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Abstract— As the Internet continues to evolve, traditional
peering agreements cannot accommodate the changing mar-
ket conditions. Premium peering has emerged where access
providers (APs) charge content providers (CPs) for premium ser-
vices beyond best-effort connectivity. Although prioritized peer-
ing raises concerns about net neutrality, the U.S. FCC exempted
peering agreements from its recent ruling, as it falls short of
background in the Internet peering context. In this paper, we
consider the premium peering options provided by APs and study
whether CPs will choose to peer. Based on a novel choice model
of complementary services, we characterize the market shares
and utilities of the providers under various peering decisions
and identify the value of premium peering for the CPs that
fundamentally determine CPs’ peering decisions. We find that
high-value CPs have peer pressure when low-value CPs peer;
however, low-value CPs behave oppositely. The peering decisions
of the high-value and low-value CPs are substantially influenced
by their baseline market shares and user stickiness, respectively,
but not vice versa.

Index Terms— Internet economics, premium peering, choice
model, complementary services.

I. INTRODUCTION

THE Internet consists of thousands of interconnected
commercial networks, which make autonomous peering

decisions with one another so as to make individual prof-
its. Early business agreements between connecting networks
were primarily in the form of either a customer-supplier
or settlement-free peering relationship [13]. In the former
form, suppliers, often higher tier Internet service providers
(ISPs), sell transit services to lower tier networks such as
content and access providers; in the latter form, networks
with similar sizes and traffic characteristics such as the Tier-
1 ISPs exchange traffic without billing each other. How-
ever, since a decade ago, these simple forms of peering no
longer accommodate to the changing market conditions and
industrial organization of the Internet. On October 5th 2005,
Level 3 unilaterally terminated its settlement-free peering
with Cogent [6], resulting in at least 15% of the Internet
being unreachable for the customer networks which utilized
either for Internet access. This de-peering happened because
Cogent generated more outbound than inbound traffic on its
peering connection with Level 3, breaking the traffic ratio
requirement of settlement-free peering; and therefore, Level 3
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wanted compensations under a new agreement. The situation
is further complicated by the emergence of video streaming
giant Netflix, which now accounts for up to 34% of peak
U.S. downstream traffic [14]. As most Netflix customers used
Comcast, the largest U.S. broadband provider, as their last-
mile access provider, after Level 3 obtained a contract to
deliver Netflix’s traffic, Comcast started to see a surge in the
inbound traffic from Level 3. On November 19, 2010, Comcast
informed Level 3 that it will demand a recurring fee from
Level 3 to deploy necessary capacities for streaming online
movies to Comcast’s customers [34]. Despite its reluctance,
Level 3 has acquiesced in the new fees, which totally reversed
the nominal customer-supplier relationship where the Tier-1
Level 3 should have received payment for connectivity as
a supplier.

This emerging form of premium peering (also called paid
peering [13]) is mainly driven by the new requirements from
delay sensitive content providers that value service quality
more than mere best-effort connectivity, which can often be
obtained by publicly peering at Internet exchange points.
As a type of paid prioritization, premium peering raises
concerns about net neutrality [48]; however, the FCC’s recent
Open Internet Order [2] specifically exempts existing peering
arrangements, because the FCC feels that it lacks in-depth
background “in the Internet traffic exchange context.” In this
paper, we analyze the economics of premium peering so as to
understand whether or not networks will engage in it and the
driving forces behind these decisions. In particular, we con-
sider the two-sided market structure [4], [40] of the Internet,
where Internet access providers (APs) provide a platform con-
necting end-users to content providers (CPs) and study CPs’
peering decisions when premium peering options are provided
by the APs. We focus on such a CP-AP model for a couple of
reasons. First, the Internet topology has been flattening [10]
as large CPs, e.g., Google and Microsoft, are deploying
wide-area infrastructures in order to bring content closer to
users and bypass Tier-1 ISPs on many paths [15]. Recently,
Netflix even agreed to pay APs such as Comcast [38] and
Verizon [16] directly for smoother streaming. Second, most
disputes over premium peering, e.g., Cogent-Telia, Cogent-
Sprint [32], Netflix-Comcast and Netflix-Verizon [25], were
centered around an AP charging a counterparty that specializes
in content distribution. We use the term CP in a broad
sense that it includes content delivery networks (CDNs), e.g.,
Akamai [37], transit ISPs, e.g., Level 3, and content hosting
ISPs, e.g., Cogent. We model users’ choices of providers
under different peering structures among CPs and APs, and
analyze the impact of various metrics, e.g., the baseline market
share and user stickiness of the providers and APs’ premium
peering prices, on CPs’ peering decisions. Our contributions
and conclusions are as follows.
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• We build a novel choice model that takes AP and
CP as complementary services (Section III) and char-
acterize their market shares (Theorem 1) and utilities
(Theorem 3 and 7) under various peering and market
structures.

• We identify an intrinsic value of premium peering (VoPP)
(Equation 9) and its generalization (Theorem 2 and 8) that
fundamentally determine CPs’ peering decisions.

• We find that high-value CPs have peer pressure when
low-value CPs peer; however, low-value CPs behave
oppositely. The peering decisions of the low- and high-
value CPs are substantially influenced by their user sticki-
ness and baseline market shares, respectively, but not vice
versa (Section V and explained by Theorem 5).

• We find that whether an AP is peered depends on how
sticky its users are and how cheap its competitors are
(Theorem 6 and Section V), where the baseline market
share plays a role of a scaling factor (Theorem 6) and
determines the effective price if CPs peer (Theorem 5).

• We show that Nash equilibrium may not be unique or
exist even under a two-CP case, depending on the CPs’
market shares and relative user stickiness (Theorem 9).

Our results help understand how existing peering happened
and predict how future peering outcomes will emerge. The
new knowledge can help providers make informed premium
peering decisions and guide regulators to design better policies
to address net neutrality issues in the interconnection context.

II. RELATED WORK

Huston [19] studied early interconnection settlements
and concluded that customer-supplier and settlement-free
were the only stable peering models for the Internet at
the time. Faratin et al. [13] showed the emergence of
paid peering and partial transit, as a result of the het-
erogeneity of networks. Based on coalition game theory,
Ma et al. [27], [28] predicted that a reverse customer-supplier
would emerge, since the existing settlements are not be stable.
D’Ignazio and Giovannetti [12] empirically showed discrim-
inations in the Internet peering using dataset from London
Internet Exchange Point (LINX). Ma [26] and Ma et al. [29]
studied the usage-based pricing of the access providers and
the general evolution of the Internet economic ecosystem,
respectively. Ma and Misra [30], Tang and Ma [46], and
Ma et al. [31] studied the impact of paid prioritization from
the net neutrality perspective. We focus on premium peering
provided by APs, which creates the reverse customer-supplier
relationship between APs and higher-tier networks under a
form of discrimination.

Individual peering agreements are driven by economics
and influence the topology of the Internet. Chang et al. [9]
modeled the decision processes of peering and studied the evo-
lution of the AS-level topology. Dhamdhere and Dovrolis [10]
showed that the Internet topology has transitioned from a
transit hierarchy to a peering mesh. Lodhi et al. [21] pro-
posed an agent-based model to simulate the network for-
mation process. These work used unstructured graph models
and relied on quantitative simulations for evaluation. Many
work [5], [20], [22], [23], [45], including ours, used structured

models to study the peering relationship between networks.
Lodhi et al. [22], [23] used a three-tier model that includes a
top-tier transit ISP, Tier-2 ISPs and APs, and studied the peer-
ing decision of the transit ISP [22] and Tier-2 ISPs [23]. Due to
the model complexity, they relied on agent-based simulation
for evaluation. Tan et al. [45] studied the peering between
two backbone ISPs; while, Badasyan and Chakrabarti [5]
focused on the peering between two Tier-2 ISPs, both of
which are connected by a Tier-1 provider. Jahn and Prüfer [20]
studied a more general peering between ISPs, both of which
can be either Tier-1 or Tier-2. These work focused on a
particular pair of networks and derived analytical results.
We focus on a two-sided structure of complementary service
markets with competitions on both sides and derive analytical
results for premium peering between CPs and APs.

Dhamdhere et al. [11] proposed a value-based quantitative
framework to study peering agreements, and determined the
globally fair, optimal and stable peering prices between two
networks. Recently, Gyarmati et al. [17] used a churn model to
study premium peering and determined the fair prices based on
the Nash Bargaining solution [35]. Similar to [11], we propose
a value, i.e., VoPP, for premium peering; similar to the churn
model [17], we use a novel choice model to capture the user
behaviors and market shares. However, our analysis focuses
on the non-cooperative scenarios where APs set prices and
CPs determine whether or not to peer.

Finally, similar to many discrete choice models, e.g., the
multinomial logit model [33], we build our choice model based
on the Luce’s choice axiom [24], which has deep connections
with other models, e.g., independent race models [8] and the
classic theory of demand based on revealed preference [18].
Instead of focusing on a single market, we build our choice
model upon a two-dimensional complementary service [43]
market, under which users need to choose a pair of comple-
mentary service providers, i.e., a CP and an AP.

III. MODEL

We consider an Internet content market such as on-demand
video streaming in a geographical region. To obtain content,
any user needs a CP and an AP. In this section, we model these
CPs and APs as two complementary services for the users such
that each user chooses a pair of CP and AP. Based on a novel
choice model of the users, we characterize the market shares
of the providers, through which we further determine their
utilities under various peering decisions.

A. Complementary Choices Model (N ,M)

We define N � {1, · · · , N} and M � {1, · · · ,M} as the
set of CPs and APs that serve the region. We assume that
a premium peering option is provided by each AP and CPs
decide whether or not to peer with each AP. We denote the
peering relationship between CP i ∈ N and AP j ∈ M
by θi j ∈ {0, 1}, where θi j = 1 indicates that a premium
peering between i and j is established, otherwise θi j = 0.1

We define θi � (θi1, · · · , θi M ) and ϑ j � (ϑ1 j , · · · , ϑN j )

1Throughout the paper, we will simply say that a CP i peers or does not
peer with an AP j if θi j = 1 or θi j = 0, respectively.
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as the peering profile of CP i and AP j , respectively, and
� �

{
θi j : i ∈ N , j ∈ M

}
as the system’s peering matrix.

We denote the baseline of CP i by φi ∈ (0, 1], which
captures the intrinsic characteristics such as price and brand
name, and models the market share of CP i when all CPs
maintain the same extrinsic peering relationships with APs.
For example, if all CPs maintain the same peering relationship
with an AP j , i.e., ϑ j = 0 or 1, the percentage φi of
AP j ’s users will choose CP i from the set N of CPs.
In probabilistic choice models [33], φi can also be interpreted
as the probability that any user will choose CP i among
the alternatives that maintain the same peering condition.
Likewise, we denote the baseline of AP j by ψ j ∈ (0, 1], i.e.,
the market share of AP j when all APs maintain the same
peering relationships with CPs. We define column vectors
φ � (φ1, · · · , φN )

T and ψ � (ψ1, · · · , ψM )
T as the baseline

market share distributions with
∑

i∈N φi = ∑
j∈M ψ j = 1.

In practice, users may choose services from constrained sets
of CPs and APs. It might be because certain providers are
not available to the users or cannot satisfy their requirements.
In general, we denote a set of choice pairs by L. Based on the
baseline market shares of the providers, we make the following
assumption on the users’ choices.

Assumption 1: Given a nonempty set L of available choices,
a user chooses a choice pair l = (i, j) ∈ L with probability

PL {l = (i, j)} = φiψ j∑
(n,m)∈L φnψm

. (1)

Under Assumption 1, if L equals the choice set N × M ,
the probability of choosing (i, j) equals φiψ j , which is
consistent with our notion of baseline. Furthermore, by Luce’s
choice axiom [24], the proportional form in (1) is also
necessary for guaranteeing an independence from irrelevant
alternatives (IIA) property: the probability of selecting one
item over another from a pool of many items is not affected
by the presence or absence of other items in the pool.

If CP i stops the premium peering relationship with AP j
such that service quality cannot be guaranteed, their users
might switch to alternative providers in the market. We assume
that given a set O of available options to choose from, each
user will switch to a better pair of providers under premium
peering in the set L(�|O) � {(k, l) ∈ O : θkl = 1} based on
Assumption 1, but will stay with the current choice (i, j) if
no premium peering exists, i.e., L(�|O) = ∅.

Besides the baselines φi and ψ j , we denote the stickiness
of the users of CP i and AP j by αi ∈ [0, 1] and β j ∈ [0, 1].
Based on the stickiness of the providers, the set O of available
options to any user of (i, j) is assumed as follows.

Assumption 2: The set O of available options of any user
of the choice pair (i, j) satisfies

O =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(i, j)} with probability αiβ j ,

{i} × M with probability αi (1 − β j ),

N × { j} with probability (1 − αi )β j ,

N × M with probability (1 − αi )(1 − β j ).

Assumption 2 interprets the stickiness αi and β j as the
percentage of users that will stay with CP i and AP j ,

respectively, when the peering relationship between CP i and
AP j deteriorates, i.e., θi j changes from 1 to 0. In economics
terms, the stickiness models the elasticity of user demand
influenced by the provider’s peering decisions.

As before, we define the vectors α � (α1, · · · , αN ) and
β � (β1, · · · , βM ) as the user stickiness of the CPs and APs,
respectively. We also define ᾱi � 1−αi and β̄ j � 1−β j as the
elastic proportion of users of the providers, θ̄i j � 1 − θi j as
the reverse peering relationship, and denote the corresponding
vectors and matrix by ᾱ, β̄, θ̄i , ϑ̄ j and �̄. In summary, our
complementary choices model (N ,M) can be entirely spec-
ified by a quadruple of vectors (φ,ψ, α, β). We denote the
total market size by X . Based on the assumptions of user
choice and stickiness (Assumption 1 and 2), we characterize
the number of users of (i, j), denoted by Xij , as a function
of the peering matrix � of the system as follows.

Theorem 1: For a system (N ,M) with a peering matrix �,
the number of users of any pair (i, j) of CP and AP can be
expressed as Xij (�) = ρi j (�)φiψ j X , where 1) if θi j = 0,

ρi j (�) = αiβ j + αi β̄ j 1{θi =0} + ᾱiβ j 1{ϑ j =0} + ᾱi β̄ j 1{�=0},

where 1{·} denotes the indicator function, and 2) if θi j = 1,

ρi j (�) = 1 + αi θ̄iψβ̄

θiψ
+ β j ϑ̄ jφᾱ

ϑ jφ
+ φᾱ

T �̄ψ
β̄

φT�ψ
,

where we define the vectors φᾱ = ᾱ ◦ φ and ψ
β̄

= β̄ ◦ ψ as
the Hadamard (element-wise) product of two vectors.

Theorem 1 derives the number of users Xij of any pair (i, j)
of complementary providers under the peering relationships �
of the system. In particular, Xij can be represented by its base-
line market share φiϕ j X of users multiplied by a weighting
factor ρi j (�), which is a function of the peering matrix � and
the providers’ user stickiness αi and β j . If CP i does not use
premium peering with AP j , i.e., θi j = 0, the pair (i, j) of
providers can keep the proportion αiβi of their sticky users
and possibly some share of their non-sticky users, e.g., the
proportion of users αi β̄ j that are sticky to CP i but non-sticky
to AP j if CP i does not use premium peering with any AP, i.e.,
θi = 0. If CP i uses premium peering with AP j , i.e., θi j = 1,
they will keep all their original users and obtain a baseline-
weighted share of the non-sticky users of the providers that
do not use premium peering. Based on Theorem 1, the market
share of any CP i and AP j can be calculated as

∑
j∈M Xij

and
∑

i∈N Xij , respectively. As a sanity check, one can easily
verify that when � = 0 or 1, any coefficient ρi j equals 1, and
the baselines φi and ψ j truly represent the market shares of
the providers.

Corollary 1 (Monotonicity): Given any � and for any pair
(i, j), Xij (�̃) ≤ Xij (�) for all �̃ ≥ �2 with θ̃i j = θi j .

Corollary 1 intuitively shows that when the peering rela-
tionship between CP i and AP j does not change, the
users of (i, j) will be non-increase if more premium peering
relationships emerge as alternatives to users in the market.

Corollary 2 (Additivity): For any n /∈ N ⊇ N0 and m /∈
M ⊇ M0, let Ñ � N \N0 ∪{n} and M̃ � M \M0 ∪{m} denote

2When we use binary operators like ≤ or ≥ for vectors or matrices, we
mean that the operator holds component-wise for the entities.
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the new sets of providers where the subsets N0 and M0 are
replaced by the providers n and m, respectively. Let X̃i j denote
the number of users of (i, j) under (Ñ , M̃ ). If (θi , αi ) =
(θn, αn), ∀i ∈ N0, (ϑ j , β j ) = (ϑm, βm), ∀ j ∈ M0, and

(φn, ψm ) =
(∑

i∈N0
φi ,

∑
j∈M0

ψ j

)
, then

X̃nm =
∑

i∈N0

∑

j∈M0

Xij ; X̃i j = Xij , ∀i 	= n, j 	= m;

X̃nj =
∑

i∈N0

Xij , ∀ j 	= m; and X̃im =
∑

j∈M0

Xij , ∀i 	= n.

Corollary 2 states that if there exists multiple CPs (or APs)
that have the same stickiness and use the same peering profile,
then they could be conceptually merged as a single CP (or AP)
without affecting the market shares of other providers.

B. Premium Peering and Utility Model

Pricing takes various forms for the Internet in practice.
Wireline access providers often charge flat-rates [3], while
tiered schemes have recently been adopted by major U.S.
broadband providers such as Verizon [41] and AT&T [47].
Internet transit services, however, are usually charged based
on peak rates, e.g., the 95th percentile measurement [44].
Although peering pricing may also take various forms [36],
we assume that each AP chooses its pricing structure and
each CP determines whether or not to peer with each AP.
Notice that although both the CP and AP sides are symmetric
in the complementary choice model developed in the previous
subsection, the premium peering agreements in the form
of “take it or leave it” contracts are asymmetric. As CPs’
premium peering decisions depend on the imposed prices of
APs rather than their underlying costs, we will assume the
prices of APs to be exogenous. Generally, we denote the
per-user peering price of AP j by p j . Under usage-based
pricing, p j models the charge for the throughput induced by an
average user under premium peering; under flat-rate pricing,
p j captures each user’s share of the total premium peering
charges borne by the CPs. Similarly, we denote the per-user
value of CP i generated under premium peering by qi . We also
assume that CP i has a lower per-user value δi qi if premium
peering is not used, where δi ∈ [0, 1] denotes the percentage
of content value preserved under the inferior service quality
without using premium peering. In practice, inelastic content,
e.g., real-time multimedia, has much weaker preservability
than elastic content, e.g., file download. Under any peering
matrix �, we denote the utility of CP i by Ui (�) and the
revenue of AP j by R j (�), defined as

R j (�) � p j

∑

i∈N

θi j Xi j (�) and Ui (�)

�
∑

j∈M

U j
i (�),

where U j
i (�) �

{
qiδi Xi j (�) if θi j = 0,

(qi − p j )Xij (�) if θi j = 1.
(2)

Each AP j ’s utility here is interpreted as the per-user rev-
enue p j multiplied by the total number of users under

its premium peering relationship with all the CPs, i.e.,∑
i∈N θi j Xi j (�). Each CP i ’s utility is the sum over the

utilities U j
i generated with each AP j , which equals the

number of users Xij (�) multiplied by either its profit margin
qi − p j if premium peering is used or its discounted value δi qi

otherwise.

IV. MONOPOLISTIC ANALYSIS

Although pure monopolistic markets are rare in practice,
e.g., many users can choose between DSL and cable in the
U.S., approximately 96% of the U.S. population has at most
two wireline providers [1]. Furthermore, based on the FCC’s
definition of broadband service, i.e., at least 25Mbps down-
stream and 3Mbps upstream, more than 50 million Americans
do not have access to high-speed wired Internet service and
Comcast owns 56.8% of all U.S. broadband customers [7].
Meanwhile, Netflix traffic now accounts for 34% of North
America’s downloads during peak hours [14], which also
shows that the content market is far from competitive.

We believe that many broadband and content markets are
not competitive enough, and therefore, monopolistic cases are
still relevant and worth exploring. From a methodical per-
spective, they represent special but important cases of general
settings where competition may exist on both the CP-side
and AP-side markets, and the monopolistic results will help
understand more complicated cases such as complementary
duopoly discussed in the next section. In particular, as a
CP i ’s (an AP j ’s) baseline market share φi (ϕ j ) approaches 1,
the complementary choice model converges to a monopolistic
CP (AP) scenario smoothly. Furthermore, Corollary 2 also
implies that if the user stickiness αi (β j ) of the CPs (APs) are
similar, they can be conceptually aggregated as a monopolistic
CP (AP) if they employ the same peering strategy with the
APs (CPs) on the other side of the market. When a CP or
AP market is monopolistic, we omit the subscript i or j and
use general notation p, q , δ, θ , ϑ , U and R to denote the
peering price, content value, preservability, peering profiles
and utility functions of the monopoly providers, respectively.
Notice that for a monopoly provider, its baseline, i.e., θ or ψ ,
and stickiness, i.e., α or β, equal 1 by definition.

A. Complementary Monopoly

We start with the simplest case of one CP and one AP, i.e.,
M = N = 1. As both the AP and CP markets are monopo-
listic, the market structure is complementary monopoly [43].
Under this model, the matrix � becomes a single peering
decision: � = 0 or 1. Whether the CP will use premium
peering depends on how much the AP charges for it. In the
following theorem, we derive the noncooperative pricing and
peering strategies for the providers, as well as the cooperative
solutions based on the Nash bargaining solution [35] and the
Shapley value [42], so as to understand what the fair peering
price should be in principle for the AP to charge.

Theorem 2: Under any peering price p and peering deci-
sion �, the CP’s utility U(�) and the AP’s revenue R(�)
satisfy

{
U(�) = δq X and R(�) = 0 if � = 0,

U(�) = (q − p)X and R(�) = pX if � = 1.
(3)
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Fig. 1. Nash bargaining and Shapley value under fair pricep = 1
2 (1 − δ)q.

To maximize its utility, the CP will choose to use premium
peering if and only if the AP’s price satisfies p ≤ (1 − δ)q .
Both the Shapley value and the Nash bargaining solution are
achieved at the price p = 1

2 (1 − δ)q , resulting in the utilities

R = 1

2
(1 − δ)q X and U = 1

2
(1 + δ)q X.

Theorem 2 states that the CP will use premium peering
if the price is lower than (1 − δ)q , because its gain from
premium peering equals q X − δq X = (1 − δ)q X . Both the
Nash bargaining and the Shapley value lead to the same price
p = 1

2 (1−δ)q , under which both the CP and AP evenly share
this extra gain (1 − δ)q X from premium peering.

Figure 1 visualizes the solutions in a two-dimensional utility
space, where the x-axis and y-axis show R and U , respectively.
When premium peering is not used, the utilities correspond to
the Threat Point (R,U) = (0, δq X); when premium peering is
established, the achievable utilities lie on the line U + R = q X
with AP’s revenue R = pX . The Nash bargaining solution
is achieved by moving the Threat Point along the 45-degree
line to reach a solution on the line U + R = q X . The
thick line segment shows the core, i.e., the set of stable
solutions where no party will deviate, which can be achieved
by the set of prices p ∈ [0, (1 − δ)q]. The Shapley value is
located at the center of the core and coincides with the Nash
bargaining solution. Notice that the model assumed zero cost
of premium peering for the AP, and after taking these costs
into consideration, the fair pricing will increase and the sharing
solution will move downward.

Because the value threshold (1 − δ)q determines whether
or not premium peering is worth using from the CP’s per-
spective, we define the per-user intrinsic value of premium
peering (VoPP) of the monopoly CP as v � (1 − δ)q .

B. Monopolistic Content Providers

We continue with the scenarios of a monopoly CP, i.e.,
N = 1. Under fixed APs’ prices p � {p1, · · · , pM }, the CP’s
utility U(�) depends on its peering strategy θ = �. Under
any strategy θ , we denote the percentage of sticky users of

the APs whose premium peering services are not used by the
monopoly CP by �β(θ), defined as

�β(θ) �
{

1 if θ = 0,

(θ̄ ◦ β)ψ = ∑
j∈M θ̄ jβ jψ j if θ �= 0.

(4)

We denote the ψ-weighted average price of the APs that the
CP peers with under strategy θ by p̄ψ(θ), defined as

p̄ψ(θ) �

⎧
⎪⎨

⎪⎩

0 if θ = 0,
( p ◦ θ)ψ
θψ

=
∑

j∈M θ j p jψ j
∑

j∈M θ jψ j
if θ �= 0.

(5)

Notice that when θ = 0, the CP does not use premium
peering with any AP and therefore, all users stick with their
original APs, i.e., �β(0) = 1. Since no AP charges the CP,
we define the average price p̄ψ (0) = 0 for convenience.

Theorem 3: Under any strategy θ , AP j ’s revenue satisfies

R j (θ) =
⎧
⎨

⎩
p j [1 − �β(θ)]ψ j

θψ
X if θ j = 1,

0 if θ j = 0.
(6)

The CP’s utility satisfies U(θ) = [
q − �β(θ)v

]
X − R(θ),

where the CP’s aggregate payment to all the APs satisfies

R(θ) �
∑

i∈M

R j (θ) = [
1 −�β(θ)

]
p̄ψ(θ)X.

Theorem 3 expresses the CP’s utility and payment to the
APs as functions of the peering strategy θ . In particular,
R(θ) equals the number of non-sticky users of the CP, i.e.,
[1 − �β(θ)]X , multiplied by the per-user price p̄ψ(θ), i.e.,
the ψ-weighted average price of the peered APs. This shows
that an AP j ’s baseline ψ j plays a major role in determining
the effective peering price for the CP, if it chooses to peer
with AP j . Besides payment, the CP’s revenue is reduced from
its maximum q X by �β(θ)vX , which can be interpreted as
the number of sticky users multiplied by the per-user intrinsic
VoPP v that is lost without premium peering.

Corollary 3: Let U∗( p) denote the CP’s maximum achiev-
able utility under APs’ prices p. U∗( p) is continuous, non-
increasing and convex in p. In particular, if p j = v for all
j ∈ M , then U∗( p) = U(θ) = δq X for all strategies θ .

Corollary 3 states that the CP’s maximum utility is non-
increasing in the prices p and decreases sub-linearly as prices
increase. Intuitively, when the CP chooses not to peer with
an AP j , it does not lose the intrinsic VoPP v for all ψ j X
users, but still obtain a full value q from β̄ jψ j X non-sticky
users that switch to alternative APs with which the CP peers.
It also shows that if all APs’ prices equal the intrinsic VoPP v,
the CP will be indifferent among all peering strategies.

Next, we study the CP’s optimal peering strategy and show
that the intrinsic VoPP v is a crucial threshold in determining
whether or not premium peering will be used.

Theorem 4: Under any fixed prices p, let θ∗ be an optimal
strategy, i.e., U(θ∗) = U∗( p). If p ≥ v, U(θ∗) = U(0);
otherwise, U(θ∗) > U(0) and θ∗

j = 0 for all p j ≥ v.
Theorem 4 classifies the prices into two cases: a trivial case

of p ≥ v where θ∗ = 0 maximizes the CP’s utility and a non-
trivial case where there exists an AP with price lower than v,
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Fig. 2. Optimal peering strategy θ∗ under two APs.

under which an optimal strategy θ∗ 	= 0 achieves higher utility
than U(0). Intuitively, APs with prices higher than v will
not be used under an optimal strategy, which implies that the
ψ-weighted average price ( p ◦ θ∗)ψ/θ∗ψ must be no greater
than v. However, p j < v does not guarantee that AP j will
be used under an optimal strategy.

Theorem 5: Let θ̃ be a strategy with θ̃ j = 0 for some AP j
and θ equal θ̃ except θ j = 1. U(θ) ≥ U(θ̃) if any only if

p̄ψ(θ) ≤ 1 − �β(θ̃)

1 −�β(θ̃)+ β jψ j
p̄ψ(θ̃)+ β jψ j

1 − �β(θ̃)+ β jψ j
v.

Theorem 5 states that the CP can increase its utility by
peering with an AP j if the induced effective price p̄ψ(θ) is
lower than a weighted sum of the existing price p̄ψ(θ̃) and
its intrinsic VoPP v. If θ̃ = 0, the condition yields p j ≤ v;
otherwise, it yields [1 −�β(θ)] p̄ψ(θ) ≤ [1 −�β(θ̃)] p̄ψ(θ̃)+
β jψ j v, which requires the induced per-user payment to be no
higher than the existing one plus the gain β jψ jv obtained from
AP j ’s sticky users. This result implies that the peering value
with any particular AP is no higher than the CP’s intrinsic
VoPP v under a competitive market of multiple APs.

Corollary 4: When M = 2, we denote the AP other than
AP j by j̄ . The peering decision θ j = 1 is part of an optimal
strategy if and only if p j ≤ β jv + β̄ j min{p j̄ , v}.

Corollary 4 fully characterizes the optimal peering strategy
under two APs: if AP j̄’s price is higher than v, AP j is
used when p j ≤ v; otherwise, AP j is used when p j ≤
β jv + β̄ j p j̄ ≤ v. It shows that with two APs, whether an AP
is used depends on 1) intrinsically how sticky its users are,
and 2) extrinsically how cheap the alternative AP is.

Figure 2 visualizes the optimal peering strategies under the
price domain [0, q]2. The condition in Corollary 4 can be
written as p j ≤ min{β jv+ β̄ j p j̄ , v}, the minimum of a linear
function with slope β̄ j and the constant VoPP v, which are
shown as the dashed blue and the dotted red boundaries. Both
boundaries intersect at the utility-neutral point (v, v). When
p2 is below the dashed blue line, θ2 = 1 is optimal; when
p1 is left to the dotted red line, θ1 = 1 is optimal. Based
on this figure, we can intuitively understand the role of the

stickiness parameter β j . For example, if β2 = 1, the dashed
blue line will becomes flat and θ2 = 1 will be optimal as long
as p2 ≤ v, independent of p1; if β2 = 0, the first dashed
blue line segment will start from the origin with slope 1 and
θ2 = 1 will be optimal if p2 ≤ min{p1, v}. This explains that
if an AP j totally controls its baseline market ψ j , the situation
is the same as complementary monopoly; if all its users are
non-sticky, it will enter into a price war with competitor j̄
to attract the CP for using premium peering. From the CP’s
perspective, APs with lower prices p j and higher stickiness
β j are preferred for peering, while their baseline ψ j plays a
role of a scaling factor as shown below.

Theorem 6: If there exists two APs j and m that satisfy
p jψ j > pmψm and β jψ j < βmψm , then any peering
strategy θ satisfying 1 = θ j > θm = 0 is not optimal.

Theorem 6 intuitively states that under an optimal peering
strategy, an inferior AP j will not be chosen if a superior
AP m that has cheaper ψ-weighted price ψm pm and higher
sticky market share βmψm is not chosen.

C. Monopolistic Access Providers

We now consider the scenarios of a monopoly AP, i.e.,
M = 1. Under the AP’s price p, each CP i ’s utility Ui (�)
depends on the peering profile � = ϑ . Similar to the definition
of �β(θ) in Equation (4), under any strategy ϑ , we denote the
percentage of sticky users of the CPs that do not peer with
the monopoly AP by α(ϑ), defined as

α(ϑ) �
{

1 if ϑ = 0,

(ϑ̄ ◦ α)φ = ∑
i∈N ϑ̄iαiφi if ϑ �= 0.

(7)

Theorem 7: Under any strategy ϑ , CP i ’s utility satisfies

Ui (ϑ) =
⎧
⎨

⎩
(qi − p)[1 −α(ϑ)] φi

ϑφ
X if ϑi = 1,

qiδi [αi + ᾱi 1{ϑ=0}]φi X if ϑi = 0.
(8)

The AP’s revenue satisfies R(ϑ) = [1 −α(ϑ)] pX .
Theorem 7 expresses the utility of the AP and CPs as

functions of the peering strategy ϑ . Intuitively, R(ϑ) equals
the number of non-sticky users of the AP, i.e., [1 −α(ϑ)]X ,
multiplied by the per-user price p. Under premium peering,
CP i ’s profit equals the per user margin qi − p multiplied by its
share φi/ϑφ of the number of non-sticky users of the AP; oth-
erwise, it equals the discounted per-user value δi qi multiplied
by the number of its sticky users [αi + ᾱi 1{ϑ=0}]φi X , where
the factor ᾱi 1{ϑ=0} reflects that even non-sticky users will stay
with their CPs when no premium peering exists. This shows
that a peering CP’s baseline φi not only captures its intrinsic
market share, but also plays a similar role in attracting the
non-sticky users of the CPs that do not peer.

Given any peering strategy ϑ , we denote the strategies of
all CPs except CP i by ϑ−i . Theorem 7 shows that CP i ’s
utility Ui (ϑ) depends not only on its own strategy ϑi , but
all other CPs’ peering decisions ϑ−i as well. We assume that
given the price p, CPs make simultaneous peering decisions
to maximize their utilities and define a Nash equilibrium as
follows.
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Definition 1 (Nash equilibrium): In a monopoly market
of AP, a peering strategy profile ϑ is a Nash equilibrium (NE)
if and only if Ui (ϑ) ≥ Ui (ϑ̄i ;ϑ−i ) for any CP i ∈ N .

To generalize the intrinsic VoPP v of a monopoly in a
market of multiple CPs, we define the intrinsic VoPP of CP i
as

vi � (1 − αiδi )qi , (9)

where αiδi qi captures the value that can be kept without
premium peering, as αi portion of the users are sticky to CP i .
Next, we characterize the Nash equilibrium based on CPs’
effective VoPPs, a further generalization of CPs’ intrinsic
VoPPs under the market competition among them.

Theorem 8: For any ϑ , we define ϑ i=1 � (ϑi = 1;ϑ−i ).
A peering profile ϑ is a Nash equilibrium if and only if

p ≥ ṽi (ϑ−i ), ∀ϑi = 0 and p ≤ ṽi (ϑ−i ), ∀ϑi = 1,

where ṽi (ϑ−i ) denotes the effective VoPP, defined as

ṽi (ϑ−i ) �
[

1 − ϑ i=1φ

1 −α(ϑ i=1)

(
αi + ᾱi 1{ϑ−i=0}

)
δi

]
qi .

In particular, ṽi (ϑ−i ) = vi if ϑ−i = 1 or α−i = 1.
Theorem 8 characterizes the Nash equilibrium by specifying

an effective VoPP ṽi (ϑ−i ) for each CP i which determines
whether or not CP i should peer with the monopoly AP under
the strategies ϑ−i of all other CPs. The effective VoPP ṽi

also generalizes the intrinsic VoPP vi in the sense that if
ϑ−i = 1 or α−i = 1, all CPs except i will keep their baseline
market shares and consequently, ṽi will coincide with CP i ’s
intrinsic VoPP vi = (1 − αiδi )qi . This is because when users
are all sticky to their CPs, the peering decisions of the CPs
become independent and the result is the same as that under
the complementary monopoly case.

For N = 2, by defining v̂i � ṽi (ϑ−i = 0), we can fully
characterize the Nash equilibrium by Theorem 8 as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϑ = (1, 1) is a Nash equilibrium iff p ≤ min {v1, v2} ,
ϑ = (0, 1) is a Nash equilibrium iff v1 ≤ p ≤ v̂2,

ϑ = (1, 0) is a Nash equilibrium iff v2 ≤ p ≤ v̂1,

ϑ = (0, 0) is a Nash equilibrium iff p ≥ max
{
v̂1, v̂2

}
.

If q2 is sufficiently larger than q1 such that the VoPPs satisfy
min{v2, v̂2} ≥ max{v1, v̂1}, the NE is determined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1, 1) is the unique NE if p < v1,

(1, 1) and (1, 0) are both NEs if p = v1,

(1, 0) is the unique NE if p ∈ (v1, v̂2),

(1, 0) and (0, 0) are both NEs if p = v̂2,

(0, 0) is the unique NE if p > v̂2.

(10)

This shows that if the value qi of the CPs are separate enough,
under any price p, a unique equilibrium naturally emerges
where the high-value CPs choose to use premium peering.
However, if qi s are close, the existence and uniqueness
of equilibrium cannot be guaranteed even for this two-CP
case.

Fig. 3. Thresholds γ1 and 1 − γ2 under various α.

Theorem 9: For N = 2, all the non-trivial cases of
α1α2 < 1 can be classified into three mutually exclusive
categories:

(a)

{
φ1 > γ1

φ2 < γ2
, (b)

{
φ1 ≥ γ1

φ2 ≥ γ2
and (c)

{
φ1 < γ1

φ2 > γ2
,

where γ1 � α1ᾱ2

1 − α1α2
and γ2 � α2ᾱ1

1 − α1α2
.

If we assume α1δ1 ≥ α2δ2 without loss of generality and
consider the case of q1 = q2, then we conclude that
under (a), min{v2, v̂2} ≥ max{v1, v̂1}; under (b), if p ∈(
max{v̂1, v̂2}, v1

)
, both (0, 0) and (1, 1) are Nash equilib-

ria; and under (c), if p ∈ (
max{v1, v̂2},min{v̂1, v2}

)
and√

ᾱ1φ1 <
√
ᾱ2φ2, no Nash equilibrium exists.

Theorem 9 shows that there are two-CP scenarios under
which zero or multiple Nash equilibria exist. In particular,
three solution regions are classified by how large φi is com-
pared to a threshold γi , which is a function of α1 and α2.

Figure 3 plots the thresholds γ1 and 1 − γ2 against α1
along the x-axis where α2 is set to be 0.3, 0.5 and 0.7 in the
three subfigures, respectively. Any distribution (φ1, φ2) can
be represented by a point on the vertical segment [0, 1], and
the curves γ1 and 1 − γ2 visually partition the three solution
regions: cases (a) and (c) correspond to the regions above
1 − γ2 and below γ1, respectively, and case (b) corresponds
to the region in between. We observe that when α1 increases,
γ1 increases but γ2 decreases. If we denote the CP other than
CP i by ī , as the definitions of γ1 and γ2 are symmetric,
in general, γi increases with αi but decreases with αī , and
therefore, we can interpret γi as the relative stickiness of CP i .
By assuming q1 = q2 and α1δ1 ≥ α2δ2, CP 2 has a higher
intrinsic VoPP, i.e., v2 ≥ v1, and based on the interpretation
of γi , we can understand the result of Theorem 9 as follows.
Under case (a), CP 2 has a relatively small baseline but large
user stickiness, and therefore, it always has more incentives to
use premium peering to capture a non-negligible share of the
non-sticky users of CP 1, and the Nash equilibrium follows
Equation (10). Under case (c), on the contrary, CP 1 has more
incentive to use premium peering if CP 2 does not; however,
given the loss of market share under the strategy profile (1, 0),
CP 2 will also use premium peering to regain its market share,
under which CP 1 prefers not to use premium peering as it
has a low intrinsic VoPP, and therefore, cannot capture the
non-sticky users of CP 2. Thus, CP 1 (CP 2) will always be
better off by using a peering strategy different from (same
as) its competitor’s, which leads to the non-existence of Nash
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Fig. 4. Nash equilibria under complementary duopoly with α = β = φ =
ψ = δ = (0.5, 0.5) and q = (0.5, 1.0).

equilibrium. Under case (b), however, both the baseline and
user stickiness of the CPs are close, and the best response of
a CP is to mimic the strategy of the other CP and therefore,
both (0, 0) and (1, 1) are Nash equilibria.

V. COMPLEMENTARY DUOPOLY

We further consider a complementary duopoly structure, i.e.,
M = N = 2, where two CPs and two APs compete in both
sides of the market. As Corollary 2 shows that providers with
similar user stickiness and peering strategies can be merged,
the duopolistic model provides a first-order approximation of
market competition from a provider’s perspective such that all
its competitors are considered as an aggregated provider that
captures the remaining market share. As an AP j ’s baseline
market share ϕ j approaches 1, the complementary duopoly
model converges to the monopolistic AP with N = 2 and
Theorem 9 showed that neither the uniqueness nor the exis-
tence of Nash equilibrium can be guaranteed; and therefore,
we conduct systematic numerical evaluations to understand
this more complicated market structure. We start with a
benchmark scenario where providers have the same baseline,
i.e., φ = ψ = (0.5, 0.5), and the same user stickiness and
content preservability, i.e., α = β = δ = (0.5, 0.5). Without
loss of generality, we assume q1 ≤ q2 and normalize q2 = 1
for CP 2. We set q1 = 0.5 for CP 1.

Figure 4 visualizes the Nash equilibria3 when APs’ prices
p1 and p2 vary along the x- and y-axis, respectively.
As q2 > q1 and the values are separate enough, 9 of the
16 possible peering profiles, shown in the legends in the right
subfigure, become the unique Nash equilibrium under various
prices in our numerical evaluation. Intuitively, when prices
are low (high), any (neither) CP peers with any AP; when
prices are in a mid-range, i.e., 0.4 to 0.6, CP 2 peers with
both APs while CP 1 does not peer with any due to its low
value q1. Under any fixed price p j̄ , we observe that as p j

increases, CP 1 first de-peers with AP j , followed by CP 2.
These two boundary prices under which CPs start to de-peer
correspond to the CPs’ effective VoPPs with AP j under the
CPs’ peering decisions ϑ j̄ with the competitor AP j̄ and its
price p j̄ . To compare these effective VoPPs of a CP with its
intrinsic VoPP, we plot p1 = v1 and p1 = v2 (p2 = v1

3In our evaluations, we test all 16 possible peering profiles to see if they
are Nash equilibria and in most cases find a unique Nash equilibrium, except
for some case of non-existence of Nash equilibrium shown in Figure 7.

Fig. 5. Nash equilibria under complementary duopoly with α = β = φ =
ψ = δ = (0.5, 0.5).

and p2 = v2) in a solid and a dashed vertical (horizontal)
line, respectively. We observe that any CP’s effective VoPP is
smaller by its intrinsic VoPP under competition. Furthermore,
any CP’s effective VoPP with an AP j will move towards a
lower value if the other AP’s price p j̄ decreases. For example,
given p j = 0.3 (0.6), CP 1 (2) peers with AP j only if
p j̄ > 0 (0.5). This is because when there exists a cheap
alternative AP j̄ , even CPs do not peer with AP j , they can
still attract the elastic users of AP j by peering with AP j̄
under low costs; and therefore, the effective VoPP with AP j
will decrease. We also observe that the effective VoPP of the
low-value CP 1 is very close to its intrinsic VoPP v1, while
that of CP 2 is not close to v2. Because CP 2 always peers
with APs at the price region of CP 1’s effective VoPP, similar
to the monopolistic AP scenario of ṽ1 = v1 when ϑ2 = 1,
CP 1’s peering decision becomes independent of the existence
of CP 2, as it will not obtain any of the inelastic users of
CP 2. As a result, the low-value CP 1’s peering decision
is mostly driven by the price war between the APs, similar
to monopolistic CP case shown in Figure 2. Based on this
benchmark scenario, we will study the impact of 1) CPs’
value q and content preservability δ, 2) the market baselines
φ and ψ , and 3) the user stickiness α and β on the peering
equilibria in the following subsections.

A. Impact of Value and Preservability

Figure 5 illustrates the impact of value qi on the equilibria.
As qi scales vi linearly, we observe that the increase in qi also
moves CP i ’s effective VoPP towards a higher value. Although
qi does not affect the effective VoPP of the other CP ī too
much, when q1 increases from 0.4 to 0.6, there are cases where
CP 2 starts to peer with the APs, e.g., p = (0.5, 0.4) in the
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Fig. 6. Nash equilibria under complementary duopoly with α = β = φ =
ψ = (0.5, 0.5) and q = (0.5, 1.0).

upper sub-figures and p = (0.5, 0.3) and (0.6, 0.4) in the
lower sub-figures. We also observe that a CP’s effective VoPP
with an AP does not decrease monotonically with the other
AP’s price. For example, in the lower left (right) sub-figure,
when p j = 0.5 (0.6) and p j̄ decreases from 0.3 (0.5) to 0.2
(0.4), CP 2 will start to peer with AP j . In both cases, we
find that either the increase in q1 or the decrease in p j attracts
CP 1 to peer with AP j , which provides some peer pressure
for CP 2 to peer with the other AP j̄ , even CP 2 has already
peered with AP j . In contrast with CP 2’s behavior, in the left
sub-figures, we observe that under p j = 0.3 and p j̄ = 0.5,
when q2 increases from 0.8 to 1.0, CP 1 starts to de-peer with
AP j . We also observe that the effective VoPP of CP 1 for
AP j is larger than its intrinsic VoPP v1 when AP j̄’s price
is high, under which CP 2 does not peer with j̄ . Although
p j > v1, by peering with AP j , CP 1 can attract some of the
non-sticky users from AP j̄ so as to recover its peering cost.
Both cases show that the low-value CP behave oppositely such
that it peers with an AP j if the high-value CP tends not to
peer with the other AP j̄ .

Figure 6 illustrates the impact of content preservability δi on
the equilibria. As an increase in δi reduces vi , we observe that
the increase in δi also moves CP i ’s effective VoPP towards a
lower value. Similarly, although δi does not affect the effective
VoPP of the other CP ī too much, when p j decreases or δ1
decreases from 0.8 to 0.2, we observe cases where CP 2 starts
to peer with AP j̄ due to the peer pressure of CP 1 peering
with AP j , e.g., p = (0.6, 0.3) and (0.7, 0.4) in the upper
sub-figures and p = (0.5, 0.4) in the lower sub-figures. Under
p j = 0.3 and p j̄ = 0.5, we observe that when δ2 increases
from 0.2 to 0.8 in the right sub-figures, CP 2 starts to de-
peer with AP j̄ ; however, CP 1 starts to peer with AP j .

Fig. 7. Nash equilibria under complementary duopoly with β = φ = ψ =
δ = (0.5, 0.5) and q = (0.5, 1.0).

This observation again shows that the low-value CP behave
oppositely to the high-vale CP 2.

Lessons Learned: As CP i ’s intrinsic VoPP vi increases
with qi and decreases with δi , the increase in qi or decrease
in δi moves CP i ’s effective VoPP of towards a higher value.
Although qi and δi do not impact the effective VoPP of the
other CP ī much, the low-value CP’s peering with an AP
provides some peering pressure for the high-value CP to peer
with the other AP; however, the low-value CP peers with an
AP if the high-value CP tends not to peer with the other AP.

B. Impact of User Stickiness

Figure 7 illustrates the impact of the user stickiness αi of the
CPs on the equilibria. Notice that no unique Nash equilibrium
exists at p = (0.3, 0.5) and (0.5, 0.3) in the upper-right sub-
figure. Similar to the impact of δi , as the intrinsic VoPP vi

decreases with αi , we observe that the increase in αi also
moves CP i ’s effective VoPP towards a lower value. Different
from the impact of δi , we observe that the change in α1 affects
CP 2’s effective VoPP with an AP j substantially, especially
at a high price p j̄ of the other AP; however, the change in
α2 does not change that of CP 1 much. This shows that when
the users of the low-value CP become less sticky, it has more
incentives to peer with an AP j , resulting in high peer pressure
to the high-value CP to peer with the same AP j , especially
when the high-value CP does not peer with the other AP j̄
due to its high price p j̄ . Nevertheless, the change in α2 only
influence CP 2’s effective VoPP with an AP j slightly when
p j̄ is small, very different from the impact of δ2 on that

of CP 2. This is because in that price region, CP 1 cannot
afford to peer with AP j and therefore, CP 2 will not lose
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Fig. 8. Nash equilibria under complementary duopoly with α = φ = ψ =
δ = (0.5, 0.5) and q = (0.5, 1.0).

its inelastic users, and therefore, the user stickiness does not
impact CP 2 much, unless CP 1 peers with the other AP j̄
when p j̄ is very low. This is similar to the monopolistic AP
scenario where the closed-from of the effective VoPP ṽi is
expressed Theorem 8: as CP 1 does not peer with the AP, for
CP 2, α(ϑ i=1) does not depend on α2 and the coefficient(
αi + ᾱi 1{ϑ−i=0}

)
equals 1, and therefore, its effective VoPP

becomes independent of α2.
Figure 8 illustrates the impact of the user stickiness β j of

the APs on the equilibria. Because any CP’s intrinsic VoPP vi

is not function of β j , we observe that the APs’ user stickiness
do not strongly impact the effective VoPP of the CPs. Although
an AP j ’s stickiness β j does not affect CPs’ effective VoPPs
with the other AP j̄ , it does affect those with AP j itself.
As shown in all previous plots, a CP’s effective VoPP with
an AP j decreases as the competitor AP’s price p j̄ decreases;
however, by comparing cases under different β j , we observe
that this decreasing trend is more prominent when β j is small.
In particular, when β j = 0.8, the AP becomes like a monopoly
over its baseline market share of users and therefore, CPs’
effective VoPPs are very close to their intrinsic VoPPs vi

and do not get affected by the competitor’s price p j̄ much.
Similar observations can also be made in the monopolistic CP
scenario in Figure 2. In general, our observations imply that
with low user stickiness, an AP is more susceptible to market
competition with its competitors.

Lessons Learned: As CP i ’s intrinsic VoPP vi decreases
with αi , the increase in αi moves the effective VoPP of CP i
towards a lower value. The low-value CP’s peering decision
with an AP provides peering pressure for the high-value CP to
peer with the same AP; however, it does not get affected by the
user stickiness αi of the high-value CP. The user stickiness β j

of an AP j mostly affect CPs’ effective VoPPs with itself and
larger user stickiness will make the AP more like a monopoly
over its baseline market share of users, under which any CP’s
effective VoPP is close to its intrinsic VoPP.

C. Impact of Market Baseline

Figure 9 illustrates the impact of the market baseline φi

of the CPs on the equilibria. We observe that as the baseline
market shares shift more towards the low-value CP 1 from
the left to the right sub-figures, the effective VoPP of the
high-value CP 2 moves towards a higher value prominently;
however, that of CP 1 changes slightly, i.e., CP 1 de-peers
at p = (0.3, 0.1) and (0.1, 0.3) when φ1 increases from
0.4 to 0.6. This observation shows that when the low-value
CP 1 has a larger baseline market share, it will have fewer
incentives to peer with the expensive AP, as peering with
the cheap AP can already keep a substantial market share.
In general, we observe that the low-value CP 1’s effective
VoPP is very close to its intrinsic VoPP v1 as explained before.
At the price region of CP 2’s effective VoPP, because the low-
value CP 1 cannot afford to peer with any AP, CP 2 can attract
CP 1’s non-sticky users, even if it only peers with one of
the APs. As CP 1’s market baseline increases, this gain from
CP 1’s non-sticky users also becomes larger, which increases
CP 2’s effective VoPP consequently. As a result, although we
observe that CP 2’s effective VoPP with a particular AP could
be much smaller than its intrinsic VoPP v2 when it has a
larger baseline than CP 1 in the left sub-figures, it becomes
clearly larger than v2 = 0.75 in the right-most sub-figure
when φ1 = 0.8 and the competitor AP’s price is not lower
than 0.8. This shows even both APs’ prices are higher than v2,
CP 2 is better off by peering with an AP and compensated
by the elastic market share of CP 1. A similar observation
can be made in the monopolistic AP scenario: given CP 1
does not peer, i.e., ϑ1 = 0, CP 2’s effective VoPP satisfies

ṽ2 =
(

1 − φ2

1 − α1φ1
δ2

)
q2, which is no smaller than v2.

Figure 10 illustrates the impact of the market baseline ψi

of the APs on the equilibria. We observe that as the baseline
market shares shift towards AP 1 from the left to the right
sub-figures, the effective VoPP of the high-value CP 2 does
not change; however, that of CP 1 changes slightly: CP 1 starts
to peer with AP 1 at p = (0.3, 0.1) when ψ1 increases from
0.3 to 0.4 and starts to de-peer with AP 2 at p = (0, 0.3)
when ψ1 increases from 0.1 to 0.2. By comparing the result
of Corollary 4, which shows that the effective VoPP does
not depend on APs’ baselines under a monopolistic CP, this
observation shows that with the existence of a high-value CP 2,
which will take CP 1’s non-sticky users if it does not peer, the
low-value CP 1 will have more incentives to peer with an AP j
if it has a higher market baseline ψ j .

Lessons Learned: The high-value CP’s peering decision is
greatly influenced by the baseline market share distribution of
the CPs, but not that of the APs. In particular, the decrease in
its market baseline moves its effective VoPP towards a higher
value, which can possibly be greater than its intrinsic VoPP.
The low-value CP’s peering decision, however, is only slightly
affected by the providers’ market baselines: its effective VoPP
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Fig. 9. Nash equilibria under complementary duopoly with α = β = ψ = δ = (0.5, 0.5) and q = (0.5, 1.0).

Fig. 10. Nash equilibria under complementary duopoly with α = β = φ = δ = (0.5, 0.5) and q = (0.5, 1.0).

with an AP j will increase if its market baseline decreases or
that of AP j , i.e., ψ j , increases.

VI. DISCUSSIONS AND CONCLUSIONS

Based on our qualitative results, we understand the driving
forces behind premium peering in practice as follows.
As 77-95% of broadband users are sticky [17], APs have high
values for β j and could charge a CP up to its intrinsic VoPP.
By delivering video traffic, Level 3 serves Netflix as a CDN;
however, its demand is very elastic, i.e., αi is close to zero,
as Netflix uses other CDNs, e.g., Limelight. As a result, its
intrinsic VoPP vi is close to its CDN price qi [39]. Level 3
agreed on the premium peering because Comcast charged as
low as IP transit prices, which are lower than those of CDNs.
As a quality-sensitive video streaming provider, Netflix has
a high value qi and low content preservability δi , and thus
a much higher intrinsic VoPP vi than those of the CDNs.
Although it has a 38% market share [17], this high-value CP
entered into premium peering with many APs, e.g., Comcast
and Verizon, due to the induced peer pressure when low-
value competitors, including APs’ own content services, use
premium peering. Furthermore, as the user stickiness of CPs
are estimated between 36-80% [17], there are still substantial
market share of non-sticky users for Netflix to compete for.

We foresee that APs might increase the peering price and
want to further differentiate its services for higher charges,
because even with a small baseline ψ j , an AP could behave
like a monopoly over its users given their high stickiness.
If the AP market is competitive, under which users are non-
sticky, APs will enter into a price war, resulting in low

competitive market prices. Thus, from a regulatory perspective,
it will be more important to provide service transparency and
alternatives to users, i.e., to reduce β j of the APs, rather
than regulating the peering mechanisms and prices. As the
peering quality also affects APs’ user satisfaction, in theory, it
is possible that competitive APs will pay monopolistic CPs for
premium services so as to compete for end-users, which can
be analyzed similarly under our model. However, regulating
monopolistic CPs might be beyond the FCC’s jurisdiction.

In conclusion, whether an AP’s premium peering will be
used mainly depends on its user stickiness and price, while
its market baseline plays a minor role; the content value and
preservability of a CP mainly determine its intrinsic VoPP,
which fundamentally determines the CP’s peering decision.
In particular, high-value CPs have peer pressure when low-
value CPs peer; however, low-value CPs behave oppositely.
The peering decisions of the low- and high-value CPs are
substantially influenced by their user stickiness and baseline
market shares, respectively, but not vice versa.

APPENDIX

Proof of Theorem 1: First, one can easily verify that when
� = 0 or 1, the market share of each pair (i, j) of providers
equals Xij = φiψ j X . When θi j = 0, any user of (i, j) will
stick with the same pair of providers with probability αiβ j

by Assumption 2. With probability αi β̄ j , a user is not sticky
to AP j ; however, if θi = 0, which implies that none of the
peering link with CP i is paid peering, then the choice set O
for the user will be empty, and therefore, she will still stick
with (i, j). By the same reason, if ϑ j = 0 (or � = 0), none
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of the peering link with AP j (or any of the peering links)
is paid peering, and therefore, ᾱiβ j (or ᾱi β̄ j ) percentage of
the users will stick with (i, j). When we add the four cases
in Assumption 2, we obtain that for θi j = 0, ρi j = αiβ j +
αi β̄ j 1{θi=0} + ᾱiβ j 1{ϑ j =0} + ᾱi β̄ j 1{�=0}. When θi j = 1, all
the original φiψ j X number of users will not switch providers.
There are three other types of users under public peering that
might switch to the pair (i, j): the users of (i, j ′), (i ′, j) and
(i ′, j ′). The total number of potential users from (i, j ′) equals∑

j∈M (1− θi j )αi β̄ jφiψ j X , because they sticky with CP i but
not sticky with AP j under public peering links. Because each
user will join AP j with probability

ψ j
θiψ

by Assumption 1,
the total number of users that are sticky with CP i and shift
from AP j ′ to j equals

ψ j
θiψ

∑
j∈M θ̄i jαi β̄ jφiψ j X , which can

be expressed as φiψ j X
αi θ̄iψβ̄
θiψ

in a vector form. By the same
logic, we derive the number of shifted users to (i, j) from the

other two types as φiψ j X
β j ϑ̄ jφᾱ
ϑ jφ

and φiψ j X
φᾱ

T �̄ψ
β̄

φT�ψ
. Finally,

by adding the users from all the above cases, we obtain

ρi j = 1 + αi θ̄iψβ̄

θiψ
+ β j ϑ̄ jφᾱ

ϑ jφ
+ φᾱ

T �̄ψ
β̄

φT�ψ
.

Proof of Corollary 1: Given �̃ ≥ �, we have θ̃i ≥ θi ,
ϑ̃ j ≥ ϑ j , which implies that 1{θ̃i=0} ≤ 1{θi =0}, 1{ϑ̃ j =0} ≤
1{ϑ j =0} and 1{�̃=0} ≤ 1{�=0}. By Theorem 1, we deduce that

Xij (�̃) ≤ Xij (�) if θi j = 0. We also deduce that the terms
αi θ̄iψβ̄

θiψ
,
β j ϑ̄ jφᾱ

ϑ jφ
and

φᾱ
T �̄ψ

β̄

φT�ψ
are non-increasing when the

peering matrix changes from � to �̃, because the numerators
are non-increasing and the denominators are non-decreasing,
which implies that Xij (�̃) ≤ Xij (�) if θi j = 1.

Proof of Corollary 2: The additivity property holds because
users choose providers based on the linear proportional form
of Assumption 1, which induces the market shares of the
providers in terms of linear functions in Theorem 1. When
providers have the same stickiness, i.e., αi or β j , and peering
profiles, i.e., θi or ϑ j , the closed-form market share expres-
sions keep the same form in terms of ρi j (�), while the
baselines of the providers, i.e., φi or ψ j , are aggregated.

Proof of Theorem 2: Since there are no alternative providers,
none of the X users will be lost under public peering. By the
definition of utilities in Equation (2), we obtain (3). The CP
will use paid peering only if its derived utility (q − p)X is
no smaller than that under public peering, i.e., δq X , which
implies the condition p ≤ (1 − δ)q . Without cooperation,
the CP and AP obtains utilities δq X and 0, respectively,
under public peering. The Shapley value is the solution of
the balanced contribution condition U − δq X = R − 0 and
the efficiency condition U + R = q X . The Nash bargaining
solution, on the other hand, solve the optimization problem:

Maximize [(q − p)X − δq X][pX − 0], s.t. p ≤ (1 − δ)q.

The solution of both turns out to be U = 1
2 (1 + δ)q X and

R = 1
2 (1 − δ)q X , which implies that the corresponding price

satisfies p = 1
2 (1 − δ)q .

Proof of Theorem 3: By applying Theorem 1, we can derive
X j (θ) = ρ j (θ)ψ j X , where

ρ j (θ) =

⎧
⎪⎨

⎪⎩

β j + β̄ j 1{θ=0} if θ j = 0,

1 + θ̄ψ
β̄

θψ
= 1 + θ̄ (β̄ ◦ ψ)

θψ
if θ j = 1.

From the above equation, we deduce that

θ jρ j (θ) = θ j

[

1 + θ̄ (β̄ ◦ ψ)
θψ

]

= θ j

θψ
[θψ + θ̄ (β̄ ◦ ψ)].

Because θψ + θ̄ (β̄ ◦ ψ)+ θ̄ (β ◦ ψ) = 1, we have

θ jρ j (θ) = θ j

θψ
[1 − θ̄ (β ◦ ψ)] = θ j

θψ
[1 − (θ̄ ◦ β)ψ].

Thus, if θ j = 1, then

R j (θ) = p j X j (θ) = p jρ j (θ)ψ j X = p j
1 −�β(θ)

θψ
ψ j X.

The total payment R(θ) �
∑

j∈M R j (θ) becomes

∑

j∈M

p jθ j
1 −�β(θ)

θψ
ψ j X = [1 −�β(θ)]X

θψ
( p ◦ θ)ψ .

When θ = 0, all users are under public peering and therefore,
the CP’s utility equals δq X . When θ �= 0, �β(θ) proportion
of the users will be sticky to their APs under public peering,
and therefore, the users will generate revenue:

[1 −�β(θ)]q X +�β(θ)δq X = [
q −�β(θ)v

]
X.

Proof of Corollary 3: Theorem 3 shows that under any
fixed θ , U(θ) is a continuous, non-increasing and linear func-
tion in the prices p. U∗( p) is the maximum of all these linear
functions, and therefore, is a convex function in p. Again by
Theorem 3, U(θ) = δq X if θ = 0. When p j = v for all j ∈
M , for any θ �= 0, the average price ( p ◦ θ)ψ/θψ equals v,

and therefore, R(θ) =
[
1 − θ̄ (β ◦ ψ)

]
v. By substituting it

into U(θ), we obtain U(θ) = δq X .
Proof of Theorem 4: By Corollary 3, U∗(v) = U(0) and

U∗( p) is non-increasing in p, therefore, U∗( p) ≤ U(0) for
all p ≥ v. Since U(0) is always achievable, U∗( p) = U(0).
To show θ∗

j = 0 for all p j > v, we first show that
( p ◦ θ∗)/θ∗ψ < v. Because otherwise, by Theorem 3, we
deduce that U(θ∗) < δq X = U(0), which contradicts the
optimality of θ∗. Second, we show that for all paid-peering
APs with prices p j > v, we can increase the CP’s utility by
setting θ j = 0 for all of them. In the worst case when all their
users are sticky, i.e., β j = 1, and we lose v per-user, which
is less than their average price. However, if some users are
non-sticky, they will move to APs with prices lower than v,
which further will increase the CP’s utility.

Proof of Theorem 5: When θ̃ = 0, by Theorem 3, U(θ̃) =
δq X and U(θ) = {q − �β(θ)v − (1 − �β(θ))p j }X . Thus,
U(θ) ≥ U(θ̃) is equivalent to �β(θ)v + (1 − �β(θ))p j ≤ v,
which yields p j ≤ v. Again, by Theorem 3, U(θ) ≥ U(θ̃)
is equivalent to �β(θ)vX + R(θ) ≤ �β(θ̃)vX + R(θ̃).
When θ̃ �= 0, �β(θ̃) = �β(θ) + β jψ j , which implies that
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R(θ) ≤ β jψ j vX + R(θ̃ ). By dividing [1 −�β(θ)]X on both
sides, we obtain the result.

Proof of Corollary 4: Given θ̃ = 0, Theorem 5 shows that
θ j = 1 is optimal if and only if θ j ≤ v. Given θ̃ = (0, 1) and
θ̃ = (1, 0), Theorem 5 shows that θ j = 1 is optimal if and
only if p j ≤ β jv + β̄ j p j̄ . By combining both conditions, we
obtain that θ j = 1 is optimal if and only if p j ≤ min{β jv +
β̄ j p j̄ , v} = β jv + β̄ j min{p j̄ , v}.

Proof of Theorem 6: We prove the result by showing that the
CP’s utility can increase if we swap the peering strategies θ j

and θm , and therefore, θ is not optimal. We only needs to focus
on the non-trivial case where θ∗ 	= 0. Based on Equation (3),
the optimal strategy θ∗ solves

Minimize (θ̄ ◦ β)ψv +
[
1 − (θ̄ ◦ β)ψ

] ( p ◦ θ)ψ
θψ

.

Because p jψ j > pmψm and β jψ j < βmψm , swapping the
peering decisions will reduce the average price ( p ◦ θ)ψ/θψ
and the number of non-sticky users (θ̄ ◦ β)ψ , and therefore,
will increase the CP’s utility.

Proof of Theorem 7: By applying Theorem 1, we can derive
Xi (ϑ) = ρi (ϑ)φi X , where

ρi (ϑ) =
⎧
⎨

⎩

αi + ᾱi 1{ϑ=0} if ϑi = 0,

1 + ϑ̄φᾱ

ϑφ
= 1 + ϑ̄(ᾱ ◦ φ)

ϑφ
if ϑi = 1.

By the same logic used in Theorem 3, we deduce that

ϑiρi (ϑ) = ϑi

ϑφ
[1 − (ϑ̄ ◦ α)φ] = ϑi

ϑφ
[1 −α(ϑ)].

By using the definition of Ui (ϑ) in (2), we deduce (8).
Furthermore, R(ϑ) = p

∑
i∈N ϑiρi (ϑ)φi X = [1−α(ϑ)]pX .

Proof of Theorem 8: Given any ϑ−i , by Theorem 7, we
know that Ui (ϑi = 0;ϑ−i ) = [

αi + ᾱi 1{ϑ−i =0}
]

qiδiφi X and

Ui (ϑi = 1;ϑ−i ) = 1 −α(ϑ i=1)

ϑ i=1φ
(qi − p)φi X . Thus, CP i

uses ϑi = 1 if and only if Ui (ϑi = 1;ϑ−i ) ≥ Ui (ϑi =
0;ϑ−i ), which implies the condition of Nash equilibrium as

[
αi + ᾱi 1{ϑ−i=0}

] ϑ i=1φ

1 −α(ϑ i=1)
δi ≤ 1 − p/qi ,

or equivalently, p ≤ ṽi (ϑ−i ). Finally, when ϑ−i = 1, we have
ϑ i=1φ = 1φ = 1 and α(ϑ i=1) = α(1) = 0, and therefore,
ṽi (ϑ−i ) = (1−αiδi )qi = vi ; when α = 1,

[
αi + ᾱi 1{ϑ−i =0}

] =
1 and ϑ i=1φ = 1 −α(ϑ i=1), which implies that ṽi (ϑ−i ) =
(1 − δi )qi = vi for all ϑ−i .

Proof of Theorem 9: Because 1 − α1α2 = α1ᾱ2 + ᾱ1α2 +
ᾱ1ᾱ2, we know γ1+γ2 = α1ᾱ2 + ᾱ1α2

α1ᾱ2 + ᾱ1α2 + ᾱ1ᾱ2
< 1. Because

φ1+φ2 = 1, we cannot have a case that φ1 ≤ γ1 and φ2 ≤ γ2,
and therefore, the mutually exclusive cases (a)-(c) covers all
the cases for α1α2 < 1. Because α1δ1 ≥ α2δ2 and q1 = q2,
we deduce that (1 − α1δ1)q1 = v1 ≤ v2 = (1 − α2δ2)q2. For
N = 2, let ī denote the CP other than i . By definition, v̂i =(

1 − φi

1 − αīφī
δi

)
qi , and therefore, (1 −αiδi )qi = vi ≥ v̂i is

equivalent to αi ≤ φi

1 − αīφī
or αi ≤ φi

1 − αī (1 − φi )
, which is

equivalent to φi ≥ αi ᾱī

1 − αiαī
= γi . Thus, φi ≥ γi if and only

if vi ≥ v̂i for i = 1, 2. Under case (a), we can deduce that
v̂1 < v1 ≤ v2 < v̂2, which implies min{v2, v̂2} ≥ max{v1, v̂1}.
Under case (b), we can deduce that either v̂1 ≤ v1 ≤ v̂2 ≤ v2
or max{v̂2, v̂1} ≤ v1 ≤ v2, and in the latter case when p ∈
(max{v̂2, v̂1}, v1) 	= ∅, it satisfies both p ≥ max{v̂2, v̂1} and
p ≤ min{v1, v2} and therefore, both (0, 0) and (1, 1) are Nash
equilibria. When

√
ᾱ1φ1 <

√
ᾱ2φ2, we deduce that v̂2 < v̂1,

and under case (c), we can deduce that v̂2 < v2 and v1 < v̂1.
Combining both, we obtain that max{v1, v̂2} < min{v2, v̂1},
and when p ∈ (

max{v1, v̂2},min{v̂1, v2}
) 	= ∅, one can verify

that none of the strategy profiles forms a Nash equilibrium.
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