Modeling, Switching Modulation Optimization, and Control of Multi-Active Bridge

Converters

by

Saikat Dey

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Approved June 2025 by the Graduate Supervisory Committee:

Ayan Mallik, Chair Raja Ayyanar Mike Ranjram Zhicheng Guo

ARIZONA STATE UNIVERSITY

August 2025

ABSTRACT

Isolated multi-port converters (MPCs) realized through multi-active-bridge (MAB) topologies have recently attracted significant attention from power electronics researchers due to their applicability in renewable energy systems, microgrids, electric vehicles, solid-state transformers, energy storage, and space systems. However, widespread adoption of such MPCs is still hindered by key challenges, including increased switching losses at lighter load conditions and during non-unity gain voltage conversion, as well as cross-coupling between ports via the shared magnetic link.

This thesis presents a unified and generalized mathematical framework for modeling, circuit analysis, and loss-optimized modulation implementation for MAB-based DC-DC and DC-AC converters. The primary objective is to enhance system efficiency across a wide range of load conditions and voltage gain values by proposing an optimal phase–duty–frequency-controlled modulation strategy. The loss minimization approach consists of two key stages: (i) formulation of modulation-variable-dependent switching network loss objective functions using a proposed Generalized Harmonic Approximation (GHA) model, and (ii) application of a multivariable, multi-constrained optimization technique to minimize power loss across varying operating conditions. A universal zero-voltage switching (ZVS) criterion is also derived using a generalized port-equivalent circuit model.

The theoretical analysis and proposed modulation strategies are experimentally validated on various converter topologies within the MAB family, including DC-DC and DC-AC Dual-Active Bridge (DAB), and Triple-Active Bridge (TAB) converters. The proposed control methods significantly improve system efficiency, particularly under non-

unity gain and light-load conditions, when compared to conventional phase-shift modulation.

Expanding on this foundation, a parameter-adaptive modulation strategy is proposed for DAB converters. It employs a Physics-Informed Neural Network (PINN) to estimate circuit parameters (e.g., inductance and resistance) in real time from sensed data. This adaptive strategy enables dynamic modulation adjustment, ensuring improved softswitching and efficiency. The method lays the groundwork for future exploration involving online-learning-capable ANN frameworks.

Additionally, the thesis introduces a GHA-based decoupling network that enables independent power control of coupled TAB load ports, resulting in faster transient response using simplified PI-based controllers.

Finally, a comprehensive analytical, simulation, and experimental investigation is conducted on realizable three-winding transformer configurations for TAB converters, focusing on controllable leakage inductance and its influence on soft-switching and power transfer capability.

DEDICATION

To my parents, my sister, and my younger self — who chose to become a professor without knowing what it truly takes.

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my PhD advisor, Prof. Ayan Mallik, for his unwavering guidance and support throughout my PhD journey and beyond. His regular technical discussions and meetings, as well as his wealth of ideas, have been a constant source of motivation. He not only helped me understand the concepts behind various research tasks but also encouraged me to focus on the practical aspects of converter design, considering different design trade-offs. I am especially grateful for his invaluable advice beyond academics and for his understanding during challenging times. Your dedication, hard work and never-settle attitude has inspired me on a personal level. Thanks for all the letters written, all the guidance given, all the discussions held, all the opportunities provided to help me achieve what I wanted. I am lucky to get you as my PhD advisor.

I would also like to extend my heartfelt appreciation to my PhD committee members: Prof. Raja Ayyanar, Prof. Mike Ranjram, and Prof. Zhicheng Guo. Their constructive suggestions and feedback have significantly improved my research work. Through their courses, I gained foundational knowledge in power electronics, which was invaluable to my research. I am also grateful to them for their time and willingness to participate in my PhD defense. Thank you for your interest in my work. Special thanks to Dr. Ayyanar, Dr. Ranjram and Dr. Bertan for collaborating with PEACE team on the MHz project—an experience that truly felt like the dream collaboration I had been waiting for throughout my Ph.D., and which finally happened in my final year. It was a privilege to work with such talented minds across research groups.

To my PEACE Lab family—Shubham, Naveed, Writtik, Ashwin, Abed, Payam, Connor and Changkyu—thank you for being incredible colleagues and friends. Whether it was through collaborative work, shared challenges, or fun moments, your presence made me a better researcher and a healthier Ph.D. student. Beyond PEACE, I had many special interactions with my colleagues from other research groups at ASU, Esha, Ian, Vivek, Emannuel, Nick, Arnab, Dhaval, Balaji, Saundarya and Ankul. The discussions with them, their insights and suggestions have been instrumental in my research and personal growth. It has been a pleasure working with such talented and supportive colleagues. Special thanks to Karishma and Natalya for your guidance throughout the academic job applications. It really helped me in landing a position in my 1st year trial, especially when I was skeptical about it.

I am also deeply thankful to my project collaborators, Prof. Neil Goldsman, Dr. Akin Akturk, Prof. Shantanu Misra, Prof. Bertan Bakkaloglu for their support, guidance and knowledge sharing—both technical and non-technical—throughout various research projects in my PhD. To my mentors and professors from IIEST Shibpur (BE College), especially Prof. Mainak Sengupta and Prof. Kaushik Mukherjee, thank you for fostering my interest in power electronics from the very beginning. Your teachings and motivation laid the foundation for the path I'm on today.

I would also like to thank my colleagues at Lucid Motors—Yukun, Shan, Yuchen, and Chakridhar—for the enriching internship experience and the opportunity to work on real-world industrial projects. Even though we may not stay in touch often, your influence on my learning remains.

To the Tagore Technology team—Amitava, Manish, (Prof.) Amit, Pramit, Debashish, Amit, Shailendra, Sourodipta, Mani, Gaurab, Suvendu, Firdous, and Rajesh—thank you for the incredible experience of building GaN products together. Those formative years played a pivotal role in shaping my skills, and technical foundation as a power electronics researcher. I look back on that time with gratitude and pride.

To my Robbie T group—Deepan, Mayukh, Swapnil, and Tanya—thank you for being such an amazing and constant presence for over a decade. I'm lucky to call you friends. Sandip, my power electronics buddy since undergrad days—thanks for all the latenight technical rants and deep dives; they're still as intriguing to me. Ritayan and Joytirmoy, thank you for the much-needed midnight motivation over the years.

With much love and gratitude, I would like to thank my family: my parents, Swapan Kumar Dey and Sikha Dey, and my sister, Ankita Dey. Their constant support, encouragement, motivation, and helpful advice during tough times have been invaluable. Thanks for making me so independent and pushing me towards academics since I was a kid.

To Suddha, Madhurima, Aniruddha, Shalini, Amrita, Annie, Avik, Arnab, Shubham, Salony, Gaurab, Arun, Kinjal, ... (pardon me if I missed someone, I'm writing this very late)—thank you all for making Tempe feel like home. I could write pages about each one of you, and still fall short. Your presence was vital in keeping me going.

Finally, I wish to express my appreciation to CoolCAD Electronics, the National Aeronautics and Space Administration (NASA), US Department of Energy (DOE), US Department of Defense (DOD) for funding my research projects, which provided me with numerous opportunities to explore and address a range of research challenges.

TABLE OF CONTENTS

	Page
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
CHAPTER	
1. INTRODUCTION	1
1.1. Multi-Port Converters	2
1.2. Multi-Active Bridge Converter Family	10
1.3. MAB Research Background and Existing Challenges	14
1.4. Thesis Objective and Contributions	20
1.5. Thesis Outline	22
2. MODELING METHODOLOGIES FOR MULTI-ACTIVE-BRIDGE POWER	
CONVERTERS	26
2.1. Introduction	26
2.2. Segmentalized Time Domain Modeling of L-based MAB Converters	27
2.2.1. Time Domain Modeling of DAB	27
2.2.2. Time Domain Modeling of a TAB	33
2.2.3. Time Domain Modeling of a N-port MAB	40
2.3. All Harmonics Inclusive Frequency Domain Modeling of MAB Converter.	46
2.3.1. Frequency Domain Modeling of DAB	47
2.3.2. Frequency Domain Modeling of TAB	51
2.3.3. Generalized Frequency Domain Modeling of N-port MAB	56
2.4. RMS Current Modeling for Generalized N-port MAB Converter	58

	2.5.	Modelii	ng Soft-switching Criterion in MAB Switching Cells	62
		2.5.1.	Thevenin Equivalent Circuit Formulation	62
		2.5.2.	Solutions for Energy-based ZVS Conditions	64
		2.5.3.	Solutions for Charge-based ZVS Conditions	73
	2.6.	General	ized Modeling of MAB Considering Circuit Non-idealities	77
	2.7.	Conclus	sions	96
3.	. sv	VITCHI	NG MODULATOR OPTIMIZATION IN DAB DC-AC CONVERTE	ERS.
	•••			98
	3.1.	DC-A	AC DAB Modulation Optimization Using Time-domain Modeling	98
		3.1.1.	Introduction	98
		3.1.2.	Non-Linear Coss-based ZVS Analysis in a DC-AC DAB	100
		3.1.3.	Current Stress Optimized Soft-switching Control Law Synthesis und	er
			Fixed Frequency DAB Control	105
		3.1.4.	Proposed Variable Frequency DAB Control Law Ensuring Critical Z	ZVS
				109
		3.1.5.	Experimental Hardware Results	110
	3.2.	Frequ	ency-domain DAB Model Oriented Switching Network Loss-optimal	
		Modu	ulator Optimization in DC-AC DAB Converter	115
		3.2.1.	Loss Function Formulation	117
		3.2.2.	Optimization Constraints Formulation Based on Power Flow and So	ft-
			Switching Operation	127
	3 3	Anals	rtical Formulation of THD Model of a DC AC DAR Converter	122

	3.4.	Results of the Efficiency-optimal DC-AC DAB Modulator and its Comparis	son
		with State-of-the-art Modulators	. 136
	3.5.	Optimal Control Variable Synthesis through Objective Function Optimization	on
		and Associated Control Implementation	. 142
		3.5.1. Gradient Descent Approach	. 142
		3.5.2. Look-up Table Based Approach	. 144
	3.6.	Simulation and Experimental Results	. 149
	3.7.	Conclusions	. 157
4	. DI	ESIGN AND SOFT-SWITCHING SWITCHING MODULATOR SYNTHESI	[S
	FC	OR A HIGH-FREQUENCY DC-DC DAB CONVERTER	. 160
	4.1.	Introduction	. 160
	4.2.	Magnetizing Inductance-inclusive Modeling of a DAB in Time Domain	. 162
	4.3.	Derivation of the DAB ZVS Conditions under DPS Modulation Scheme	. 169
	4.4.	ZVS Optimized Design and DPS Modulation for the MHz DAB Converter	
		Under Study	. 173
	4.5.	Experimental Results	. 177
	4.6.	Conclusions	. 181
5	. sv	VITCHING MODULATION OPTIMIZATION AND HARDWARE	
	IM	IPLEMENTATION IN 3-PORT TAB DC-DC AND DC-AC BIDIRECTION	AL
	CO	ONVERTERS	. 182
	5.1.	Introduction	. 182
	5.2.	Switching Network Loss Optimized Modulation of a DC-DC TAB Converted	er
			. 185

	5.2.1.	Loss Function Formulation:	187
	5.2.2.	Modulation Optimization Problem Formulation:	197
	5.2.3.	Proposed Loss Optimized PWM Strategy:	199
	5.2.4.	Experimental Results and Discussions	205
5.3.	Switc	hing Modulation Optimization in a DC-DC-AC TAB Converter	213
	5.3.1.	Loss Function Formulation	216
	5.3.2.	DC-DC-AC TAB Control Optimization Problem Formulation	218
	5.3.3.	PWM Strategy Optimization for a DC-DC-AC TAB	220
5.4.	Imple	mentation of Loss Optimized Control in a TAB Converter Hardward	e 225
	5.4.1.	Look-up Table based Approach	226
	5.4.2.	Multivariable Polynomial Fitted Model Development and	
		Implementation	226
5.5.	Exper	imental Results with Proof-of-Concept Verification	237
5.6.	Concl	usions	242
6. DI	ECOUP	LED CONTROL TECHNIQUE IN TAB CONVERTER	245
6.1.	Introd	uction	245
6.2.	Deriv	ation of the Harmonic-Inclusive Average Model (HIAM) of TAB	
	Conv	erter	249
	6.2.1.	Harmonic-Inclusive Full order Large Signal Model (HIFOAM)	
		Development	249
	6.2.2.	Full Order Small Signal Average Model Development	255
	6.2.3.	Reduced Order Average Model Development	257

	6.3.	Loss Minimized Power Flow Loop Decoupling Mechanism and its Digital	
		Implementation	. 261
	6.4.	Simulation and Experimental Results	. 266
	6.5.	Conclusions	. 273
7.	MA	GNETICS DESIGN FOR TAB CONVERTER	. 275
	7.1.	Introduction	. 275
	7.2.	Triple Active Bridge Converter Transformer Requirements	. 277
	7.3.	Geometrical Configurations and Magnetic Modeling of Three-Winding Plan	ar
		Transformer Candidates	. 281
	7.4.	Finite Element Analysis (FEA) Simulations, Experimental Results and	
		Discussions	. 301
	7.5.	Conclusions	. 307
8.	PH	YSICS INFORMED NEURAL NETWORK - ESTIMATED CIRCUIT	
	PA	RAMETER ADAPTIVE MODULATION OF DAB	. 308
	8.1.	Introduction	. 308
	8.2.	Improved DAB Steady State Model Considering Parasitic Non-idealities and	1
		Deadtime Effects	. 314
	8.3.	Synthesis of Circuit Parameter Sensitive Loss Optimized DAB Modulation	. 331
	8.4.	Physics Informed Neural Network for DAB Circuit Parameter Estimation	. 339
	8.5.	Implementation of NN-in-loop Loss Optimized DAB Modulation	. 348
	8.6.	Experimental Validation and Benchmarking	. 352
	8.7.	Conclusions	. 363
9.	CO	NCLUSIONS AND FUTURE SCOPE OF WORK	. 365

9.1.	Conclusion Remarks	365
9.2.	Future Scope of Work	367
REFER	ENCES	370
APPEN	DIX	
A	SMALL SIGNAL MODELING OF TAB CONVERTER (REFER TO SECTION	
	6.2.2)	.386
В	STATEMENT REGARDING CO-AUTHORED PUBLISHED WORKS	391

LIST OF TABLES

Table Page
1.1. Review of Various State-of-the-Art Loss Optimized Multi-Port-Converters 16
2.1. Expressions of the DAB Output Power and Current Peaks under Different Operating
Modes
2.2. Switching Currents and Power Flow Analysis in a xy-DAB Cell under Different
Operating Modes
2.3. Design Specifications of the DAB Converter Under Case Study
2.4. TAB Circuit Parameters
2.5. Comparison Between GHA Predicted and Simulated i _{S1, ON}
2.6. Circuit Parameters of QAB Under Study
2.7. Comparison between GHA Model Predicted and Simulated Port-1 RMS Current and
S ₁₁ Switch Turn-On Current
2.8. Summarized ZVS Conditions for MAB
2.9. Summarized ZVS Current Requirements for Port-x in a MAB
2.10. Possible DC-DC Converter Topologies Modeled Using Generalized MAB
Modeling Methodology80
3.1. DAB Operating Modes Under Consideration
3.2. Fabricated Converter Specs. 105
3.3. Synthesized DC-AC DAB Modulator Under Constant Frequency Controlled Power
Flow Zones. 109
3.4. DC-AC DAB Modulator Under Variable Frequency Controlled Power Zones 111

3.5.	. Switching Current Informed ZVS Constraints for j^{th} Active Bridge (j =1 or 2; φ_1	=
	0)	122
3.6.	. Fabricated DC-AC DAB Converter Circuit Components.	132
3.7.	. Fabricated DC-AC DAB Converter Circuit Components.	158
4.1.	. Traditional DAB Operating Modes Under Dual-Phase Shift Modulation	167
4.2.	. DAB-P Cell Derived Calculations for a Finite L_m -Based DAB	168
4.3.	DAB-S Cell Derived Calculations for a Finite <i>Lm</i> -Based DAB	169
4.4.	. Specification of the DC-DC Converter.	173
5.1.	. Summarized Hard-Switching and Complete ZVS Conditions for TAB	193
5.2.	. Summarized Formulated Objective Functions for Various Loss Optimizations in	
	TAB.	197
5.3.	. Example TAB Circuit Parameters	200
5.4.	. Switching Current Informed ZVS Constraints for k^{th} Active Bridge ($k=1, 2, \text{ or } 3$;
	$\varphi_1 = 0$)	218
5.5.	. Example DC-DC-AC TAB Converter Circuit Components	221
5.6.	. Trade-Off Analysis Between Optimal Duty Polynomial Models with Different	
	Orders.	235
6.1.	. TAB Circuit Parameters.	255
7.1.	. Design Specifications for the TAB Converter Under Study	279
7.2.	AC Winding Loss for Different Current Harmonics.	292
7.3.	. Comparison Between Two Different TAB Transformer Designs Under Study	303
8.1.	. DAB Power Flow Analysis Under Diffèrent Operating Modes	317

8.2. Definition of Variables used in (8.22) and (8.23)	326
8.3. Architecture of the Final Data-Driven NN Model	343
8.4. Hyperparameters of the Data-Driven NN Model	344
8.5. Design Specification of the Fabricated DAB Converter	354
8.6. Design Specification of the Fabricated DAB Converter	362

LIST OF FIGURES

Figu	Page
1.1.	Two Configurations of DC/DC Power Conversion in an Integrated RES-ESS: (a)
	Conventional Architecture Based on Four Individual Two-Port DC/DC Converters.
	(b) A Multi-Port DC/DC [3]
1.2.	Categorization of MPCs Based on Isolation and Architecture
1.3.	Boost Cell Derived MPC [4]
1.4.	Multi-Input Converter with Sources Paralleled at the Input. (a) Multi-Input Buck-
	Boost [11]. (b) Multi-Input SEPIC [12]
1.5.	Single-Stage Three-Phase Reconfigurable Converter [22]
1.6.	"Two-Port-Isolated" Topology. (a) Primary Freewheel [25]. (b) Secondary
	Freewheel [26]
1.7.	Isolated Triple-Active-Bridge Converter Full Bridge [49]–[52] Without the
	Resonant Tank. 9
1.8.	Isolated Triple-Active-Bridge Converter Half Bridge [47], [48]
1.9.	Dual-Transformer-Based Triple-Port-Active-Bridge MPC [56], [57]
1.10.	Generalized Non-Resonant N-Port MAB Converter
1.11.	C3L3-Based Resonant TAB Converter [104]
2.1.	DAB DC-DC Converter Topology and Phase Shifts of the Individual Half-Bridge
	Control Signals
2.2.	Input and Output Side Full-Bridge Voltages in Relation with the Gate Signal Phase
	Displacements of the Individual Half-Bridges. [T _s : Switching Period]
2.3.	Equivalent Circuit of the DAB Converter

2.4.	Circuit Waveforms of a DAB Under Different Operating Modes For $\phi > 0$
2.5.	TAB Converter Topology and Phase Shifts of the Individual Half-Bridge Gating
	Signals
2.6.	Full-Bridge Output Voltages in Relation with the Gate Signal Phase Displacements
	of the Individual Half-Bridges. 34
2.7.	Equivalent Circuits of the TAB Converter: (a) Y- Equivalent & (b) Δ-Equivalent
	Circuit
2.8.	DAB-Based Equivalent Circuit Representation of the Δ-TAB Circuit
2.9.	A Generic N-Port MAB Converter Topology and Phase Shifts of the Respective
	Half-Bridge Gating Signals
2.10.	MAB Full-Bridge Output Voltages in relation with the Gate Signal Phase
	Displacements of the Individual Half-Bridges
2.11.	(a) Y- Equivalent; (b) Δ-Equivalent Circuit of N-Port MAB
2.12.	Derivation of the Inter-Port Δ-Model MAB Inductance Between Port-x and y: (a)
	MAB Y-Model; (b) Thevenin-Equivalent Impedance and Voltage at Star-Point with
	Rest Port Voltages Shorted; (c) Obtained Thevenin-Equivalent Circuit with respect
	to Port-x. 44
2.13.	GHA Based Modeling of the Quasi-Square Wave Shaped Bridge Voltages,
	Approximated up to 'k'th Order. 48
2.14.	Approximated Inductor Current Shape Considering Different Orders of Harmonics
	Using GHA Model For $(\delta_1, \delta_2, \varphi) = (0.9065, 0.729, 0.176)$ Under the Test
	Conditions Defined as: $V_1 = 160V$, $V'_2 = 90V$, and $P_0 = 50W$

2.15.	GHA Based Modeling of the TAB Port Voltages, Approximated up to 'k'th Order.
2.16.	Approximated i_1 Current Shape Considering Different Orders of Harmonics Using
	GHA Model for $(\delta_1, \delta_2, \delta_3, \varphi_2, \varphi_3, M_2, M_3) = (0.12, 0.23, 0.16, 0.56, 0.32, 0.8, 1).$ 54
2.17.	GHA Model Based Sinusoidal Approximation of Quasi-Square Shaped any AB
	Voltage, v_i'
2.18.	Approximated i_1 Current Shape of a QAB Converter Considering Different Orders
	of Harmonics Using GHA Model, for $(\delta_1, \delta_2, \delta_3, \varphi_2, \varphi_3) = (0.6, 0, 0, 0.8, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3$
	0.4)
2.19.	(a) Thevenin Equivalent Circuit Referred to Port-X of the TAB Converter with
	Equivalent Line Inductance $L_{th,x}$ and Equivalent Port Voltage v_x . (b) Steps to
	Derive Thevenin-Equivalent Circuit Elements From MAB Y-Model
2.20.	Equivalent Circuits For ZVS Criteria Study For Different Switching Transient
	Events: Case 1(a) to Case 2(D)
2.21.	Different Switching Commutation Scenarios in a TAB H-Bridge: (a) S_{x1} Turns On
	Alone; (b) S_{x2} Turns On Alone; and (C) S_{x1} and S_{x4} Turn ON Simultaneously 74
2.22.	Actual and Approximated ZVS Transient Waveforms Of the TAB Port Voltage and
	Current When (a) $v_{TH,x} < 0$ and (b) $V_x > v_{TH}, x_t > 0$
2.23.	Variation of (a) C_{oss} and (b) its Stored Charge with Varying v_{DS} for EPC 2215
	GaN MOSFET
2.24.	Circuit Schematic of N-Port MAB

2.25.	MAB Converter Models: (a) Y-Model; (b) Equivalent Circuit Derivation
	Considering Power Flow Between Port-i and j
2.26.	MAB Equivalent Network Incorporating Inductive and Capacitive Parastics Arising
	From the Isolation Transformer. 86
2.27.	Evolution of the Parasitic Inclusive Passive Element Network of the 2-Port MAB
	Converter: (a) Complete Equivalent Circuit Network Including R-L-C Parasitics;
	(b) Star-Delta Converted Version of the Parent Network in (a); (c) Equivalent 2-
	Port Generalized Network; (d) Simplified T-Network Equivalent of 2-Port MAB
	Circuit. 87
2.28.	Full-Bridge Based Two Port MAB Converter
2.29.	Primary Bridge Equivalent Circuit During Deadtime Interval Between S_3 and S_4
	Turn-Off and Turn-On of S_1 and S_2
2.30.	Non-Ideal Switching Transition Waveform Construction and Definition of
	$v_{p,dead,S1}$
2.31.	Constructed DAB Tank Current and Bridge Voltage Waveshapes Including Effects
	of Transformer Parasitics and Deadtime in Comparison to Experimental
	Waveforms96
3.1.	DAB Based DC-AC Microinverter Schematic
3.2.	ZVS Attainable Operating Modes of DAB
3.3.	Equivalent Circuit of DAB
3.4.	Variation of C_{oss} and its Stored Charge with Varying v_{DS} for GaN MOSFET Half-
	Bridge

3.5.	Critical ZVS Currents (in p.u.) for HF Switching Legs in a DC-AC DAB over Half
	AC Line Cycle under M-1, M-4, and M-5 Operating Modes
3.6.	DAB Switching Waveforms in ZVS Critical Conditions: (a) Buck M1; (b)
	Buck M5
3.7.	Critical Power Flow Boundaries for Different Operating Modes of DC-AC DAB at
	(a) f_{sw} =100kHz and (b) f_{sw} =200kHz
3.8.	Proposed Optimal DC-AC DAB Control Variables Under Proposed Strategy for
	Two Different Operating Loads $p(t)$
3.9.	Fabricated Experimental Hardware for the 400W DC-AC Converter 113
3.10.	Experimental Waveforms of the DC-AC DAB Converter (40Vdc to 120Vac at
	175W) under the Proposed Partially Variable Frequency TPS DAB Modulation.
	Zoomed-in waveforms are taken at $\Phi = (i) 10^{\circ}$, $(ii) 38^{\circ}$, and $(iii) 90^{\circ}$
3.11.	. Efficiency Comparison between the Proposed Variable Frequency TPS Modulation
	and Fixed Frequency TPS Modulation in a DC-AC DAB Converter 114
3.12.	Circuit Schematic of DC-AC DAB Converter Consisting of DC-DC DAB Stage
	Followed by an Line Frequency Unfolder Stage
3.13.	Primary and Secondary Side GaN E-HEMT's C_{oss} Modeling as a Function of the
	<i>V_{DS}</i> Voltage
3.14.	Bridge Equivalent DAB Circuit Models During Switching Transients
3.15.	Flowchart Depicting the Switching Loss Computation in a DAB DC-DC Stage. 124
3.16.	Detailed Flowchart for Determining the Proposed Modulation Scheme for
	Optimally Designed DC-AC DAB Converter Using Multi-Variable Non-Linear
	Constrained Optimization Algorithm

3.17.	Calculated $i_{1,line\ RMS}$ for a Widely Varying (N, L_2) Combination for (a) $40V_{dc}$ to
	$120V_{ac}$ and (b) $40V_{dc}$ to $230V_{ac}$ Conversion at $500W$ AC Load
3.18.	Equivalent Circuit Representation of the DC-AC Microinverter Output Stage 133
3.19.	Steady State Zoomed-in Switching Waveform of the DC-AC DAB Converter
	Comparing a Variable Frequency Controlled TPS and Constant Frequency
	Controlled TPS at $\Phi=10^\circ$, 45° and 90° While Supporting a 500W AC Load at
	120V _{RMS} with a 40Vdc Input Source. 137
3.20.	DAB Based AC-DC Converter Operation at 40Vdc to 120Vac Power Conversion
	Mode at 500W Comparing Variable Frequency Modulator and 100kHz TPS
	Modulator Over Half AC Line Period: (a) δ_1 ; (b) δ_2 ; (c) φ ; (d) f_{sw} ; (e) $i_{1,RMS}$; (f)
	S_{11}/S_{12} Turn Off Current; (g) S_{13}/S_{14} Turn Off Current; (h) S_{21}/S_{22} Turn Off
	Current; (i) S_{23}/S_{24} Turn Off Current; (j) Number of HF DAB Legs Undergoing
	ZVS; (k) Conduction Loss; (l) Switching Loss
3.21.	FFT Analysis of the DC-AC Converter Output Voltage $v_{ac}(t)$ under (i) TPS DAB
	Modulation with $f_{sw} = 100 \text{kHz}$ [(a) Simulation Result; (b) Analytical Model] and
	(ii) Variable Frequency Optimal TPS Modulation [(c) Simulation Result; (d)
	Analytical Model]
3.22.	Implemented Algorithm to Achieve the Optimal Control Variables
3.23.	Top Level Diagram Showcasing Proposed Control Implementation for the DC-AC
	DAB Converter. [$V_{dc,Sensed}$: DC voltage sensed on the input side, $I_{dc,Sensed}$: DC
	current sensed on the input side, $V_{ac,Ref}$: AC output voltage reference; $V_{o1,Sensed}$:
	Intermediate AC link voltage sensed]

3.24.	Simulation Waveforms of the DC-AC DAB (40Vdc to 120Vac at 500W) Under (a)
	Proposed Variable Frequency Controlled Optimal TPS Modulation and (b) TPS
	Modulation with $f_{sw} = 100 \text{kHz}$
3.25.	Simulation Waveforms of the DC-AC DAB (40Vdc to 150Vac/60Hz at 500W)
	Under (a) TPS Modulation with $f_{sw} = 100 \text{kHz}$ and (b) Proposed Variable
	Frequency Controlled Optimal TPS Modulation. 151
3.26.	Fabricated Experimental Hardware for the 500W DC-AC Converter 152
3.27.	Experimental Waveforms of the DC-AC DAB Converter (40Vdc to 120Vac at
	500W) Under Proposed Variable Frequency Controlled Optimal TPS Modulation.
	Zoomed-in waveforms are taken at $\Phi = (i) 10^{\circ}$, $(ii) 45^{\circ}$, and $(iii) 90^{\circ}$
3.28.	Experimental Waveforms of the DC-AC DAB Converter (40Vdc to 120Vac at
	500W) Under a TPS DAB Modulation with $f_{sw} = 100 \text{kHz}$. Zoomed-in waveforms
	are taken at $\Phi = (i) 10^{\circ}$, $(ii) 45^{\circ}$, and $(iii) 90^{\circ}$.
3.29.	Estimated Distribution of Losses Among Major Circuit Components in the DC-AC
	Converter with (a) Proposed Variable Frequency TPS, and (b) 100kHz TPS Control
	During 40Vdc to 120Vac at 500W Operation
3.30.	Experimentally Measured and Analytically Calculated DC-AC DAB Efficiency
	Variation with Load Change
4.1.	Schematic of the Dual-Active-Bridge (DAB) Converter
4.2.	Primary Referred DAB Circuit. 163
4.3.	Finite L_m DAB Circuit Represented Using Two-DAB Cell Model. (a) DAB-P is
	used to reconstruct i_p with a modified DAB voltage gain of $m_p = b'm/a$. (b)

	DAB-S is used to reconstruct i_s with a modified voltage gain of $m_s = bm/a'$ and
	$m = \frac{V_{out}}{V_{in}}.$
4.4.	Circuit Waveforms of a DAB for Different Operating Modes with DPS Modulation.
	The waveforms are drawn for a DAB with series inductance L connected in
	between two HF ac bridge voltages v_1 and v_2 . The DC link voltages across the H-
	bridges are V_1 and V_2 , respectively
4.5.	Equivalent Circuit of Infinite L_m DAB
4.6.	Mathematical Model Computed Variations in Winding Current Rmss $i_{p,RMS}$, $i_{s,RMS}$,
	and Device Turn-On Currents $i_{p,1}$, $i_{s,1}$ and $i_{s,2}$ at 1.5kW Load Power with
	Changing V_{in} and L_p . The Data are Plotted for the Proposed S-DPS Modulation and
	Fixed $L_m = 7.1 \mu H$ and $L_s = 0.1715 \mu H$
4.7.	Mathematical Model Computed Variations in Winding Current RMSs $i_{p,RMS}$, $i_{s,RMS}$,
	and Device Turn-On Currents $i_{p,1}$, $i_{s,1}$ and $i_{s,2}$ at 50W Load Power with Changing
	V_{in} and L_p . The Data are Plotted for the Proposed S-DPS Modulation and Fixed
	$L_m = 7.1 \mu H \text{ and } L_s = 0.1715 \ \mu H.$ 177
4.8.	Experimental Waveforms of the DC-DC DAB Converter for 270Vdc to 48Vdc
	Voltage Conversion at Different Loading Conditions: (a) 50W, (b) 500W, (C) 1kW
	and (D) 1.5kW
4.9.	(a) Measured Efficiency of the DAB Converter Under Varied Load and Input
	Voltages. (b) Analytically Estimated Component Level Loss Distribution for the
	DAB During 270V to 48V at 1.5kW Power Conversion