

Department of Computer & Electrical Engineering

Orlando, FL 32811

(Gesture Recognition Interface Device)

Pamela Garcia
Evianis Cruz

Martin Rodriguez
Landon Splitter

 I

Table of Contents

1.0 Executive Summary 1

2.0 Project Description 1

2.1. Motivation and Goals 1
2.2. Objectives 2
2.3. Project Requirements and Specifications 3

3.0 Project Research 3
3.1. Image Processing 3

3.1.1. Overview 3
3.1.2. Object Tracking 3
3.1.3. Image Processing System 4
3.1.4. Image Acquisition 5

3.1.4.1. Frame Generation 5
3.1.4.2 Image Recognition Algorithm 5

3.1.5. Object Tracking Algorithm 7
3.1.6. Wii IR Camera System 8

3.2. LEDs 9
3.2.1. Wavelength 9
3.2.2. Viewing Angle 10

3.3. Camera 11
3.3.1. CMOS vs. CCD 11
3.3.2. Resolution 12
3.3.3. Frame Rate 12
3.3.4. Spectral response 13
3.3.5. Visible Light Filter 14

3.4. FPGA vs. DSP 16
3.4.1. Overview 16
3.4.2. Performance 16
3.4.3. Cost 17
3.4.4. Development Software 17
3.4.5. Power Consumption 18
3.4.6. Form Factor and Size 18
3.4.7. Conclusion 18

3.5. FPGA Development Software 19
3.5.1. HDL Overview 19
3.5.2. VHDL 19
3.5.3. Verilog 20
3.5.4. HDL code generators 20

3.5.4.1. Simulink: HDL coder and HDL Verifier 20
3.5.4.2. Labview FPGA Module 22

3.6. FPGA Chip 23
3.6.1. Overview 23
3.6.2. Architecture of a Chip 24
3.6.3. Xilinx Chip 27
3.6.4. Altera Chip 29
3.6.5. Conclusion 30

3.7. FPGA Power Supply 30
3.7.1. Overview 30

 II

3.7.2. Otput Voltage Requirements 30
3.8. Microcontrollers 32

3.8.1. Overview 32
3.8.2. Limitations 32
3.8.3. Advantages 33
3.8.4. The MSP430G2553 35

3.8.4.1. Development Software 37
3.8.4.2. Device Features 37

3.8.5. Arduino Uno 37
3.9. Power Supply 37

3.9.1. Overview 37
3.9.2. Power Options 39
3.9.3. Linear regulator 42
3.9.4. Recharge Circuitry 43
3.9.5. Battery Charger 45
3.9.6. Buck-Boost DC/DC Converter 45
3.9.7. Charge Pump DC/DC Converter 46

3.10. Bluetooth Module 46
3.10.1. Overview 46
3.10.2. Bluetooth Modules 47
3.10.3. RS232TTL Transceiver Module 47

3.10.3.1. Board Schematics 48
3.11. PCB 49

3.11.1. Express PCB 50
3.11.2. PCB4Less 50
3.11.3. PCB Express 50
3.11.4. Ultimate PCB 51
3.11.5. Imagineering Inc. 51
3.11.6. 4PCB.com 51

3.12. Host Computer 52
3.12.1. Drivers 52
3.12.2. Integration 52

3.13. Gesture Recognition Data Acquisition 53
3.13.1. Overview 53
3.13.2. Accelerometers 54

3.13.2.1. MMA8452Q Accelerometer 56
3.13.3. Gyroscopes 57

3.13.3.1. ITG-3200 Digital Gyroscope 58
3.13.3.2. MPU 6050 60

3.14. Communication Protocols 61
3.14.1. The UART protocol 61
3.14.2. The I²C Protocol 63

3.15. Gesture Recognition Algorithm 65
3.15.1. Dynamic Time Warping 66
3.15.2. The Greedy Algorithm 68
3.15.3. DTW Optimization 69
3.15.4. Step Function (Slope Constraints) 69
3.15.5. Weighting 70
3.15.6. Global Path Constraints 70

4.0 Project Hardware and Software Design Details 71

 III

4.1. Camera 71
4.1.1. Extracting the camera module 71

4.2. Microcontroller 72
4.2.1. Program Overview 72
4.2.2. Power Supply Design 73

4.2.2.1. LED Indicator 75
4.3. Microprocessor 75

4.3.1. Design Tools 75
4.3.1.1. Development Board 75
4.3.1.2. Development Language 76

4.3.2. MSP 430 Design 76
4.3.2.1. Operation Procedure 76

4.3.2.2. Camera PCB 76

4.3.3. Stellaris Design 78
4.3.3.1.1. Operation Procedure 78
4.3.3.1.2. Glove PCB 78

4.4. Image Processing Algorithms 80
4.5. Aesthetics 80

4.5.1. Glove and Mount 80
4.6. Software 82

4.6.1. Overview 82
4.6.2. Functional Requirements 83
4.6.3. Non- Functional Requirements 85

4.7. Device Driver 86
4.7.1. Overview 86

4.8. Gesture Library 89
4.8.1. Overview 89

5.0 Design Summary of Hardware and Software 95

6.0 Project Prototype Testing 95

6.1. Hardware Test Environment 95
6.1.1. Temperature 95
6.1.2. ESD Safety 96
6.1.3. Lighting 96

6.2. Hardware Specific Testing 96
6.2.1. Camera 96
6.2.2. LEDs 96
6.2.3. Visible Light Filter 97
6.2.4. Microcontroller 98
6.2.5. Power Circuit 99

6.2.5.1. Battery Voltage 99
6.2.5.2. Temperature 99

6.2.6. Glove and Mount 100
6.3. Software Testing Environment 101
6.4. Software Testing 102

6.4.1. Image Recognition 108

7.0 Administrative Content 109
7.1. Budget and Finance 109

 IV

7.2. Milestone Chart 111
7.3. Work Distribution 113

8.0 Product Operation 114
8.1. Prerequisites 114
8.2. Installing a Terminal Program 114
8.3. Connecting to the Glove/Camera 115
8.4. Running the Driver Program 118
8.5. Using the Gesture Library 119
8.6. Charging the Battery 120

Appendices 121

Appendix A – Permissions 121
Appendix B - Works Cited 125
Appendix C - Table of Tables 128
Appendix D- Table of Figures 128

 1

1.0 Executive Summary
In the past few decades’ technology has made some great improvements in the
use and operation of personal and commercial computing devices. In fact the
growth in the realm of technology has been better than any other field. With
these improvements much has changed in what and how much people are able
to do on a personal PC. The only thing that has remained relatively the same
over all these changes is the control device for these personal machines. For the
most part the mouse has not changed too much from the way it has been in the
past. It has improved in the fact that it is more sleek or easier to use, faster in the
response or better fitting so the user does not hurt them with extended use.
Although these improvements are great it still remains that, if you’ve seen one
mouse, you’ve pretty much seen them all. Well GRID is here to change that.

GRID is a Gesture Recognition Interface Device. GRID seeks to take the world of
control devices to the next step using image tracking and gesture recognition to
interface with the host computer. The device has been embedded within a glove
that fits over the users hands and uses a camera module to track near-IR LEDs
on the glove. It also has other instruments like an accelerometer and gyroscope
which has been used to determine if the user has made a specific gesture, if so
then it will send the commands via Bluetooth to the host computer where the
command will be translated into action. Other features, which have been added,
are a removable PCB design that will allow the user to use either hand as the
main control device. This makes GRID usable for both right hand and left hand
users.

The original desire of GRID was to design a well-fitted glove and light for the user
so that there would be no issues with fatigue while using the device, which was
achieved. It will function and carry out all the operations that a typical mouse
would with the added features of a gesture design. What that means is there will
be special “gestures” the user can do in multimedia programs to control the
features of that program, as well as a few other special features for application
specific actions.

GRID is the next step forward in consumer control devices, with its sleek design
and universal user abilities as well as the application specific actions it will have
the ability to run. As technology progresses so should the control devices.

2.0 Project Description
2.1. Motivation and Goals
The motivation behind GRID was to create an intuitive input system that would
be easy and fun to use for computer applications that are not particularly
keystroke-intensive, such as surfing the web and playing certain video games.
Few commercial products, hobby projects, and past courses in particular inspired
the group members. In particular, the group was inspired by Iron Man hand
repusor gadget. In the Iron Man movie, Tony Stark lifts his arm, palm facing

 2

toward his target. This replusor device releases a powerful blast of energy,
blowing his opponents off their feet. The motivation of the group is not to blow
opponents off their feet but find an easy, intuitive, and enjoyable way to using the
computer. The project is not something that was worked on for a period of two
semesters and then forget about it but we hope this project inspire better design
and eventually real-world use.

After looking into the idea of implementing a wireless-wearable mouse the team
learned that two students in MIT have work on a design very similar to the idea in
mind. Glove Mouse from Tony Hyun Kim and Nevada Sanchez has designed
wireless gloves. Their project consists of two sport gloves an LED on the back of
the index finger, picked up by a webcam to act like a cursor, along with bottoms
under the index and middle fingers activated by the thumb. The group decided to
expand on this idea by adding a gesture library.

Another reason the group decided to implement this project was because the
different image processing techniques that would need to be researched and
implemented in which the group wanted to learn to master by the end of Senior
Design 2. The team has taken many classes throughout their pursuing degrees
in Electrical and Computer Engineering in which theories such as infrared,
wireless technology, and programming has been taught. In which the group
wishes to expand their knowledge in such theories. The group members will have
a chance to learn from different aspects from this project. As a team it is
expected to work collaboratively to meet the project requirements and achieve
measurable and significant results.

2.2. Objectives
The main goal of GRID is to create a wireless gesture input system that enables
a user to use a computer by performing intuitive hand and finger motions in the
air. While wearing a glove controller on the right hand or left hand, the user can
move the cursor by forming a pointing gesture and click by pressing onto the
push buttons with thumb. Wearing the glove device on the users desired hand
allows the user to perform gestures that will be interpreted for zooming in,
zooming out, and refresh through a combination of tilting the hand and touching
different portions of the fingers with the thumb and index fingers. The controllers
communicate to the computer wirelessly.

The glove controllers that rely on various finger and thumb touch actions. We
decided to improve upon this concept by incorporating accelerometers to detect
the tilt of the hand as well, thus permitting wrist movements to control the
computer with a combination of intuitive gesture actions.

The project’s objectives to satisfy the goals should follow the following guidelines:

• High efficiency and low cost
• User Friendly
• Comfortable and lightweight glove

 3

2.3. Project Requirement and Specifications
To improve the user wireless, wearable mouse experience the quality of the
gloves, operation range, and battery lifetime was considered. As explained
earlier the glove will have a mounted near-IR LED in the index finger when
picked up by the camera module to act as cursor or gesture recognition its
accuracy is of 16-pixel clutter and optimum operation range up to 15 ft. from the
computer, to allow the user mobility while still operating the computer. The real
time image processing will be done using an IR camera interfaced with the
microcontroller via Bluetooth controlling a servo in which response time/gesture
recognition should be less than 1 second. The size of the circuitry was
considered with this consideration the weight of the gloves are less than 3 lbs.
each glove. The battery run time on the slide on circuitry is necessary efficiently
to last 8 hours, to support constant user use during the hours of operation of the
gloves while requiring no more than 2 hours of charging time. Below is summary
for the project requirements and specifications:

• Accuracy: 16 pixel cluster
• Optimum Operation Range: up to 15 ft.
• Weight: Less than 3 pounds each glove
• Battery Lifetime: 8 hours of continuous use
• Recharge Time: Less than 2 hours
• Response time/gesture recognition – Less than 1 second

During the implementation of the GRID design we may have choosen to revise
the project requirements and specifications, but overall this project requirements
should remain true.

3.0 Project Research
3.1. Image Processing
3.1.1. Overview
Image processing spans from face detection on your digital camera to
manufacturing robots; which make use of computer vision technologies. In this
project it was considered an Image Processing algorithms for the purpose of
object tracking and recognition to track the movement of the user’s hands, which
will allow user interaction. This will be implemented using an FPGA.

3.1.2. Object Tracking
The purpose of video tracking is to locate a moving object in time and space
using a camera. An algorithm analyzes the video frames and outputs the
movement of targets between the frames. Video tracking systems consists of
two major components:

 4

• Target representation and localization algorithm- this process is totally
dependent on the algorithm.

• Filtering and Data Association algorithm- this process involves prior
information about the object and scene and it deals with the objects
dynamics.

The function of the tracking algorithm is to estimate the motion parameters that
are achieved by analyzing individual frames. These parameters identify several
factors such as location, speed of target, direction changes, time in motion, and
information about shape and size of target. The information in this section was
gathered from [1].

The video-tracking algorithm is responsible for analyzing the video data and
producing x and y coordinates for each LED. The algorithm works by filtering the
video for pixels with the appropriate shade (red) and light. The x and y position
of the pixels that are passed are then averaged to find their center of mass. The
output is then smoothed to suppress the effect of noise in the video. Finally,
these coordinates are transformed to fit the screen. The video will take up 720 x
480 display. The details for image processing system will be explained in greater
details in this paper. This system is broken down into two sections: Image
Acquisition Algorithm and Object Tracking Algorithm.

3.1.3. Image Processing System
To begin, the frames are acquired individually from the camera and fed into the
FPGA. Then, the individual frames will undertake a process of segmentation,
thresholding and filtering. Once the frames are subjected to this process
following this, the object will be tracked by making a comparison between the
background frames and the new processed updated frame containing the new
location of the target. This process can be taught as comparing two frames, the
current frame to our newly processed frame. As a result, tracking a moving
object using an FPGA implementation was found to be appropriate for the
purpose of object tracking. Figure 1 shown below shows the block diagram of
the FPGA pre-processing.

 5

Figure 1: Block diagram of FPGA pre-processing

3.1.4. Image Acquisition
The video streaming is captured using a webcam, which produces stream of
RGB pixels. The Philips webcam will be mounted on a stand with a fixed
background that contains the object to be track for the purposes of this project
the gloves will contain NIR LEDs in the thumb and index fingers on both hands,
which is the object to be tracked. The webcam will continuously stream video
through the FPGA. One important parameter to consider is the frame rate vs.
spatial resolution of the camera. For the purposes of this project it only requires
low resolution since the camera will acquire frames at high rate. The size of the
video frame will be set to 640x480 pixels that is a common format used by non-
megapixel network cameras.
At the output of the FPGA the video obtained will be read in the computer using
Matlab. This software will process the video and convert it into image frames at
a rate of 10 frames per second.

3.1.4.1. Frame Generation
At the output of the FPGA the video is fed in the Matlab program. The program
reads the file and converts it to frames. The frames are produced at the rate of
10 frames per second. Considering a 10 second video when converted to
frames it will be a total of 100 frames produced in RGB format. These frames are
then stored as individual files 11 files that is a total of 100 files. The files are then
arranged in the order of their occurrence in the video. The first frame is selected
as the Base – Background Frame. The remaining bitmap files are used for the
process of Object Recognition and Tracking.

3.1.4.2. Image Recognition Algorithm
This algorithm incorporates various parts that are used for object recognition
such as, Grayscale Conversion, Delta Frame Generation, Thresholding, Noise
Filtering and Image Enhancement. Figure 2 shown below shows the Image
Recognition Algorithm Flow that will be explained in greater detail in this section.

 6

 	

Figure 2: Image Recognition Algorithm Flow

• Grayscale Conversion:

At the output of the FPGA passes the data through Matlab, which will convert the
video into frames. Once these frames have been generated and the background
and object of interest has been selected, for our purposes the NIR LEDs, these
RGB format frames will be converted to gray scale. Then, a pixel value will be
obtained of these RGB to gray scale format frames through a weighted sum. If
an object is purely red then it will have a low value for the weighted sum
therefore will appear dark in the gray scale by subtracting the gray scale image
from the red component of the original, then the object can be extracted. These
RGB frames have standard pixels values of 640x480 pixels. All objects fewer
than 300 pixels will be removed and this will allow us to separate the infrared
objects from the background. The information in this section was gathered from
[1].

• Delta Frame Generation:
After, the gray scale conversion has been accomplished then, the gray scale
image from the original RGB image will be subtracted. This resultant frame is
called the Delta Frame. This technique of image subtraction removes the
background and brings the object of interest (NIR LEDs) into attention, giving
information about its shape and size. Another advantage of using this technique
is that it reduces the number of pixels that the system will have to process. The
information in this section was gathered from [1].

• Thresholding:
A key component to vision applications is to be able to separate out the regions
of the image which corresponds to the object of interest, from the regions that
corresponds to the background. Thresholding provides a convenient way to
perform this segmentation provided different colors or intensities in the
foreground and background regions of the image.

The input to the thresholding operation will be the delta frame gray scale image.
The output is a binary image representing the segmentation between the
foreground and background regions of the image. The foreground, which
corresponds to the object pixel, is given a value of “1”. The background, which
corresponds to the black pixel, is given a value of “0”. Then, a comparison will

RGB	

Image	

Gray	

Scale	

Conversi
on	

Delta	

Frame	

Genera8

on	

Thresholdi
ng	

Noise	

Filtering	
 and	

Image	

Enhanceme

nt.	
 	
 	

Object	

Iden8fica8

on	

Outp
ut	

 7

be made between the pixel intensity to the threshold value if the pixel intensity is
higher than the threshold value, the pixel is set to white at the output. If the pixel
intensity is less than the threshold value, the pixel is set to black at the output.
The information in this section was gathered from [1].

• Noise Filtering

The medium filter will be used to reduce the noise in an image. There are two
types of filter to consider when preserving the details of the image: medium filter
and mean filter. For the purposes of this project a medium filter will be used
because is useful in preserving the details in the image. The medium filter takes
into consideration each pixel value in the image it also looks at the neighboring
pixel values. Once, the pixel value and neighboring pixel values have been
determine it replaces the pixel value with the medium of the neighboring pixel
values. In summary, the medium filter allows high spatial frequency details to
pass and at the same time is very efficient at removing noise on images. The
information in this section was gathered from [1].

To conclude, this image recognition algorithm helps detect the object and gives
us information about its shape and size. Then, this information will be used about
the object of interest to then track the object. The object-tracking algorithm is
going to be considered in section 3.1.5.

3.1.5. Object Tracking Algorithm
This algorithm incorporates various parts that are used for object tracking such
as, frame rate, determining object position, and relative tracking.

• Frame Rate:
Using the image recognition algorithm, which provides information about the
object shape and size, then it will be tracked by selecting the frames acquired
from the video. A video stream will be sent via Matlab at the rate of 1 frame per
second. This means the video will continue to be streaming until 100 frames are
produced, which are equivalent to 10 seconds of video. The rate that has been
chosen completely depends on gathering the complete motion of the object. A
frame rate of 1 frame per second will be considered for the purposes of this
project. A frame rate of 4 frames per second to might also be considered to
reduce complications.

• Finding Centroid of Object:
As to finding the center of gravity, which is, used for the purposes of tracking the
target, as it is a geometric property of any object, this is used in many
applications. The center of gravity is taking the average location of the weight of
an object. Using this method can help describe the motion of the object through
space in terms of the translation of the point of the object from one place to
another.

Generally speaking, trying to find the center of mass for the purposes of this

 8

project the gloves can be a bit challenging because the mass may not be
uniformly distributed throughout the object. To simplify this problem it is assume
that the object is composed of uniform material. The image will undertake the
process of the image-processing algorithm explained earlier to acquire a noise
free enhanced image. An operator then scans the entire length of the image
frame for the first white pixel. This is a clear indication of the 2D position of the
object within that time frame. This is iterative process and it repeated over all the
frames. The information in this section was gathered from [1].

• Relative Tracking:
Using the update location of target in which it was considered the ideal frame
rate (1 frame per second) explained earlier and a fixed background, then the
frame will be subjected to a procedure for object recognition. This includes a
noise free enhance image which will only contain the object. This tracking
procedure will analyze each frame in search for the first white pixel, which
represents the object. This point is then plotted on a new image as the first
position of the object. Successive frames are gathered, subtracted from the
background, filtered, enhanced and then the points are computed. This process
will continue over and over in which the updated locations of the pixel points are
collected to provide the approximate path taken by the object. This repetitive
procedure that acquires the frames and plots the individual points in a new image
is known as, object path. The information in this section was gathered from [1].

In conclusion, the object-tracking algorithm plots the objects path. This algorithm
is very important to tracking the gloves position onto the screen.

3.1.6. Wii IR Camera System
Initially, the group proposed using an FPGA for the purposes of object tracking.
Due to time constraints the group look for other possibilities to track the IR-LED
on the index finger. The group used the PixArt IR camera sensor, which, is
commonly found in the Wii remote.

The PixArt IR camera sensor is capable of tracking up to four IR spots. Its image
processing provides location data at 1024x768 resolution. The PixArt IR camera
was physically extracted from the Wii remote due to the budget restrictions of the
group. The IR camera is interfaced with the microcontroller via Bluetooth
controlling a servo. The IR camera has an integrated processor, which output the
X and Y positions and size of the near IR LEDs that it detects. The details for the
near IR LEDs will be explained later in this paper. This is very beneficial for
tracking the position of the cursor.

We needed a circuit to interface the IR camera to the MSP430. The parts that
are needed for this circuit are two capacitors, a 25 MHz crystal, and a 1 Meg
Ohm resistor. Below is the IR camera pin assignment:

 9

Figure 3: IR Camera Pins

3.2. LEDs
3.2.1. Wavelength
Wavelength refers to the spatial period of a wave, in other words the distance
over which the wave repeats itself [17]. Our eyes are only sensitive to the visible
light spectrum, which goes from about 400nm to 700nm. Infrared radiation has a
longer wavelength than visible red light and therefore the unaided eye cannot
see it. It is important to have a basic understanding of wavelength before
studying which LEDs was adequate for this project.
 LEDs come in a variety of wavelengths and based on the role that this device
will play in the project a decision can be made on which LED family will better
suit the purpose of this project. The purpose of the LEDs on this project is to
make the index finger stand out from the background noise for better object
tracking. The group looked further into the infrared family of LEDs since any
LEDs within the visible wavelengths will have too much interference with the
background. In order to use these LEDs we a set of filters was needed, which will
be explained in more detail in sections 3.3.5. Even within the infrared family, the
LEDs come in a variety of wavelengths: near-infrared, short-wavelength infrared,
mid-wavelength infrared, long-wavelength infrared and far-infrared.
Characteristics of these infrared groups will be explained in table 1.

Table 1: Infrared LED Information
Name Wavelength

(µm)
Photon Energy
(meV)

Applications

Near-Infrared
(NIR)

0.75 - 1.4 0.9 - 1.7 Fiber optic
telecommunications &
night vision

Short-wavelength
Infrared

1.4 - 3 0.4 - 0.9 Long-distance
Telecommunications

Mid-wavelength
Infrared

3 - 8 150 - 400 Guided missile
technology

Long Wavelength
Infrared

8 - 15 80 - 150 Thermal Imaging

Far-Infrared (FIR) 15 - 1000 1.2 - 80 Spectroscopy

In conclusion the LEDs played an important role in this project. They will make
the index finger stand out from the residual background noise after the visible

 10

light/IR filter is installed. After looking at the information provided on the table
above, the group came to a conclusion that the near-infrared LEDs best suits the
purpose of our project since they are often used for night vision which is the
closest application to the one used in this project. The data to create table 1 was
compiled from [16].

3.2.2. Viewing Angle
Another factor that the group took into account when using LEDs is the viewing
angle or degree. The viewing angle or degree refers to the spreading of the light
emitted by the LED. For example a wide angle means that the light emitted by
the LED will not travel far because it will instead spread out over a large area. A
good example of this is a flashlight, these devices usually have a wide viewing
angle. An LED with a small angle will have less dispersion of light and more
energy in the spot. A good example of a narrow viewing angle device would be a
laser. This information can be found in the LEDs data sheets and as expected it
will influence in the price of the LEDs. Figure 4 below shows the spatial
distribution of LEDs.

Figure 4: LED Viewing Angle- Degree

Image courtesy of Multicomp LED Datasheet.

It is evident by looking at the figure above that the viewing angle will affect the
spot size of the LED. For this project we needed LEDs that have a bright spot, so
each LED can be distinguished from one another. An advantage of using a
visible light filter is that it will make the viewing angle of the LED less critical; it
will do this by blocking the background noise. Moreover it is important to choose
a narrow enough angle for the camera to recognize each LED separately as this
is critical for the gesture recognition portion of this project.

 11

3.3. Camera
3.3.1. CCD vs. CMOS
There are two major types of cameras: CCD (charge couple device) and CMOS
(complementary metal oxide semiconductor). In order to chose the camera that
was going to be use for this project we needed to consider the specifications of
the device. Both of these cameras use a photo diode sensor, which converts light
into electric charge and processes it into electronic signals. Below in Table 2 we
included a summary of the features to consider when choosing a camera that
best suits the purpose of our project:

Table 2:Feature and Performance Comparison between CCD and CMOS cameras

Feature CCD CMOS
Cost Low High
Fill Factor High Moderate
Signal out of chip Voltage (analog) Bits (digital)
Signal out of camera Bits (digital) Bits (digital)
System Noise Low Moderate
Speed Moderate- High Higher
Biasing and clocking Multiple, higher voltage Single, low voltage
Responsivity Moderate Slightly better

The content of this table is from Teledyne Dalsa [32].

Now that we have consider the feature and performance between a CCD and
CMOS cameras we will go into the specifications of the camera that will achieve
the purpose of this project. Later in this paper we will go into the implementation
of a small camera system capable of streaming live video images from an image
sensor (CCD or CMOS) to a PC through the FPGA. Below we will consider 2
types of cameras:
• HP HD-3110 5.7 Megapixel Webcam,

• Sensor: CMOS
• USB 2.0 Interface
• Resolution: 352 x 288, 424 x 240, 432 x 240, 640 x 360, 640 x 480, 800 x

448, 800 x 600. 960 x 544, 960 x 720, and 1280 x 720
• Transmission Frame Rate: 30frame/sec
• Dimensions (L x W x H): 2.93 x 2.76 x 2.58" / 7.44 x 7.01 x 6.55 cm
• Unit Weight: 0.22 lb / 0.1 kg

• USB Digital PC Web Camera with Microphone CMOS VGA sensor features:

• Sensor: CMOS
• Frame Rate: 30 FPS
• Lens: High definition 3P(1.3M/2.0MP); 5P(5.0 MP)
• Pixels: 5.0-megapixel
• Resolution: 320 x 240, 680 x 480, 600 x 800, 1280 x 1024

 12

• Interface: USB 2.0
• Transmission Frame Rate: up to 30frame/sec
• Video Format: 24-bit true color
• Supported operating system: Support Win98/2000/XP/Vista/Win7/Mac

system (XP, Vista and Win7 support plug and play)
• Focus range: 3cm to infinity focus range
• CMOS Chip Type: High-resolution Color CMOS image sensor
• Unit weight: 66.3g

It was also considered using an image sensor for getting the data (image frames)
ready for calculation in the FPGA. The reason we considered using an image
sensor is that using the USB on the FPGA can be least practical thing to do.
When using a webcam we needed to make sure to have an open-source driver
for the webcam. Webcams use proprietary, undocumented, protocols and
compression in which we didn’t want to waste our time doing reverse engineering
to the webcam.
It was also considered using an image sensor for getting the data (image frames)
ready for calculation in the FPGA. The reason for considering using an image
sensor is that using the USB on the FPGA can be least practical thing to do.
When using a webcam it is important to make sure to have an open-source driver
for the webcam. Webcams use proprietary, undocumented, protocols and
compression in which time can be we wasted trying to do reverse engineering to
the webcam.
It was also considered using a VGA camera because is the most basic camera
compared to the megapixel camera, which has more pixels, meaning more colors
and details. The image sensor we considered is the Agilent ADCS-2021:

• CMOS Image Sensor
• VGA Resolution – 640x480
• Frame Rate – 15 frames per second

In addition, the data bus can be configured as 8 to 10 bits wide. All of its
functionality is controlled via internal registers, which are accessed via an I2C
bus. The contents of this section was gathered from [33] and [34].

3.3.2. Resolution
Resolution is how pixels are stored in computer memory, they may be thought of
as mathematical points. Once image is displayed, the space between the points
needs to be filled in. The number of spots that can be resolved on the display
depends on the quality of the system. For our purposes we didn’t require a
camera with high resolution (640x480). We considered various resolutions for
the purpose of this project and mapping its centroid to the location of the screen.

3.3.3. Frame Rate

 13

The frame rate of a camera is the number of pictures it can take and how quickly
it can transfer those to the computer's screen. The frame rate is constrained by
three factors: the rate at which the screen is refreshed, specified frame rate and
the time required to calculate and draw the scene [11]. Frame rate is measured
in frames per second. For this project we needed to stream video from the
webcam and to do so we had to consider a camera with a decent frame rate, 15
fps is the absolute bare minimum. Most cameras that have been considered
within the budget of this project stream at 30 fps, that means it can take 30
pictures every second and then transfer them to the computer screen or in our
projects case the FPGA, which is a good rate.

Figure 5: Frame Rate

Image courtesy of Silicon Graphics International Corp. Permission:4

Above in figure 5 we see the same film taken at different speeds. The one on the
top is taken at 60 frames per second and it is evident that a new image is there
every time the screen refreshes. In the film underneath although the screen
refreshes as frequently there is no new image every time the screen refreshes.
This can cause a blur effect on the video.

3.3.4. Spectral Response
Spectral response or spectral sensitivity refers to the efficiency of light detection
in a camera as a function of the wavelength of the signal. This information is hard
to find since most companies do not specify this on lower end products like the
webcam that was planned to be used in this project. For educational purposes a
figure of the spectral response of a high-end camera, Cannon 40D is attached
below:

 14

Figure 6: Spectral response for a Canon 40D

Image courtesy of LDP LLC. Permission:8

At the top of figure 6 there is the visible spectrum colors in order of lowest to
highest wavelength and the wavelength values in nanometers are listed in the
horizontal lower axis of the graph. It is evident how this camera peaks at about
450nm which is the wavelength for the color blue. This means that this particular
camera is most sensitive to blue colors. We can also see peaks at 550nm and
625nm which are green and red respectively. The other peaks or "leakage" is
due to imperfections in the color filter. This is important to know because the goal
of this project is to have a camera that is most sensitive to near-infrared
wavelengths so the camera can pick up easier the gestures performed by the
glove.

3.3.5. Visible Light Filter
In this part of the project it is required that the camera blocks out visible light and
will detect near-infrared wavelengths (0.75µm-1.4µm). Below there is a figure of
the transmission of a visible light filter. Ideally it will transmit about ninety percent
of the wavelengths past the 750 nm, which is the highest end of the visible
spectrum.

 15

Figure 7: Wavelength Transmission of a Visible Light Filter

Image courtesy of Sypherus Labs. Permission:7

As a result of doing research the group found out that infrared cameras are more
expensive than regular webcams. The group also found out that camera sensors
are naturally very sensitive to the near-infrared wavelengths [13] and for this
reason they come with a built-in IR filter. The modification that had to be
performed to the camera to work in the desired wavelengths was to add a visible
light filter to block out the visible light wavelengths and to remove the IR filter to
allow the near-infrared wavelengths to come through the sensor. The IR filter
could be a separate filter or a coating in a lens depending on the camera used.
The visible light filter can be engineered by using the magnetic disk of a floppy
disk or film.

Figure 8: Infrared LEDs seen with the IR filter removed and the visible light filter

Image courtesy of Sypherus Labs. Permission:7

As mentioned before the goal of this filter is to block out background noise from
the object of interest, which are the near-infrared LEDs for better object tracking.
The figure above was obtained from an experiment [14] where the IR filter was a
coating and was sanded down and a piece of the magnetic disk of a floppy disk

 16

was placed as the visible light filter. Although this experiment was used for
different purposes the images capture the idea of what was needed to be
performed in this project. The image above reflects the modified camera looking
at three near-infrared LEDs. It is evident that this type of filter works in this
experiment because the LEDs are much brighter than anything in the
background which will make it easier to track the figures of interest.

3.4. FPGA vs. DSP Processor
3.4.1. Overview
Digital signal processing is usually implemented on two types of hardware
devices: Digital Signal Processors (DSP Processors) and Field Programmable
Gate Arrays (FPGAs). DSP processors are a specialized form of
reprogrammable microprocessor, while FPGAs are semiconductor devices that
are based around a matrix of configurable logic blocks connected via
programmable interconnects that could be programmed depending on the
application requirements [25]. For the purposes of this project the group studied
and compared different parameters such as performance, power consumption,
form factor and size, and cost which influenced the decision to use one device
over the other one.

A DSP Processors can be continuously reprogrammed according to the
requirements of different tasks, some related with the actual signal processing
part and others related with the control or communication protocol. In a DSP
processor there are “threats” which is when tasks share all the different
resources like core registers, internal and external memory, direct memory
access and I/O peripherals. These shared resources often interact in unpredicted
or bizarre ways that may cause unexpected delays resulting in system failures in
real-time applications where DSP processors are usually used.

FPGAs have flexible and reconfigurable hardware architecture. They allow a
large amount of parallel processing and pipelining of dataflow. Latest FPGAs
support high clock speeds, provide plenty of processing power, and large on-chip
RAM. Pipelining in FPGAs is efficient and effective; this is possible due to the
high I/O capability that allows FPGAs to access multiple RAM banks
simultaneously. FPGAs use multiple memory banks for partitioning and pipelining
of algorithms providing significant advantages in performance over the DSP
processors such reducing performance bottleneck. The information on this
overview was gathered from [19] and [25].

3.4.2. Performance
In this project cost and performance are two very important aspects that the
group considered when choosing the image-processing device. The group
wanted a device that was able to process the image within the budget goals.
High speed and high performance are very important for the development and
implementation of sophisticated DSP based electronic systems like the one that

 17

was used in this project. The first thing to take into account in the development of
a DSP application is the sampling rate of the system that was to be designed.
DSP processor is more suitable for low sampling rate DSP applications,
otherwise if sampling rate of the system under consideration is higher than a few
MHz then FPGA is the better as a hardware platform for implementation of the
DSP application. An advantage of DSP processors over FPGAs is that they can
handle conditional operations better. If there is no conditional operation in the
DSP application to be developed then FPGA is a better choice. For the purpose
of our project we worked with conditional operations but we are more interested
in working at high clock speeds and using the parallel processing functions that
the FPGA offers. Also if the system uses floating points then the DSP processor
will be a better option. Both FPGAs and DSP processor provide libraries for
common DSP functions like FIR filter design and FFTs but more complex
functions are not usually available, if any of these libraries was to be used then
this would be a parameter to consider. In our project we didn’t use the built in
libraries. The information from this section was gathered from [22].

3.4.3. Cost
The cost of FPGAs and DSP processors are directly related to performance. In
table 3 below we can see the difference in cost of DSP processors and FPGAs
based on the MMAC performance. MMAC stands for “Millions of Multiply-
Accumulate Operations per second. For the purposes of this project we were
expected to stay within the medium MMAC performance range.

Table 3: Cost-Performance Relationship

MMAC
Performance
Range

Device Cost
Range

Minimum cents
per MMAC for
DSP Processors

Minimum cents
per MMAC for
FPGAs

Low
 (>300MMAC)

< $10 1.8 --------

Medium
(300-1000 MMAC)

$10 - $30 1.6 1.4
$30 - $100 3 2.8

High
(>1000 MMAC)

$100 - $300 5.8 2.9
> $300 ---------- 4.2-20

3.4.4. Development Software
It is said that programming FPGAs is difficult, as this requires familiarity and
expertise in a hardware oriented languages such as Verilog or VHDL [18]. In this
project we wanted to explore other options to program FPGAs like Simulink HDL
code generator or even the Labview FPGA module. The DSP processor can take
a standard C program and run it. This C code supports a high level of branching
and decision-making. It seems like it all depends on the skill and expertise of the
programmer. Our group members do not have experience working or

 18

programming FPGA but we felt like this is an important part of engineering that
we wanted to explore further.

3.4.5. Power Consumption
When developing a DSP applications power consumption and dissipation are
also important parameters to be considered, especially for portable DSP based
electronics applications. In our project we would have the FPGA circuit
connected to the computer but it will have its own power supply, which was most
likely to be a rechargeable battery. Systems using DSP processors must drive
heavily loaded buses that are used to connect the DSP chips to the memory
chips. The extra clock cycles needed to fetch the instructions and the operands
from off-chip memory on these buses add more to the total power requirements
needed to execute an algorithm. The power consumption of a chip is directly
proportional to its clock frequency and due to the ability of an FPGA to split an
incoming data stream and process it as several parallel data streams at lower
clock rates also becomes an important part of the total power usage. In summary
FPGAs are capable of providing much higher throughput than DSP processors
due to their highly flexible architecture. This information was gathered from [21].

3.4.6. Form Factor and Size
DSP processors and FPGAs are about the same physical size, the main
difference is what is inside the chip. Another advantage of FPGAs over DSP
processors is that they are In-System Programmable (ISP), which means they
can also be reconfigured on the board during system operation. This means the
FPGA can be reconfigured on-the-fly to switch or toggle from one function to
another. This capability adds functionality and processing power to a minimum-
chip DSP system controlled with an internal or an external controller. A DSP is
optimized for use of external memory, so a large data set can be used in the
processing. FPGAs have a limited amount of internal storage so need to operate
on smaller data sets. Nevertheless FPGA modules with external memory can be
used to eliminate this restriction. Since the code for our project was not written
when this research was performed we weren’t certain if would take advantage of
this ISP capability but it was an option to consider when choosing one device
over the other. The information from this section was gathered from [21].

3.4.7. Conclusion
In conclusion lower sampling rates and increased complexity suit the DSP
approach; higher sampling rates, especially combined with strict, repetitive tasks,
suit the FPGA. The decision of choosing one device over the other depends a lot
on the designer and the tasks that the devices would be performed on the DSP
system. For the purposes of our project we consider using an FPGA. While
comparing these two devices we learned that FPGAs have a lot of features that
could be useful to the video processing part of the G.R.I.D. design.

 19

3.5. FPGA Development Software
3.5.1. HDL Overview
In this project is important to have an understanding of what HDL is since an
FPGA will be used to process the image. HDL is an acronym for Hardware
description language and is an efficient computer design tool for the modern
design and synthesis of digital systems. As technology advances, designs grow
larger and larger every day. This language provides circuit designers the needed
logic descriptions to be analyzed at high level, in other words HDL helps the
designers with the verification before fabrication of actual hardware.

This language is based on text expressions of the spatial/ temporal structure and
the behavior of electronic systems. The notion of time is a unique attribute that
makes this language so useful over other soft programming languages. HDL
provides different types or styles of descriptions for the same circuit functionality
and these include: structural, behavioral, switch-level, data-flow, mixed type/style
or mixed language. The two main hardware description languages are Verilog
and VHDL. In the sections 3.5.2 and 3.5.3 below we will cover some of major
differences between the two languages. The information in this and the following
sections of VHDL and Verilog was gathered from [25] and [26].

3.5.2. VHDL
VHDL stands for Very high speed Integrated circuit hardware description
language. VHDL is considered to be better at the system level where multiple
entity/architecture pairs lead to flexibility and ease in writing code for complex
systems. Below is a description of some important aspects that should be
considered when choosing a hardware description language:

• Data Types- VHDL is a type-oriented language. These types are built in or

the user can create and define them. The flexibility of users being able to
create their own types is a powerful tool to write code effectively. The user
created types also support flexible coding. It also supports multidimensional
arrays. Another type it supports is the physical type, which is more
synthesizable or targeted design code.

• Ease of Learning- Its is said that for beginners, VHDL may seem harder than
Verilog due to the rigid type requirements. However advanced users may
think these rigid type requirements are easier to handle.

• Libraries and Packages- Packages are used to target certain designs. They
include procedures and functions and can be made available to any module
that needs to use it. These are attached to the standard VHDL library. For
example if a system to be modeled/designed includes arithmetic functions, a
package can be used that includes those functions.

• Operators- An extensive set of operators is available in VHDL but it does not
have predefined unary operators.

• Procedures and Tasks- In VHDL concurrent procedure calls are allowed.
VHDL differs to Verilog in this sense because it allows a function to be written

 20

inside the procedure's body. This feature makes it easier to describe a
complex system.

3.5.3. Verilog
Verilog adopted its name from the logic simulator that originally used it. Verilog is
considered to be better when describing a system at the gate or transistor level
due to its use of predefined primitives at this level.

• Data Types- Compared to VHDL, Verilog data types are very simple and

easy to use. All types are defined by the language, therefore there are no
user defined types. It is said that beginners consider these simple data types
as an advantage over VHDL. Moreover Verilog cannot handle objects with
multidimensional array types.

• Ease of Learning- Verilog is considered to be easier to learn than VHDL.
Users can just write the module without worrying about what library or
packages should be attached. Also Verilog is thought to be easier for most
people because many statements are similar to those in C language and
most people are familiar with C language over hardware description
languages.

• Libraries and Packages:- There is no concept of libraries or packages in
Verilog.

• Operators- An extensive set of operators is also available in Verilog and
unlike VHDL, Verilog does have pre-defined unary operators.

• Procedures and Tasks- In Verilog concurrent task calls are allowed.
Functions, however, are not allowed to be written in the task's body.

3.5.4. HDL code generators
Using HDL could be tedious and required some time. To avoid this time there are
graphical development software that facilitate the design and coding in HDL.
Below in sections 3.5.4.1 and 3.5.4.2 the two leaders in the HDL coding industry
will be explored further.

3.5.4.1. Simulink: HDL Coder and HDL Verifier
Discovering this tool was a very good advantage for this project. Simulink is very
powerful graphical development software developed by MathWorks. It is used for
modeling, simulating and analyzing multi-domain dynamic electronic systems. Its
graphical block diagramming tool and a customizable set of block libraries make
it easier to use for people that are not experts in programming but do understand
electronic circuits. One of the reasons why our group benefited from using this
software is because it offers tight integration with the rest of the MATLAB
environment and can either drive MATLAB or be scripted from it. In the specific
case of this project we would use it with a specific set of add-ons: the HDL Coder
and HDL Verifier.
HDL coder is a tool that generates portable, synthesizable Verilog and HDL code
from MATLAB functions, Simulink models and state-flow charts. This generated

 21

HDL code can be used for FPGA programming. The generated HDL code can be
used for FPGA programming. This code generator is compatible with Xilinx and
Altera FPGAs. It gives you the flexibility to control HDL architecture and
implementation, highlight critical paths and generate estimates hardware
resource utilization. It also provides traceability that will connect the various parts
of the Verilog of VHDL code with the Simulink model. Creating HDL code with
this software can be done in a few steps. First the designer has to model the
target design using a combination of MATLAB code, Simulink blocks and
Stateflow charts. Then optimize these models to meet speed design objectives,
generate the HDL code using the HDL Workflow Advisor for MATLAB and
Simulink and finally verify the generated code with HDL Verifier. The information
from this section was gathered from [23] and [24]. Below we will break this
process into sections and explain further how Simulink performs each task:

Code Generation:
When generating HDL or Verilog code from MATLAB the HDL Workflow advisor
will convert the MATLAB code from floating-point to fixed-point and generate the
HDL code desired. This tool lets the designer model an algorithm at high level
using the MATLAB structure while providing options for generating HDL code
that is optimized for hardware implementation. Another advantage of this is that
most already written libraries in MATLAB can be used. If the code is being
generated from Simulink the HDL Workflow Advisor will generate the HDL code
from Simulink and Stateflow. In Simulink there are libraries with more than 200
blocks that can be used to model an algorithm.

Code Optimization:
This can be achieved by using pipelining, streaming, and resource sharing. For
example in Simulink one can implement multichannel designs and serialization
techniques which are common to multimedia and DSP applications which pertain
to this project.

FPGA Design:
HDL Workflow Advisor in HDL coder automates the workflow for implementing
MATLAB algorithms and models into the two compatible FPGAs (Xilinx and
Altera). Using HDL Workflow Advisor integrates all the steps of the FPGA design
process:

• Verifying Simulink Model for HDL code generation compatibility
• Generating HDL code, an HDL test bench and co-simulation model
• Performing synthesis and timing analysis through integration with Xilinx

ISE and Altera Quartus II
• Estimating resources used in the design
• Back annotating the Simulink model with critical path timing

Verifying the HDL Code:
HDL Coder works together with HDL Verifier generate two types of co-simulation
models:

 22

• HDL co-simulation model, for performing HDL co-simulation with Simulink
and an HDL simulator

• FPGA-in-the-loop (FIL) co-simulation model, for verifying your design with
Simulink and an FPGA board

Tracing the HDL Code:
HDL Coder documents the generated code in an HTML format that contains
hyperlinked HDL code and a table of generated HDL files. These hyperlinks
connect the generated code to the corresponding part of the MATLAB algorithm
or Simulink block that created that part of the code. It also allows you to insert
user comments and descriptions to improve code readability

Key Features and Conclusion:
After taking a deeper look at this software we thing it would be great if it is used
in this project. If is very user friendly and does not require prior experience in
HDL programming. Below there is a summary of all the key features that are
offered with this type of software:

• Target-independent, synthesizable VHDL and Verilog code
• Code generation support for MATLAB functions, System objects, and

Simulink blocks
• Mealy and Moore finite-state machines and control logic implementations

using Stateflow
• Workflow advisor for programming Xilinx and Altera application boards
• Resource sharing and retiming for area-speed tradeoffs
• Code-to-model and model-to-code traceability
• Legacy code integration

3.5.4.2. Labview FPGA Module: DSP Design
This program is very much like Simulink in the aspect that it is used with the to
facilitate FPGA programming to inexperienced HDL programmers. Some of the
advantages of using this module over traditional HDL language is that it allows
the user to prototype real-time FPGA-based digital signal processing
subsystems, effortlessly integrate complex FPGA based math and signal
processing libraries, design signal processing blocks , import third-party IP blocks
and finally investigate design trade-offs early in the design process.

LabVIEW DSP Design for the LabVIEW FPGA Module reduces the complexity of
designing real-time DSP subsystems for high-speed field-programmable gate
array (FPGA) applications such as RF and communications. By using a stream-
based graphical abstraction, the designer can rapidly implement an algorithm,
explore design trade-offs, and generate an optimized FPGA implementation. The
designer can then integrate the resulting implementation as a modular part of a
larger LabVIEW FPGA-based application. Below it is explained in more detail
how this module performs some of its important functions. The information
covered in this section was gathered from [27].

 23

Quick Prototype Real-Time FPGA-Based DSP Subsystems:
LabVIEW DSP Design offers an intuitive language that extends LabVIEW FPGA
by providing a target-independent description of the DSP algorithm. Multi-rate
DSP algorithms are described by combining high-level functional blocks that
explicitly describe sample counts at the inputs and outputs of each block.
LabVIEW DSP Design combines the sample counts of the inputs and outputs of
each block with known cycle-level timing to determine optimal scheduling,
memory, and FPGA resource utilization. You can compile the resulting
algorithms into reusable blocks and integrate them into larger LabVIEW FPGA-
based applications for execution on compatible NI reconfigurable I/O FPGA
devices.

Design Trade-Offs:
With LabVIEW DSP Design, the user can effectively understand and optimize
these design aspects early in the design process. In addition to cycle-accurate
simulation for algorithmic verification, this module helps the designer to achieve a
detailed look at execution scheduling. Using the Scheduling view, you can
analyze trade-offs between latency and resource utilization. By enabling
pipelining and changing memory buffer sizes, you can profoundly impact how
high-speed, multi-rate applications execute.

3.6. FPGA Chip
3.6.1. Overview
Modern programmable hardware allows users to send data to a programmable
chip to tell the chip how to wire itself. Modern hardware compilers can take this
high level description of an electronic circuit and translate it into configuring bit
strings, which are used to configure a programmable chip (FPGA). Inside a chip
there are a lot of programmable logic gates, which allow placing a whole
electronic system on a single chip. This is the reason why electronics today are
more sophisticated, powerful and cheaper than before. A disadvantage of this is
that electronics become harder to design. Some sources say that "it's almost as
easy to program hardware as to program software" but in order to program
hardware well the designer needs to understand the principles of digital
electronic design for example multiplexors, flip flops, buffers, and counters
among others which could be challenging.

 24

Figure 9: FPGA Preferred Vendors 2012

Image courtesy of Synopsys. Permission:6

The information in figure 9 above is obtained from FPGA-based Pricing
Methodology Manual (FPMM) by Synopsys, Inc. By looking at the numbers on
the graph is it evident that Xilinx is the leader in the FPGA market although it is
said that Altera has more tools that will help the programmer especially if they
are not seasoned in hardware description languages. In the next sections 3.6.2
and 3.6.3 we will discuss the major differences and form these we will come to a
decision on which FPGA chip to use for our project.

3.6.2. Architecture of the Chip
To understand a little more about the design of the FPGA the designer needs to
understand the basic architecture of the chip. A set of figures and descriptions
will be used for an easy understanding of such complex device. In section 3.4.1
is explained that FPGAs are semiconductor devices that are based around a
matrix of configurable logic blocks connected via programmable interconnects
that could be programmed depending on the application requirements. In figure
10 below a simple FPGA structure is shown. Two input/output pads fit into the
height of one row or the width of one column. All the routing channels have the
same width or number of wires.

Figure 10: FPGA Structure

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

Xilinx	

Altera	

N/A	

Other	

 25

Each circuit has to be mapped into the smallest square that can accommodate it.
For example a circuit containing 8 logic blocks and 6 input/outputs pads could be
mapped into an FPGA consisting of a 3x3 array of logic blocks like the one
shown above. If more blocks or input/output pads are needed then a bigger
configuration will be needed.
A logic block inside an FPGA usually consists of a few logical cells, these cells
are often called ALM, LE, or Slice. A typical cell consists of a 4-input look-up
table (LUT), a Full adder and a flip-flop, as shown below in figure 11. As seen in
the figure the LUTs are split into two 3-input LUTs. In normal mode these are
combined into a 4-input LUT through the first (left) mux. In arithmetic mode, the
outputs are fed to the full adder. The selection of mode is then programmed or
sent to the middle multiplexer. The output can be selected to be synchronous or
asynchronous depending on the programming of the right most mux. In practice,
entire or parts of the FA are put as functions into the LUTs in order to save
space.

Figure 11: Logic Block Structure

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

In the figure above we can see the blue circles correspond to the inputs and the
black circle corresponds to the output. Figures 12 and 13 are color coded so the
reader can match up the location of the FPGA logic block pins and correlate both
figures. In figure 12 below it is clear that each input is accessible from one side of
the logic block, while the output pin can connect to routing wires in both the
channel to the right and the channel below the logic block.

Figure 12: Logic Block Pin Locations

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

 26

Each logic block input and output pins can connect to any one of the wiring
segments in the channel bordering to it. In the same way, an input/output pad
can connect to any one of the wiring segments in the channel adjoining to it. As
seen in the picture below a channel can have multiple wires, also called channel
width. For example, an input/output pad at the bottom of the chip can connect to
any of the wires in the horizontal channel immediately below it as seen in figure
13.

Figure 13: Logic Block Pin to Routing Channel Interconnect

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

The red crosses in the figure above point at the possible connections that the
input/output pad can have. There are various choices but it is important to know
that only one wire segment may be connected to a logic block input pin.
Moreover FPGAs are typically unsegmented, this means that each wiring
segment passes through only one logic block before it reaches a switch box. By
turning on some of the programmable switches within a switch box, longer or
shorter paths can be constructed. Some FPGAs architectures use longer routing
lines that pass through multiple logic blocks to provide high speed interconnects.
In the figure 14 below it is clear where these switch boxes are located.

Figure 14: Unsegmented FPGA Routing

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

 27

In every section where the vertical and horizontal channels intersect there is a
switch box. Since in this particular figure we can see a width of 3 because a
channel has 3 wires the switch box will have three programmable switches that
allow it to connect to three other wires in adjoining channel segments. This
configuration is often called planar or domain-based switch box topology. One
more thing that need to be understood from this topology is that since each
channel has multiple wires these wires correspond to the same wire number in
the adjoining channel. For example wire 1 in the vertical channel will only
connect to wire 1 in the horizontal channel, same applies for wires two and three.
This may seem confusing but in figure 15 there is a zoomed in view of the
channel connections and the switch box. The programmable switch would be set
to best suit the desired application which for this project was digital signal
processing.

Figure 15: Switch Box Topology

Image courtesy of Dept. of Electrical Engineering at UT. Permission:5

3.6.3. Xilinx Chip
Xilinx are the pioneers in FPGAs. They invented the first commercially viable
FPGA in 1985 [28]. Since then they control over half of the FPGA market. Xilinx
offers a variety of FPGA families that vary from low-end products to high-end
devices. The different familiess of FPGAs provided by Xilinx are:

• Spartan- Provide optimal balance of low risk, low cost and low power for
cost sensitive applications.

• Artix & Kintex- Provides performance and power balance for mid-range
applications.

• Virtex- Provides high bandwidth and high performance for high end
designs.

 28

These families of FPGAs are listed in Table 4 below. The table discusses many
features that are critical for the decision making on which FPGA to use.

Table 4: Xilinx FPGAs Features

Image courtesy of Xilinx All-Programmable. Permission:9

The table above was obtained from the Xilinx website [28]. Some of the features
the group will take into account to make a decision are: the amount of logic cells,
RAM, DSP slices, Memory interface, and I/O pins. From the Xilinx families
mentioned above the group would be leaning towards the Spartan-6 because it is
a low cost design that will perform the video processing required in this project.
Some of the benefits of the Spartan-6 low cost family of FPGAs are:

• Designed for low cost
• Low static and dynamic power
• Multi-voltage, multi-standards Select IO interface banks
• Low-cost PCI technology support compatible with the 33MHz, 32- and 64-bit

specification
• Efficient DSP48A1 slices
• Integrated memory controller blocks
• Abundant logic resources with increased logic capacity
• Block RAM with a wide range of granularity
• Clock management Tile (CMT) for enhanced performance
• Simplified configuration- to support low-cost standards
• Enhancement security for design protection

 29

• Faster embedded processing with enhanced, low cost MicroBlaze soft
processor

• Industry-leading IP and reference designs

3.6.4. Altera Chip
Altera are the second leaders in the FPGA market. They control about thirty
percent of the market. Altera also offers a variety of FPGA families for different
purposes. The FPGA families that Altera offers are:

• Cyclone- Provides low cost and low power design.
• Arria- Provides optimal balance of performance, power and price for mid-

range applications.
• Stratix- Provides high bandwidth for high end applications.

For this project, the low end Cyclone model will suffice. Below there is a table
taken from the Altera website [29] that describes the advantages of using a
Cyclone III from video and image processing applications like the ones used in
this project.

Table 5: Video and Image Processing Application Advantages of Cyclone III FPGAs

Image courtesy of Altera. Permission:10

It is very important that the device provides plenty of memory and that is capable
of handling the video streaming through it. Another advantage from the Altera
FPGA chips is that they are easier to program than Xilinx. Some of the benefits
offered by the Altera Cyclone III are :

• Low power consumption which will extend battery life for portable
applications and reduce or eliminate cooling system costs

• Routing architecture optimized for design separation flow with Quartus II
software

• Internal oscillator enables system monitor and health check capabilities
• High memory-to-logic and multiplier-to-logic ratio
• High Input/Output count, low and mid-range density devices for user I/O

constrained applications
• Robust clock management and I/O interfaces

 30

• Remote system upgrade without the aid of external controller
• Dedicated cyclical redundancy code checker circuitry to detect single-

event offset issues
• Nios II embedded processor offers low cost and custom-fit embedded

processing solutions

Supports high-speed external memory interfaces such as DDR, DDR2. SDR
SDRAM and QDRII SRAM

3.6.5. Conclusion
Choosing to use a device over another is a trade-off. There are great features
both Xilinx and Altera FPGAs but the group has to determine which device offers
the most benefits to the project. As a result of doing research the group found out
that Altera FPGAs are easier to program since Altera provides various user
friendly tools for unseasoned HDL programmers. In the other hand Xilinx FPGAs
are harder to program but they are offered at a lower cost. As a result of the
projects cost restriction the group is leaning towards using the Xilinx Spartan-6.
Although this is a low end device it will support the processing required for this
project.

3.7. FPGA Power Supply
3.7.1. Overview
FPGAs today operate at lower voltages and higher currents than their
antecedents. Consequently, power supply requirements may be more
demanding, requiring special attention to features considered less important in
past generations. Things to consider regarding the power supply of an FPGA
output voltage, sequencing, power on, and soft-start requirements. Failure to
consider these parameters can result in unreliable power up or potential damage
to the FPGA.

3.7.2. Output Voltage Requirements
When designing power supplies for FPGAs the first criteria to consider are the
voltage requirements for the different supply rails. Most of the FPGAs have
specifications for the CORE and IO voltage rails, and many require additional
auxiliary rails that may power internal clocks, phase lock loops (PPL) or
transceivers. In addition, as process technology nodes become smaller in
FPGAs, tighter tolerances are needed on the voltage-supply rails. Figure 16
shown below shows why regulators with 1% regulation accuracy across line and
load and process-voltage-temperature (PVT) variations are so critical:

 31

Figure 16: Voltage Regulators and PVT Variations

"Copyright Maxim Integrated Products

(http://www.maximintegrated.com). Used by permission."

FPGAs generally specify several allowable voltage levels for the IO, the external
digital circuitry determines the voltage selected. To provide flexibility, the FPGA
will generally provide multiple IO banks that can be powered separately allowing
the FPGA to interface with various logic families. Table 6 shown below shows
the voltage levels and tolerances for several different FPGAs:
	

Table 6: FPGAs Power Specifications
FPGA Core Core

Tolerance
Auxiliary
Power

Auxiliary
Tolerance

IO
Voltage

IO
Tolerance

Spartan-
6

1.2 5% 2.5 or 3.3 5% 1.2 to
3.3

1.1 to 3.45

Virtex-6 1.0 5% 2.5 or 3.3 5% 1.2 to
2.5

1.14 to
2.625

Cyclone 1.2 40 mV 2.5 5% 1.2 to
3.3

5%

Arria2 0.9 30 mV 2.5
(VCCA_PPL)
0.90
(VCCD_PPL)

5%
(VCCA_PPL)
30mV
(VCCD_PPL)

1.2 to
3.3

5%

The content of this table is from EE Times Design [2].

Most of the voltage supplies the internal logic configuration blocks of the FPGA
and is where many of the internal digital path processes occur. As such, the
current demanded by the core will vary greatly depending on the percent
utilization of the FPGA.

Over time the voltages used to power the core have been steadily dropping.
Modern cores like the Arria2 can operate off of voltages as low as 0.9V. Lower
core voltages are permitted by improved geometry silicon processes, and are

 32

valuable in keeping the power dissipated in the FPGA to a reasonable level. With
process technologies designed to operate at lower voltage levels, keeping within
the core voltage tolerance requirements has become more challenging for the
power supply designer. The information in this section was gathered from [8]
and [9].

As part of this project good candidates are (in order of complexity):

• The Altera Cyclone family.
• The Xilinx Spartan-II family or the Spartan-3 family.

3.8. Microcontrollers
3.8.1. Overview
Microcontrollers or MCUs are small scale computers on an integrated circuit
which contains a processor core, memory, and a variety of General Purpose
Input/output pins (GPIO). These devices, because of their limited structure, are
used in embedded system design, commonly to control a system, where the
inputs(s) are generally external sensor data, and the output(s) are signals to
external devices. Microcontrollers range in their number of GPIO, clock speeds,
integrated communications modules, the size of their available memory, as well
as their word and address bus sizes. Additionally, most microcontrollers feature a
variety of programmable timers, which can be used in scenarios where certain
actions must be performed with very high degree of accuracy in time (Pulse
Width Modulation), and analog to digital converters for processing analog
signals. The market share of these devices is very large, with about 55% of all
CPUs sold in the world being 8-bit microcontrollers.

3.8.2. Limitations
The biggest limitation of microcontrollers is speed. Although Clock speeds vary
from model to model, most MCUs run in the order of tens of Mega Hertz. In
cases where high throughput is required MCUs just cannot process the data
quickly enough. As an example, image/video processing requires pixel by pixel
processing on a matrix the size of the resolution of each image. For a video
stream of 30 frames per second at a resolution of 640x480 each pixel needs to
be processed in no more than .1us in order to maintain the frame-rate.
Depending on the nature of the processing algorithm the number of instructions
required may vary from tens to hundreds. Furthermore, MCUs use a RISC
architecture, which would suggest a one-clock cycle per basic instruction, but at
the expense of numerous instructions for more complex operations. This kind of
work would require clock speeds in the Giga Hertz range, but because of the
interrupt based nature of MCUs any interrupt might be enough for the system to
lag.

Memory size is another drawback of microcontrollers. The msp430g2553 offers
512B while the Arduino UNO offers 2MB. It is possible however, to interface a

 33

microcontroller with external memory devices. In this case, there is a speed vs.
size compromise. External communications are done through I^2C or SPI. The
speed of these protocols is usually much slower than the MCUs internal memory.
Fast I^2C operates at 400 KHz, therefore while fetch instruction might take only a
couple of cycles from internal memory, the MCU might idle for many cycles
before data is ready to be used. This results in large overhead. For
computational heavy algorithms all variables must be stored within the MCU for
optimal efficiency, only using the external memory to log data after the process.

3.8.3. Advantages
MCUs excel in tasks that do not require extensive bit crunching. They are good
for controlling various types of displays, doing simple analysis on sensor data,
and matching input conditions to outputs. One of the features that make
microcontrollers attractive to the market is their low cost. Most embedded
applications are simple enough that they do not require a microprocessor for the
job, so MCU are very appealing as they are suited for simple task, and keep
production cost down. For more intensive applications, it is not uncommon to see
systems with multiple microcontrollers communicating with each other to
accomplish the task. Again, because of their low cost, even adding multiple MCU
and increasing the complexity of the design is favored over a stronger, but more
costly processor core.

3.8.4. The MSP430G2553
Due to the nature of our project, low power is critical in order to meet the design
specifications. The MSP430 one of the most flexible MCU on the market with
multiple clock sources, programmable modulation for each source, and low-
power modes. As seen in figure 17 there is a direct relation between power
consumption and the frequency of operation. We will take advantage of the
MSP430’s digitally controlled oscillator (DCO) in order to scale the speed in
accordance to the current task in order to maximize power efficiency.

Figure 17: MSP430g2553 current vs DCO frequency

 34

Furthermore, the MSP430g2553 features several low-power modes which a user
can enter and exit in one clock cycle time. This feature allows us to enter a low
power mode during periods of inactivity, and because of the fast wake up time
there is no impact on performance. The various low power modes are detailed in
table 7.

Table 7: MSP430g2553 low power mode functions
Parameter Test Conditions TA Vcc MIN

TYP
MAX

UNIT

Low-power
mode 0 (LMP0)
current.

MCLK = 0 MHz, SMCLK = DCO
= 1 MHz, ACLK = 32,768 Hz.
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCGO = 0,
OSCOFF = 0

25°C 2.2 V
56

µA

Low-power
mode 2 (LPM2)
current.

MCLK = 0 MHz, SMCLK = 0,
DCO = 1 MHz, ACLK = 32,768
Hz.
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCGO = 0, SCG1
= 1 OSCOFF = 0

25°C 2.2 V
22

µA

Low-power
mode 3 (LPM3)
current.(LFXT1)

MCLK = 0 MHz, SMCLK = 0
MHz, DCO = 0 MHz, ACLK =
32768 Hz.
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCGO = 0,
OSCOFF = 0

25°C 2.2
0.7
1.5

µA

Low-power
mode 3 (LPM3)
current.(VLO)

MCLK = 0 MHz, SMCLK = 0
MHz, DCO = 0 MHz, ACLK from
internal LF oscillator (VLO).
CPUOFF = 1, SCG0 = 1, SCG1
= 1, OSCOFF = 0.

25°C 2.2 V
0.5
0.7

µA

Low-power
mode 4 (LPM4)
current.

MCLK = 0 MHz, SMCLK = 0
MHz, DCO = 0 MHz, ACLK = 0
Hz. CPUOFF = 1, SCG0 = 1,
SCG1 = 1, OSCOFF = 1

25°C 2.2 V
0.1
0.5

µA

“ “ “ “ 85°C 2.2 V
0.8
1.7

Another reason for this device choice is it’s incredibly low cost. The chip itself
cost less than a dollar for a single unit, with a price drop for bulk purchases.

 35

Furthermore, development cost is also incredibly small, thanks to the TI’s
Launchpad. The Texas Instrument Launchpad is a starter development kit that
includes: the development board, msp43g2553, a 32 kHz external crystal, and
extra headers for prototyping, all for 4.30$, and with free shipping. TI also offers
a code limited version of their IDE Code Composer Studio free of charge.

3.8.4.1. Development Software

Code composer Studio allows the user to write all code in C or in assembly.
Because of our experience with C we choose it as the preferred language for the
microcontroller. In order to properly communicate with the msp430g2553 we
looked at the header file msp430g2553.h in order to see register definitions and
interrupt vector definitions, as well as example code found on TI’s website.
Code Composer studio also facilitates debugging through its own debugging
environment. This feature gives the user full control of the chip at any given time,
even allowing access to current variable values. All of the msp430g2553 control
registers are also available for viewing at any one instance in the code. This
includes: interrupt enable register, interrupt flags status, GIOP pin configuration
for port1 and port2, also status and configuration registers for each of the
modules (I.E. Timers, ten bit analog to digital converter, USCI). For added control
the user can choose to “dive into the instruction” in which case it will (for the case
of a function call) dive into the function and perform the code within. The other
case is “jump over”, in which case is will perform all lines of code within the
function, but only the register statuses at the end of the call will be available for
viewing.

3.8.4.2. Device features

The msp430g2553 is a surprisingly flexible microcontroller. In addition to its
obvious advantage over the competition in regard to power consumption, it has
several other features which make it the preferred choice. Firstly, the clock
system, the msp430g2553 features three clock signals: The Master clock, the
Sub-main clock, and the Auxiliary clock. All clocks are independent of each other,
and can be the clock source for the various modules on board. The clock module
block diagram is shown below in figure 18.

 36

Figure 18: MSP430g2553 clock module block diagram.

Why is this convenient? Not all of the functions of the microcontroller are sourced
by the same wave generator. This allows the user to turn off entire sections of
the clock module while they are idling, and resume operation if required.
Furthermore each source passes through a divider. This block scales the
incoming signal in frequency allowing user to ramp-up/ramp-down processing
speed as per demands.

Another important feature is the presence of two 16-bit timers A, and B. Because
they can be sourced from the SMCLK, or the ACLK, they do not run at the speed
of the CPU, and thus can be configured independently. This is in important
feature for applications where events are recorded in pre-defined timed intervals.
For our project, timer A and B provide an accurate way to establish a time-frame
in which to read the MPU-6050’s register, and then compare that signal to a
template for gesture recognition.

Figure 19: Timer raises an interrupt flag once the value in TACCR0 is reached.

 37

Lastly, it features 16KB of internal flash memory. Considering the sampling rate
at 50 Hz for both the accelerometer and gyroscope, as well as a time-window for
allowable measurements of two seconds, the most memory needed would be
5KB approximately, slightly over half of the allowable range. That is for storing
full 16-bit readings on each axis for both the accelerometer and gyroscope.

3.8.5. Arduino Uno
The Arduino Uno is a development package based on the 8-bit ATmega328
microchip, and runs off a wiring-base language similar to C++, but with some
slight modifications. Because Arduino is meant as an electronic solution for those
who might not be familiar with embedded design, it functions in a way that is
more accessible for beginners. Furthermore, it has been used extensively by
hobbyists since its release, and thus, there is a wealth of information, as well as
libraries of existing code for support. At the same time, the Arduino trades some
of the more powerful features, like low power modes, and register access, in
order to maintain its ease-of-use. The Arduino Uno is comparable Texas
Instrument’s msp430 Launchpad as presented in table 8.

Table 8: Arduino UNO (ATmega323) and TI Launchpad (MSP430g2553) hardware
comparison

 TI Launchpad Arduino Uno
Microcontroller Msp430G2553 ATMega328
Data Bus 16-bit 8-bit
Speed 16 MHz 16 Mhz
Storage 16 KB 32 KB
RAM 512 B 2 Kb

3.9. Power Supply
3.9.1. Overview
The objective of this section is to examine the operation conditions of the
microcontroller to provide a stable, low voltage supply to the MSP430. The
operation of the MSP430 must not be affected by the power supply. The power
supply itself must be dependable and stable. The power supply should not cause
problems during development. Below are the recommended operating
conditions for the MSP430 Power Requirements:

• Typical Input Voltage Range

Table 9: Recommended Operating Conditions

 Min MAX
Supply Voltage during program
execution, Vcc

1.8 V 3.6V

 38

• Typical Operating Current
− Active Mode 300!" to 5!"
− Sleep Mode 100nA

Now that the MSP430 power requirements have been considered, then the
rechargeable batteries will need to meet the specifications to power the
microcontroller. The power requirements information was gathered from [2]. Part of
the project requirements proposed for this project the ease for the user to
interface between the computer and mouse therefore, the rechargeable batteries
can meet this project requirements because is a choice for portable applications
and also its high capacity-to-size ratio which diminishes the weight. Most popular
rechargeable batteries are Nickel-Cadmium (NiCd), Nickel-Metal-Hydrate
(NiMH), and Lithium-Ion (Li-Ion) in which charging circuits depend on the
battery’s chemistry. This section will discuss the battery’s chemistry to meet the
power requirements for the MSP430:

• Nickel-Candium rechargeable batteries - has a well-established chemistry.

A nickel-candium battery has a terminal voltage of around 1.2 volts during
discharge, which decrease little until nearby the end of discharge. Nickel-
Candium batteries are made in a variety of sizes and capacities, from
portable sealed types interchangeable with carbon-zinc dry cells, to large
ventilated cells used for standby power and motive power. Compared with
other types of rechargeable cells they offer good cycle life and capacity, good
performance at low temperatures, and work well at high discharge rates
(using the cell capacity in one hour or less). However, the materials are more
costly than types such as the lead acid battery, and the cells have higher self-
discharge rates than some other types. Sealed Ni-Cd batteries require no
maintenance.

• Nickel Metal Hydride Rechargeable Battery Packs - steady increases in

performance have made this chemistry an excellent choice for small,
lightweight, portable, and handheld rechargeable battery applications. In the
last few years lithium technologies have steadily worn away at the market
share for NiMh. Among the advantages of NiMH are 30% to 50% more
capacity than a NiCd cell the same size, less prone to memory effect than
NiCd, and competitively priced (especially compared to lithium-ion/lithium
polymer). NiMH, however, does have some down sides. NiMHs only yield
about 500 cycles, charging is more complex than NiCd, they may require
passive safety devices for protection against short circuits and overheating,
and NiMH loses its charge about twice as fast as NiCd. Contact House of
Batteries for more information about custom rechargeable battery pack
manufacturing.

• Lithium-Ion (Li-Ion) rechargeable batteries - is a progressively popular

technology for rechargeable battery packs in which it offers better energy
density over nickel and lead based chemistries at an affordable price. Lithium

 39

ion can have up to twice the energy density of nickel-cadmium. There is
potential for higher energy densities. In terms of discharge the lithium-ion
characteristics are reasonable and behave very similar to nickel-cadmium.
The high cell voltage of 3.6 volts allows battery pack designs with only one
cell. In today’s applications such as, mobile phones run on a single cell. A
nickel-based pack would require three 1.2-volt cells connected in series. The
information in this section is gathered from [3].

Table 10: Comparison of Typical Rechargeable Batteries
Type NiCd NiMH Li-Ion
Specific Energy
Density (Wh/kg)

45-80 60-120 150-190

Nominal Voltage
(V)

1.2 1.2 3.6

Load Current
(C)
- peak
- best result

20C
1C

5C
0.5C or lower

>2C
1C or lower

“The content of this table is from batteryuniversity.com [3].”

3.9.2. Power Options
As spoken earlier in this paper there are a number of possibilities for powering
the MSP430. There are three major places from which to draw power: batteries,
the wall AC, and the USB port of a computer.

For the purposes of this project rechargeable battery is the best choice. For the
most part, a typical battery holder with a couple of wires can be connected to Vcc
and Vss. There are pins for this purpose; soldering female header pins to the
wires or using jumpers make battery use simple. Before making this connection,
however, the MSP430 power requirements need to be considered. The MSP430
can't handle voltages higher than about 4 V.

First power option, good combinations of batteries must be considered for the
purposes of powering the MSP430. For this design we will be using a nominal
3.8 V lithium-ion rechargeable battery. In general, batteries need no other
external parts, though it may be a good idea to have both filtering capacitors on
the MSP430 in this case as explained in the chip configuration.

Second power option, if some application requires higher voltage it can be
considered battery combination to achieve higher voltage battery or use the USB
power (5V), the voltage needs to be stepped down to an acceptable level. A
voltage regulator can be use for the purposes of using the USB port. These
components are cheap, robust, and work very well when used properly. Some
can even handle such a wide range of inputs that you could connect most any
common power source to it and have the output you need. As part of this paper,
the details for using a voltage regulator will not be explained is something that

 40

can consider if everything else fails.

Third power option, is the wall outlet, a transformer with a rectifier will be needed.
Anything in the 1.5-3.6 V range will work directly with the MSP430. There are
many, many more ways to power the microcontroller. After studying the
chemistry of various choices for rechargeable batteries and powering options it
has been concluded that for the purposes of this project lithium-ion rechargeable
batteries will best suit the purposes of this project. As explained earlier, lithium-
ion is becoming the choice for portable applications because of its high capacity-
to-size ratio and a low self-discharge characteristic. As to charging the lithium-
ion batteries many solutions are available such as such as power management
ICs, MCU controlled or even logic devices. When considering safe charging,
time efficient and low cost solution the MCU controlled charging method can be
considered as a recharge solution. The capacity of a battery, C, which is
expressed in mA-hours, this measures the lifetime of the battery between
charges. The batteries current has the units C-rate. Considering an example
where given a battery with capacity of 500 mA-hours, then the battery will have a
C-Rate of 500mA. The current equivalent to 1C is 500 mA and for 0.1C is 50 mA.

Three stages are involved in the charging process of a Li-Ion battery:

• Slow Charge - the battery is charged with a constant low current of 0.1C,
the voltage in battery will be less than 2.5 V. Some batteries such as the
Nickel-Candium suffer from a phenomenon called memory effect in which
the battery is recharged with out being fully discharged which can then
cause a reduction in the battery capacity. The lithium-Ion batteries do not
suffer from memory effect and therefore, the battery doesn’t have to be fully
discharged before charging. This slow charging stage is rarely used during
the charging process of lithium-ion battery.

• Fast Charge - Constant current charging stage-using current of 1C is one
of the most important stages during the recharge process. The lithium-ion
batteries are fully charged at voltage of 4.1 V or 4.2 V. The battery is
charged with a constant current of 1C until the battery is fully charged (4.1 V
or 4.2V). The firmware continuously checks the charging current by sensing
the voltage at the current sense resistor and adjusts the duty cycle of PWM
output from the MCU.

• Constant voltage charging stage – While constantly checking the
battery’s voltage and when the voltage reaches 4.1 or 4.2V, the charger will
switch to constant voltage charging mode. The voltage charging mode, is
when reached 4.1 or 4.2 V it will be charged with a constant voltage source
at a fixed battery voltage of 4.1 or 4.2 V. The battery voltage will be
monitored constantly and maintained at 4.1V by controlling the duty cycle of
the PWM output. While this process is under taken the charging current will
start to fall due to internal cell resistance. When the charging current falls
below 0.1C, the charging process must stop.

 41

Figure 21 shown below show the relationship of Current vs. Voltage during
the charging progress of the Lithium-Ion explained in this section:

Figure 20: Current vs. Voltage during the charging progress of the Lithium-Ion

"Copyright Texas Instruments Products

(http://www.ti.com). Used by permission."

When the battery is fully charged, most of the electrical energy is converted to
thermal energy. Overcharging batteries can cause overheating, explosion due to
outgassing of the electrolyte and severely reduce battery life. Li-Ion batteries are
extremely sensitive to overcharging and hence it is critical that the final voltage
be controlled to within ±50 mV of 4.1 or 4.2V. A battery charger design needs to
be able to determine a fully charged battery to avoid overcharging. A few
methods to determine a fully charged condition are:

• During the constant voltage charging stage, when the current drops to 0.1C, a
fully charged condition is reached.
• Determine the battery temperature to avoid overheating
• Use a safe timing method: As long as the charging time is longer than a
predetermined time, the battery can be considered as fully charged.

Given the fact that the microcontroller being considered accepts voltage in the
range from 1.8V-3.6V. To keep the cost per unit down and still get good power
output and battery life, lithium-ion batteries are the best option. With the voltage
and cost restriction, we are limited to either using cell voltage of 3.6V or 1.2-volt
cells connected in series. The information in this section was gathered from [4]
and [5]. Below is considered the UltraFire 14500 900mah 3.6V rechargeable Li-
Ion battery (pair) plus charger combo product features:

 42

• 900mAh 14500 Li-ion Rechargeable Battery
• Holds 85% of it's charge over 12month period
• Can be charged over 500 times
• Lighter than standard alkaline battery

3.9.3. Linear Regulator
Purpose of linear regulator is to minimize MSP430 power consumption and
extend battery life. A linear regulator is a system used to maintain a steady
voltage. As the load varies the resistance of the regulator varies in agreement
resulting in a constant output voltage. The linear regulator is made to is made to
act like a variable resistor. This is done repetitive by adjusting a voltage divider
network to maintain a constant output voltage. It dissipates the difference
between the input and regulated voltages as waste heat. In contrast, a switching
regulator uses an active device that switches on and off to maintain an average
value of output. Because the regulated voltage of a linear regulator must always
be lower than input voltage, efficiency is limited and the input voltage must be
high enough to always allow the active device to drop some voltage.

As part of the design for the power supply it will be considered a linear regulator
that will be placed the regulating device between the source and the regulated
load, a series regulator, or may place the regulating device in parallel with the
load, shunt regulator. Simple linear regulators may only contain a Zener diode
and a series resistor; more complicated regulators include separate stages of
voltage reference, error amplifier and power pass element. Because a linear
voltage regulator is a common element of many devices, integrated circuit
regulators are very common. For the purposes of this project it will consider the
TPS780xx linear regulator to building a 3.3 V power supply. Below are key
features of the TPS780xx family are considered:

• 150-mA low dropout regulator with pin-selectable dual level output
• Low dropout: 250-mV at 150 mA
• 3 percet typical accuracy
• Low total quiescent current: 500-nA
• Adjustable or fixed output voltages ranging from 1.22 V to 5.25 V

As part of the battery-powered system it will be taken into account TI's new ultra-
low power TPS780xx low dropout regulator with selectable dual-level output
voltages allow designers to dynamically shift to a lower voltage when the
microprocessor is in sleep mode. Even if the MSP430 is operated at 7 MHz
when active and placed into low-power mode when not active, this can
significantly extend the battery life. When the MSP430 is in low power mode its
operating currents at inputs of 3.3 V and 2.2 V are 2.13 !" and 1.3 !" ,
respectively. The TPS780xx series is designed to be compatible with the TI
MSP430 shown in Figure 22 below:

 43

Figure 21: TPS780xx Top View

TI’s Datasheet

In conclusion, to design an MSP430 battery-power system, it should be pay close
attention to the proper operating voltage of the microcontroller. Overall, in this
section it was considered the operating conditions of the microcontroller, the
chemistry of the batteries that best suits the purpose of this project, and
extending battery’s life by using a linear regulator. The information in this section
was gathered from [6] and [7].

3.9.4. Recharge Circuitry
As a safety precaution, as well as to extent the lifespan of the battery, a charge
controller regulates the current flow in and out of the battery. For charging a
battery the initial stages is a constant-source mode until the battery voltage rises
to the “float” voltage. When the battery reaches the float voltage the controller
switches to constant-voltage mode until the current decrease to a minimum
charge (Signifying a full charge). A close estimate of the charge time of a lithium-
ion battery can be obtained using the standard CC/CV algorithms by dividing the
battery capacity in ampere-hours by the constant-current mode charge current in
amperes and multiplying that quantity by the charge time, 1.3 hours. Although it
is possible to use a standalone microcontroller, a voltmeter and a ammeter, and
implement a PID controller in code to regulate the pulse width modulated signal
to the transistor gate, dedicated charge ICs are available at relatively low cost. In
fact, some of these ICs are designed with a USB connection as the DC supply
voltage. One such example is the BQ24193, a battery charge management and
system power path management device, by Texas Instruments. It can be set up
over the I2C bus eliminating the need for additional line in the design. A clear
advantage of using this device, as opposed to designing a charge controller
using an 8-bit microcontroller plus external sensors, it’s it easy set up and low
maintenance. According to the datasheet the device initiates and completes a
charging cycle without software control, completely independent. Furthermore it
starts in a pre-conditioning phase before moving to constant current and
eventually to constant voltage. Finally it provides programmable thresholds for
the minimum current in the CV phase, as well as over-voltage/over-current
protection.

 44

Figure 22: Typical connecting circuit for the BQ24193

As spoken earlier in this paper the microcontroller will be powered using lithium-
ion rechargeable batteries. If the user wishes to use the mouse for longer
periods of time a recharge circuitry would be necessary charge the circuit,
therefor another method is proposed for charging the microcontroller. The USB
LiPo Charger (MCP73831/2) is a basic charging circuit that allows the user to
charge 3.7V Li-Ion or Li-Polymer cells at a rate of 500mA or 100mA per hour. It is
designed to charge single-cell Li-Ion or Li-Polymer batteries. The USB port
allows the user to connect to the computer power supply.

The board incorporates a charging circuit, status LED, selectable solder jumper
for 500mA or 100mA charging current, external LED footprint, USB input,
mounting holes, and various holes for your own connectors. The USB port allows
the user to connect to the computer power supply. There is also a 'SYS OUT’,
which allows the user to connect the charging circuit directly to the batteries so it
will not be necessary to disconnect the charger each time you want to use it.
Figure 24 shown below shows the schematic for the Li-Ion Battery Charger.

Figure 23: Li-Ion Battery Charger

Datasheet

 45

This charger is used to charge 3.7 V batteries but the operating conditions for the
MSP430 in an input voltage between 1.8 V and 3.6 V, therefore a voltage divider
will need to be added to meet the power requirements for the microcontroller and
recharge circuitry. The recharge circuit is subject to change if adding the
resistors in series to get a desired voltage of 3.6 V doesn’t seem to work, then
another recharge circuitry will need to designed. Overall, this design remains
true until proven otherwise. The information in this section was gathered from
[8].

3.9.5. Battery Charger
Designing a system for Li-Ion batteries requires special attention to the charging
circuitry to guarantee a complete charging of the battery. For the puposes of this
project the group used the bq24090 Single-Input, SingleCell Li-IonandLi-Pol
Battery Charger. This device is targeted at space-limited portable applications.
The devices operate from either a USB port or AC adapter.

The bq24090 has a single power output that charges the battery. Below are key
features of the bq24090 which were considered:

• Charging
− 1% Charge Voltage Accuracy
− 10% Charge Current Accuracy
− Pin Selectable USB 100mA and 500mA Maximum Input Current Limit
• Protection
− 6.6V Over-Voltage Protection
− Fixed 10 Hour Safety Timer
• System
− Status Indication – Charging/Done

This charger was used to charge a 3.8 V Li-Ion battery in which its single output
power was regulated to meet the operating conditions for both the MSP430 and
Stellaris. In the next sections we will get into the details on devices that
regulates the output voltage of the charger to meet the power requirements of the
microcontroller.

3.9.6. Buck-Boost DC/DC Converter
The LTC3531 are synchronous buck-boost DC/DC converters that operate from
input voltages above, below or equal to the output voltage. These converters
provide high conversion efficiency over a wide range of load currents. Below are
key features of the LTC3531 which were considered:

• Regulated Output with Input Above Below or Equal to the Outpu
• Single Inductor

 46

• Up to 90% Efficiency
• VIN Range: 1.8V to 5.5V
• 200mA at 3.3Vout from 3.6V Input and125mA at 3Vout from 2.5V Input

The LTC3531 was used to regulate the input voltage of 3.8 V to 3.3 V to meet the
power requirements for the MSP430. The details for the design of the power
supply are under the design summary of this paper.

3.9.7. Charge Pump DC/DC Converter
The MCP1252 are inductorless, positive-regulated charge pump DC/DC
converters. The devices generate a regulated fixed of 3.3V or adjustable output
voltage. They are specifically designed for applications requiring low noise and
high efficiency and are able to deliver up to 120 mA output current. The devices
allow the input voltage to be lower or higher than the output voltage, by
automatically switching between buck/boost operations. Below are key features
of the MCP1252 which were considered:

• Inductorless, Buck/Boost, DC/DC Converter
• LowPower: 80µA(Typical)
• HighOutputVoltageAccuracy: ±2.5% (VOUT Fixed)
• 120mAOutputCurrent
• Selectable Output Voltage (3.3V or 5.0V) or Adjustable Output Voltage

The MCP1252 was used to regulate the input voltage of 3.8 V to 3.3 V to meet
the power requirements for the Stellaris. The details for the design of the power
supply are under the design summary of this paper.

3.10. Bluetooth Module
3.10.1. Overview
Bluetooth is a wireless communication standard for exchanging data securely
over short distances. After pairing the devices enter and dynamic master and
slave environment in which said devices can switch roles, by agreement.
Because Bluetooth is a multi-device environment, interfacing with a computer is
made easy as only one transceiver is needed. In a Wi-Fi set-up, each device will
need a wireless adaptor, and a wireless router and/or wireless access point will
manage communications. The main reason as to why Bluetooth makes sense for
our project is its accessibility, unlike Wi-Fi, that requires configuration of
hardware and software, the set-up procedure for Bluetooth is minimal. Also Wi-Fi
transmit higher power signals that, although produce much better range, also
consume more power. The added range is not essential, but the extra power
consumption is critical for the battery life.

 47

3.10.2. Bluetooth Modules
Bluetooth technology is extensively used for a variety of applications, especially
in the portable electronics market. Because of its popularity, there is a wide
selection of modules available for our project. In the selection process we
focused on power consumption, and ease of connectivity. Features like range
and operating temperature were not as critical because the design specifications
are not very demanding in this regard. The first module considered was the
Bluegiga WT-12. This module offers a range of up to 30 meters, with a nominal
output power of +4 dBm, data rates of up to 3 Mbps, and can be interfaced via
UART or SPI to the microcontroller. One nice thing about this module is a metal
shielding to prevent RF interface. We suspected that, because of the nature of
the project, there would be heavy RF are traffic, and this shielding would play an
important role. However, after testing another module, which lacked this feature,
we came to the conclusion that, for the project, the shielding is unnecessary as
the devices performed similarly. Although this module meets/exceeds most of our
design specifications, it is fairly expensive (25$) in comparison to other modules
like the RS232 TTL transceiver module (10$). Furthermore, our design makes
use of communications at 9600 baud, within 15 meters, and well within the
maximum temperature ratings; any low-end module should suffice. The
additional expense did not make sense for the design since other (cheaper)
modules performed well enough, albeit not as capable as the Bluegiga WT-12.
The other model that was reviewed was the RS232 TTL, and was chosen for the
reasons that follow.

3.10.3. RS232 TTL Transceiver Module
The RS232 TTL Transceiver module is a 3.3v operated (operating voltage of the
msp430g2553), Bluetooth Spec v2.0+EDR compliant, class 2 type output power
device that allows wireless connection to a computer. It is also programmable to
a variety of baud rates, as well as other settings like pass code and device
identification name. This module is specifically made to interface a Bluetooth
enabled computer and a microcontroller, as it cannot establish communications
between two embedded devices. One advantage of this device over other
Bluetooth modules is its usage of UART, a simple communication protocol. This
feature makes interfacing the RS232 TTL transceiver module with the
msp430g2553 simple, with minimal communication error at 9600 baud.
Configuration of the device is accessed through the logic level of a single pin
upon power-up. Once is this mode, simple commands terminated by \r\n are sent
over UART. By default the module is configured to 9600 baud, one start bit, 8
data bits, one stop bit, and no parity. A basic block diagram is shown in figure 25.

 48

Figure 24: Block Diagram of Trasceiver

3.10.4. Board Schematics
As can be seen in figure 26 below, the layout for the device is very bare bones.
This is beneficial because it reduces the bill of materials needed for the project
(Cost) as well reduce the possibility of errors during assembly, since none of the
group members have prior experience designing and soldering a custom PCB
board. This device was chosen for its functionality, but also because its layout
simplicity. Lastly the actual chip is very inexpensive; it can be found in online
sites such as eBay, and amazon for less than 10$ with shipping and handling
included. As stated in the design specifications, Low cost is one of the design
goals, and this module helps achieve that goal, without resulting in a notable
performance drop in the project.

RAM

2.4 GHz
RADIO DSP

MCU

I/O UART

XT
AL

Antenna

RAM

 49

Figure 25: Schematic of Bluetooth module with voltage regulator

3.11. PCB
As of now two PCBs were ordered for the camera and glove. In this section the
pricing of the PCBs were considered in which choosing the right PCB vendor was
critical for the project’s success. There are many vendors to choose from when it
comes to ordering this section; therefore it is extensive and detailed. The group
decided to set criteria for choosing the PCB vendor for the project. Because this
project requires particular specifications, a set of criteria were developed which
required the vendor to comply with this specifications to master the end result the
camera and glove. Later in this paper the details for the budget of the group will
be considered but is important to mention it in this section. It was determined
that price and completion time were considered as part of the criteria for this
project.
Because the project is set to a limited budget, it was needed to ensure that the
vendor offers PCBs within the designated price range. The maximum amount of
money allotted for the PCB is $200. However, the group set a goal to find a PCB
that is well under the maximum allotted price range. By setting a specific
maximum price range, the group was able to quickly eliminate vendors that do
not meet the proposed requirements for the PCB design.
Another criteria to consider is the time it takes for the PCB to be delivered which
would eventually was an important parameter to consider. The project is
restricted in schedule, therefore it was vital that a vendor is found to have a quick
turnaround time. Finding a vendor that has a fast turnaround will allow the team
to build this part of the project as early as possible. The PCB is the foundation for
the project; therefore, it is important that the team begins working with it so that
issues that could arise can be found earlier. Without the PCB, the project would
not succeed. This is why finding the right vendor is so important.
Also, the team has a standard size for its PCB, which is 12 square inches and 4
layers. By setting a PCB size for this project, it diminishes any chance of

 50

miscommunication regarding the ordering of the PCB. The size is important to
be considered due to the project requirements in which the wireless-wearable
mouse should weight less than 3 lbs. Setting this standard size for the PCB
allows the team to make sure that it fits the other design elements of the project.
When searching for the prices of the PCB, using the size requirements is easy to
draw a prize by selecting the size of the PCB. Therefore, the exact price is
known for the PCB from the specific vendor.
Out of the four group members no one is familiar with the PCB vendors. In order
to best vendor for the needs, the team decided that it was beneficial to research
five different vendors. Using developed criteria, the team was able to narrow
down the pros and cons of each vendor, as well as any additional companies
needed to contact, such as for assembly.

3.11.1. Express PCB
The first vendor to consider is ExpressPCB, which offers several convenient
services. This vendor includes several packages, which includes standard,
miniboard, production, protopro, 4 layer productions, and 4 layer protopro. The
option considered is the 4 layer production. This package allows the group to
capture the 4 layers needed for the project’s PCB. The 4 layer production allows
a more compact design, as well as eases the amount of work involved for layout.
Express PCB also assembles the PCB, making it less work on the design end as
far as contacting a company that assembles PCB’s. They also offer the PCB size
that the group is looking for. The total lead-time for Express PCB was 10 days.
The pricing was determined using a set formula. They particular vendor has a 10
day option, which adds option, $273 + (.68 * Number of boards * Board area in
square inches) + (.5 * Number of boards) – Quantity Discount + Shipping.
Express PCF requires an order of at least 2 PCBs in which the team will make an
order of two PCBs. The total cost for the PCB without shipping is $290. The
team hasd a set budget of $200 for the PCB, which wouldn’t meet the group
budget needs, the group decided to explore other options.

3.11.2. PCB4Less
The website PCB4less.com is a very known PCB manufacturer and offers a short
lead-time of 5 days. They offer the option to test the PCBs before sending them
out to the customer. By testing their products before delivery they can validate
that all specifications are met and the device is fully functional. This feature
assured the group that the PCB was build correctly and reduce testing time. This
website offers all of the services that Express PCB does however the way they
price their products is very different. PCB4less has a very complex quote system.

3.11.3. PCB Express
Another vendor which the group explored is PCBExpress is another excellent
website to order PCBs from. This particular vendor is not associated with the
vendor mention earlier ExpressPCB even though the names can be very similar.

 51

This vendor requires that at least two PCBs at a time be ordered. This vendor
also assembles the PCB like the other vendors researched. They offer the
correct PCB size for the project, and have a simple ordering system. The total
lead-time was 3 days.
For the group’s specifications, the total cost will come to $500 without shipping.
Because of PCB Express’ high cost, the group decided that this was not a valid
option for this project. The price exceeds the allotted amount by almost $200, an
amount that is too high for the group to even consider expanding the PCB
budget.

3.11.4. Ultimate PCB
After much research on PCB vendors the group stumbled upon the
website Ultimatepcb.com. This website was found to be very simple to
navigate and offers a much more user friendly quoting system. An
interesting feature about this vendor is that they offer many customization
options to the costumers. One of the things that called the groups attention
is that they allow the customers to order single PCBs rather than bulk
orders. This is a great advantage to the group since only two boards are
needed for this project. Ultimate PCB also offers a variety of sizes
which one of those are ideal for this project. The total turnaround time was
5 days.

Although this vendor has many great features to offer for this project they
are out of the budget. The price of the PCB from this vendor averaged
$230 without shipping. Therefore, it goes over the price range and all of
the group’s criteria.

3.11.5. Imagineering Inc.
Imagineering Inc. is another PCB vendor that was researched for this
project. The website for this vendor is also very user friendly and offers
many customization options. Although they meet all the PCB requirements
for this group they are outside of the price range for the group. The
minimum number of boards the group can order is 5 which also exceeds
the number of boards needed. This vendor also charges a tooling fee and
he total price after the $200 tool charge was approximately $635. The
lead-time is 7 days. It was after the group discovered the high price of their
products that this vendor was eliminated from the options.

3.11.6. 4PCB.com
Finally the group decided to research 4PCB.com. This website is very famous as
they offer special deals on generic size PCBs. Some of the advantages of using
this website is that they offer a free PCB layout software called PCB Artist. In this

 52

software you can layout the board and upload it so they can print it. Not only that
but the group will be able to order multiple boards at a low price. The boards
come with white legends, 2-Layers and are 60 square in. The boards are also
lead free, routed to overall dimensions and have all the wholes plated. the lead
time for this vendor is 5 days. For the price and many other reasons the group
will choose 4PCB.com as the PCB vendor of choice.

3.12. Host Computer
For this project it was require that we had a host computer to integrate with, this
project is after all a control device for a computing system. For the exact
specifications of the required system, it requires a PC that meets the
requirements for and has installed Microsoft Windows 7 or later version, and has
multiple free and operating USB ports. Because of the nature of the device being
created there should not be other requirements place specifically on the host
computer. With all processing of data happening on the MSP430 and Stellaris
the host computer should not have any computational load larger than that of a
typical optical USB driven mouse.

3.12.1. Drivers
For any external device to interface with a PC it must have a driver which tells
the system how the device behaves and how it is suppose to interact with the
system. These drivers hold the specific instructions that can be passed then from
the device to the host system and vise versa. For this project the host system will
be a Windows OS system. The Windows kernel-mode I/O manager manages the
communication between applications and the interfaces provided by device
drivers. Because devices operate at speeds that may not match the operating
system, the communication between the operating system and device drivers is
primarily done through I/O request packets (IRPs). These packets are similar to
network packets or Windows message packets. They are passed from operating
system to specific drivers and from one driver to another.

The Windows I/O system provides a layered driver model called stacks. Typically
IRPs go from one driver to another in the same stack to facilitate communication.
For example, a mouse driver would need to communicate to a USB hub, which in
turn would need to communicate to a USB host controller, which would then
need to communicate through a PCI bus to the rest of the computer hardware.
The stack consists of mouse driver, USB hub, USB host controller, and the PCI
bus. This communication is coordinated by having each driver in the stack send
and receive IRPs. The communication of the IRPs to and from the GRID device
driver must be synchronized properly for the whole stack to operate efficiently. If
the driver is part of a stack and does not properly receive, handle, and pass on
the information, it has the ability to cause system crashes.

3.12.2. Integration

 53

To integrate GRID to the host computer there are several items to consider. First
of which is how is GRID going to be connected to and communicate with the host
computer. To transmit their input, typical cabled mice use a thin electrical cord
terminating in a standard connector, such as RS-232C, PS/2, ADB or USB.
Cordless mice instead transmit data via infrared radiation (see IrDA) or radio
(including Bluetooth), although many such cordless interfaces are themselves
connected through the aforementioned wired serial buses. GRID was coded
using Bluetooth signal to communicate from the gloves and use PS/2 within the
device driver to communicate to the host computer. In default mode (called
stream mode) a PS/2 mouse communicates motion, and the state of each button,
by means of 3-byte packets. For any motion, button press or button release
event, a PS/2 mouse sends, over a bi-directional serial port, a sequence of three
bytes, with the following format:

Table 11: 3-byte packet

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 1 YV XV YS XS 1 MB RB LB
Byte 2 X movement
Byte 3 Y movement

XS and YS represent the sign bits of the movement vectors, XV and YV indicate
an overflow in the respective vector component, and LB, MB and RB indicate the
status of the left, middle and right mouse buttons (1 = pressed). PS/2 mice also
understand several commands for reset and self-test, switching between different
operating modes, and changing the resolution of the reported motion vectors.
Additionally, GRID has an extended version of this protocol to incorporate
information gathered by both the gyroscope and accelerometer. This allows the
user to execute hand gestures that GRID will interpret and pass to the computer
as events to be handled by the device driver.

Another item to consider when integrating GRID is timing. A mouse is usually
initialized to generate movement packets at a particular rate. The default rate is
100 packets per second if the mouse is being moved. A mouse also generates a
packet if a button is either pressed or released. This sample rate should provide
a good rate of transmission though if there are problems the rate can be
increased or decreased as appropriate.

3.13. Gesture Recognition Data Acquisition
3.13.1. Overview
Gesture recognition is the process of interpreting human actions/motions through
the use of mathematical algorithms. Common uses include algorithms to interpret
sign language, as well as facial expressions. In our project we hope to be able to
use sensor data (accelerometer, and gyroscope) to capture movement, be able
to detect pre-defined motions, and translate them into computer actions.

 54

3.13.2. Accelerometers
Accelerometers are electromechanical devices capable of measuring
acceleration forces. They are sensitive to static forces, like gravity, as well as
dynamic forces, like shaking the accelerometer. In our project we mainly care
about dynamic forces. Measures of static forces like gravity give us insight on the
orientation of the object by simple analysis of the vector component being
measured with respect to 1g, a unit of acceleration due to Earth’s gravity at sea
level. However, we will have access to a gyroscope, which provides more
accurate and complete information on the orientation of the object. There are
several parameters to differentiate accelerometers; the ones most important for
the design are: Number of axes, maximum swing, sensitivity, linearity, and
bandwidth.

The number of axes, like the name suggest, is the number of axes in Euclidean
space the accelerometer is sensitive to. 2-axis would mean the accelerometer
can measure changes in velocity in two perpendicular directions, X and Y.
Because natural human actions and mannerism are not restricted to a two
dimensional plane, if we hope to identify gestures with a high recognition rate, we
need only look at 3-axis accelerometers.

Maximum swing refers to the range of values the accelerometer can measure. As
an example in order to measure tilt using Earth gravity, a rage of ±1.5g would be
sufficient. According to Texas Instruments an Indy car driver in a corner feels
3gs, a Bobsled rider in a corner is subject to 5gs, and most humans are unable to
maintain consciousness under more than 7gs. From these numbers, we do not
expect to encounter acceleration readings higher than 3gs for hand motion as
any higher would be unnaturally fast.

Sensitivity relates to a large signal variation over small ranges in acceleration,
resulting in more accurate measurements. This aspect of the accelerometer is
the most crucial for our project. In order to extract the features of the signal more
easily, and with high recognition rate, there needs to be a clear distinction
between signal values from accelerations of little variation. Linearity is also
important since our model assumes a linear relation between the output signal of
the accelerometer and the external input. Figure 27 shows how realizable
accelerometers deviate from a linear relation.

 55

Figure 26: Deviation of Accelerometers

Bandwidth is a measure of the number of times a reliable acceleration sample
can be read from the accelerometer. Hand gestures produce relatively slow
changing signals, and thus, do not require a high sample rate in order to
accurately record the motion. Furthermore, as will be explained in section 5.1,
the recognition algorithm is of order !!(For signals of the same length) and the
MCU, having limited processing power and memory capacity, would not be able
to complete the algorithms within a second. Since one of our design
specifications calls for real-time response, we sacrifice some accuracy in terms
of the number of samples we read in order to save computing time.

There are various mechanisms that govern the functionality of the accelerometer:
Capacitive and Piezoelectric to name a few. In a Capacitive set up a micro
machined feature produces a capacitance; the change in capacitance due to
acceleration is measured. Piezoelectric depends on a piezoelectric crystal that
produces an output voltage under compression or stretching. Figure 28 shows
the different types of accelerometer and their price vs. performance.

 56

Figure 27: Cost vs. performance of the available accelerometer technologies.

3.13.2.1. MMA8452Q Accelerometer
One of the devices that we looked at was the MMA8452Q accelerometer from
Sparkfun. The MMA8452Q is a digital accelerometer with a maximum resolution
of 12 bits, and using a capacitive micro-machined mechanism. It operates at user
programmable scales of ±2g/ ±4g/±8g as well as user programmable interrupts
via two external pins. Additionally the output data rates range from 1.56 Hz to
800 Hz, much more than needed for the design. An important feature of this
device is its low-power capabilities using motion interrupts, which also offloads
the MCU by not requiring polling of the accelerometer. There are six configurable
interrupt sources in the MMA8452Q: Data Ready, Motion/Free-
fall/Pulse/Orientation/Transient/Auto-Sleep. Each can be enabled or disabled
through software. The interrupt generation architecture is more clearly depicted
in figure 29.

CAS

Surface MM Capacitive

Bulk Capacitive

Piezo-film

Piezo-electric,
Electromechanical Servo

Vibrational

High

Low

Low Cost High

 57

Figure 28: Interrupt controller block diagram.

Advantages of this device include its relative low cost (10$ at Sparkfun), high
sensitivity (1024 counts/g in 2g mode), as well as low pin count. The chip itself
only has 16 external pins, with some being tied together to ground or Vdd. The
device provided a way to check the transducer functionality without any external
stimulus via a self-test. Like most controllers there is a trade-off between
resolution and power. The highest resolution can be achieved at 1.56Hz by
oversampling at the cost of an increase in the power requirements. Overall the
MMA8452Q is a flexible and powerful chip that meets the project requirements.

3.13.3. Gyroscopes
A gyroscope consist of a disk with a high rate of spin mounted on two gimbals, or
rings, as to minimize external torque. Due to the disk high moment of inertia and
angular momentum, the system resists changes in orientation for as long as the
disk keeps rotating. Since the gyroscope maintains its orientation, by suspending
it in a special cage, we can then proceed to measure the orientation of the
housing with respect to the spinning axis of the gyroscope. Some of the uses for
gyroscopes include: computer pointing devices, navigational tools, and portable
electronics. There are several different technologies associated with the
fabrication of gyroscopes, among them are: micro electro-mechanical systems
(MEMS), fiber optic gyroscopes (FOG), and vibrating structure gyroscopes (VSG)
to name a few. A general depiction of the forces at work in a gyroscope can be
seen in figure 30.

 58

Figure 29: General gyroscope depiction

Because of their low cost and accessibility, we will focus on MEMS gyroscopes
for our design. Furthermore, for ease of use, as well as to lower the pre-
processing of the signal by the microcontroller, we have limited the groups
selection to triple-axis digital output gyroscopes. The first model researched was
the ITG-3200 triple-axis digital-output gyroscope by InvenSense.

3.13.3.1. ITG-3200 Digital Gyroscope
The ITG-3200 is a single chip gyroscope solution in an extremely small
4x4x0.9mm package. It features enhanced bias and sensitivity temperature
stability, reducing the need for user calibration. Additionally the low frequency
noise of the device is lower than previous generations making for a more
accurate device. It comes equipped with a 16-bit analog-to-digital converter for
digitizing the analog gyroscope outputs, and is capable of two wire Fast-Mode
I2C (400kHz) communications. The most appealing feature of this chip is that,
due to gyroscope technology breakthroughs implemented on the chip, it
manages to deliver a 50% power reduction when compared to competing multi-
chip gyroscope solutions. According to the ITG-3200 product specification, the
operating current is 6.5mA while the standby current is just 5uA at a reference
voltage of 3.3v, resulting in minimal power consumption.

 Power dissipation can be controlled through the power management register.
This design depends on the user to indicate when to “listen in” for gyroscope
gesture, therefore we will take advantage of this by putting the gyroscope to
sleep mode. The ITG-3200 digital gyroscope is flexible enough as to allow “stand
by” mode on independent axis.

 59

The controller will function based on events, or interrupts, and the ITG-3200
provides an interrupt pin. Interrupts are configured and used through the interrupt
configuration and interrupt status registers, 23 and 26 respectively. The interrupt
configuration register allows the user to define: the logic level on the pin, an open
drain or push pull configuration, for data to latch until the interrupt is clear or a
50us pulse, the clearing method, and finally the enable bits for the interrupt
sources. Through the interrupt status register we can understand the source of
the interrupt; however, it is limited to only raw data ready or PLL ready.

Figure 30: ITG-3200 block diagram.

This gyroscope package, much like the MMA8452Q, is of a low pin count,
reducing the bill of materials, and thus the overall cost. The cost of the chip is
also very affordable. Sparkfun sells it for less than 30$, but it can be found in
online sites, like eBay, for 20$. Additionally InvenSense offers of to 6 chips as
free-samples for student projects like this one (Academic). A typical operating
circuit for the ITG-3200 can be seen on figure 32.

 60

Figure 31: Typical circuit configuration for the ITG-3200.

3.13.3.2. MPU 6050
The MPU-6050, also by InvenSense, features a three-axis accelerometer, as well
as a three-axis gyroscope. It is set apart from the other contenders in its inclusion
of a digital motion processor. At this time, documentation on how to take
advantage of the DMP is scarce, but according to InvenSense the device is
capable of motion detection like: Free-fall, high gs in any of the three axes,
panning, zooming scrolling, zero-motion, tap as well as shake.

The option to add an external magnetometer, or any other digital sensor, and
interface it with the MPU 6050 gives it an edge for future upgradability. The
device gives the user two options to access the external sensor. The first is
“pass-through mode”, in which the MCU communicates directly with the external
sensor via I2C. The second option is that MPU serves as a Master for the
external sensor and store the output data in its own data registers. An advantage
of the latter option is that the “data ready” interrupt includes external sensor data,
which minimizes the number independent read operations required. All
communication between the sensors, as well as with the MCU, is done via I2C
minimizing the number of lines.

Like the other devices we looked at, the MPU 6050 uses three 16-bit analog-to-
digital converters for the gyroscope outputs, and another 3 analog to digital
converts for the accelerometer. It is clear that this device does not sacrifice
speed to incorporate both a gyroscope and an accelerometer as they function
independently of each other (No multiplexing of A\D). The gyroscope’s and
gyroscope’s full scale range are user programmable, their range being: ±250,

 61

±500, ±1000, ±2000/sec for the gyro and ±2g, ±4g, ±8g, ±16g for the
accelerometer. Both scales exceed the minimum required for accurate hand
gesture recognition. The sampling rate of both gyroscope and accelerometer
outputs is user defined, and can be subject to a digitally-programmable low pass
filter. The MPU can be programmed to send an interrupt signal to the MCU when
a write operation has been completed to all the output registers. In the case
where sampling rates differ the MPU will send the slower sample multiple times
until a new value is written. These values can be held in a 1024 byte FIFO buffer
that allows the system processor to read data in burst, and then enter a low-
power mode while the MPU collects more data. An Interrupt can also be enabled
to indicate when the FIFO buffer is full.

The MPU 6050 provides a better solution for sensor data acquisition than the
independent ITG-3200 and the MMA8452Q. The device provides advantages in
key areas like: size on board, bill of materials, cost (the MPU 6050 is priced lower
than the ITG-3200 and the MMA8452Q), and power consumption. Lastly, it’s
more convenient for the program/programmer to have all the data in on place, as
opposed to accessing different slave addresses. Our program will take
advantage of the FIFO buffer to burst read sensor data within a given time-frame,
a process not possible on the competing devices.

Figure 32: MPU-6050 typical operating circuit.

3.14. Communication Protocols
3.14.1. The UART protocol
UART or Universal Asynchronous Receiver\Transmitter protocol is a standard
serial communication subsystem of a computer. UART transmit a byte of data by
sending individual bits in sequential fashion. In asynchronous communications a
transmission starts with a “start bit”, captured by the receiving device. In our case
since the TXD and RXD lines idle “high”, a start bit is signified by pulling the line

 62

“low”. Once the receiver captures this event, it offsets its timer by one and a half
the bit time for the given clock source and baud rate. The timer will generate and
interrupt during the middle of the first transmitted bit to be read. This process is
repeated until the 8th bit is read. As it’s evident, the receiver and transmitter must
both agree on a specific baud rate, otherwise bit times will be off resulting in an
unsuccessful transmission or false data. A single byte UART transmission can be
seen in figure 34.

Figure 33: single byte serial transmission in UART protocol.

Timing requirements are more clearly depicted in figure 35, and from then it can
be seen that the clock source must have little variation over the operating
condition to avoid sampling during transitional periods.

Figure 34: UART bit time over MCU clock cycles.

Another source of error is the selection of higher baud rates with respect to the
microcontroller clock speed. As the baud rate approaches the MCU clock,
discrete time intervals may not land during the desired sampling time. As such
the msp430g2553 allows UART speeds of at most one-third of the module’s
clock source. The msp430g2553 also provides a modulation step to minimize
timing error. The modulation register values are calculated using the following
formulas:

! =
!!"#$%

!"#$!"#$!"#$% = !"# ! !"#$%& = !"#$% (! − !"# ! ×8)

 63

The msp430g2553 dedicated UART module runs independent of the CPU and
can be sourced from the ACLK or SMCLK. An advantage the group will exploit by
entering low power mode and only sourcing the clock signal used by this module.
Furthermore it minimizes the transmission error by including a variable
modulation stage to compensate for timing errors. Typical timing errors of various
configurations of source clock and baud raters are given in table 12. Lastly UART
protocol uses a two wire interface: TXD, and RXD. Due to the limited availability
of GPIO in the mspg2553 the RS232 TTL Transceiver module provided the best
wireless solution for our project.

Table 12: typical transmission errors given various BRCLK clock speeds as well as baud
rates
BRCLK
frequency
[Hz]

Baud
Rate
[Baud]

UCBRx UCB
RSx

UC
BR
Fx

Maximum TX
Error [%]

Maximum
RX Error
[%]

32,768 1200 27 2 0 -2.8 – 1.4 -5.9 – 2.0
32,768 2400 13 6 0 -4.8 – 6.0 -9.7 – 8.3
32,768 4800 6 7 0 -12.1 – 5.7 -13.4 – 19.0
32,768 9600 3 3 0 -21.1 – 15.2 -44.3 – 21.3
1,048,576 9600 109 2 0 -0.2 – 0.7 -1.0 – 0.8
1,048,576 19200 54 5 0 -1.1 – 1.0 -1.5 – 2.5
1,048,576 38400 27 2 0 -2.8 – 1.4 -5.9 – 2.0
1,048,576 5600 18 6 0 -3.9 – 1.1 -4.6 – 5.7
1,048,576 115200 9 1 0 -1.1 – 10.7 -11.5 – 11.3
1,048,576 128000 8 1 0 -8.9 – 7.5 -13.8 – 14.8
1,048,576 256000 4 1 0 -2.3 – 25.4 -13.4 – 38.8

3.14.2. The I2C Protocol
The communications protocol used for interfacing the StellarisLM4F120 with any
of the aforementioned digital sensors is I2C. I2C, also known as a two-wire
interface, is a multi-master, multi-slave environment meaning that, should the
design make use of the ITG-3200 and the MMA8452Q, no additional bus lines
are required (No additional pins on the StellarisLM4F120). The I2C bus consists
of two bidirectional open-drain lines, the Serial Data Line (SDA), and the serial
clock line (SCL), with both lines needing pull-up resistors for proper functionality.
Through some testing it appears that the value of the pull-up resistor is not
critical; the bus operated with values in the range of 2k to 47k.

 64

Figure 35: I2C connection diagram.

Under normal transmission the SCL line is driven by the master, with the SDA
controlled by the master for a “write” operation and by the slave for a “read”
operation. No transmission can be initiated by any of the slave devices over the
I2C bus. The I2C protocol allows for multiple masters but, since the design is a
one master environment, it is not relevant to the project and omitted in this paper.
Transmission is initiated by the master with a start sequence, defined as a
transition from high to low on the SDA line while the SCL line is high. Following
the start sequence data is transferred in 8 bit packets. All data bits must be
stable while the SCL is high for a successful transfer; meaning changes in the
SDA line must occur while the SCL line is low. Terminating a transfer is also up
to the master. In order to cease communications and free the I2C bus a stop
sequence must be issued. The stop sequence consists of a transition from low to
high on the SDA line while the SCL line is high. During a “read” operation, and in
the event the slave is not ready to send data, it can hold the SCL line low. This is
called “clock stretching” and allows the slave to place the data on its shift
registers when ready. Furthermore, clock stretching prevents the master from
continuously sending out clock pulses with no response by the slave.

Figure 36: I2C Start and Stop sequences.

3.3 V

R R

SCLSDA

MASTER SLAVE 1 SLAVE 2

SDA

SCL

Start sequence Stop sequence

SDA

SCL

 65

The first sequence of 8 bits is made up of 7 data bits, which refer to the slave
address to be accessed, and on read/write bit to specify the type of transfer. The
I2C protocol allows for 10-bit addressing mode, but is not relevant to the project
and thus omitted in this paper. Once the master sends the last data bit, and if the
transmission was successful, the slave must send an ACK (acknowledge) signal
by pulling the SDA line low. After the slave address is sent and acknowledged,
the next 8-bit sequence specifies the slave register to be accessed. For a write
operation, the register number is first sent, followed by the first byte of data (data
written to the register specified), subsequent data transfers are written to the
slaves registers in ascending order. A read operation is slightly more
complicated. In order to read from a given register from the slave, the master
must first write that register address, thus a reading sequence starts with a write
operation. Once the register address has been transmitted the master sends a
repeated start bit, followed by the slave address with the read/write bit set. The
slave proceeds to continuously send data until a stop sequence is sent.

Figure 37: I2C read sequence starts with a write operation (R/W set to write).

Figure 38: I2C after register has been written, begin to read (R/W set to read).

The main drawback of this serial communication protocol is the relatively slow
transmission speeds. All the digital sensors that have been researched transmit
in “fast-mode” which clocks at 400 KHz. Luckily, hand-based gestures are
relatively slow-changing signals, therefore this max speed of 400 KHz is much
faster than the aforementioned sensors sampling rate.

3.15. Gesture Recognition Algorithm

 66

3.15.1. Dynamic Time Warping
Dynamic Time Warping is a well-known algorithm/technique that outputs a score
based on the similarities between two given (time-dependent) sequences, under
certain restrictions. Dynamic Time Warping matches points in the sequences in a
non-linear fashion. It also has been extensively used to compare speech patterns
in automatic speech recognition scenarios. It is expected that similar success can
be achieved in pattern recognition via gyroscope and accelerometer
measurements.

The main requirement for this algorithm to function is that both data sequences
(signals) be sampled at equidistant points in time. Since it is up to the user to
configure the sampling rate of the gyroscope and accelerometer, this
requirement can be met using any of the aforementioned devices. This approach
is relatively simple in complexity (Compared to Hidden Markov models), and can
also be adapted to meet the hardware limitations in a microcontroller. In the
paragraphs that follow, the mathematical background of the model will be
explained and adapted to a microcontroller friendly design.
Prior to diving into the algorithm, the user must first define the “cost function”.
“Cost” refers to the measure of the difference between matching points in the
sequences. There are several ways to compute this difference, some are:
Manhattan difference, and Euclidean distance.

!! = (!!! − !!!) !! = !! − !!
Definition of the Euclidean and Manhattan distances.

The first step in computing the score of the DTW algorithm is to calculate the
difference, or Cost matrix. The difference matrix is obtained by aligning one
signal in the X-axis and the other in the Y-axis and writing the output value of the
cost function on every matrix index C[i,j] corresponding to inputs Q[i], and P[j]. As
previously mentioned the cost measure can be the absolute value of the
difference (preferred), or the root of the squared difference. The msp430g2553,
being of a RISC structure, takes multiple cycles to compute a more complex
operation like multiplication and square roots, therefore using the absolute value
of the difference is less computationally taxing on the system, and a better option
for this project. The difference matrix for two simple signals in depicted in figure
40.

 67

Figure 39: Difference (Local cost) matrix for two signals S1= {1, 2, 3, 4, 5} S2= {1, 3, 2, 5, 6}
Signal 1
5 4 2 3 0 1
4 3 1 2 1 2
3 2 0 1 2 3
2 1 1 0 3 4
1 0 2 1 4 5
 1 3 2 5 6
 Signal 2

After the difference matrix is found the next step is to find the alignment path, or
warping path. The warping path runs through the “valley” of the local cost matrix,
since these points represent very high similarity. At this point the user is at liberty
to apply a set of conditions for the warping path for optimizing performance, and
accuracy.

1. Boundary condition: p1 = (1, 1) and pk = (N, M). This condition ensures
that the starting and ending points of the warping path match those of the
first and last of the aligned sequences.

2. Monotonicity condition: n1 ≤ n2 ≤ … ≤ nk and m1 ≤ m2 ≤ … ≤mk. This
condition preserves the time-ordering of the points.

3. Step size condition: This criteria limits the warping path from long jumps
(shifts in time) while aligning sequences. There are several versions of the
step size condition, but the basic step size condition is formulated as pl+1
– pl in {(1, 1), (1, 0), (0, 1)}.

The heart of the algorithm is finding an optimal warping path, as we will use this
path as a measure for similarity. Testing all possible warping paths in order to
find the optimal on would be computationally challenging due to the exponential
relation between the lengths of the signals and the total number of warping
paths. To overcome this challenge, the standard dynamic time warping algorithm
employs dynamic programming to reduce the complexity to O(MN). To do this
the algorithm builds the “accumulated cost matrix, or global cost matrix” defined
as follows:

1. First row: ! !, ! = ! !!,!!
!
!!! , ! ∈ !,! .

2. First column: ! !,! = ! !!,!!!
!!! , !" ∈ !,! .

3. All other elements: ! !, ! = !"# {! !− !, !− ! , ! !− !, ! , ! !, !−
! }+ ! !!,!! , ! ∈ !,! , ! ∈ !,! .

Like the local cost matrix, the time to build this accumulated cost matrix is of
order NM. The warping path can be found by backtracking from point pend = (M,
N) to the pstart = (1, 1) following the greedy strategy, which will be discussed
shortly.

 68

Figure 40: Optimal warping path of two time-dependent sequences.

3.15.2. The Greedy Algorithm

The act of finding the shortest warping path is an optimization problem. The
“greedy” algorithm provides an intuitive way for finding the optimal path through
the difference, or cost matrix. The algorithm is limited in the sense that is only
takes into account the current phase, without regard for future consequences.
The basic premise is that by choosing a local minimum at each step, the end
result will be a global minimum. A simple example of the workings of this
algorithm is counting money. In the scenario where one needs to count to 6.39,
in US dollars, the algorithm will take the largest bill that does not overshoot the
amount at each step in order to reach the value using the least number of bills.
However, this approach would not work in a monetary system with coin values of
1, 7, and 10. In such a system, using the greedy algorithm the result would be 5
coins of value 1, and 1 of value 10. Clearly this is not the optimal solution as one
could have chosen two coins of value 7 and 1 of value 1. In a similar fashion to
the restrictions imposed on the warping path, several requirements can be
established to improve the accuracy of the greedy algorithm. These additional
criterions can be seen in the Dijkstra, Kruskal, and Prim algorithms. We expect
that using the standard greedy algorithm starting that the last index of the
accumulated matrix, and backtracking to the start of the matrix we can obtain an
optimal warping path through the Cost matrix relating the two signals.

 69

Figure 41: Greedy algorithm choices at each step. (Blue depicts choice made)

3.15.3. DTW Optimization
There are several studied ways to improve the accuracy and the computing time
of the dynamic time warping algorithm. An obvious, but efficient way of reducing
the order of the algorithm is to down-sample, or use linear approximations of the
time signals. Because the order of the algorithm is N M, where N and M are the
lengths of the individual sequences, a reduction by ½ of the number of points in
each sequence would result in a 16x speed up. In the design however, the group
fully controls the sampling rate of the gyroscope and accelerometer, so no pre-
processing steps were taken with regard to the number of samples.

3.15.4. Step Function (Slope Constraints)
As previously stated when there are no differences between the signals being
tested, the optimal warping path will run through the diagonal i=j of the Cost
matrix. As the time-series start to deviate from one another the optimal warping
path also diverges from the diagonal by matching similar time-axis fluctuations.
While the DTW algorithm obtains the optimal alignment of the time-series,
sometimes it might create unrealistic correspondences between features by
aligning very short features of one series with very long ones of the other. In
order to prevent this phenomenon the warping path is subject to constrains on
each step. The constrains may vary, but generally after moving in the same
direction for k consecutive points the path is forced to step l points in the diagonal
directions.

5

3 6

4 218

 70

Figure 42: Example of Slope Constraints

3.15.5. Weighting
Another proposed improvement to the classic dynamic time warping algorithm is
the introduction of weighting. The measure of the distance between time series
as the cost function, which basically is a summation of pairwise distance between
corresponding points S[i], Q[j]. By adding weights to the cost of each distance
based on the step direction we can penalize or favor certain types of point-to
point correspondence. This method has been tested by using symmetric
weighting for Japanese speech recognition with favorable results. I our design we
don’t expect to include this feature, unless recognition accuracy is not
satisfactory upon testing.

3.15.6. Global path constraints
Two of the most widely used constraints are: the Sakoe-Chuba Band, and the
Itakura Parallelogram. These global restrictions essentially reduce the area of the
accumulated cost matrix through which the DTW algorithm can operate. The gray
segments of figure 44 show the available steps for the warping path. This limiting
approach introduces a speed up in the computing time of the DTW algorithm by a
constant factor. The constraints work well in domains where the optimal path is
expected to be close to a linear warp, and passes through the cost matrix
diagonally in a relatively straight line. For cases unlike what previously mention, it
is possible the algorithm will fail to obtain an optimal warp path if it is not
bounded by the band/parallelogram limits.

 71

Figure 43: Sakoe-Chuba Band (Left) and the Itakura Parallelogram (Right)

4.0 Project Hardware and Software Design
4.1. Camera
4.1.1. Extracting the Camera Module
In this project the group decided to use the Pixart IR sensor found inside the Wii
remote controllers. In order to obtain this module the group drilled the outter
screws of the controller and removed the circuit board. The picture below show
the wii remote opened with all its parts.

Figure 44: Opening the Wii Remote

Once the IR sensor was indentified the group desoldered it very carefully.
Excessive amounts of heat could result into damaging the camera module. This
module consisted of 7 pins and 2 latch pins. Below there is a picture of the Wii
controller PCB and the apot where the camera was originally placed.

 72

Figure 45: Desoldering the Camera Module

4.2. Microcontroller
4.2.1. Program Overview

In order to meet the original specifications, the design makes use of the MPU-
6050 as well as the RS232 TTL transceiver module. The StellarisLM4F120
communicates with the MPU-6050 using the I2C bus, while the RS232 TTL
transceiver module uses UART. Upon power up the Stellaris LM4F120 will have
to initialize both buses and modules. The initialization procedure is as follows:

1. Set up clock system on the StellarisLM4F120 to source the USCIA and

USCIB modules from the Sub main clock at 1 Mega Hertz.
2. Input correct the control register values in USCIA corresponding to 9600 baud

and the appropriate modulation index based on the formula provided in the
device data sheet. Likewise, input control register values in USCIB
corresponding to I2C communications, single master environment, and 7-bit
addressing.

3. Initialize 3 circular buffers to store continuous gyroscope data.
4. Ask the user to input the “standing conditions” in order to compute the “trigger

values”.

The circular buffers take advantage of the overflowing conditions for an unsigned
data type. The range of an unsigned char type is 0 – 256, once the upper limit is
reached should the user increase the value by one, it will result in the carry flag
to be set and all bits of the char type will revert to 0 (the overflow and carry flags
are ignored). This successfully creates a circular buffer with minimal
maintenance of the index. Standing conditions refer to the user rest orientation,
acceleration is assumed to be zero aside from that due to gravity. Triggers
values are those that once encountered in a reading will trigger the recognition
algorithm on the last X number of stored gyroscope values. Globally once the

 73

standing conditions are stored and the triggers calculated, the StellarisLM4F120
will go into Low power mode, starting back up only when data ready interrupts
are sent by the MPU-6050. This cycle will continue indefinitely, eventually
overwriting the oldest data in the buffer, until a trigger value (within a certain
tolerance) is read over I2C.

Figure 46: Circular buffer implementation

4.2.2. Power Supply Design
To begin the design portion for the power options first lets consider the chip
configuration. The StellarisLM4F120 has two pins for power that correspond to
the high and low states for the digital logic, which are the Vcc and Vss
correspondingly. Typically the Vss is grounded and the Vcc is usually in the 1.5-
3.6 V range, depending on the application the application that is being used.
Note: on the value line devices, digital circuitries are labeled as DVCC and
DVSS, with the D referring to the digital circuitry. Other devices have a separate
AVCC and AVSS for analog signals and peripherals. For these devices, an A
and D supply pins are tied to each other.

One thing that must be done in all designs regardless of the power source is
every StellarisLM4F120 device has a RST/NMI pin, which allows the user to
reset the chip externally by grounding that pin. For a button to behave as an
input, the pin needs a definite default state which either it is grounded for active-
high buttons or Vcc for active-low buttons. In order for a chip to be powered, the
RST pin must be tied to Vcc. Note: that a direct wire is not a safe method of
doing this; if a reset is triggered and the pin is grounded, it would short out the
power supply. A pull-up resistor is required and was implemeted. Shown below
in figure 48 is the circuit configuration for a pull-up resistor a resistor value of 47
kΩ is picked for the typical supply voltages one would use for any
StellarisLM4F120 design:

 74

Figure 47: Pull-Up Resistor Circuit Configuration

Another aspect that was considered for the schematic shown above is on the Vcc
pin two capacitors can be added for filtering purposes. One of these is a 0.1 µF
capacitor and the other a 10 µF capacitor. These capacitors are used to filter the
power input, by which we mean keep any fluctuations in the power supply from
affecting the value of Vcc. You will see below that many suggested designs for
regulated power supplies use a 10 µF capacitor or similar on their output, and
you may be able to get away with not using another on the StellarisLM4F120 if
you use one of these power sources. In addition, connecting a small 1 nF
capacitor to the RST to ground. Since the group did not see any fluctuations and
sporadic resets then adding a capacitor was not necessary.

The 0.1 µF filtering capacitor will be included if we see changes in power. Digital
circuits, especially when run at higher frequencies, can be vulnerable to noise
from pins switching between high and low. This capacitor is used specifically to
filter out that noise, and works best if it can be physically located close to the Vcc
pin on the StellarisLM4F120. The information in this section was gathered from
[2].

Since this device is a very low power consumer in comparison to other
microcontroller. This would eliminate the need to run additional cables, or
replace batteries whenever the circuit dies. All that would need to be changed is
adding a circuit that ramps the input voltage supplied to the circuit, down to what
the units use.

Given the fact that the accepted voltage for the StellarisLM4F120 is in the range
from 1.8V to 3.6V. To keep the cost per unit down and still get good power
output and battery life, lithium-ion meets the requirements of this project. With
the voltage and cost restriction, we are limited to either using 3.6V or 1.2-volt
cells connected in series batteries in series until the desired voltage was
obtained. Figure 49 shows a rechargeable battery-powered system that uses TI’s
BQ24090 to save battery power.

 75

Figure 48: Battery-Power System Block Diagram

4.2.2.1. LED Indicator
This reference design using two different color LEDs to indicate the stage of the
charge process. If there is no battery insert, all LEDs are off. If the charging is in
processing, the red LED will remain on until the battery is fully charged. A green
LED will come on once an input voltage is plugged in which in this project it will
be the mini USB on the circuit.

4.3. Microprocessor
4.3.1. Design Tools
4.3.1.1. Development Board
A development board is a printed circuit board with circuitry and hardware
designed to facilitate experimentation with a certain microprocessor. It provides
all the overhead circuitry such as power circuitry, programming interface, basic
button inputs, output indicators (LEDs) and Input and output pins, etc.

Working with development boards is a great way for the designer to practice
using the choice programming language as well as to test a certain project before
jumping into his own board design. Using a development board helps the
designer to determine if the design really works. It is mainly used for educational
purposes. Moreover it is important that the designer determines the development
board functions properly and that these functions will satisfy the project
requirements.

 76

Once the designer becomes comfortable programming the development board it
will be up to the designer to develop his own printed circuit board or to simulate
one from the development board used for practice. If a new board is recreated
from the design of an existing development board a disclosure will be made to
give credit to the manufacturer. In this project it is very likely for the designer to
recreate a certain part of the development board used for practice. For the
purposes of this project the designer chose the StellarisLM4F120 launchpad by
Texas Instruments

4.3.1.2. Development Language
The development language used for the MSP430 and the StelarisLM4F120 was
C-language. The group decided to use C because it is one of the most familiar
languages as well as versatile for the project purposes.

4.3.2. MSP430 Design
4.3.2.1. Operation Procedure
At the start of the program the MSP430G2553 MCU initialized its Universal Serial
Communication Module for I2C communications on UCB0 and UART
communications on UCA0. The MCU’s Main clock was sourced from the internal
Digitally Controlled Oscillator (DCO) at 16 MHz, The Sub-main clock (SMCLK,
Also sourced from the DCO) passed through 1/4 divider resulting in a 4 MHz
clock rate. UCB0, sourced from the SMLCK allows the usage of Low Power
Mode 0 (CPUOFF) during interrupt driven transmission. Because UCA0 is
sourced from the external 32 KHz crystal, during transmission to the Host
computer, as well as idle delay resulting from the camera’s maximum sample
rate of 100 Hz, the MSP430 will remain in LPM3, effectively turning off the CPU
as well as the DCO and consuming only 0.7 micro Amps. The Master (MSP430)
will initiate a read operation on the I2C Bus every 1/100 of a second, and proceed
to decode the camera’s internal registers. If the camera detected an object the
MSP430 would send 4 bytes (2 bytes per coordinate axis at a 10 bit resolution)
on the UART line corresponding to the X and Y coordinates of the object. Else, if
a left or right click occurred the upper 6 bits of the first byte send would be used
as command bits, signaling the host that a click has occurred or to wait for the
second byte of coordinate information.

4.3.2.2. Camera PCB
After researching companies to provide the printed circuit boards the group
chose Advanced Circuits. The decision was made on the price and numerous
advantages provided by the company. Some of these advantages were gathered
from [30] and are:

• Free PCB layout software, Eagle CAD
• Able to order multiple boards at a low price (the project requires 2)

 77

• White Silk Screen
• Lead Time- 5 days
• 2-Layers
• 0.062" thickness
• 1 oz. cu. plate
• Up to 60 square in.
• Lead Free
• All holes plated

 Moreover a figure of the final msp430 board design is provided below:

Figure 49: Camera Eagle CAD PCB

 78

Figure 50: Camera Printed Circuit Board

4.3.3. Stellaris Design
4.3.3.1. Operation Procedure
At the start of the program the Stellaris MCU would initialize its Clock system (80
MHz) as well as the various peripherals being used. Port B is used for UART1
and would transmit to the Bluetooth module. Port A will be used for I2C
communications to the mpu6050 with the interrupt pin connected to pin 7 on
Port B with a falling edge trigger. TIMER0A is used to control the PWM output
from pin 6 to the gate of the transistor at a 50% duty cycle with frequency of
1MHz. A second timer, TIMER1A, is used to control the duration of the 38 KHz
pulses for the right and left click distinctions. The 38 KHz pulses are activated on
the falling edge (Due to button press) of pin 5 and 3 on ports A and D
respectively. The MPU is configured tosend interrupts when a full write cycle has
been completed on its internal registers, as well as if high accelerometer date is
detected on any axis. High Gs interrupts depend on the threshold force and the
duration of the motion. For every sample, if it meets the threshold, a counter is
increased; once the counter reached the duration value and interrupt is sent.
The Stellaris will read accelerometer data from the mpu as dictated by the data
ready interrupt and will store the values in a circular buffer of type int with an
unsigned character type used as the index variable. Once the index reaches a
value of 256, the index will overflow back to 0 on the next sample. Lastly the
Stellaris will check the current sample against a “trigger value” which will signify
a possible gesture has been performed. If the trigger flag is set, the stellaris will
perform the DTW algorithm on the last 20 sampled values on the Z-axis and
determine if it matches the template. Lastly, the MCU will transmit the
corresponding command byte through the UART line to the host computer.

4.3.3.2. Glove PCB

The Stellaris PCB was ordered from the same place as the camera PCB which
means that a lot of its features are very similar. This circuitry draws a bit more
current but its 1 ounce copper traces are still good for its max current of 150mA.

 79

Below there is a picture of the PCB that was designed by the group although it
was not used in the final presentation.

Figure 51: Glove Eagle CAD PCB Design

Since the group had difficulties with placing the 64-pin Stellaris chip on the PCB
due to some traces being wronged, they decided to use the Stellaris launchpad
and a proto board for the final design. The proto board had all the components
soldered in and a set of sockets that would hold the Stellaris launch pad on top.
Below there is a picture of the launch pad and another one of the bottom view of
the proto board.

 80

Figure 52: Top View of Glove PCB

Figure 53:Bottom view of Glove Proto Board Design

4.5 Image Processing Algorithm
The Pixart IR sensor not only streams video but it also performs the image
processing required for this project. This is done by capturing video capture and
performing image processing. The image processing consists of algorithms such
as the detection of the LEDS which were applied to the digitalized video signal
before it is sent to the monitor.

4.6 Aesthetics
4.6.1 Glove and Mount

 81

The glove has a 2" X 2.5" circuitry on the back of the hand. As a result of the
small size of this circuit it makes it simple to detach and can be placed on the
hand of choice of the user to accommodate right and left handed users. The
index finger has an LED attached on the palm side. The LED will be power via an
extension cable running from the circuitry in the back of the hand for maximum
comfort ability and flexibility. The wire extension will be sawn in so it is
comfortable and permissive when the glove is on.

The push buttons used for clicking will be place in the middle finger. In the top of
the middle finger will be the left click because that is a more natural movement to
make and left clicks are used much more often. The right click button will be
placed in the lower side of the middle finger because right clicks are less frequent
than left clicks and that movement is comfortable for the user yet somewhat
forced. The wire extension of these buttons will also be placed outside of the
glove. Below there is a pictorial representation of the glove and its component
locations

Figure 54: Master Hand

Master Hand Features:
• Gyroscope and Accelerometer: Arduino MPU 6050
• Microcontroller Launchpad: Stellaris LM4F120
• Near-IR LED (940nm & 60˚ viewing angle)

 82

• Push buttons- clicking
• USB Interface

4.7 Software
4.7.1 Overview
GRID has several different sections when it comes to software. The most
obvious is the computer GUI and integration driver, though the other software
comes in on the StellarisLM4F120 microcontroller, Bluetooth module, and the
communication protocols for everything to talk together. Each section required a
different approach; first, the GUI and driver required a high-level language that
can interact with the user and other components of GRID. The reason a high-
level language is needed for this part as opposed to something like assembly,
which could run a device driver just fine, was because there is specific input
needed from the user to configure the device to the users desired arrangement.

There is one thing that was taken into consideration before the software is
developed, that is whether to write the driver for use in the user space of the
computer or the Kernel Space. In Kernel mode, the executing code has complete
and unrestricted access to the underlying hardware. It can execute any CPU
instruction and reference any memory address. Kernel mode is generally
reserved for the lowest-level, most trusted functions of the operating system.
Crashes in kernel mode are catastrophic; they will halt the entire PC. In User
mode, the executing code has no ability to directly access hardware or reference
memory. Code running in user mode must delegate to system APIs to access
hardware or memory. Due to the protection afforded by this sort of isolation,
crashes in user mode are always recoverable. Most of the code running on your
computer will execute in user mode. Knowing that any problems with the code
could cause a system crash if it is written for the kernel for the purpose of GRID
the device driver was implemented for user space execution even though it has
its limitations due to the fact of not having access to all the resources in the
kernel.

With its object features, C++ is considered natural match for the semantics of
Microsoft Windows Driver Model (WDM) and Windows Driver Foundation (WDF)
drivers, and it is appealing for the added convenience and expressive power it
provides. For the GUI and driver C++ is the best choice for a few reasons. First,
C++ is a common language for writing a GUI and is equipped for the task, unlike
C, which would require more work to produce the same results. Second, C++
also incorporates all the system libraries that will be required to write a device
driver.

The other parts of GRID, such as the msp430, Stellaris and Bluetooth module, all
will required a low-level language like assembly to tell it how to integrate with the
rest of the system. This is simply because those sections did not need to interact
directly with the user and there is less computation needed when it is in machine

 83

language. A few advantages machine language offers include: being faster and
more efficient than high-level language, more compact and has direct access to
resources needed.

4.7.2 Functional requirements
For the purpose of GRID there was essentially three sets of functional
requirements, first for the GUI/Driver, second is the MSP430, and finally the
FPGA. Each of these portions had their own set of requirements that were met in
order for the project to be a success. In this case functional requirements may be
calculations, technical details, data manipulation and processing and other
specific functionality that define what a system is supposed to accomplish. The
functional requirements are further supported by use case diagrams and backed
by the non-functional requirements.

A use case defines a goal-oriented set of interactions between external actors
and the system under consideration. Actors are parties outside the system that
interact with the system. An actor may be a class of users, roles users can play,
or other systems. There are distinctions between primary and secondary actors.
A primary actor is one having a goal requiring the assistance of the system. A
secondary actor is one from which the system needs assistance. A use case is
initiated by a user with a particular goal in mind, and completes successfully
when that goal is satisfied. It describes the sequence of interactions between
actors and the system necessary to deliver the service that satisfies the goal. It
also includes possible variants of this sequence, e.g., alternative sequences that
may also satisfy the goal, as well as sequences that may lead to failure to
complete the service because of exceptional behavior, error handling, etc.

The system was treated as a “black box”, and the interactions with system,
including system responses, are as perceived from outside the system. Thus,
use cases capture who (actor) does what (interaction) with the system, for what
purpose (goal), without dealing with system internals. A completed set of use
cases specifies all the different ways to use the system, and therefore defined all
behavior required of the system, bounding the scope of the system. Generally,
use case steps are written in an easy-to-understand structured narrative using
the vocabulary of the domain. This was engaging for users who can easily follow
and validate the use cases, and the accessibility encourages users to be actively
involved in defining the requirements.

The following are the defined functional requirements for each section of the
project:

 GUI & Driver

• Intuitive design for user interaction with the device
• Took user input data and transmit back to Microcontroller
• Interpreted data from microcontroller via Bluetooth into defined computer

actions

 84

• Interpreted feed from FPGA into cursor movement
• Mapped the coordinates of the object to the appropriate locations on the

display, solved for any difference in resolution
• Optimized code to use as little of the computer resources as possible

MSP430

• Tracked lighted objects
• Detected if an LED is present
• Calculated relative position (X and Y coordinates)
• Calculated size of blob
• Bluetooth Interface

Microcontroller

• Detected user motion
• Gathered data from gyroscope and accelerometer using I2C
• Computed whether user completed a valid gesture
• Sent data flags to driver via Bluetooth using UART
• Optimized code with the use of interrupts in order to take advantage of low

power modes in order to extend battery life.

Typically with the functional requirements there are a few use case diagrams that
help to illustrate the use of the system and everything that goes on as a whole
unit. The following figures are the use case diagrams for the GRID system. First
figure is the use case diagram for the gloves and the host computer. The second
is between the msp430 and host. The third is the interaction with the user and
GUI.

Figure 55: Microcontroller Use Case diagram

 85

Figure 56: MSP430 Use Case diagram

Figure 57: GUI/Driver Use Case diagram

4.7.3 Non-Functional Requirements
For the purpose of GRID there were essentially three sets of non-functional
requirements, first for the GUI/Driver, second is the Stellaris, and finally the
msp430. Each of these portions had their own set of requirements that were met
in order for the project to be a success. In this case a non-functional requirement
is a requirement that specifies criteria that wasused to judge the operation of a
system, rather than specific behaviors. These are contrasted with functional
requirements that define specific behavior or functions.

 86

Non-functional requirements are more like quality attributes. These are things
that don’t actually do anything, but are important characteristics of the system.
These attributes usually include things like performance, security, usability and
compatibility. Below are listed the determined functional requirements for GRID:

 GUI & Driver

• Coded in a way so as to be plug and play
• Intuitive design
• Quick in response
• Aesthetically pleasing

MSP430

• Fast in image processing
• Had efficient and well documented code
• Had accuracy within 16 pixel cluster
• Had operation range of 10-20 ft.
• Had real time image processing
• Had a battery life of up to 8 hours of continuous use
• Recharged in less than 2 hours

Stellaris LM4F120

• Communicated with other modules quickly and efficiently
• Weigh less than 3 pounds
• Responded to gestures less than 1 second
• Had operating range of 10-20 ft.

4.8 Device Driver
4.8.1 Overview
For the GRID driver it acts much like that of a typical windows mouse driver with
some special changes for the implementation of the gestures. The following
example gives a good idea on how the driver is to be implemented, it has been
adapted from the original version which was created by Penny Orwick and Guy
Smith in their book Developing Drivers with the Windows Driver Foundation [37].
The mouse driver locates itself in memory at boot time. It takes over both int 33h
and int 10h. The driver is identified by an eight character sequence, in the case
of the Microsoft mouse, it is the sequence MS$MOUSE. Before issuing any calls
to the mouse driver, you should first establish its presence. There are two
methods of accomplishing this. First, you can test to see if the driver was
installed by checking for the device name, or use a mouse call to int 33h. Below
is an overview of how initialization of the mouse is accomplished.

First, the program accessed the libraries that allow modification of resources
located in the kernel. After access to the resources is accomplished then sets the
AX register equal to zero and generates the proper interrupt for the initialization

 87

of the driver, then it returns the value retrieved. In this case if the value is 1 the
driver initialized properly, otherwise there was an error and it did not initialize.
This call also initialized the mouse system to the default parameters, if it is
present.

Mouse Function Calls, this is a mouse call to INT 33h which will initialize the
driver and set the communication protocol for the mouse. This version is for
kernel based driver which will have direct access to all system resources.
First set AX equal to zero, which is the Mouse Installed Flag and RESET this
Returns AX as a status byte, 0 = not present, -1 = present (and RESET). The
default parameters for a RESET are, cursor position equals screen center,
internal cursor flag = -1 (not displayed), graphics cursor = arrow (-1, -1), text
cursor = inverting box, interrupt mask call = all 0 (no interrupts), light pen
emulation = enabled, mouse/pixel ratio (H)= 8 to 8, mouse/pixel ratio (V)= 16 to
8, min/max cursor pos H = Depends upon card/mode and min/max cursor pos V
= Depends upon card/mode. As AX increments the function call changes as
follows.

Next if AX equals 1 Show Cursor. Then Increment the internal cursor flag, and if
zero, displays the cursor on the screen. If the cursor flag is already zero, this
function does nothing.
AX = 2 Hide Cursor decrements the internal cursor flag, and removes the cursor
from the screen. AX = 3 Get Mouse Position and Button Status returns the state
of the left and right mouse buttons, as well as the horizontal and vertical co-
ordinates of the cursor. BX bit 0 is the left button (1=pressed, 0=released). BX bit
1 is the right button. CX is the cursor position, horizontal. DX is the cursor
position, vertical.

AX = 4 Set Mouse Cursor Position. Upon entry, CX = new horizontal position and
DX = new vertical position. AX = 5 Get Mouse Button Press Information. Upon
entry, BX = which button to check for, (0=lft,1=rght). This returns the following
information. AX = button status, bit 0 = left button, bit 1 = right button (1=pressed,
0=released). BX = count of button presses (0 to 32767, reset to 0 after this call).
CX = cursor position, horizontal, at last press. DX = cursor position, vertical, at
last press AX = 6 Get Button Release Information. Upon entry, BX = which button
to check for, (0=lft,1=rght). This returns the following information:
 AX = button status, bit 0 = left button
 bit 1 = right button (1=pressed, 0=released)
 BX = count of button releases (0 to 32767, reset to 0 after this call)
 CX = cursor position, horizontal, at last release
 DX = cursor position, vertical, at last release
AX = 7 Set Minimum and Maximum Horizontal Position. Upon entry, CX =
minimum position. DX = maximum position.
AX = 8 Set Minimum and Maximum Vertical Position. Upon entry, CX = minimum
position and DX = maximum position.

 88

AX = 9 Set Graphics Cursor Block. Upon entry, BX = cursor hot spot (horizontal),
CX = cursor hot spot (vertical) and DX = pointer to screen and cursor masks.
AX = 10 Set Text Cursor. Upon entry, BX = cursor select (0=software,
1=hardware), CX = screen mask or scan line start and DX = cursor mask or scan
line end.
AX = 11 Read Mouse Motion Counters. This return the following values:
 CX = horizontal count
 DX = vertical count
AX = 12 Set User-Defined Subroutine Input Mask. Upon entry, CX = call mask,
DX = address offset to subroutine and ES = address segment to subroutine.
Each bit of the call mask corresponds to:
 0 = Cursor position change
 1 = Left button pressed
 2 = Left button released
 3 = Right button pressed
 4 = Right button released
 5-15 = Typically Not used
To enable an interrupt, set the corresponding bit to a 1. When the event occurs,
the mouse driver will call your subroutine.
AX = 13 Light Pen Emulation Mode ON. AX = 14 Light Pen Emulation Mode OFF
AX = 15 Set Mickey/Pixel Ratio. Upon entry, CX = horizontal ratio and DX =
vertical ratio. The ratios specify the number of mickeys per 8 pixels. The values
must be within the range 1 to 32767. The default horizontal ratio is 8:8, whilst the
default ratio for the vertical is 16:8.
AX = 16 Conditional OFF. Upon entry, CX = upper x screen co-ordinate, DX =
upper y screen co-ordinate, SI = lower x screen co-ordinate and DI = lower y
screen co-ordinate. This function defines a region on the screen for updating. If
the mouse moves to the defined region, it will be hidden while the region is
updated. After calling this function, you must call function 1 again to show the
cursor.

AX = 19 Set Double Speed Threshold. Upon entry, DX = threshold speed in
mickeys/second. This function can be used to double the cursors motion on the
screen. The default value is 64 mickeys/second.
After the driver is set and recognized by the system it can then be implemented.
The following is an illustration of how the mouse can then be interfaced with the
computer using C++, the following is just pseudo code.
Include the necessary system libraries to access the internal resources
 Set up a static 2D array of type integer

Fill the array with the interrupt locations for all ports that are to be
listened to.

 First function is void set up function
 Set default values in registers AH and AL
 Generate interrupt

Check that mouse driver exists

 89

 Set AX register value
 Generate interrupt and return register value
 BX will contain the number of buttons present on mouse
 Display cursor
 Set AX register to display mode and generate interrupt
 Define shape of the cursor
 Create buffer
 Set AX, BX, CX, DX and ES registers
 Generate interrupt
 In the main
 Call Check mouse, if present
 Print mouse present
 Exit
 Call set up function
 Call shape of mouse
 Show the mouse
These methods were implemented in GRID to help initialize the driver and set up
the mouse functions. Other parts were custom made for the device on how it
communicated to the Stellaris and msp430, as well as how it is to respond to the
gestures that are to be implemented.

4.9 Gesture Library
4.9.1 Overview
The design of the gestures is to be intuitive and natural to make it easier for the
user to learn how to use the glove and also to make it an enjoyable experience.
The location of storage for the library was split by the nature of the intended
gestures. What is meant by that statement is that all gestures that are detectable
by the microcontroller via the instruments in direct connection will be stored in the
memory that is directly accessible by the microcontroller, the gestures that are
detected by the host computer will be stored on the host computer where the
driver can do the necessary actions to carry out the desired gesture.

Below there is a list of the gestures that were implemented in the library.
Gestures used in this project will be mostly application specific, though there are
also general gestures to accommodate normal computer functions. This list is the
final gesture implementation list:

• Clicking- to click the user has to press the buttons on the middle finger with
the thumb on the main hand in and then release. The two buttons in the middle
finger are for right or left click.

• Zooming in and out- the user has to move the hands closer to the monitor
for zooming in or further from the monitor for zooming out. This gesture is
dependent on the image processing to detect the position and direction of the
motion. This gesture is also linked with the accelerometer data to determine if it

 90

passes the threshold for this gesture.

• Rotation–Rotation is the same motion as zooming, the difference is instead
of moving the hands closer or further from the monitor the user simply will keep
the hands straight and rotate their hands position about the centroid axis.

• Swiping in any direction-This is one of the application specific gestures,
when using an application that has multiple pages the user waves the main hand
past the boundaries, which were pre-set in the direction they wish to swipe. For
example to move to the next page the user would wave their main hand to the
left past the leftmost boundary.

• Refresh–The refresh gesture is a very unique gesture, which is one of the
defining characteristics of our project. To execute this gesture the user will take
their hand in the rest position and rotate their palm in a clockwise motion 180o
then return it to the rest position. This gesture makes good use of the gyroscope
and accelerometer data to determine if the gesture was performed accurately.

• Multimedia Gestures–These are all application specific gestures that can
only be used within a media application. These actions will need to be distinct so
they will be easily determined by the video image processing,

o Play–To execute the play motion the user will take their hand at rest
position and move it in a dropping motion. The data is then calculated
by the gyroscope and accelerometer data to determine if it was indeed
a proper gesture.

o Fast-forward–To execute the fast-forward gesture the user will take
their hand in the rest position and make a swiping motion to the right.
Data is collected from the gyroscope and accelerometer to determine if
it was a proper gesture.

o Rewind–To execute the Rewind gesture the user will take their hand in
the rest position and make a swiping motion to the left. Data is
collected from the gyroscope and accelerometer to determine if it was
a proper gesture.

o Pause–To execute the pause gesture the user will take their hand at
rest position and move it in a dropping motion. This gesture is the
same as play; the reason for this is because in modern applications the
command for play/pause is the same so we are keeping with modern
convention. The data is collected from the gyroscope and
accelerometer to determine if the motion preformed was valid.

5.0 Design Summary
GRID, gesture recognition interface device, is an interactive, as well as intuitive,
way to control various computer functions by taking advantage of detectable and
natural human mannerisms. In order to accomplish proper response to the
various gestures were accounted for in the gesture library. GRID makes use of

 91

several sensors to gather diversified data about the current state and actions of
the user. The sensors that make this possible are: a camera (tuned for the near-
Infrared spectrum), an accelerometer (for swipe motion), and a gyroscope (for
general orientation information) with room for upgradability by the addition of a
digital magnetometer (providing additional user sensor data). Below figure 59
shows a flow chart of the GRID overall system:

Figure 58: GRID System Flow Chart

 92

In order to understand GRID's structure, the project was divided into smaller
subsystems as seen in the flow chart above. Each of these subsystems has a
very unique function that is critical to the overall functionality of the project. The
subsystems that complement GRID are:

1. Gloves Subsystem
It consists of a regular set of gloves with a lightweight circuit mounted on it. The
main purpose of the glove is to power the LEDs that the camera will be tracking
for cursor location purposes, send fast IR light pulses to the IR receiver in the
camera circuit for clicking purposes and gather hand movement information from
the accelerometer via Bluetooth to the host computer which will be interpreted as
gestures. In the glove hardware detail section below there will be more specifics
about the individual components of the glove.

2. Camera Subsystem
The camera is the part of the project that tracks the position of the user’s hands.
The camera will be placed at an appropriate position that outlines the user’s
workspace. A glove will have a near IR-LED on the index fingers that will be
tracked by the camera. The camera has an integrated processor that outputs the
X and Y coordinate positions as well as the size of up to four bright IR points
when interfaced with the microcontroller. This will allow the user to control the
cursor of the computer, like a mouse. For further hardware details on the camera
read the section called Camera Hardware Details, which explains the individual
components of the camera.

3. Driver
The driver is basically the part of the project that will tie all components together
by receiving information from the glove and the camera simultaneously via
Bluetooth. When the driver receives user input data from the gloves it will
interpret gestures being performed, and interpret data from microcontroller into
defined computer actions. If the driver is receiving feed from the camera it will
interpret it as a cursor movement, which involves mapping the coordinates of the
object to the appropriate locations on the display, and solve for any difference in
resolution. Clicking commands will also be received from the camera circuit
board. Below there is a figure of the design flow of the driver.

 93

Figure 59: Driver Design Flow

4. Power Supply
The power provided to the glove will come from a USB cable connected to the
host computer. Since it is connected to the Stellaris launchpad the group[did not
have to add any regulators to this portion of the circuit.

In the other hand the power supply for the camera was slightly more complicated.
It consists of a battery charger and a buck-boost converter. The 5V input to the
battery charger comes from a USB port, which is connected to the host computer
when necessary and will only serve for this purpose, not for data transfer. There
are two LEDs in this circuit, one will indicate when the battery is charging and
when charging is complete.

Figure 60: Power Supply Flowchart

 94

5. System Interface
In GRID the systems will interface in different ways within each other. The diagram
below shows the different inputs and outputs included in GRID:

Figure 61: System Interface

In the flowchart in figure 63 there is all the subsystems and how they
communicate with each other. Some are wired connections and some are
wireless. In the gloves there is a physical connections between the gyroscope
and accelerometer, and microcontroller. The glove will communicate via USB to
the host computer.

Figure 62: Interfacing Subsystems

 95

In the other side of the computer we have the wired connections which will use
USB, this is providing power as well as data transfer between devices. The
msp430 to host computer connections will be all via Bluetooth. It is critical that all
these connections are reliable as each subsystem is providing important
information for the calculations of the cursor tracking and gestures.

6.0 Project Prototype Testing
6.1. Hardware Test Environment
6.1.1. Temperature
The majority of the hardware testing was performed indoors at "room
temperature" (25˚C) unless specified otherwise. These are usual operating
conditions of the system.

6.1.2. ESD Safety
One of the critical safety procedures that the group followed was to prevent ESD
on the electronic components involved in this project. Electrostatic discharge is
the sudden flow of electricity between two objects caused by contact, an
electrical short, or dielectric breakdown. ESD can be caused by a buildup of
static electricity and includes electric sparks, both, the ones an individual can and
cannot see or hear. Even the unseen and unheard discharges can still be large
enough to cause damage to sensitive electronic devices. For this reason the
group will take the following measures:

• Wear an ESD wrist strap- This is one of the easiest and best ways to
reduce ESD.

• Grounding Mat- This is the second best way to reduce ESD and certainly
more comfortable than wearing a wrist strap

• Zero Potential - make sure the tester and the component are at zero
potential by continuously touching an un-painted metal surface of the
chassis or the computer power supply case.

• Avoid Sitting Down - It is also very important that the members were
standing at all times when working with electronic devices. Setting on a
chair can generate more electrostatic charge.

• Unplug Electrical Cords - The group made sure all power cords if any
are removed.

• Clothes - Make sure not to wear any clothing that conducts a lot of
electrical charge, such as wool.

• Weather - Lightning storms can increase the ESD risk; unless absolutely
necessary. The group decided not to work on a electronic equipment
during an electrical storm.

• Accessories - Another good practice that the group performed was to
remove all jewelry before working with electronic equipment.

 96

6.1.3. Lighting
Light settings are critical in some parts of the testing of this project. The light
settings were normal unless the camera and filters were tested. When the
camera and filters were tested the light settings of the room were low to
moderate clarity to make it easier for the tester to see the glow in the IR card.

6.2. Hardware Specific Testing
6.2.1. Camera
The camera was interfaced with the msp430 in the PCB. This USB port not only
will transfer data but it will also provide power to the camera. Below are two
methods to make sure the camera is working and to make sure the camera is
interfacing successfully with the microcontroller.

Test with the Controller- To make sure that the camera is not faulty the group
tested it with the Wii system. Once the group confirmed that the Wii remote was
working properly they came to the conclusion that the camera module was a
good one.

Test with the microcontroller-
To test if the camera is working properly, a small code was created in C and
loaded into the msp430 to be able to stream from the camera. This was done
with the development board. Once the physical connections were set, the group
placed a moving object (near-IR LED) in front of the camera to make sure that
the camera was interfacing properly with the msp430 and that the msp430 was
properly interfacing with the host computer.

6.2.2. LEDs
A batch of near-infrared LEDS (940nm) were tested in the same circuit. Although
the project requires only 4 LEDs the group will order extra ones in case of any
malfunctions.

LED Testing Circuit: The set up was a simple series circuit to power them on
and make sure they were working properly. The LED circuit was like the one
shown in the figure below:

 97

Figure 63: LED Test Circuit

To set up this circuit we needed to know the LED voltage drop and current drawn
which is usually found in the LED data sheet. For this project we used an LED
that will use 2V and the current will be 20mA. By using equations 1, 2 and 3 we
can get the values needed to complete the LED test circuit. The source voltage
was chosen to be 9V since a standard 9V battery will be used. Once we
calculated the voltage drop across the resistor from equation 1 we plugged in all
the known values into the Ohm's law, equation 3 to calculate the value of the
resistor needed.

Equation 1: !!"#$#%&' = !!"#$%& − !!!"= 9V-2V=7V
Equation 2: !!"# = !!"#$#%&' (in series)=20mA

Equation 3: ! = !!"#$#%&!

!!"#$#%&!
= !!

!"!"
=350Ω

As seen above a 350Ω resistor is needed but we used the next available resistor
value which is 360Ω.

Working LEDs: Once the circuit is set up we used an IR card to make sure the
LEDs are working. This card will be placed close to the LED once it is placed in
the circuit. If the IR card glows, the LED was working if the IR card does not
react, most likely the LED was faulty. LEDs that are working properly will be set
aside and the faulty ones will be discarded.

6.2.3. Visible Light Filter
Point the camera module at the lit up LEDs: The camera module was
connected to a regular computer running Windows OS. The filters was placed in
front of the module to block the visible light and attenuate the near-IR light. Once
the camera was properly set up the group will point at the lit up LEDs in the
circuit explained in section 6.2.2 and make sure that the camera was outputting a
location for the LED and a blob size. Beloiw there is a picture of teh actual filter
used.

 98

Figure 64: Visible light filter implementation

6.2.4. Microcontroller
During the initialization procedure, several measures were taken to check for
communications errors and correct them early on. For external visualization of
errors, should a problem be detected during initialization, an LED would flash
green when the tests are passed and red otherwise. During the clock system set
up, the code references macros define by Texas Instruments which point to
memory addresses where bit definitions for the various configurations were
stored, should any of this definitions be erased, overwritten, or corrupted, the
CPU would be “trapped” in a while loop and the LED will flash red.

The RS232 TTL Bluetooth module provided two modes of operation, one for
transmission, and one for configuration of the module. After initialization of the
Universal Serial Communication Interface module, the msp430g2553 would send
a series of command terminated by “\r\n” to the RS232 TTL module and listen in
for the expected response, indicating proper function. After ensuring functionality
the msp430g2553 would proceed to send the signal to change the mode of
operation to transmission and send the “UART read” string to be picked up by the
host computer. This command was sent repeatedly until the host PC responded
with an “OK”.

The MPU-6050 provided a self-test activated through code that permits the user
to test the mechanical and electrical portions of the gyroscope and accelerometer
independently. When the self-test was activated, the on-board electronics would
actuate the appropriate sensor. The actuation will move the sensor’s proof
masses over a distance equivalent to a pre-defined Coriolis force. The
displacement results in a change in sensor output, which was observed the
functionality of the device. The self-test response (STR) is defined as follows:

 99

!"#$%"&' !"#$%&#" =
!"#$%&$'(!"#$"# !"#ℎ !"#$%"&' !"#$%&'

− !"#$%&$'(!"#$"# !"#ℎ !"#$%"!& !"#$%&'(

This self-test response was used to determine whether the part has passed or
failed the self-test by finding the change from factory trim on the self test
response as follow:

!ℎ!"# !"#$!"#$%&' !"#$!" !"#$%"&' !"#$%&#" % =
(!"# − !")

!"

Where, FT was the factory trim value available via MotionApps software.

6.2.5. Power Circuit
6.2.5.1. Battery Voltage
To measure the charging voltage an operational amplifier was used to measure
the voltage difference between the positive and negative pole of the battery. A
difference operational amplifier was used to measure the battery’s voltage.
Figure 66 shown below shows a voltage op-amp circuit, which was implemented
for the design of this project:

Figure 65: Voltage Op-Amp Circuit

The output voltage from the op-amp to microcontroller (!!"##$%&) is given by:

!!"##$%& =
!!"
!!"

!! + !!

Where, !!"##$%& is the output voltage from op-amp to microcontroller.

6.2.5.2. Temperature
Temperature is an important parameter to test is the temperature of the lithium-
ion batteries. Charging was terminated if the temperature rises above the

 100

operating temperature limit of the lithium-ion batteries. The group also used as
backup method. Temperature was measured by a negative temperature
coefficient resistor. The negative temperature coefficient is powered by the Vdd
for the microcontroller and is part of the voltage divider. A detail circuit is shown
is figure 67. The information in this section was gathered from [10].

The temperature is measured:

Vtemp = VDD × R25 /(R24 + R25)

Depending on the temperature (Vtemp) the resistor value would change.
Therefore, Vtemp is changed accordingly, so, it can detect the temprature by
check the voltage value of Vtemp by the analog to digital converter. Note: the
temperature and resistor value do not have a linear relationship, which makes it
difficult to calculate the temperature from the A/D converter. The information
gathered in this section was gathered from [9].

Figure 66: Temperature Measurement Circuit

6.2.6. Glove and Mount
Heat Test- It was always a possibility that electric circuits dissipated heat. To
make sure that the gloves and mount used on this project were the appropriate
ones a heat test will be performed. The glove and mount, both items were placed
inside an temperature chamber at 70˚C for one hour. The amount of heat tested
was determined by a greater amount than the one that the electric circuitry of the
gloves could dissipate. The gloves were carefully placed on a metal tray to avoid
any possible accidents. Once ass determined that the gloves and mount can
resist a small amount of heat it was fair to say that they could be used for this
project.

 101

Weight Test- In the project specifications the goal is for an individual glove is not
to weight more than 3 pounds. A 4 pound weight system was be placed in each
glove and the tester would make sudden movements with gloves for 5 minutes to
make sure that each glove can support the weight of the circuitry which wless
than the weight system used for testing.

6.3. Software Testing Environment
A parameter considered when testing the image recognition algorithm was the
system environment. The purpose of the system environment was to work in an
unstructured environment. Meaning an unstructured environment is one that has
no artificial blue or green screen. This provides greater system flexibility and
convenience but can make reliable segmentation extra difficult. As this
environment required the need to distinguish the objects of interest from any
other objects that may be present within the frame. This restraint may be
overcome by limiting the target objects to saturated and distinctive colors to allow
them to be distinguished from the unstructured background. Augmenting the
unstructured environment with 10-structured color in this way is a compromise
that enables a much simpler segmentation algorithm to be used.
Apart from the method to maintain the color distribution was to keep the
background environment a constant. This method, only sees the target is in
motion and the system is able to track its motion in a 2- D frame. For the
purposes of this project we considered keeping the background constant, which
allowed us to distinguish between the foreground (object of interest) and
background.

To understand how the test environment is chosen, first it is important to look into
what is meant and needed for a good testing environment. A testing environment
is a setup of software and hardware on which the testing team is going to
perform the testing of the newly built software product. This setup consists of the
physical setup which includes hardware, and logical setup that includes Server
Operating system, client operating system, database server (if applicable), front
end running environment, browser (if web application), or any software
components required to run this software product. This testing setup is to be built
on both the ends – i.e. the server and client. In the case of GRID there was set of
hardware and software being used in conjunction with a host computer.

To choose an effective test environment there were a few essential items to
consider. The components used in the testing were closely mirror those of the
average user – i.e. computer, OS, RAM, memory, Software etc. This was done
so that all testing data can be relevant to the expected user and any errors can
then be addressed before the system goes out to the users.

In addition, there were other factors that were taken into consideration.
Customer’s Environments: Understanding clearly the environment in which the
customer is running the software. This had to be checked not only for server but
also for the user’s machines. The environments factors could be the hardware,

 102

OS, Database, Front end tools, browsers etc. Take care of all the versions of OS,
browser the customer machines that are going to run this application. Test
Server: Building the test environment as much as possible a replica of customer
environment. This was applied to Server and client machines as well. Having a
separate Test Server: Built the test environment on a separate server free from
development and dedicated exclusively for testing purposes. This is so the
conclusions that are drawn from the tests are not influenced by other
applications, or items, on the computer. Understand business requirements well:
The testers and test lead were very clear about the customer requirements
based on which the test cases are to be built. More understanding, more
coverage. Much clearer understanding, wider coverage. Finally, Documentation:
Aesthetically document each and every test that is performed for a unit, module
or integration testing of the product. For the purpose of GRID the testing was
conducted on a few different environments to insure that the best testing
coverage is achieved. It was over a series of consumer grade computers all with
some version of the Microsoft windows operating system.

6.4. Software Testing
Testing was a critical part of any design project. This is especially true for the
GRID project. Basically, every component of the system needed to be tested
both individually and connected with other parts of the system. The goal of
software testing is more than just finding bugs in the system and fixing them.
Software testing is a process of discovering whether the system you built lives up
to the standards of quality, efficiency, effectiveness and compliance to the
system requirements.

There were many places where a failure may inter the project. It may be due to
the programmer, analyst, or other individual during the lifecycle of the project.
There could arise problems because of the complexity of the code, infrastructure,
or how the issue to be solved was handled. Other issues may occur when
integrating technologies or if there are many components in the system
interacting with each other. These are all internal failures, though failures are not
limited to just being internal. Outside of the system architecture failures could
occur within the system due to environmental conditions or other program
interactions. If the system has a failure there are repercussions for not only the
user of the system but potentially everyone involved in the lifecycle of the
system. If the system is well tested then it can reduce the possibility of any
errors.
Typical testing objectives and ones that will be implemented for GRID include:

• Finding bugs and providing the information needed to fix the bugs
• Gain confidence about the level of quality of the system
• Prevent defects through early reviews and testing
• Provide information about the important aspects of the quality of the

system
These objectives gave a clear idea into how the system works as well as
assurances in the quality, effectiveness and efficiency of the system.

 103

The test process can be summarized into three phases, Phase one: Planning
and control, Phase two: Analysis and design and Phase three: Implementation
and execution. In order to make sure that the tests cover the project in entirety
the tests must be planned, prepared, performed and perfected. This cycle is a
repetitive cycle that continues for the life of the system until it is ready for use.

Figure 67: Testing Process

The three phases of the testing process were utilized for the proper testing of
GRID. Phase one Planning and Control focuses on understanding the scope of
the project. Phase two Analysis and Design reviews the system requirements to
begin to design effective tests. Finally Phase three Implementation and
Execution works on developing and executing the designed tests. These
activities run throughout the life of the project and continue to evolve with the
project.

Figure 68: Testing Phases

 104

Each testing phase had its own specific goals that are exclusive to that phase of
the testing process. Within Phase one there are the two sections of planning and
control. The specific planning was:

• Determined testing scope, risks, objectives, and strategies
• Determined required test resources
• Implemented the test strategies
• Scheduled other test phases
• Determined the test exit criteria

Control which happened throughout the lifecycle of the project are as follows:

• Measured and analyze results
• Monitored progress, coverage and test exit criteria
• Initiated any needed corrective actions
• Made decisions concerning the system

For Phase two, first, the specific goals of the Analysis were:

• Reviewed the test basis (i.e. requirements or design specifications system
architecture, etc.)

• Identified and prioritize test conditions, test requirements, or test
objectives and required test, data based on analysis of test items

• Evaluated testability of the requirements and system

Second part of phase two Design:
• Designed and prioritize combinations of test data, actions, and expected

results
• Identified the test data needed for test conditions and cases
• Designed the test environment
• Identified infrastructure, tools

For Phase three there is the implementation followed:

• Developed, implemented, and prioritized test cases, create data, write
procedures

• Created test harnesses, scripts
• Organized test suites and sequences of test procedures
• Verified the test environment

And finally the second part to phase three Execution:

• Executed test cases (manual or automated)
• Logged test results, and other information about test and testware
• Compared actual and expected results
• Reported and analyze incidents
• Repeated corrected and/or updated tests
• Ran confirmation and/or regression tests

 105

The specific goals of each phase help to organize and control the testing process
in order to get the best possible results and the most efficient use of time testing.
There is always needed a good balance between thoroughness and time
efficiency. In order to maximize the use of time and testing there are a few
different lifecycle models that streamline the entire process. The first of these
models is known as the “V” or sequential model. In the figure below you can see
the typical process of this model.

Figure 69: “V” or Sequential Model

As you can see from the figure above this model is very intuitive. It combines the
different phases of the testing process seamlessly with the development of the
project and has goals set for each stage. As you continue into the design of the
project you are designing the testing for the project right alongside and are
starting the earliest stages of testing while the development is still in process.
There are however a few drawbacks with this model the first being that it can be
hard to plan for the testing that far in advance. The second is if the plans for the
project fail or change, the end testing will suffer the effects. Depending on how
big the changes are most to all of the tests will need to be redesigned.
The next lifecycle model to look at is the Iterative or Incremental model. The
figure 64 below demonstrates the basic appearance of this model.

 106

Figure 70: Iterative or Incremental Model

This model is very repetitive as shown above. Typically this model was chosen
when the project is very Schedule risk driven to hit the market in a specific time
window or delivery date. The focus here is to build the core functionality first and
get it so there is something to ship, then once the core is running properly the
feature sets are grown around it. It was designed that way so that something can
be shipped out quickly. This model is becoming a popular approach because
once the core is finished it gives the team more time to develop better features.
The drawbacks to this model are that it is very tempting to ship a system that has
very buggy features.
The next model that is typically the first approach most people take to coding or
even solving problems is known as the Waterfall model. The figure 72 below
illustrates what it looks like.

Figure 71: Waterfall Model

 107

As you can see the Waterfall model is very straightforward and goes through
each of the steps one at a time. It does address all the concerns and delivered a
final product to the client in a timely manner.. The biggest problem with this
model is that there is no iteration. If something happens to change the
requirements or some part of the design is flawed there is no iteration to catch it,
the whole process would need to be scraped and restarted. Even though this
model is almost the first one most people turn to it is not the best solution to the
problem.
The final model that was considered is known as the Spiral model. This particular
model was suggested by Boehm (1988). It combines the development activities
with risk management to minimize and control risks. The model is presented as a
spiral in which each iteration is represented by a circuit around four major
activities:

• Plan
• Determined goals, alternatives and constraints
• Evaluated alternatives and risks
• Developed and test
•

The figure 73 below shows what a typical Spiral model looks like.

Figure 72: Spiral Model

 108

As you can see the amount of iteration and reanalysis that goes on in this model
makes this model the most effective at getting a perfect system. Although it is
great in the since that it rehashes everything until there are no problems with the
system, this model requires a large amount of time and dedication that
unfortunently will not be possible for every project that goes on.

For GRID there are two choices in the matter of lifecycle model that would be
beneficial to use. The first would be the “V” model. This model is good for GRID
because it allows for iteration and integrates the design of the software right
alongside the design of the testing procedures. The one drawback for this model
would be that if during the course of the project some fundamental design
changes occur it could make the final end result suffer. The second model that
would be fitting for GRID is the Incremental model. This model allows for quick
development of the core system and then later focus on the development of the
feature sets after there is a working core. This is an excellent use of time for this
project as it has a deadline that must be met and also has specific requirements
on the core system and the completion of feature sets is more of a bonus rather
than requirement. For these reasons the Incremental model will be the model of
choice for the lifecycle of GRID.

In conclusion of the software testing, in respect to this system under
development, The lifecycle model being purposed for use is the Incremental
model which provided the structure for the three phase testing plan. Keeping in
mind that the testing process is iterative and continues throughout the life of the
development. The goal is to build a core system that can then have feature set
built up around the core system.

6.4.1. Image Recognition
To begin with, a camera was mounted in a position with a good view of the hands
of the user. This step was vital; the angle of which the camera views the gloves
greatly determines how accurate our image processing will be. As for the vertical,
ideally you’d like the camera to be pointing straight down on the users hands, so
the closer the vector, which the lens draws with the ground, is to 90 degrees the
better. The camera was communicating with the computer via Bluetooth and
powered via recharge circuitry and battery. The server is the center of all the
data, the images from each camera were saved in their own directory, or with
unique file name structures, so the program knows what control image to
compare it to. Once processed, the images were moved to another folder so the
program does not accidentally analyze old images and update the system with
this data. The output of the image processing will be transferred to one of 2
options to be determined once some test has been performed. First option, a
data base that will be created with ID codes for each parking space, and
therefore the program will have to be made to correspond and output
accordingly, then this data will be used to update the display. Second option,
integrate the database, display, and image processing software so that
everything is processed in the same place and doesn’t need to exchange hands.

 109

Following an Image at the Output of the msp430:

1. Camera took a snapshot
2. Image was sent to the msp430
3. Server acquired Image and stores in correct directory
4. Image fetch program detected a new image in the directory and stored it

to memory
5. The image processing software determined what control image to use
6. Compared the 2 images
7. Outputted data sent to the database and Matlab software
8. Matlab software updates the display

a. Note: the display may not be directly connected to the server in real
implementations.

In Figure 74, shown below shows the Integration Block Diagram of the camera
with the msp430 and server.

Figure 73: Integration Block Diagram

During our testing phase we chose to revise the details of our current system
design, but the overall system shown in the block diagram in Figure 74 should
remain true.

7.0 Administrative Content
7.1. Budget and Finance

 110

The group was unable to receive funding from outside sources or sponsors. As a
result, the team provided the funding for this project. In Table 13, a list of all the
known parts for the project and their estimated costs are listed. Each team
member donated around $100, giving the team a budget total of $400 to spend.
The financial goal in this project is to make a low cost system under $400. A field
was added onto the table called miscellaneous expenses, which will cover for
extra expenses the group faced. The team also found it more cost effective to
buy some devices in bulk. For instance, the Near-Infrared LED was found in
mass at a cheaper rate. Not only does buying some parts in majority lower the
price, but if the team ends up going through too many of certain parts, then an
adequate supply will still remain for emergencies. The group also got some parts
donated by Texas Instruments (TI) and by UCF faculty. Most of the parts were
purchased through different vendors. For more information refer to the following
parts list for further cost details:

Table 13: GRID Budget Breakdown
Part Price

MPU 6050 x 2 $21.00

Bluetooth Module r2232 x5 $59.80

Stellaris Launchpad x2 $26.00

MPU 6050 $12.86

Near-IR LEDs $9.92

Li-Ion Battery x2 Donation

IR Sensor Donation

LTC1147-3.3 $5.25

EEPROMs $7.98

SMT Resistors, Capacitors, and LEDs $15.00
Battery Charger Sample
Charge Controller Sample
PCBs $100.00

Other $100.00

Total: $357.81

 111

7.2. Milestone Chart
This section contains the plan that our group established in order to keep track
with all the responsibilities that needed to be accomplish during Senior Design I
and II.

Table 14: Senior Design I Milestones
September 2012
01 Started gathering project ideas
10 Started gesture library
15 Finalized project definition
16 Started researching in all subjects
28 Got project approved by Dr. Richie
29 Submitted proposal for sponsorship
30 Divided all parts in a fair amount for the group members
October 2012
1 Researched
4 Became familiar with Java and C
11 Improved block diagram based on research
13 Started writing. Goal: 5 pages a week
15 Reviewed OpenCV Library
20 Determined function of each subsystem
27 Group meeting to discuss design improvements
November 2012
2 Understood the process of the final project
6 Decided the actual parts that will be used for the project
7 Finalize design based on research
10 Group meeting to check page count
17 Merged the individual research of all group members
19 Came up with a test procedure to verify functionality of parts
30 Started ordering parts for testing as design was being done
December 2012
1 Group meeting to check page count
2 Made final touches to our paper- Formatting
4 Improved testing procedures for all parts
6 Submitted final paper
12 Ordered parts as design was being done
15 Began writing object tracking code
30 Started prototyping

In the second portion of the class, Senior Design II, is when all the design will be
implemented. For this semester the group prepared a milestone chart to follow.
These charts are tentative and subject to change depending on the work flow. All
group members have different schedules but they will make their best effort to

 112

follow the milestone schedule and to succeed in the prototype and design.
Below table 15 shows the Senior Design II milestone:

Table 15: Senior Design II Milestones
January 2013

5

Had all or most parts in hand
Purchased at store miscellaneous hardware and electronic material
Updated spending report with all parts purchased
Set up a work station outside of school to be able to prototype from
home
Revisited milestones and made sure next months are realistic

15 Started testing each part separately
17 Tested code integration with individual parts if required

20
Ran simple codes on msp430 and Stellaris development board to get
used to them

21 Started website to track project progress
23 Started putting together glove mount
30 Group meeting to review progress
February 2013
1 Started testing of parts
3 Implemented visible light filter to camera
6 Started testing the glove
12 Tested battery lifetime and efficiency of charge circuitry
13 Started designing PCB with Eagle CAD
22 Decided on sewing the glove circuitry based on circuitry size
30 Group meeting to discuss progress
March 2013
1 Started interfacing different parts of the project
2 Implemented object tracking code in hardware
3 Debugged and optimize code
4-9 Worked on project through Spring Break
15 Started working on PowerPoint presentation
20 Group meeting to show progress or design improvements
30 Ordered PCB
April 2013
1 Ordered any parts if needed
3 Made sure most or all parts are interfacing with each other
5 Tested all gestures
7 Updated gesture library
8 Implemented PCB
10 Made final aesthetic touches
12 Made sure all parts are interfacing with each other
? Presented Project

 113

15 Started website for final project
15 Updated documentation according to new design
29 Turned in any final documentation if any
24-30 Wrapped up the semester

7.3. Work Distribution
• Martin- Gloves
• Landon- Code for computer controller
• Pamela and Evianis- Camera Circuitry

Gloves:
• Selected the optimum microcontroller to meet specifications.
• Selected gyroscope/accelerometer module.
• Selected near-IR LED as well as desired brightness for optimum power

consumption as well as object detection.
• Designed circuitry attachment method
• Wrote all code relating to data acquisition from the gyroscope and

accelerometer modules via I2C (two wire interface).
• Wrote all code relating to data transfer.
• Optimized code with the use of interrupts in order to take advantage of low

power modes in order to extend battery life.
• Selected battery and design recharge circuitry to be implemented.

Code for computer controller:

• Designed GUI for user interaction with device.
• Interpreted raw data from microcontroller into defined computer actions.
• Interpreted feed from msp430 into cursor movement.
• Mapped the coordinates of the object to the appropriate locations on the

display to solve for any difference is resolution.
• Optimized code to use as little of the computer resources as possible.

Camera Circuitry

• Implemented Bluetooth Communication between PC and camera circuitry
• Selected most cost effective microprocessor in order to meet

requirements.
• Selected most near-IR sensitive sensor
• IMplemented a visible light filter
• Researched of ways to implement object tracking code in hardware.
• Outputted the object(s) coordinates to the computer in real-time
• Outputted blob size in computer
• Designed printed circuit board
• Chose camera housing

 114

8.0 Product Operation
8.1. Prerequisites

• Computer with Windows operating System.
• Java Run-time installed
• Terminal program installed

8.2. Installing a Terminal Program
Note: In order for the Driver program to detect the appropriate communication
ports used by the camera and glove a terminal program is needed. Functionality
has been tested with “Teraterm”, but any terminal program will suffice.
• Download the .exe file and save it to an easily accessible location in c:\.

http://download.cnet.com/Tera-Term/3000-20432_4-75766675.html
• Double Left click, or right click and select “open” to initialize the installer.

Figure 74: Tera term setup wizard screen

	

• Follow the on-screen instructions and click finish.

 115

Figure 75: Setup completed screen view

8.3. Connecting to the Glove/Camera
• To power on the device, move the two-state switch to the “on” position, as

indicated in the PCB.
• If the batteries are charged and the voltage regulators are working, the

BLUE L.E.D. mounted on the PCB should blink roughly twice per second.
This indicates the device is Bluetooth discoverable.

• On the computer, in the toolbar left click the Bluetooth icon and select
“add Bluetooth devices”.

 116

Figure 76: Adding a Bluetooth device

• The glove and camera will appear in the list of accessible devices.
• Once selected, the user will be prompted to insert a password. For both

devices the password is: “1234”.
• Once the computer connects to the device, there will be a notification of the

communication port assigned to each device. Alternatively, open control panel
and in the search box (top right corner) type device manager. In the device
manager window expand “Ports (COM & LPT)” to see the connected devices.

 117

Figure 77:Accessing the Device Manager

• Once both devices have communication ports assigned, open teraterm. Select
Serial and choose the port assigned to the camera and click OK.

• If pairing is successful the BLUE LED should stop blinking, and instead remain
in the “on” state.

• Repeat the previous step to connect to the glove.

 118

Figure 78: Bluetooth module paired

8.4. Running the Driver Program
Open the “G.R.I.D.” folder and select “GRID.jar” This should open the
control panel screen.

Figure 79: Opening the control panel

On the drop down menus for the camera and glove select the appropriate
communication port, but DO NOT click “camera” or “glove” to establish
connection yet.
On “Teraterm”, and on the camera window click file, disconnect.
Alternatively, press “ALT+I” on the keyboard.
Likewise disconnect the glove from “Teraterm”.

 119

At this time, proceed to click the “Camera” and “Glove” buttons in the driver
program.

Figure 80: GRID Control Panel

If connection is successful the BLUE LED should remain “on” on both devices,
and the driver is now decoding their transmissions.

Following pairing, introducing the IR LED (index finger) to the camera will result
in the appropriate movement in the mouse. Right and Left clicks are located on
the middle and ring fingers respectively.

8.5. Using the Gesture Library
G.R.I.D is able to distinguish 7 different gestures, and map them to computer
functions.
1. Fast forward: while in windows media player quickly swipe in the direction of
the user’s right.
2. Rewind: while in windows media player quickly swipe in the direction of the
user’s left.
3. Full screen mode: while in windows media player quickly swipe in the up
direction.

 120

4. Play/Pause: while in windows media player quickly swipe in the down
direction.
5. Zoom in: In any program quickly swipe towards the screen.
6. Zoom out: In any program quickly swipe away from the screen.
7. Refresh: while in Firefox or similar web browser make a circular motion to the
right ending with the palm of the user’s hand facing up.

8.6. Charging the Battery

Note: the maximum rate of char is 500mA.
• In order to charge the batteries a “Mini USB” cable is required.
• Connect the cable to a power source (PC) and to the device.
• If the Power source is functioning properly and delivering the correct voltage,

the GREEN LED will turn “on”.
• If the batteries are sufficiently discharged the RED LED will turn “on” indicating

the charging cycle has started.
• Once the battery is fully charged, the RED LED will turn “off”, but the GREEN

LED will remain “on” for as long as power is bring supplied by the source “PC”.

 121

Appendices

Appendix A – Permissions

1. Maxim Integrated Product Permission

2. Texas Instrument Permission

3. LED Spatial Distribution

 122

4. Frame Rate Figure

5. FPGA Architecture Figures

 123

6. FPGA Vendors Pie Chart

7. IR Filter Photo and Transmission Graph

 124

8. Spectral Response Figure

9. Xilinx Table

 125

10. Altera Table

Appendix B - Works Cited

1. Kittur, Harshavardhan, and Chuanhai Bai. FPGA BASED OBJECT
TRACKING SYSTEM. Thesis. Department of Computer Science, Lund
University, n.d. N.p.: n.p., n.d. FPGA BASED OBJECT TRACKING
SYSTEM PROJECT REPORT. Web. 2 Nov. 2012.
<http://fileadmin.cs.lth.se/cs/Education/EDA385/HT11/student_doc/final_r
eports/objecttracking.pdf>.

2. MSP430F11x2, MSP430F12x2 Mixed Signal Microcontroller Datasheet.
Texas Instruments, 22 Nov. 2012. Web.
<http://www.ti.com/lit/ds/slas361d/slas361d.pdf>.

 126

3. "Comparison Table of Secondary Batteries." Secondary (Rechargeable)
Batteries â�� Battery University. N.p., n.d. Web. 10 Nov. 2012.
<http://batteryuniversity.com/learn/article/secondary_batteries>.
àChemistry of Batteries

4. MSP430x1xx Family User's Guide. Texas Instrument, 22 Nov. 2012. Web.
<http://www.ti.com/lit/ug/slau049f/slau049f.pdf>.

5. "Power Management." Analog, Embedded Processing, Semiconductor
Company, Texas Instruments. N.p., n.d. Web. 20 Nov. 2012.
<http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page>.

6. "Linear Regulator (LDO)." Texas Instruments. N.p., n.d. Web. 25 Nov.
2012. <http://www.ti.com/sc/device/TPS78001>.

7. 150mA, Low-Dropout Regulator, Ultralow-Power, IQ 500nA. Texas
Instrument, Jan. 2007. Web. Nov. 22.
<http://www.ti.com/product/tps78001>.

8. "Power Supply Design Considerations for Modern FPGAs." Power Supply
Design Considerations for Modern FPGAs. N.p., n.d. Web. 7 Nov. 2012.
<http://www.eetimes.com/design/programmable-logic/4015252/Power-
Supply-Design-Considerations-for-Modern-FPGAs>.

9. "Choose the Right Power Supply for Your FPGA." - Application Note. N.p.,
n.d. Web. 10 Nov. 2012. <http://www.maximintegrated.com/app-
notes/index.mvp/id/5447>.

10. "How Lithium-ion Batteries Work." HowStuffWorks. N.p., n.d. Web. 25
Nov. 2012. <http://electronics.howstuffworks.com/everyday-tech/lithium-
ion-battery1.htm>.

11. "Controlling Frame Rate." Sillicon Graphics International Corp., 7 Dec.
2004. Web. 24 Nov. 2012. <http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi/0650/bks/SGI_Developer/books/Perf_GetStarted/sgi_html/c
h10.html>.

12. "Infrared." Wikipedia. Wikimedia Foundation, 20 Nov. 2011. Web. 24 Nov.
2012. <http://en.wikipedia.org/wiki/Infrared>.

13. Wheeler, Richard. "IR Webcams and Night Vision." Calculated Images.
N.p., 28 June 2009. Web. 24 Nov. 2012.
<http://www.google.com/imgres?um=1>.

14. "Coffee Table Multitouch Surface Computer." Sypherus Labs. N.p., n.d.
Web. 13 Nov. 2012. <http://labs.sypherus.com/Coffee%20Table>.

15. Deimos. "Webcam Filter Removal." FreeTrack Optical Head Tracking
Software. N.p., n.d. Web. 24 Nov. 2012. <http://www.free-
track.net/english/hardware/filter_removal/labtec_webcam_pro.php>.

16. "LED Tutorial." Society of Robots. N.p., n.d. Web. 24 Nov. 2012.
<http://www.societyofrobots.com/electronics_led_tutorial.shtml>.

17. Laser/electro Optics Technology Series. 2nd ed. Vol. 1. Waco, TX: Center

for Occupational Research and Development, 1981. Print.
18. Niteesh. "VHDL Tutorial (Complete)." AuthorStream. N.p., n.d. Web. 21

Nov. 2012. <http://www.authorstream.com/Presentation/Niteesh-1347929-
vhdl-tutorial/>.

 127

19. Parker, Michael, Jr. "FPGA vs. DSP Design Reliability and
Maintenance." Altera White Paper 1.1 (2007): 1-4. Altera Corporation, May
2007. Web. 24 Nov. 2012. <http://www.altera.co.jp/literature/wp/wp-
01023.pdf>.

20. "Choosing FPGA or DSP for Your Application." FPGA or DSP. Hunt
Engineering, Oct. 2012. Web. 24 Nov. 2012.
<http://www.hunteng.co.uk/info/fpga-or-dsp.htm>.

21. Vikram. "FPGA or DSP." HDfpga. N.p., 18 Aug. 2011. Web. 24 Nov. 2012.
<http://hdfpga.blogspot.com/2011/08/dsp-or-fpga-5-parameters-to-make-
choice.html>.

22. Muhammad, Yasir. "Introduction to FPGA Technology." Introduction to
FPGA Technology. FPGA Related, 12 May 2011. Web. 24 Nov. 2012.
<http://www.fpgarelated.com/showarticle/17.php>.

23. "Generate Verilog and VHDL Code for FPGA and ASIC
Designs." MathWorks. MathWorks, 2012. Web.
<http://www.mathworks.com/products/hdl-
coder/index.html;jsessionid=62f07e9387bd6e802d11f1a84839>.

24. "DSP Builder." Altera News. Altera Corporation, 2012. Web. 21 Nov. 2012.
<http://www.altera.com/products/software/products/dsp/dsp-builder.html>.

25. Smith, Douglas J. "VHDL & Verilog Compared & Contrasted Plus Modeled
Example Written in VHDL, Verilog and C." VeriBest Incorporated, n.d.
Web. 21 Nov. 2012.
<http://www.angelfire.com/in/rajesh52/verilogvhdl.html>.

26. Botros, Nazeih. HDL Programming Fundamentals: VHDL and Verilog.
Boston, MA: Da Vinci Engineering, 2006. Print.

27. "What's New in the NI LabVIEW FPGA Module." Developer Zone. National
Instruments Corporation, 2012. Web. 21 Nov. 2012.
<http://www.ni.com/white-paper/12950/en>

28. "All Programmable FPGAs." Xilinx- All Programmable, n.d. Web. 25 Nov.
2012. <http://www.xilinx.com/products/silicon-devices/fpga/index.htm>.

29. "Low-Cost Cyclone FPGAs." Altera News. N.p., n.d. Web. 04 Dec. 2012.
<http://www.altera.com/devices/fpga/cyclone/cyc-index.jsp>.

30. "Sunstone PCB Prototype Design | Sunstone.com." Sunstone PCB
Prototype Design | Sunstone.com. N.p., n.d. Web. 04 Dec. 2012.
<http://www.sunstone.com/pcb123/compare123.aspx>.

31. Nyasulu, Peter M. "Digital Systems Lab Manual." UCF Department of
Electrical and Computer Engineering, Mar. 2010. Web. 04 Dec. 2012.
Print.

32. "CCD vs. CMOS." CCD vs. CMOS. Teledyne Dalsa, n.d. Web. 25 Nov.
2012. <https://www.dalsa.com/corp/markets/CCD_vs_CMOS.aspx>.

33. "HP HD-3110 5.7 Megapixel Webcam, CMOS Sensor, USB 2.0 Interface
#BK357AA." EBay. N.p., n.d. Web. 02 Dec. 2012.
<http://www.ebay.com/itm/HP-HD-3110-5-7-Megapixel-Webcam-CMOS-
Sensor-USB-2-0-Interface-BK357AA-
/121005918631?pt=PCA_Video_Conferencing_Webcams>.

 128

34. "USB Digital PC Web Camera with Microphone CMOS VGA Sensor."
EBay. N.p., n.d. Web. 02 Dec. 2012. <http://www.ebay.com/itm/USB-
Digital-PC-Web-Camera-with-Microphone-CMOS-VGA-sensor-
/251144045621?pt=PCA_Video_Conferencing_Webcams>.

35. "Home | Product Categories | Batteries | PRT-10161." USB LiPoly
Charger. Sparkfun, n.d. Web. 02 Dec. 2012.
<https://www.sparkfun.com/products/10161>.

36. Single-Chip, Multiple-Message Voice Record/Playback Device. Nuvoton, 2
Dec. 2012. Web.
<http://www.sparkfun.com/datasheets/BreakoutBoards/BOB-09579-
ISD1900.pdf>.

37. Brown, Brian. "Advanced C." Advanced C, Part 3 of 3. N.p., 02 Jan. 1999.
Web. 11 Oct. 2012. <http://gd.tuwien.ac.at/languages/c/programming-
bbrown/advcw3.htm>.

38. "The Basics:Writing Windows Drivers." The Basics:Getting Started Writing
Windows Drivers. Open System Resources, Inc., 04 Apr. 2004. Web. 25
Oct. 2012. <http://www.osronline.com/article.cfm?article=20>.

39. Khanduja, Jaideep. "Testing Environment." Quality Assurance and
Project Management What Is a Testing Environment for Software Testing
Comments. IT Knowledge, 12 Sept. 2008. Web. 10 Nov. 2012.
<http://itknowledgeexchange.techtarget.com/quality-assurance/what-is-a-
testing-environment-for-software-testing/>.

40. Orwick, Penny, and Guy Smith. Developing Drivers with the Windows
Driver Foundation. Redmond, WA: Microsoft, 2007. Print.

Appendix C- Table of Tables
Table 1: Infrared LED Information ... 9	

Table 2:Feature and Performance Comparison between CCD and CMOS
cameras ... 11	

Table 3: Cost-Performance Relationship ... 17	

Table 4: Xilinx FPGAs Features .. 28	

Table 5: Video and Image Processing Application Advantages of Cyclone III
FPGAs ... 29	

Table 6: FPGAs Power Specifications ... 31	

Table 7: MSP430g2553 low power mode functions .. 34	

Table 8: Arduino UNO (ATmega323) and TI Launchpad (MSP430g2553)
hardware comparison .. 37	

Table 9: Recommended Operating Conditions .. 37	

Table 10: Comparison of Typical Rechargeable Batteries 39	

Table 11: 3-byte packet ... 53	

Table 12: typical transmission errors given various BRCLK clock speeds as well
as baud rates ... 63	

Table 13: GRID Budget Breakdown .. 110	

Table 14: Senior Design I Milestones .. 111	

Table 15: Senior Design II Milestones ... 112	

Appendix D - Table of Figures

 129

Figure 1: Block diagram of FPGA pre-processing ... 5	

Figure 2: Image Recognition Algorithm Flow ... 6	

Figure 3: IR Camera Pins .. 9	

Figure 4: LED Viewing Angle- Degree ... 10	

Figure 5: Frame Rate ... 13	

Figure 6: Spectral response for a Canon 40D ... 14	

Figure 7: Wavelength Transmission of a Visible Light Filter 15	

Figure 8: Infrared LEDs seen with the IR filter removed and the visible light filter
 ... 15	

Figure 9: FPGA Preferred Vendors 2012 .. 24	

Figure 10: FPGA Structure .. 24	

Figure 11: Logic Block Structure .. 25	

Figure 12: Logic Block Pin Locations ... 25	

Figure 13: Logic Block Pin to Routing Channel Interconnect 26	

Figure 14: Unsegmented FPGA Routing ... 26	

Figure 15: Switch Box Topology .. 27	

Figure 16: Voltage Regulators and PVT Variations ... 31	

Figure 17: MSP430g2553 current vs DCO frequency ... 33	

Figure 18: MSP430g2553 clock module block diagram. 36	

Figure 19: Timer raises an interrupt flag once the value in TACCR0 is reached. 36	

Figure 20: Current vs. Voltage during the charging progress of the Lithium-Ion . 41	

Figure 21: TPS780xx Top View ... 43	

Figure 22: Typical connecting circuit for the BQ24193 .. 44	

Figure 23: Li-Ion Battery Charger .. 44	

Figure 24: Block Diagram of Trasceiver .. 48	

Figure 25: Schematic of Bluetooth module with voltage regulator 49	

Figure 26: Deviation of Accelerometers ... 55	

Figure 27: Cost vs. performance of the available accelerometer technologies. .. 56	

Figure 28: Interrupt controller block diagram. .. 57	

Figure 29: General gyroscope depiction .. 58	

Figure 30: ITG-3200 block diagram. .. 59	

Figure 31: Typical circuit configuration for the ITG-3200. 60	

Figure 32: MPU-6050 typical operating circuit. .. 61	

Figure 33: single byte serial transmission in UART protocol. 62	

Figure 34: UART bit time over MCU clock cycles. ... 62	

Figure 35: I2C connection diagram. ... 64	

Figure 36: I2C Start and Stop sequences. ... 64	

Figure 37: I2C read sequence starts with a write operation (R/W set to write). ... 65	

Figure 38: I2C after register has been written, begin to read (R/W set to read). .. 65	

Figure 39: Difference (Local cost) matrix for two signals S1= {1, 2, 3, 4, 5} S2= {1,
3, 2, 5, 6} .. 67	

Figure 40: Optimal warping path of two time-dependent sequences. 68	

Figure 41: Greedy algorithm choices at each step. (Blue depicts choice made) . 69	

Figure 42: Example of Slope Constraints .. 70	

Figure 43: Sakoe-Chuba Band (Left) and the Itakura Parallelogram (Right) 71	

Figure 44: Opening the Wii Remote ... 71	

 130

Figure 45: Desoldering the Camera Module .. 72	

Figure 46: Circular buffer implementation .. 73	

Figure 47: Pull-Up Resistor Circuit Configuration .. 74	

Figure 48: Battery-Power System Block Diagram ... 75	

Figure 49: Camera Eagle CAD PCB .. 77	

Figure 50: Camera Printed Circuit Board ... 78	

Figure 51: Glove Eagle CAD PCB Design ... 79	

Figure 52: Top View of Glove PCB .. 80	

Figure 53:Bottom view of Glove Proto Board Design .. 80	

Figure 54: Master Hand ... 81	

Figure 55: Microcontroller Use Case diagram ... 84	

Figure 56: MSP430 Use Case diagram ... 85	

Figure 57: GUI/Driver Use Case diagram .. 85	

Figure 58: GRID System Flow Chart ... 91	

Figure 59: Driver Design Flow ... 93	

Figure 60: Power Supply Flowchart ... 93	

Figure 61: System Interface ... 94	

Figure 62: Interfacing Subsystems .. 94	

Figure 63: LED Test Circuit ... 97	

Figure 64: Visible light filter implementation .. 98	

Figure 65: Voltage Op-Amp Circuit .. 99	

Figure 66: Temperature Measurement Circuit ... 100	

Figure 67: Testing Process .. 103	

Figure 68: Testing Phases ... 103	

Figure 69: “V” or Sequential Model .. 105	

Figure 70: Iterative or Incremental Model .. 106	

Figure 71: Waterfall Model ... 106	

Figure 72: Spiral Model .. 107	

Figure 73: Integration Block Diagram .. 109	

Figure 74: Tera term setup wizard screen ... 114	

Figure 75: Setup completed screen view ... 115	

Figure 76: Adding a Bluetooth device .. 116	

Figure 77:Accessing the Device Manager ... 117	

Figure 78: Bluetooth module paired ... 118	

Figure 79: Opening the control panel .. 118	

Figure 80: GRID Control Panel .. 119	

