
Initial Project and Group Identification Document

September 17, 2013

BABY PEAS (Pulse Early Alarm Sensor)

A non-evasive infant monitoring system which provides vital signs while sleeping

Department of Electrical Engineering and Computer Science

University of Central Florida

Dr. Samuel Richie

Senior Design

	GROUP 4	
Christopher Ramirez	407-310-0830	cramirez36@cfl.rr.com
Xin Tong	407-4378604	x.tong@knights.ucf.edu
Yowwu Lin	407-435-7804	wasiasd@knights.ucf.edu
Benjamin Goolsby	904-347-7935	goolsby@knights.ucf.edu

Motivation

Markets sell a variety of baby monitoring equipment that includes an abundance of features; some common features include infrared cameras and ambient temperature sensor. While many traditional monitors focus on the video as a safety feature, a baby's wellbeing is sometimes hard to decipher on a grainy screen. Our product, instead, focuses on quantifiable bio-markers, such as pulse oximeter, accelerometer, and direct contact temperature sensor, to indicate the baby's health. This project strives to improve upon the current models and involves several factors for specific medical and social considerations.

Geared toward infants and young toddlers, Baby PEAS is designed to provide an empirical picture of the newborn's physical condition. If the pulse-ox detects sudden drops in pulse or oxygen levels, a triggered alarm alerts the caretaker. Whereas, if relying on video observation, the caretaker could find his attention distracted or misread a picture on the screen and lose critical minutes in a potential serious medical emergency. In addition to basic pulse functions, the accelerometer and the temperature sensors can help monitor against risk factors for sudden infant death syndrome (SIDS). Although no definitive cause is known, the medical community agrees on several factors that can magnify risk of SIDS. The accelerometer and temperature sensor should mitigate the risk factors.

Objective

Due to the nature of usage, form and packaging comprises a large portion of design.

Because the unit is planned to operate under direct contact with the baby, safety considerations include minimal invasion and heat dissipation. In addition, ergonomic concerns include ease of use, bulk, and portability. Power factors in as well due to the targeted length of function time.

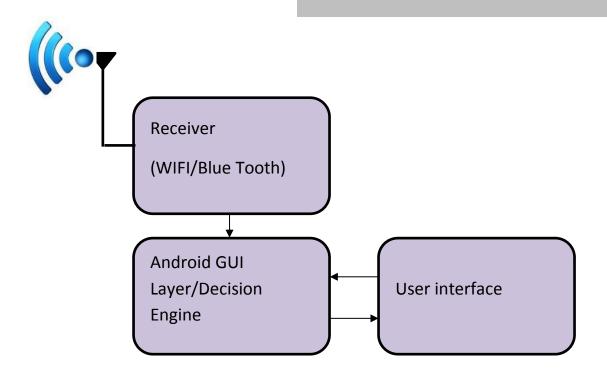
Specifications:

Device Battery Life:	➤ 8HRS		
Weight of Device	> 100 Grams		
Dimensions	< 20mm (W)		
	< 10mm (H)		
	100-150mm (L) (Adjustable)		
Pulse Oximeter Accuracy:	+- 20%		
Heart Rate Accuracy:	+- 20%		
Temp Accuracy on board	+- 5 Degrees C		
Position Accuracy	Accuracy Must let the user know whether the infant is on		
	their back, front, stomach or side.		
Wireless Transmission Range:	100 feet		
Operating Temperature:	5 degrees ~ 50 degree		
Operating Humidity:	10%~90>		

Project Budget Estimates				
WIFI / Bluetooth	\$250.00			
Pulse Oximeter \$50.00				
Accelerometer	\$30.00			
Temperature Sensor \$30.00				
Microcontroller	\$200.00			
Power Supply	\$50.00			
PCB	\$100.00			
Solder Tools	\$25.00			
Prototype Tools	\$50.00			
Mechanical Assembly parts	hanical Assembly parts \$30.00			
Google Play Developer Account	\$25.00			
Overhead (Pizza, Caffeine Pills, etc)	\$100.00			
Totals	\$990.00			

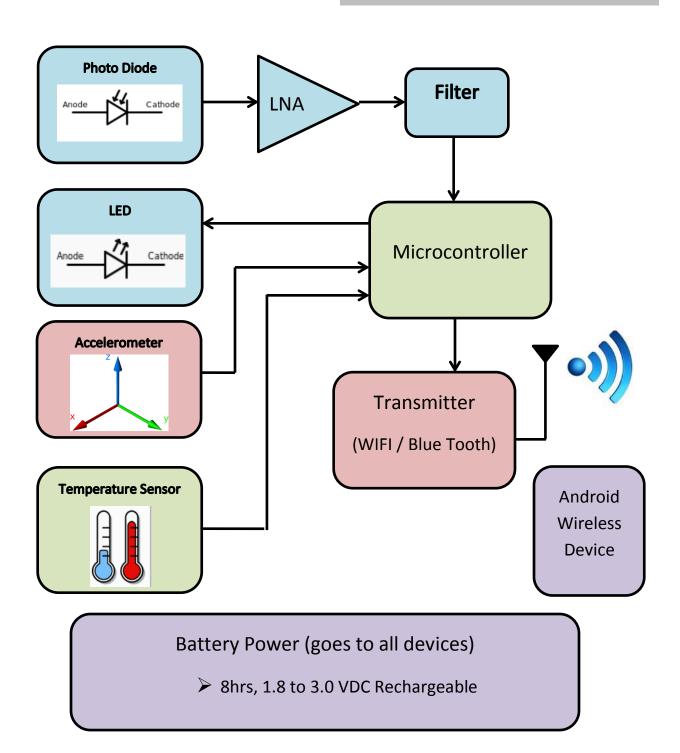
Cost Responsibilities

Cost responsibilities will be an even 25% splitting among the group of whatever the total amount comes too. While the total estimate is \$990.00 we are trying to set a goal to come in under budget at around \$500.00


Sponsors

Currently no sponsorships have been awarded. Possible sponsorships being approached are

- Philips Medical
- Quality Manufacturing Solutions (QMS)
- L-3 Communications / Cyterra division
- Texas Instruments


Christopher Ramirez
Xin Tong
Yowwu Lin
Benjamin Goolsbe

Software Design Block Diagram

Christopher Ramirez
Xin Tong
Yowwu Lin
Benjamin Goolsby

Hardware Design Block Diagram

Schedule / Milestones

D of		Task Name	Duration	Start	Finish	Predecessors
0		seniordesign	118 days	Tue 9/10/13	Thu 2/20/14	
1	*	1 Initial documentation	6 days	Tue 9/10/13	Tue 9/17/13	
2	*	2 Wireless protocol decision	10 days	Wed 9/18/13	Tue 10/1/13	1
3	*	3 Fundraising	45 days	Wed 10/2/13	Tue 12/3/13	1
4	*	4 Microprocessor and Power supply	10 days	Fri 9/27/13	Thu 10/10/13	2
5	*	5 Peripherals decision	4 days	Fri 9/27/13	Wed 10/2/13	2
6	*	6 Circuit	20 days	Tue 10/8/13	Mon 11/4/13	4,5
7	*	7 Paper milestone 60 pages	32 days	Wed 9/18/13	Thu 10/31/13	
8	*	8 Paper milestone rough draft complete	14 days	Fri 11/1/13	Wed 11/20/13	7
9	*	9 Paper milestone Complete	7 days	Thu 11/21/13	Fri 11/29/13	8
10	*	10 Breadboarding and testing	30 days	Wed 1/1/14	Tue 2/11/14	
11	*	11 Accelerometer	4 days	Wed 1/1/14	Mon 1/6/14	10SS
12	*	12 Pulse oximeter	10 days	Wed 1/1/14	Tue 1/14/14	10SS
13	*	13 temperature sensor	4 days	Wed 1/1/14	Mon 1/6/14	10SS
14	*	14 PCB layout	7 days	Wed 2/12/14	Thu 2/20/14	10
_		· · · · · · · · · · · · · · · · · · ·				