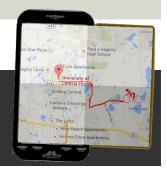


Group 11

Vincent Altavilla

Jose Davila

Sponsored by: Duke Energy


What is Bike Dash?

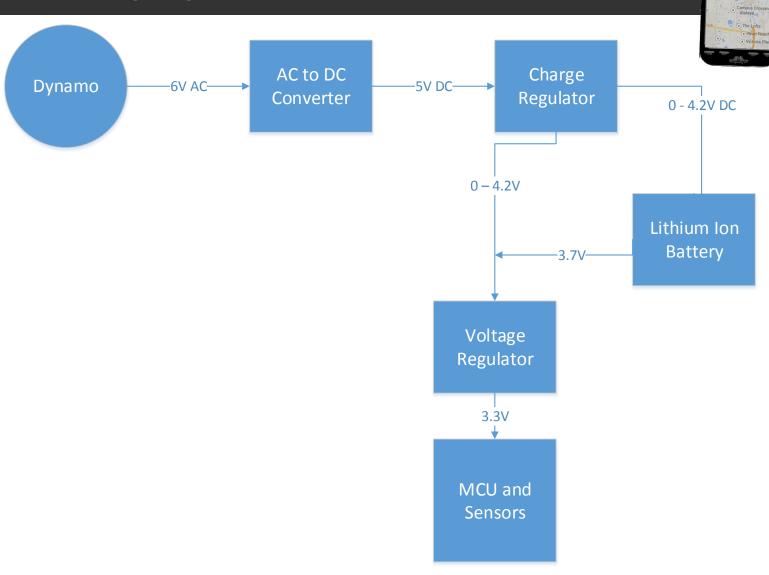
- An all-in-one ride monitoring application
- Consists of:
 - Sensors and Data Acquisition
 - Android application
 - Human power generation
- Target Audience
 - Ages 12+
 - Beginner to Advanced riders

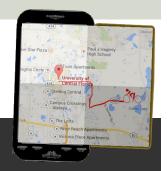
Motivation

- Make riding easier to track
 - Catalog previous rides
 - Monitor progress during rides
- Visual progress encourages more riding
 - Trends and progress over time
- Challenge friends to ride
 - Post or "share" your ride with a friend
- Crash Detection and Reporting

Objectives

- Durability
 - Dust, water, and shock resistant
- Small Footprint
 - Small form factor
 - Allows for normal operation
- Power Consumption
 - Under 3.0W
 - Rechargeable battery

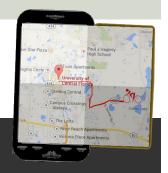



Specifications

Bike Dash specifications:

System Weight	<2 kg
Power Supplied	3.0 W
Power Drawn	
Operating Temperature	-20°C to 60°C
Dimensions	10cm x 14.5cm x 19cm (I x w x h)

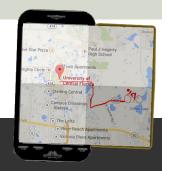
Charging Circuit at a Glance



Dynamo

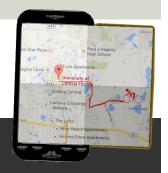
Shimano DH-3N80

- Front Hub Dynamo
 - Easy to remove wheel
- 3W at 6V (AC)
- Power supply of 3 Watts.
- Versatile
 - DC Jack (ReeCharge)
 - Can fit other devices

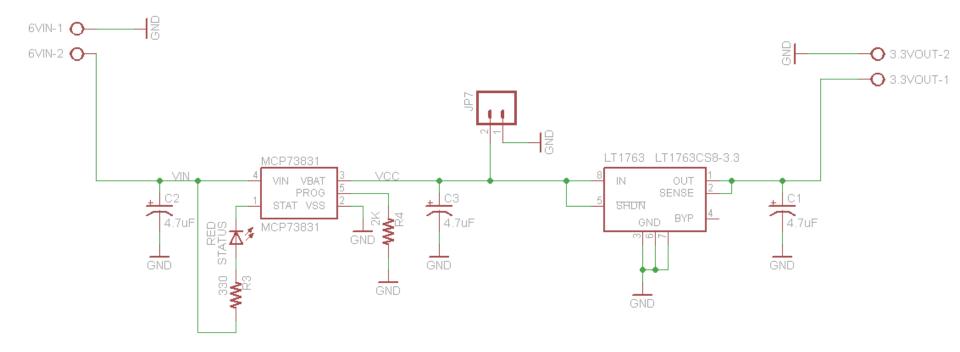

AC to DC Conversion

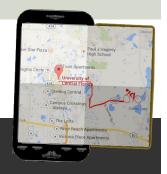
- □ Input is ~6V AC from dynamo
- Outputs constant 5V DC at full speed (~15 MPH)
- Allows for versatility
 - Any 5V DC device
 - Disable dynamo easily

BioLogic ReeCharge Dynamo Kit

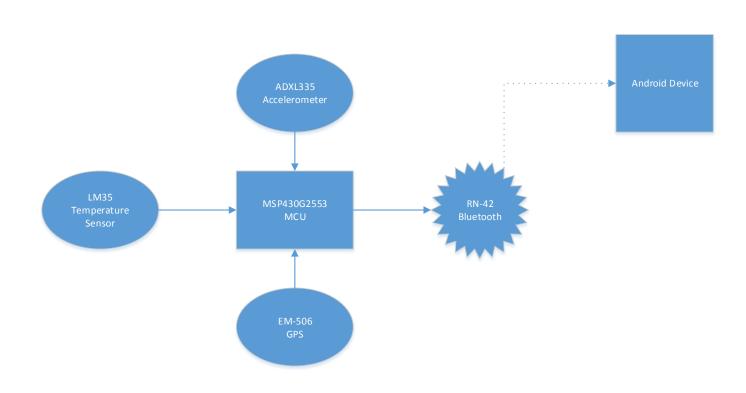


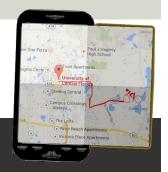
Battery Charging

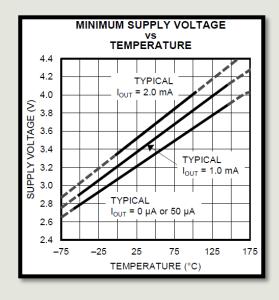

Charging Circuit and the 3.7V Li-lon

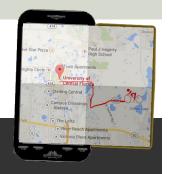


- □ Input is 5V DC (20V Max)
- □ Charges at 4.2V
- ☐ Trickle charge at full capacity
- Able to charge or run off of battery only
- Output regulated to ~3.3V using LT1763 (LDO)




Charging Circuit Schematic

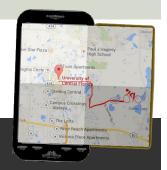

Data Acquisition at a Glance



Temperature Sensor

LM35

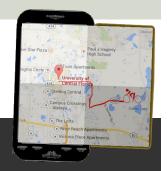
- Broad temperature range
 - -55°C to 150°C
- Precision centigrade temperature sensor
 - Accurate to ± 3°C
- Low voltage design
 - 3.3 V at room temperature (~20°C)



Accelerometer

- Triple axis device
 - Only two used (X and Y)
- Analog input
 - Easier reads
 - Less CPU power
- Crash detection
 - President Hitt
 - Ability to text 911 as of May 15th

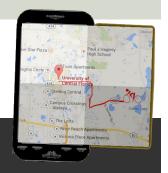
ADXL335



GPS Receiver

EM-506			
Serial Device	UART		
Receive pin	RX (MSP430 Pin 3)		
Baud rate	4800 bps		
Frame Structure	8N1		

- 48 channel, UART device
- Outputs NMEA sentences
 - RMC, GGA, GSA, and GSV
 - Speed and location
- Run in Low Power mode
 - Able to use 3.3V source
- Packaged with surface antenna


Bluetooth Module

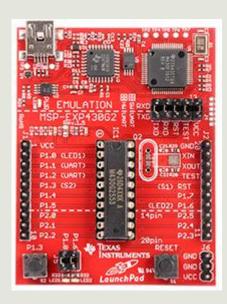
- Passes data to Android device
- Configurable baud rate
 - Up to 115200 baud
 - Configured to 4800 baud
- Low power device
 - 3.3V source
- Device set as slave
 - Waits for data on RX pin
 - Transmits asynchronously

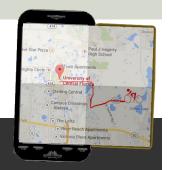
RN-42

RN-42 Bluetooth				
Operating Voltage	3.3v			
UART Baud Rate	4800			
Antenna	On-board			

Microcontroller

MSP430G2553

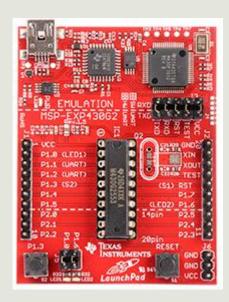

- Low supply-voltage range
 - 1.8 V to 3.6 V
- Power Efficient
 - 16 MHz at 3.3 V
- □ 16-bit Architecture
 - Other MCUs we 8-bit

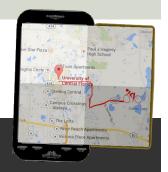


Programming the MSP430

- Originally written in Code Composer Studio
 - Energia for final project
 - Headers included
- Flash and debug using MSP430 Launchpad
- Accept sensor input
 - Accelerometer and Temp are analog sensors
 - GPS uses UART
- Output data through Bluetooth
 - Asynchronous transfer
 - Successive sensor reads

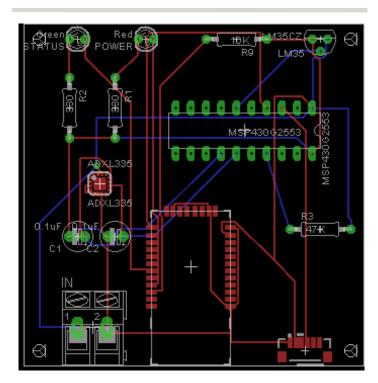
MSP-EXP430G2

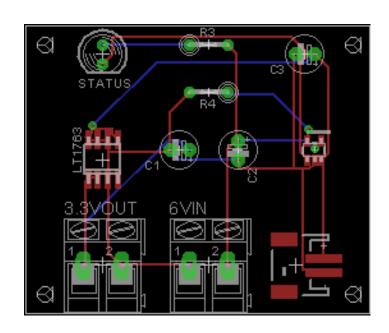




Programming the MSP430 (cont'd)

- GPS sensor requires loop
 - Receive 750 characters
 - Asynchronous
- Data read using infinite loop

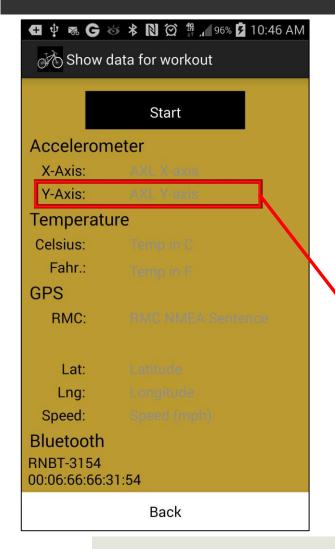

MSP-EXP430G2



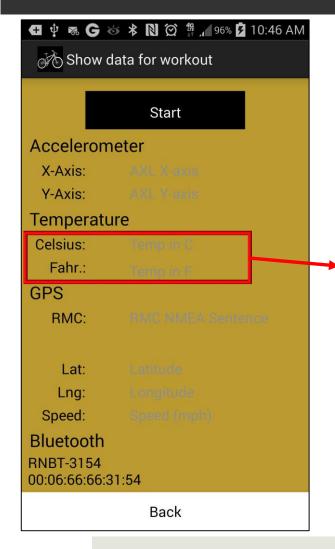
PCB Layout

Main Circuit

Charging Circuit

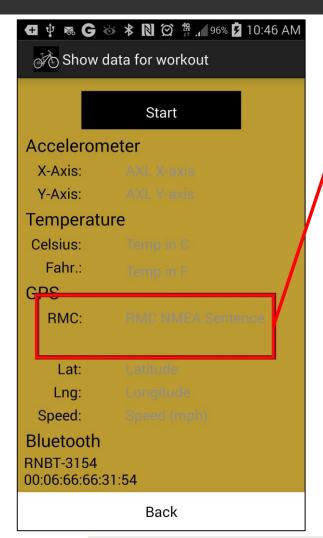


Android Application


- Used to display workout information to the rider
 - Speed, Duration, Distance, Calories burned, and temperature
- Information will be received via packets broadcasted over Bluetooth network
- Portability: Gingerbread(API 11) through KitKat (API 19) = 81 % of Android devices in the market today
 - Limited by the use of Google Maps v2 API
- Positive user experience
 - Audio and visual feedback
 - Two view options: Map view and Stats view
 - Rich GUI layout

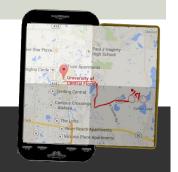
- Data received via Bluetooth is appended into a StringBuilder until end of data index is received ('~')
 - \$TEMP73#\$ACLX456@\$ACLY520%\$GPRMC,064951.0 00,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,3 .05,W,A*2C~
- The data is parsed out using end of data indexes to obtain the desired values. The StringBuilder is clear and the process is repeated
- Accelerometer Data: \$ACLX456@\$ACLY520%
- Monitor Y-axis to determine if the rider has been involved in an accident
 - If Y-axis value: 400 < value > 600
 - The bike is on the floor
 - Check if rider's speed is less than 0.5 mph
 - Show emergency dialog to user to determine the next actions to be taken

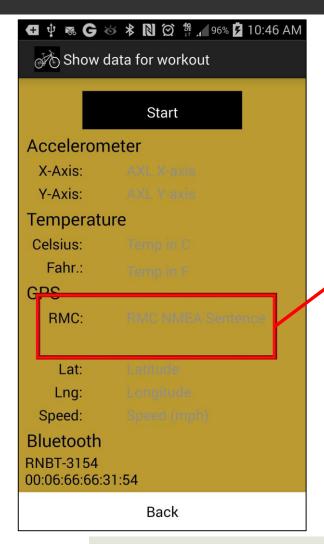

Temperature Data: \$TEMP73#


Formula: Voltage Reading = value Received
 Reference Voltage = 3.3 V

of bits = 1024

Temp (Celsius) =
$$\frac{Voltage\ Reading\ *Reference\ Voltage\ *100}{Number\ of\ bits}$$

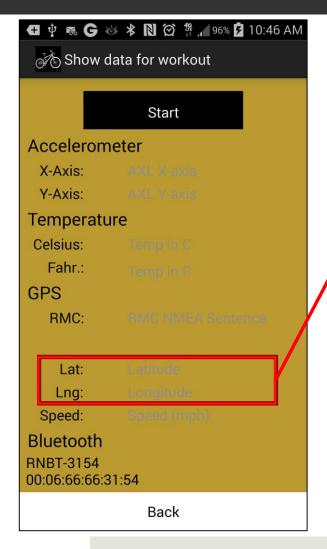

- Temp (Celsius) is then converted to Fahrenheit
- As temperature data comes in it's stored in an array
 - When at least 50 samples are obtain, the samples are averaged
 - Celsius and Fahrenheit temperature are displayed to the user



- GPS Data: \$GPRMC,064951.000,A,2307.1256,N, 12016.4438,E,0.03,165.48,260406,3.05,W,,,A*2C~
- Recommended Minimum Navigation Information (RMC)
 - Longitude, latitude and speed data

Name	Example	Units	Description		
Message ID	\$GPRMC		RMC protocol header		
UTC Time	064951.000		hhmmss.sss		
Status	A		A = data valid or V = data not valid		
Latitu de	2307.1256		ddmm.mmm		
N/S Indicator	N		N = north or $S = $ south		
Longitude	12016.4438		ddmm.mmm		
E/W Indicator	E		E = east or W = west		
Speed over	0.03	knots			
Ground					
Course over	165.48	degrees	True		
Ground					
Date	260406		Ddmmyy		
Magnetic	3.05, W	degrees	E = east or W = west		
Variation					
Mode	A		A = Autonomous mode		
			D = Differential mode		
			E = Estimated mode		
Checksum	*2C				
<cr> <lf></lf></cr>			End of message termination		

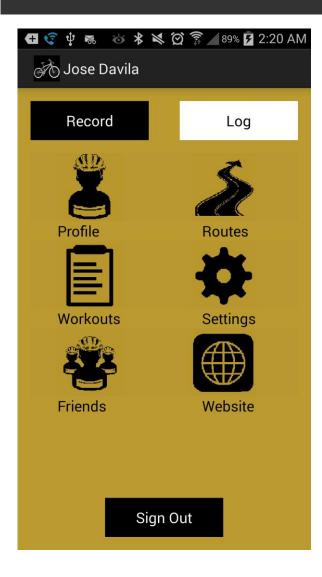
Experience some noise from GPS due to Baud Rate mismatch


Solution:

- Created complicated algorithm that checks for valid GPS RMC sentences:
 - Check status of RMC sentence
 - (A = Valid, V= Not Valid)
 - Contains 70 characters
 - Contains 12 commas
 - Check the length of the String values:
 - Latitude = 9
 - Longitude = 10
 - Speed = 4

Drawbacks:

- Large amount of data is dumped
- Occasionally decreases map view refresh rate due to invalid GPS data

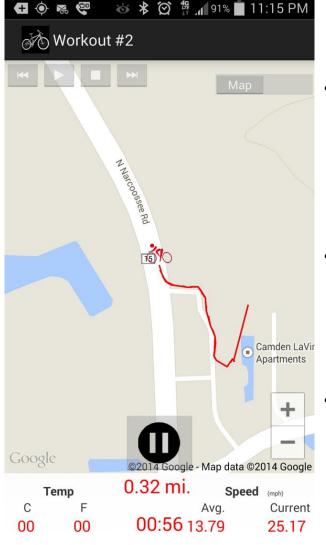

- Latitude Data: 3723.2475
- Longitude Data: 12158.3416
- The latitude & longitude is received in degrees decimal minutes format (ddmm.mmm)
- The map view needs latitude and longitude to be in decimal degrees format to be used with Google Maps
- Conversion:

• Decimal degrees =
$$\frac{dd}{60}$$
 + $\frac{mm.mmm}{60}$

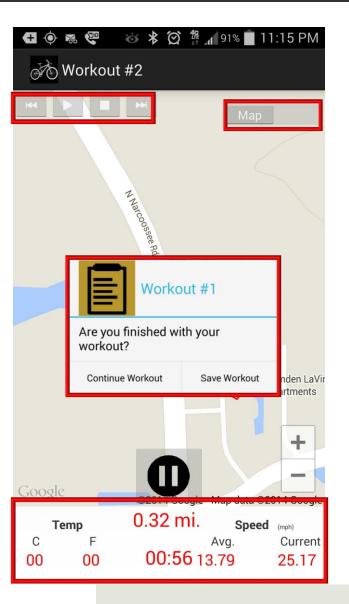
- If the N/S indicator = S or W/E indicator = W
 - Multiply the value by (-1) to obtain the correct position

Main Application Layout

- GUI layout design to be similar to Twitter to improve user
 learnability and usability
- User will have 8 options:
 - Record new workout
 - Log a workout
 - View User Profile
 - View a list of workouts
 - View a list of routes
 - Change settings

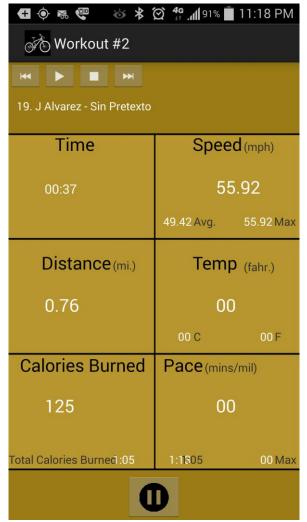

Record

Map View



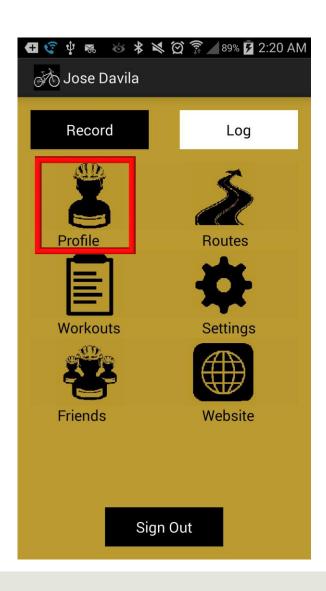
- Uses Google Maps v2 API
 - Supported by Google
 - Registered application in Google Developer Console to receive support from the Google servers
 - Has location updates are received from GPS Module
 - The riders current position is displayed (bicycle)
 - The path that the rider has traveled is drawn on the map (red line)
 - The rider also has the ability to zoom in and out
 - By using zoom button or touch gestures

Map View



- The most important workout data is also provided in the map view
 - Ambient temperature, distance, duration, average and current speed
- To increase the app's intuition
 - Provided the user with the ability to control their music stored inside phone
 - Statistical view that displays more workout related data
- When the user is done with the workout a set of dialogs are presented in order to decide where to go next
 - Continue or Save Workout
 - Save route (ability to change route name)
 - Challenge Friends (Yes or No?)

Statistical View

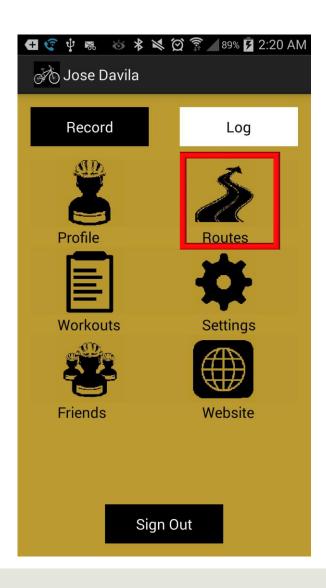

- Second view provided to user
- Displays data related to the workout like map view
 - Plus:
 - Maximum speed
 - Calories burned
 - Current, average and maximum pace in minutes per mile
- Pace calculation: $\frac{minutes\ in\ an\ hour}{speed\ (mph)}$
- Calories Burned calculation:
- Formula:

Total Cals. = (cal./min/kg) * weight * duration

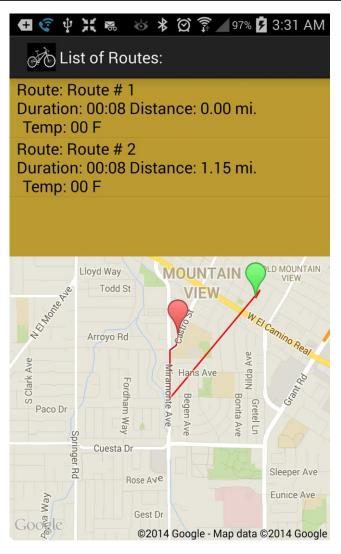
Speed (mph)	cals./min/kg
< 10	0.12
10-12	0.10
12.1-14	0.14
14.1-16	0.18
> 16	0.21


Profile

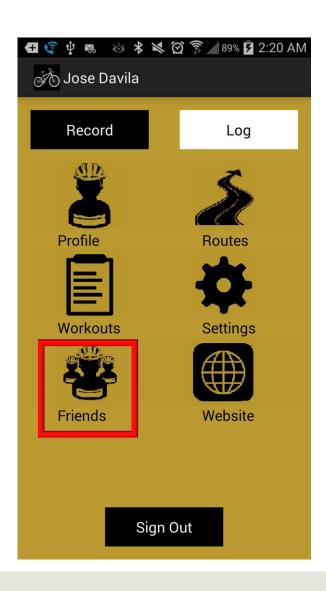
User Profile



- Displays user personal information
 - Email, DOB, Gender, Weight and Height
 - Edit button on action bar allows the user to edit their height and weight
 - Statistical data of the user's last recorded workout
 - Tracks overall total time, distance and calories burned of the rider


Routes

Routes



- Displays user's recorded routes in a list view
- The user will have two options in this activity:
 - Display the selected route
 - Delete the selected route
- If Display is chosen the user route will be display on the map below
 - Green marker = start
 - Red marker = end
 - Red line = path

Friends



Challenge Friends

- To motive the riders and their friends
 - Provide the user with the ability to share their workout information
 - User can challenge friends to beat their distance and/or time

Other Features

- Provide the user with audio and visual feedback when accomplishment are reached
- Promotes the rider's to ride longer and more often
- Awards are given when:
 - 1st mile is reached
 - 5th mile is reached
 - 10th mile is reached
 - Every multiple of 50, after that
 - When user completes their longest workout in terms of distance

Other Features

- Crash detection
- If accelerometer value exceeds the thresholds set:
 - If speed < 0.5 mph
 - An emergency alert dialog while show and audio feedback will begin playing
 - Wait 10 seconds
 - Check the values
 - Repeat until user click yes or time limit is reached
 - If its an emergency:
 - An emergency phone call and emergency text messages containing the user's precise location will automatically be sent
- According to 911.gov, emergency text messaging will be available nationwide for all carriers by May 15, 2014

Moving Forward

- Bike Dash version 2: Modified to use without external components
- Implement the ability for the user to select a previously recorded route
 - Then application will provide turn by turn navigation so the user has the ability to challenge their personal best from previous routes
- Redesign structure
 - Lighter materials
 - Smaller housing
- Release Android application to Google Play
- Add heart rate sensor support

Project Budget

Budget = \$570.85

Total = \$557.16

Surplus = \$13.69

PART NUMBER	QTY	UNIT PRICE	EXTENSION	PART NUMBER	QTY	UNIT PRICE	EXTENSION
Order 1				Order 7			
PAN1323ETU	1	71.61	71.61	PIC18F14K22	5	2.48	12.40
Est. Shipping	1	3.23	3.23	LM35DZ	3	1.57	4.71
				5V Regulator	5	0.44	2.20
Order 2				ADXL362	1	9.22	9.22
MSP430G2553	3	2.79	8.37	P14873 BT Mod	1	20.72	20.72
Shipping	1	2.68	2.68	Shipping	1	2.75	2.75
Order 3				Order 8			
Scosche BTHM		39.95	39.95	SiRFStarIV GPS	1	14.42	14.42
				Shipping	1	6.99	6.99
Order 4							
A DXL362	1	14.95	14.95	Order 9			
				Resistor Pack	1	9.99	9.99
Order 5				M/F Jumpers	1	6.99	6.99
DH-3N80	1	87.45	87.45	M/M Jumpers	1	6.45	6.45
Shipping	1	10.99	10.99				
				Order 10			
Order 6				Rim Build	1	186.53	186.53
Soldering Iron	1	23.97	23.97				
Wire Cutters	1	8.48	8.48				
Tax	1	2.11	2.11				
			4070.70				4000
	SUB-TOTAL		\$273.79		SUB-TOTAL		\$283.37
					TOTAL		\$ 557.16

Questions and Demo