

Solar Panel Monitor System

2nd Annual UCF - Progress Energy Symposium in Renewable & Sustainable Energy April 14,2010

Department of Electrical Engineering and Computer Science

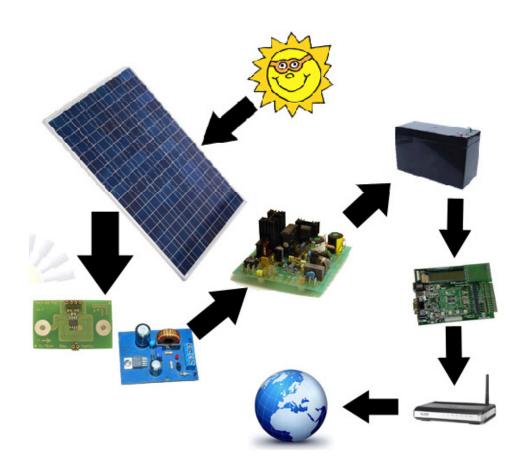
Members

- Benjamin Brindle EE
- Devin McLean CpE
- Robert Parrish EE

Purpose

 Provide a low cost means to monitor solar panels wirelessly through the World Wide Web that will cut cost in maintenance and

installation



Project Goals

- Monitor solar panels and transmit wirelessly up to a distance of ¼ mile
- Feed information to the Internet
- Be powered by the solar panels (1 AH)
- Be able to sustain power through nighttime and weather (12 hours of battery backup)
- Cut costs in maintenance of solar panels due to guesswork (~\$2,000)

Project Outline

Cost

Item	Cost
Hall Effect Current Sensor	\$5.28
Wireless Transceiver	\$29.40
PIC24 Microcontroller	\$6.78
Battery Charge Controller	\$14.21
Buck Boost Power Converter	\$19.07
Battery	\$50
Base Station	\$40

Total Cost: \$164.74

Return of Investment

- With remote and wireless monitoring, solar panel problems can be prevented before costly maintenance
- Maintenance costs about \$2,000 per residential installment
- \circ ROI = (\$2,000-\$164.74)/\$164.74 = 11.14
- o Therefore, ROI = 1114% return

The End

