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Overview

« DOE project outcomes of “Scalable/Secure Cooperative
Algorithms and Framework for Extremely-high
Penetration Solar Integration (SolarExPert)”

« A Sustainable Grid Platform (SGP) with scalable
architecture of distributed control and optimization
« Multi-Agent OpenDSS (MA-OpenDSS) platform
» Distributed Stochastic OPF and Distributed System State Estimation
 Distributed Volt/VAR Optimization and Frequency Control
 Distributed Distribution System Restoration
« Testing on 1 million-node system, C-HIL and P-HIL
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Multi-Agent OpenDSS Platform

« Dynamic grouping of both physical and communication topology;
 Distributed control and optimization based cooperative principles;
» Self-organizing according to feeder capacity and local communication options
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Hierarchical and Distributed Architecture
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Cooperative Control Architecture

Upper Layer Communication Network
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Distributed Voltage and Frequency Control

« Local communication of voltage » Decentralized droop control (when no
measurements and droop control communication)
« Communication and Cooperative  Distributed cooperative algorithm for
subgradient algorithm aggregate active power dispatch
P,;E,f

Leader i
gr—T— PR
(" Teaderi

| Distributed subgradient algorithm |
. [ Distributed cooperative algorithm |

P
local droop "\

Customer
Response




Distributed Distribution System Restoration
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Fig. The proposed DDSR framework.

The tree topology of the entire network must be
preserved which is a challenging constraint.




DDSR — A Fully Distributec

Three consecutive phases for binary variables:
Relax binary variables,
Drive binary variables towards Boolean values,
Polish by fixing binding binary variables and solve MIP
subproblems.

% he optimal restoration plan of DDSR:

DSR subproblem step: The local DSR subproblems are
solved by each SLA for all restoration time span.

!
Repeat

Consensus step: Each SLA exchanges boundary information ;

and updates consensus variables.

Lagrange multiplier update step: Each SLA updates based
on the exchanged data.
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DDSR — A Fully Distributed Solution Algorithm

 Continuous variables X : active and reactive restored loads, voltage of each node, active and
reactive power flow of distribution lines, generation of DERs, and capacitor banks output.

» Continuous consensus variable % : voltage and power flow of the neighboring nodes and

boundary lines among clusters.

 Consensus binary variables of Z and its auxiliary y : picking-up loads, switchable lines, and

spanning tree constraints.

1. Relax phase: All binary variables
are relaxed, and a distributed

Py convex problem is solved to
oo achieve a warm start point.
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3. Polish phase: The binding binary variables are fixed based on
the Boolean results (fixed reconfiguration) while the rest of the
problem is solved as MIP (load restoration step)
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1-Million Node Test System
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Integrated 1 Million-node T&D System
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Testing Performance - Volt/VAR Control

« Worst-case: 174,284 PVs among 12 feeders, 158MW total (130% penetration)
« Atotal 68MVar of inductive reactive power is generated by PV inverters
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Testing Performance — DDSR

*  This network is built from NREL test network which consists 10 feeders.
*  The network is integrated with distributed PVs with 100% penetration but the irradiance is 20%.

*  To implement the distributed distribution service restoration the network is divided into 10 clusters.
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Testing Performance — DDSR

* There is a major outage with 3 restoration steps of [15MW, 30MW, 70MW] following transmission restoration.
* One faulted line named ‘Line.l(r:pludt746-p1udt752)" occurred during restoration.
* Faulted area is being isolated by sectionalizing switches ‘S Sw1'and ‘S_Sw2’.

* Tie-switch ‘Tie_Sw1' is being closed to energize unfaulted out-of-service area while all other tie-switches

remain open to prevent any loop during operation.
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Testing Performance — DDSR

DDSR coordinates PVs with transmission capacity to retore more loads.
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Faulted area is being isolated by sectionalizing switches ‘S_Sw1'and ‘S_Sw?2’.

Tie-switch ‘Tie_Sw1' is being closed to energize unfaulted out-of-service area while all other tie-switches

remain open to prevent any loop during operation.
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OPAL-RT Testbed at
UCF

Controller-HIL and
Power-HIL at NREL
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