Bike Dash

Group 11

Vincent Altavilla

Jose Davila

Aziz Elouali

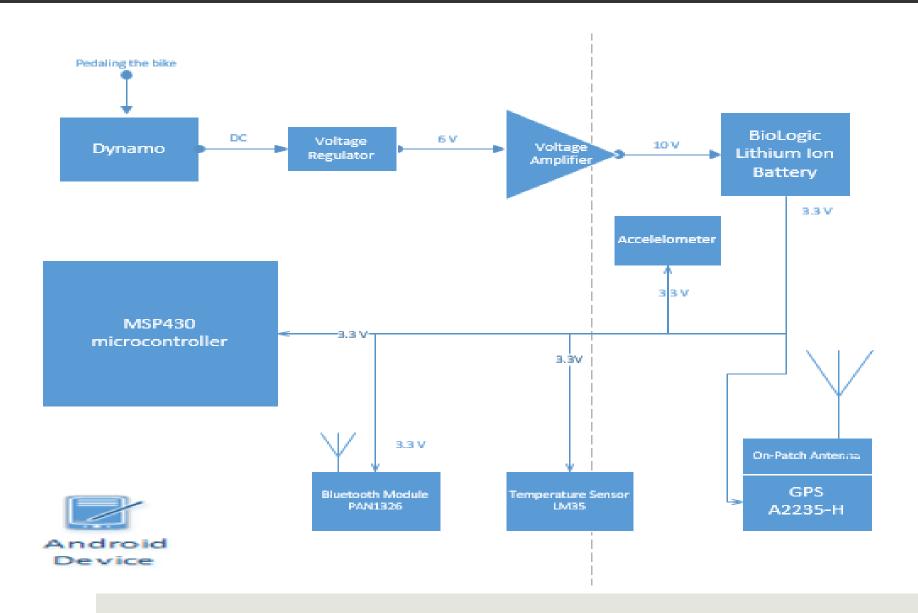
What is Bike Dash?

- An all-in-one ride monitoring application
- Consists of:
 - Sensors and Data Acquisition
 - Android application
 - Human power generation
- Target Audience
 - Ages 12+
 - Beginner to Advanced riders

Motivation

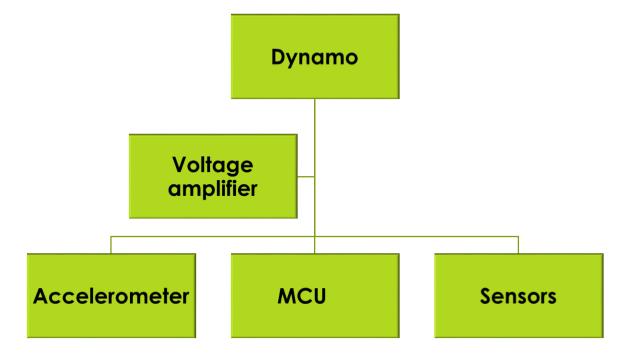
- Make riding easier to track
 - Catalog previous rides
 - Monitor progress during rides
- Visual progress encourages more riding
 - Trends and progress over time
- Challenge friends to ride
 - Post or "share" your ride with a friend

Objectives


- Durability
 - Dust, water, and shock resistant
- Portability
 - Easy to remove
 - Lightweight
- Power Consumption
 - Under 3.0W
 - Rechargeable batteries

Expectations

To put that in numbers:


System Weight	< 4.5 kg
Power Supplied	3.0 W
Power Drawn	2.4 W
Operating Temperature	-20°C to 60°C
Dimensions	9 cm x 9cm x 5 cm (l x w x h)

Bike Dash Block Diagram

Power System

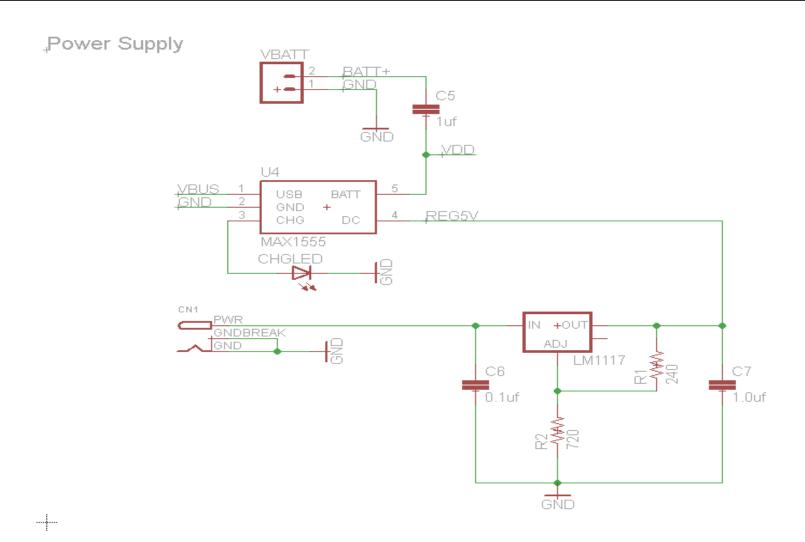
- Input voltage: 6V AC
- ➤ Full bridge rectifier: 10V DC
- Voltage regulator max. I/O: 67V / 10V
- Battery charger input voltage: 10V
- Output Voltages: 3.3V / 5V

Dynamo

	Shimano Alfine DH-3N80	Joule 3
Efficiency	70%	73%
Weigh	490g	355g
Spoke Hole	32	32
Over Lock-nut Dimension	100mm	100mm
Price	\$139.95	\$149.99

Shimano Alfine DH-3N80

- Both hubs can shift under load. It shifts easier and smoother under high load and uphill.
- More gears can be shifted in one movement.
- Offer a disc brake and rim brake option.
- Uses the "easy click connector".
- Power supply of 3 Watts.

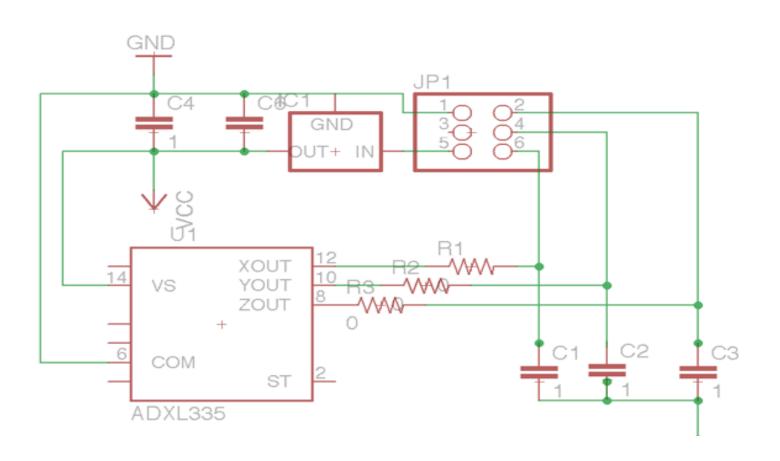


Voltage regulator LM117

- Has 3 terminal adjustable regulators.
- Excess 1.5A over a 1.2V to 37V output range.
- Low cost and easy to use

	LM117
Fixed output options	1.8V - 5V
Noise	75 uVrms
V _{in} (max)	40V
V _{in} (min)	4.2V
Operating Temperature	-55 °C to +150 °C
${ m I_q}$	1.5mA
Protection	Current limiting, thermal shutdown
Output Current	1.5A

PCB Schematic for LM117



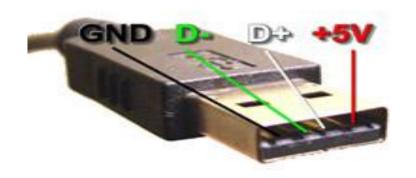
Accelerometer ADXL335

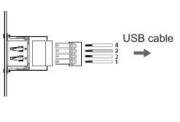
- Ultralow power consumption
- Very small and fit in PCB
- Has 3 axes accelerometer controls
- Wide voltage range between 1.8V to 3.6V
- Output data rate 12.5Hz and 400Hz
- Adjustable threshold for Motion Activation
- Has a built-in micro-power temperature sensor and several detection modes

PCB layout of ADXL335

Battery Pack

- Works with most standard bicycle hub dynamos
- Directly charge devices via micro-USB
- Safety circuitry in power converter protects battery against power spikes


Capacity	1600mAh
Voltage	7.4V
Dimension	2.63 x 1.45 x 0.7 (inch)
Weight	3.5 oz
Maximum charge current	2A
Maximum discharge current	5A
Cut-off voltage	4.8V


BioLogic Lithium Ion Battery

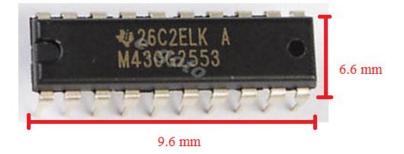
- Energy/Weight: 100Wh/0.104Kg
- Charge/Discharge Efficiency: 90-100%
- Durability: 24-48 months
- Cell voltage: 4.05V
- Capacity: 1600mAh
- Weight: 90g

USB

Parameter	Requirement
DC Voltage	4.5v - 6V
Maximum current (low power)	150mA
Max allowable input capacitance	10uF
Transfer Data Rate	5 Gbit/s

Pin#	Signal	Cable Color
1	+VCC	Red
2	Data -	White
3	Data +	Green
4	GND	Black

Wiring


PCB Specifications

- Relatively low cost
- Low power consumption
- Requires approximately 5V to operate and consumes to 2W of power in active mode
- USB 3.0

Board length	3 in
Board width	4 in
Board thickness	0.06 in
Copper thickness outer later	0.0014 in
Minimum trace width	0.01 in
Minimum hole size	0.032 in

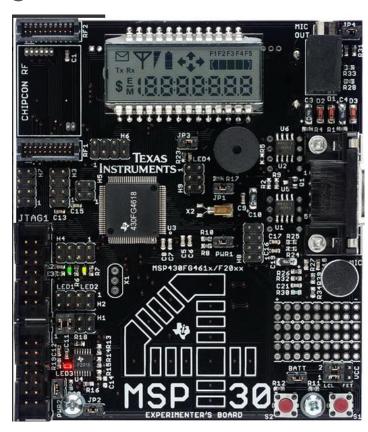
MSP430

- Low supply-voltage range
 - 1.8 V to 3.6 V
- Power Efficient
 - 16 MHz at 3.3 V
- □ 16-bit Architecture
 - Other MCUs we 8-bit

Other MCUs

ATmega48-20AU

Max Speed	20 MHz
Power (volts)	5.5 V
Size	4.9 mm x 4.9 mm (L x W)
Architecture	8 – bit
Operating Temperature	-40°C to 85°C


PIC18F14K22

Max Speed	16 MHz
Power (volts)	5.5 V
Size	24.9 mm x 6.1 mm (L x W)
Architecture	8 – bit
Operating Temperature	-40°C to 85°C

MSP430G2553 Operating Temperature: -40°C to 85°C

Programming the MSP430

- Versatility in programming language
 - C or Assembly
- Flash using Experimenter Board
 - We will use the MSP430FG4618
- Accept sensor input
 - Accelerometer, GPS, Temp
- Transmit data
 - Bluetooth

Integrating the MSP430

Temperature Sensor

- Broad temperature range
 - -55°C to 150°C
- Precision centigrade temperature sensor
 - Accurate to ±0.5°C
- Low voltage design
 - 3.3 V at room temperature (~20°C)

Other Temperature Sensors

Analog Devices TMP35

Temp. Range	10°C to 125°C
Voltage at ~20°C	3.6 V
Accuracy	±1°C

Honeywell TD5A

Temp. Range	-40°C to 150°C
Voltage at ~20°C	4.2 V
Accuracy	±0.4°C

GPS Receiver: A2235-H

- BT chip with an on-board patch antenna
 - Tuned to receive GPS L1 frequency for civilian use: 1.575 GHz
- □ Small & lightweight: 17.8 x 16.5 x 7.1 mm³, Weight: 4 g

- Ultra-low power consumption
 - Supply voltage of 3.3V and 31 mA average while tracking (full power mode)
 - Hot start: < 1 sec. Cold Start: < 35 sec. Time To First Fix (TTFF)</p>

GPS Receiver: A2235-H

- 48 channels, information read over UART serial port
 - Ports: Tx (NMEA output), Rx (NMEA) input
- An update rate of 1Hz is sufficient for tracking
- A2235-H configured by default to transmit serial data at baud rate of 4,800 bps, 8 data bits,

no parity, 1 stop bit and no flow control

GPS Receiver:		
Serial Device	USART1	
Transmit pin	TXO (#18)	
Receive pin	RxO (#19)	
Baud rate	4800 bps	
Frame Structure	8N1	

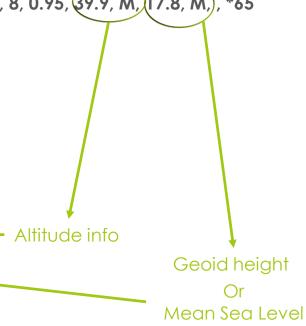
Other GPS Receivers

	A2235-H	GMS-HPR	Venus638FLPx-L	
Channels	48	66	65	
Sensitivity (Tracking)	-163 dBm	-165 dBm	-165 dBm	
Position Accuracy	< 2.5m CEP	< 2.5 m CEP	< 2.5 m CEP	
TTFF Hot Start	< 1 s	< 1 s	< 1 s	
TTFF Cold Start	< 35 s	< 33 s	< 29 s	
Update Rate	1 – 6 Hz	1 – 10 Hz	1 – 20 Hz	Higher update ro
Baud Rate Range	1,200 - 115.2 k	4,800 - 115.2k	4,800 - 115.2k	
Supply voltage	3.0 – 3.6 V DC	3.0 – 4.3 V	2.8 – 3.6 V	
Current Draw-tracking	29 mA	20 mA	11 – 18 mA	-
Power Consumption-	86 mW	66 mW	60 <u>mW</u>	No antenna
tracking				No differing
LxWxH(mm ³)	17.8 x 16.5 x 7.1	16 x 16 x 6.2	10 x 10 x 1.3	
Weight	4.0 g / 0.14 oz.	6 g	1.8 g	
Cost	\$14.42	\$20	\$39.95 + antenna cost	High
		\	_	cost

First choice: could only order from China

Parsing GPS Information

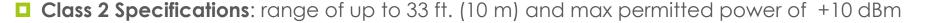
- ☐ There will be two NMEA output sentences used in the design
 - Recommended Minimum Navigation Information (RMC)
 - universal time (UTC), date, position, relative course and speed over ground
 - \$GPRMC, 064951.000, A, 2307.1256, N, 12016.4438, E, 0.03, 165.48, 260406, 3.05, W, A*2C


Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	064951.000		hhmmss.sss
Status	A		$A = data \ valid \ or \ V = data \ not \ valid$
Latitude	2307.1256		ddmm.mmm
N/S Indicator	N		N = north or $S = $ south
Longitude	12016.4438		ddmm.mmm
E/W Indicator	E		E = east or W = west
Speed over	0.03	knots	
Ground			
Course over	165.48	degrees	True
Ground			
Date	260406		Ddmmyy
Magnetic	3.05, W	degrees	E = east or W = west
Variation			
Mode	A		A = Autonomous mode
			D = Differential mode
			E = Estimated mode
Checksum	*2C		
<cr> <lf></lf></cr>			End of message termination
OIC III			The or medding a serming and

Parsing GPS Information

- And Global Positioning System Fixed Data (GGA)
 - altitude above or below mean sea level

□ \$GPGGA, 064951.000, 2307.1256, N, 12016.4438, E, 1, 8, 0.95, (39.9, M,) 17.8, M,), *65


Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	064951.000		hhmmss.sss
Latitude	2307.1256		ddmm.mmmm
N/S Indicator	N		N = north or $S = $ south
Longitude	12016.4438		dddmm.mmmm
E/W Indicator	E		E = east or W = west
Position Fix	1		0 = Fix not available
Indicator			1 = GPS fix
			2 = Differential GPS fix
Satellites Used	8		Range 0 to 14
HDOP	0.95		Horizontal Dilution of Precision
MSL Altitude	39.9	meters	Antenna Altitude above/below mean sea
			level
Units	M	meters	Units of antenna altitude
Geoidal	17.8	meters	
Separation			←
Units	M	meters	Units of geoids separation
Age of Diff. Corr.		second	Null fields when DGPS is not used
Checksum	*65		
<cr> <lf></lf></cr>			End of message termination

Bluetooth Module: PAN 1326

- □ HCl data packets are to Android device using short wavelength radio transmissions
 - Frequency Band Range: 2400-2483.5 MHz
- Based upon TI's CC2564 BT Host Controller Interface, with attached antenna
 - RF-Receive Sensitivity: Up to -93 dBm, Tx Power: 10 dBm

1.8 mm thick

□ Dimension: 9 x 9.5 x 1.8 mm³ Weight: 0.25 g

Bluetooth Module: PAN1326

- Ultra-low power consumption
 - Bluetooth Low Energy (BLE 4.0) → fast connections (few ms)
 - □ Current consumption: Active mode: 40 mA
 - Supply voltage: 3.3 V
- □ Flexibility for Easy Stack Integration and Validation with MSP430TM
 - TI's royalty free BT stack: Stone Street Blue Topia stack
 - MSP430 can run both BT stack and embedded application

Bluetooth				
Transmit Pin	HCI_TX (#6)			
Receive Pin	HCI_RX (#5)			
Baud Rate	115.2 kbps			
Frame Structure	8N1			

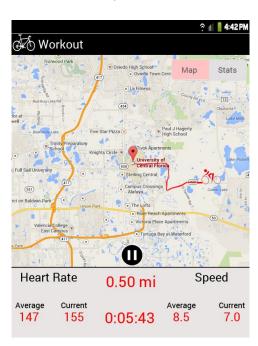
Heart Rate Sensor: Scoche RHYTHM

- □ Heart rate chest strap with Bluetooth capabilities (Class 2: range = 33 ft.)
- Helps riders.
 - Maintain safety, monitor progress, maintain target zone
- Compatible with Android devices

	Scoche RHYTHM	Polar H7
Heart Sensor Style	Chest Srap	Chest Strap
Bluetooth Enable	Yes	Yes
Bluetooth Certification	FCC	FCC, IC, CE
Battery Life	6 hours	200 hours
Operating Temperature	0 °C to +45 °C	-10 °C to +50 °C
Dimensions (inches ³)		8 x 1.5 x 5
Weight (oz.)		1.6
Cost	\$ 35.00	\$ 69.99

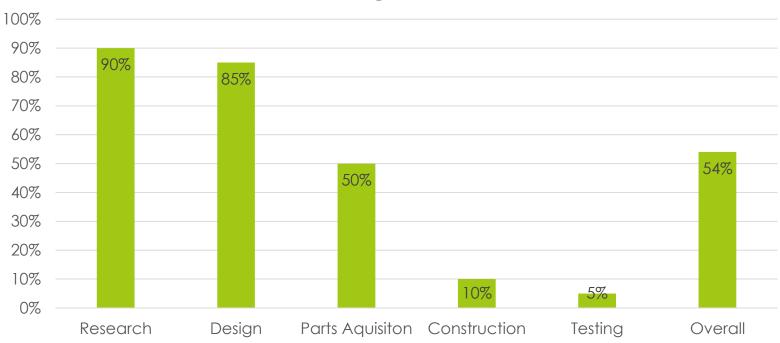
Android Application

- Used to displays information to the rider
 - Speed, Duration, Elevation, Distance, Calories, Heart Rate, Map
- □ Information will be received via HCI packets broadcasted over Bluetooth Network
- □ Portability: Gingerbread (API 10) through Kit Kat (API 19) = 98.7% of devices
- Positive user experience
 - audio and visual feedback
 - Two view options: Map view and Stats view
 - Familiar application layout (Twitter)



Android Application: User Interface

Main Menu Map View Stat View



Current Progress

Moving Forward

- Begin building first week of February
- Have PCB designed and ordered by end of February
- Android application completed by mid-March
- MCU architecture complete by March
- Begin testing by April 1, 2014

Project Budget

Part	Part #	Price	Acquired	
Bluetooth	BT-PAN1326	\$28.85		
Heart Rate	Scoche RHYTHM	\$39.95		
GPS	A2235-H	\$24.41		
Temperature Sensor	LM35-DZ	\$17.00		
Microcontroller	MSP430	\$10.00		
Experimenter's Board	MSP430FG4618	Free		
Dynamo	Shimano Dh- 3N80	\$98.44		
Accelerometer	ADXL-352	\$9.22		
Bike		\$20.00		
Current Total : \$247.87 Budget: \$ 578.08				

