = asds log zs. The following result is proved in
[19]. It implies, in particular, that we can compute the queue o (z,) = ozt D2 (37)
length at each link by solving a simple concave program. By(s) 2/3$15Di_1 (38)
Theorem 4 ([19]):
1) An equilibrium (z*, p*) of Vegas/DropTail as modeled for some constants, 5 > 0 (Reno corresponds @, /) =
by (30)—(32) solves the primal (8) and the dual probleﬁpa 1)). Substituting (37) and (38) into the condition (36) for
(9), with utility functionsU, given by TCP-friendliness yields

as(zs)  « 1 2
Us(is) = edg logLS. ,[35(5175) - ﬂ (ZESDS)k+l+1 - xszDSZ
Moreover,z* is unique and weighted proportionally fair.\hich implies thek + [ rule of [3]: A binomial algorithm is

2) The equilibrium queue lengths at linkarec;p; . TCP-friendly if and only ifk + 1 = 1 anda/j3 = 2.

Again, the rate adjustment of Vegas (32) can be interpreted ag he utility functions of binomial algorithms can be derived
a smoothed version of (29) with the utility function given in thérom (35), (37), and (38) to be
theorem. Instead of setting the ratg(¢ + 1) in one step to the N
target ratez(t) determined by (29), Vegas moves the current U, (xs) = 1 (g) B / dy
ratex,(t) closer to the target rate, (¢) by 1/D? in each step. ST D\ B 1L+ ym

1
y=zsDs(B/a)n

V.. GENERALIZATION AND TCP-FRIENDLINESS wheren = k£ + [ + 1. The class of: = 1 includes the AIAD
ealgorithm and has a utility function

In this section, we derive the utility function of Reno-lik
algorithms and consider the interaction of different TCP algo-
rithms.

1l «

Us(zs) = D_ﬁ log (1 ~|—1'SD5§> .
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The class ofi = 2 is TCP-friendly whem/3 = 2 and has a then
utility function

1 .
Us(zs) = D—\/%tan_1 (%&\/é) . Otherwise

Forn = 3, the utility function is [25, p. 60]

wy > wy > ...

U}lgwgg...

with equalities if and only if equality holds in (40).

1 a\” Reno sources are of tyme= 2 sources witte = 1, 5 = 1/2,
Us(zs) = 3D, (5) and\ = 1/2.4 Then (40) becomes < 2/3, which usually holds
. in practice. The theorem then implies that the window size of a
log L+ a,Ds(8/a)" _typeﬂ binomial source is no larger than that of a Reno source
\/l_sts(ﬂ/a)%_i_ngg(ﬂ/a)% if and OnlylfnZ 2. . .
We close by presenting a numerical example.
_, z.D(B/a)" V3 Example 2—Binomial AlgorithmsConsider a link of
+ V3 tan 2— 2.D.(8/ )L . capacityc shared byN; type-1 sources)N, type-2 sources,
TsDs\PfA) and N3 type-3 sources, all with the same round-trip delay of
D = 200 ms. From (39), we have
B. Interaction: Binomial Algorithms _ 7’ L n® _ 7’
_ : ) ) 171—5 12—5 13—5 (41)
The duality model provides a convenient framework in
which to study the interaction of different TCP/AQM schemedvhere
provided all TCP algorithms use the same congestion measure. 1—p H
Once the schemes under study are characterized'y,(H) n:= ()\—p> . (42)

and their utility functions, the equilibrium rates and perfor-
mance such as loss, delay, and queue length can be obtaisgdeN1z1 + Noxzo + N3z = c the link capacity, we have
by solving the concave program (8). Closed-form solutions 6 3 2

are usually unavailable for general network topology, but Nin” + Non® + Nan™ = cD. (43)
numerical solutions can be efficiently computed to providdence, we can solve the polynomial in (43) and then obtain
insight on the equilibrium properties, such as throughput ansarking probabilityp from (42) and equilibrium rates from
fairness. For single-link network, closed-form solutions caf@1). We compute the case for= 1, 8 = 1/2 and\ = 1/2,

be easily obtained, as we now illustrate. We first consider thiader which type» = 2 sources are Reno. We fix the number
interaction of binomial algorithmék, 1), which use the same of Reno sourcesV, = 200, and vary the numberd; or Nj
congestion measure, marking probability. In the next sectidio,observe the effect of unfriendly sources on equilibrium rates.
we consider the interaction of Reno and Vegas, which u3ée link capacity is: = 30 packets/ms.

different congestion measures. Fig. 1 shows the equilibrium rates,, z-, 3 when Ny =
Consider a single link shared by, type sources with equi- N3 = 200 and the numbel; of aggressive sources varies from
librium round-trip delayD,,, wherek+1+1 =n,n = 1,2,.... 0to 200. Fig. 1(a) shows the rates of individual sources, whereas

Let z,, be the common equilibrium rate of all typesources. Fig. 1(b) shows the aggregate rates, summed over all sources of
Letp be the common equilibrium marking probability. Since, inthe same type. As observed in [3], type-1 sources are more ag-
equilibrium,p = U!(z,) for all sourcess, we have from (34), gressive than Reno, while type-3 sources are less aggressive.

p=(1+Az"D?)" ! and Moreover, the presence of type-1 sources can seize a dispro-
) portionally large amount of bandwidth: When there is just one
S 1 <1;p> " (39) type-1 sourceg; = 2.088 pkts/ms whilexs, = 0.102 pkts/ms
"D, Ap andzs = 0.037 pkts/ms (when there are no type-1 sources,

o = 0.111 pkts/ms and:3 = 0.039 pkts/ms). AsV; increases,
wherel = (/a. Hencew1 Dy = (2, Dn)" = (1 = p)/ApfOr  \yhile individual rater, drops, the aggregate rate of all type-1
all n. Since(1—p)/Apis greater than 1if and only if (40), given sy rces rises sharply.
below, holds, we have the following theorem. Fig. 2 shows the individual and aggregate rates whin
_ Theorem 5: (_30n3|der classes of binomial algorithr(‘lsl_) varies from 0 to 200, while keepiny, = N, = 200. The effect
indexed byn with n = k + 1 + 1 that share the same link. of polite sources is much less dramatic than that of aggressive
The windoww,, = 2, Dy, 0f type sources is related to that of 5o rces. The aggregate share of all type-1 sources ranges from

type-1 sources by 83% to 75% asV; varies from 0 to 200. ]
wr=w,;, n=12... C. Interaction: Reno and Vegas
If Suppose Reno and Vegas sources share the same network.

Under what condition will they receive the same equilibrium

(40)

a+ 3 “We ignore the factof, in this section; see footnote 3.
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Fig. 1. Equilibrium rates as type-1 sources vari¥s.= 0, ... 200, N, =
N3 = 200, D = 200 ms,c = 30 pkts/ms. (a) Individual rates. (b) AggregateFlg 2. Equilibrium rates as type-3 sources vari¥s.= N, = 200, N3 =
rates. .200, D = 200 ms,c = 30 pkts/ms. (a) Individual rates. (b) Aggregate
rates

rate? This is not as straightforward as for binomial algorithmsence, whether is TCP- -friendly or not depends on the network
because Reno and Vegas use different congestion measuygggition through equilibrium queueing delay and marking
marking probability for Reno and queueing delay for Vegas. (gobabllltypn, but these equilibrium properties depend not only
Reno-like source is TCP-friendly as long as its increase—o§7 TCP Reno and Vegas algorithmis, but also on AQM al-
crease ratio satisfies (36). Note that this means that if 3U§Brlthm(G,, H)) and its parameter setting, as well as network
a source is friendly under any condition (network topologyopology, routing, and link capacity. Hence, TCP-friendliness
routing, etc.), then it is friendly undel conditions. of a scheme that uses a different congestion measure should not
In contrast, Vegas sources can receive more, equal, ber defined simply in terms of its equilibrium bandwidth share,
less bandwidth than Reno sources depending on the netwbgicause one can generally find scenarios where the scheme re-
condition. Specifically, letg, be the end-to-end queueingceives higher bandwidth share than TCP Reno and scenarios
delay of a Vegas source, in equilibrium, and letp,, be the where the reverse is true.
end-to-end marking probability of a Reno souneesharing ~ To be concrete, consider Reno (again, we consider only
the same network, among other sources. Then, the equilibritkano-1 sources though the analysis applies to Reno-2 sources
rate of the Vegas soureeis =, = «,d,/q,, wherea,, > 0 as well) and Vegas sources sharing a single link employing
is a protocol parameter ant], is the round-trip propagation RED or REM. Reno sources react to RED or REM marks by
delay ofv. The equilibrium rate of the Reno-1 souraeis halving its rate. If Vegas reacts to marks in the same way, then
2(1 — p,.)/pn. Hence, they receive the same equilibits behavior would be similar to Reno. Hence, we study the
rium rate if and only if case where Vegas source ignores RED marks and only reacts
to delay in its path as it does under DropTail. Under REM, we
use the Vegas/REM algorithm in [19] in which a Vegas source
sy 2 _2(1—py) estimates the price and uses it to replace queueing delay in
< ) T e setting its rate.
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0.351

Notice that RED uses queue lengtlit) as an internal
variable that determines both the marking probability for Reno
and queueing delay for Vegas. Hence, we can ref@ndas a
commoncongestion measure to which Reno and Vegas react |\
under RED: For REM, the common congestion measure can
be taken to be the price variable. The following examples
show that AQM can have a big effect on the equilibrium rate
allocation when sources react to different congestion signals.

Example 3—Reno and Vegas under REBuppose there are Vegas
N; Reno sources anl¥, Vegas sources. The round-trip prop- of
agation delay for typé-sources isd;, i = 1, 2, so that the
round-trip time isD; = d; + b/c in equilibrium, whereb is
the queue length; is the link capacity, and/c is the queueing . ‘
delay. Vegas sources all have parameteiso that each keeps o @ e & 0 2 w0 i@ s o
asdy packets in the buffer in equilibrium.

Consider the case where the link uses RED with marking
probability that depends on queue length

b—1b -
b—b
i.e., the marking probability rises from 0 to 1 over the interval
b, .
From (22), Reno’s equilibrium rate satisfies

2
PO = S T oo

Combining with (44), we have

0.2

Rates (pkts/ms)

0.15

oosk Reno

@

401

Aggregate rates (pkts/ms)

_ 1
2b—0b)\" c ‘ ‘ . ‘ . . . ‘ ‘ ,
r1 = ( (b _ Q ) b T Cdl . (45) % 20 40 60 80 1:: 120 140 160 180 200
From (31), the equilibrium rate of Vegas sources are (b)
d Fig. 3. Equilibrium rates under RED as Vegas sources varies from 0 to 200.
o — Q2a2 (46) N; =200,N; =0, ..., 200,D = 100 ms,c¢ = 20 pkts/ms. (a) Individual
2 b / c rates. (b) Aggregate rates.

SinceNiz1 + Noxzo = ¢, we have

200

2(5—[)) H N aado Ny 1eor
=1. 47
( b—Q) b+ cdy b (47

Hence, we can obtain equilibrium queue lengtby solving
(47), and then equilibrium rates using (45) and (46).

All sources have a round-trip propagation delay ot ds =
100 ms. We fix the number of Reno sourcésé, = 200, and
vary the numbem, of Vegas sources from 0 to 200. Each Vegas
source hagr; = 0.01 pkts/ms so that it keepseds = 1 pkts 6or
in its path in equilibrium. RED parameters dre- 50 pkts and i
b = 4000 pkts. The link capacity is = 20 pkts/ms. Fig. 3
shows the individual and aggregate rates of Reno and Vegas in
equilibrium as the number of Vegas sources increases from 0 %% 2% & & 10 2 w40 e 10 20
to 200. The behavior is qualitatively similar to the interaction of N2
R_e_no with aggressive binqmial sources shown ?n Fig. 1, with_i'gi— 4. Equilibrium queue and Vegas share under RED.= 200, Ny =
dividual Vegas sources seizing a larger proportion of bandwidii. . ., 200, D = 100 ms,c = 20 pkts/ms.
than individual Reno sources. The aggregate share of all Vegas
sources rises as the number of Vlegas sources increases.

Each Vegas source keepsd, = 1 packet in the link. The
equilibrium backlog determines the marking probability)

Queue length (pkts)
8

Vegas

which then determines the source rate of Reno through (45).
The rates of Vegas sources are proportional to their shares of the
buffer occupancy [see (46)]. Fig. 4 shows the number of Reno
5The utility function of Reno is different under this formulation; see [16]. and Vegas packets in the queue. As the number of Vegas sources
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0.1

VI. CONCLUSION

We have presented a duality model of several TCP/AQM pro-

oosh Reno tocols. It interprets these protocols as distributed primal-dual
algorithms carried out over the Internet in real time to maxi-
oo7p mize aggregate utility subject to capacity constraints. Different

TCP algorithms have different utility functions and we have de-
rived the utility of Reno and Vegas; see Table I. This model can

0.06

Rates (pkts/ms)

00s be used to analyze equilibrium properties, such as throughput,
loss, delay and fairness, of a network that contains different TCP
oot Vegas sources and different AQM links, as long as they use a common

measure of congestion.
The duality model has several interesting implications. First,
R S I TRy e I it is well-known that a bottleneck queue can fluctuate about
N4 the buffer capacity under Reno or DropTail, generating packet
(@ losses. What is more intriguing is that increasing the buffer
20 size does not reduce loss rate significantly, but only grows the
queueing delay. According to the duality model, loss probability
Reno under Reno is the Lagrange multiplier, and hencegdsilib-
rium value is determined solely by the network topology and
15 the utility functions of the sourcesndependent of link algo-
12k rithms and buffer sizeincreasing the buffer size with every-
thing else unchanged does not change the equilibrium loss prob-
ability, and hence, a larger backlog must be maintained to gen-
o erate the same loss probability. This means that with DropTail,
the buffer at a bottleneck link is always close to full, regardless
of buffer size. With RED, since loss probability (Lagrange mul-
tiplier) is increasing in average queue length, the average queue
length must increase steadily as the number of sources grows.
e PR T Second, it is well-known that TCP Reno discriminates against
Na connections with large propagation delays. This is borne out
(b) by the duality model, as discussed in Remark 1 of Section IlI.
Fig. 5. Equilibrium rates under REM as Vegas sources varies from 0 to 265@'3 Vegas _aChleveS proportional faimess as it has a log utility
N. = 200, D = 100 ms,c = 20 pkts/ms. (a) Individual rates. (b) Aggregatefunction. Third, when Reno and Vegas sources share a common
rates. network, Vegas sources may receive more, equal, or less band-
width than Reno sources, depending on the network topology
increases, Vegas packets in the queue exceed Reno packetsaaddAQM algorithm at the links. In general, the “friendliness”
they receive a larger aggregate bandwidth. m of TCP algorithms that adopt different congestion measures de-
Example 4—Reno and Vegas under REWe repeat Ex- pends not only on themselves, but also on their environment
ample 3 with REM. In this case, the prieecan be regarded such as AQM algorithm and network parameters. This suggests
as the common congestion measure to which Reno and Vetfeat TCP-friendliness that is defined solely in terms of source
react. The marking probability is given by (20). We use= algorithm is too restrictive.
1.001 (other REM parameters do not affect equilibrium). Com- We have only studied the equilibrium properties and have ig-
bining (20) with (22) and noting thdd; = d; since backlog is nored the stability and dynamics of these protocols. The global
zero (Theorem 3), we obtain the Reno source rate as stability of REM in the absence of delay is established in [23]
1 1 ) Esing a Lé/a;()juno[v ]argL(ij[eni[. Local |Sdtak?”ity of Reno/RED has
T =— — 48 een studied in [9] and [15]. It wou e interesting to inves-
d/(¢m=1)/2 tigate delayed global stability of various TCP/AQM protocols.

given by (46) with queueing deldyc replaced by price. Since  90rithmsF.. One can turn the question around and tailor utility
Niz1 + Nozs = ¢, we have functionsU; to applications, and then design a TCP algorithm

F, to optimize it.
=c. (49)

0.03

Aggregate rates (pkts/ms)
3

& 1 OézdzNz
g —-Diz T

Hence, we can obtain the equilibrium prieby solving (49) and

then rates from (48) and modified (46). The results are shownThe author would like to thank J. Doyle (Caltech), F. Paganini
in Fig. 5. For this example, Vegas receives much less bandwidtiCLA), and L. Zhu (NJIT) for insightful discussions on an
than Reno, both individual rates and the aggregate. earlier version of this paper.
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