# Group 13 – S.H.E.M.S. Smart Home Energy Monitoring System

Sponsored by Duke Energy and Texas Instruments

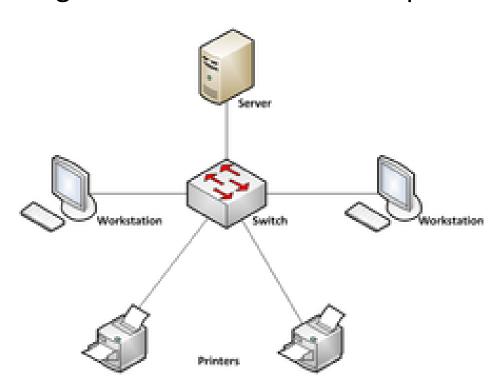
Alejandro Dirksen
Zaida Gonzalez
Marisa Vega
Wayne Rodenburg

#### **Motivations and Goals**

- Reduction of the high cost of energy and the control over power at all levels including standby power or phantom energy
- According to the Lawrence Berkeley National Laboratory, individual devices draw some power and they cannot be completely off unless they are unplug

• The goal of our project is to reduce the standby power to a negligible amount remotely and safely and provide visual means for a user to realize how much power the devices connected to the smart meter are actually drawing.




## Objectives

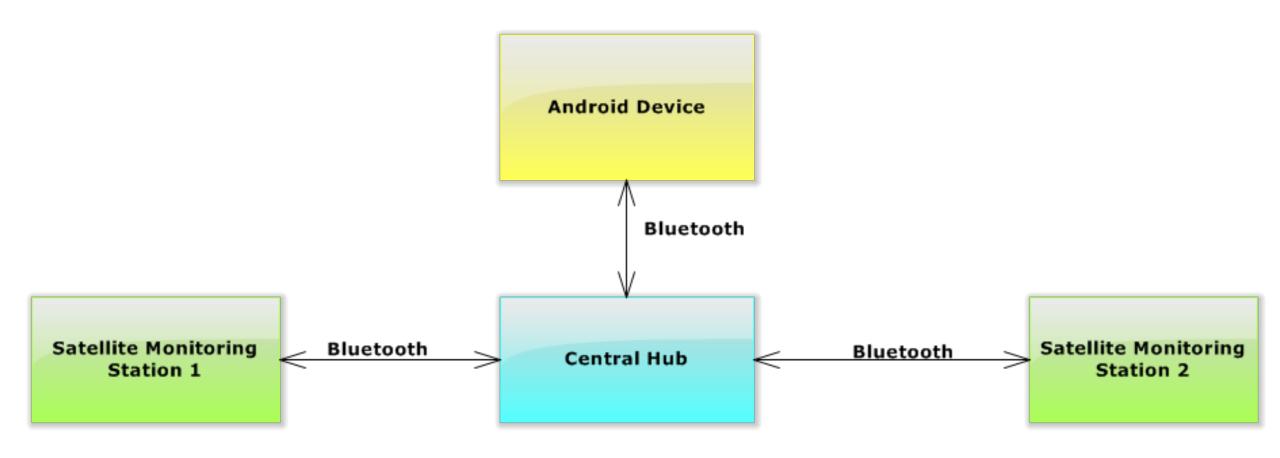
• To measure current, voltage and power accurately and safely

• Give the users information about their usage in a detailed and uncomplicated

manner

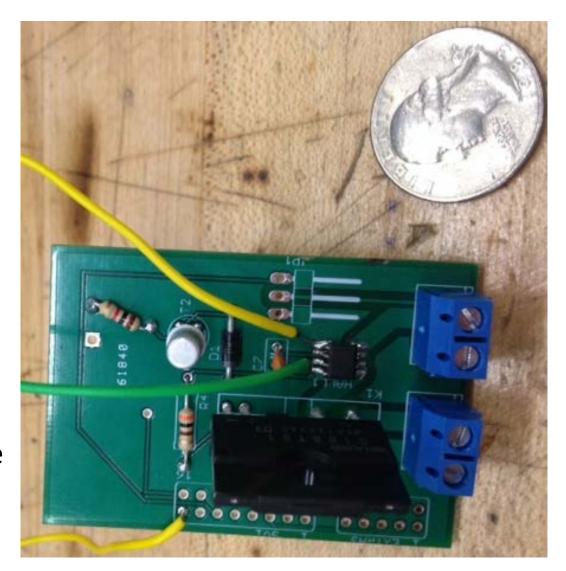





# Central Hub Specifications

| Feature                           | Value  |
|-----------------------------------|--------|
| Ultralow to low power consumption | Yes    |
| Real time clock                   | Yes    |
| Watchdog timer                    | Yes    |
| UART                              | 12C    |
| CPU                               | 16 bit |
| RAM                               | 8 kB   |
| Minimum CPU speed                 | 16 MHz |
| High resolution timer             | 4 ns   |

# Satellite Station Specifications


| Feature      | Value                  |
|--------------|------------------------|
| Voltage      | 120VAC                 |
| Phase        | Single Phase           |
| Frequency    | 60 Hz                  |
| Max Current  | 8 amperes              |
| Max Load     | 0.98 KVA               |
| Connection   | L5-30P with rear panel |
| Monitors     | NONE                   |
| Outlets      | (1) 5-15R, 120V        |
| P Protection | Spike/Surge            |
| OCP          | Yes                    |

# Project overview



### Parts of the Satellite Station

- Microcontroller
- Current Sensor
- Voltage Sensor
- Relay
- Plug
- Receptacle
- Power supply
  - AC/DC Converter (provide adequate voltages to each part in the circuit)



# Key characteristics that we need when choosing a microcontroller

- Fast reliable data acquisition
- Low power consumption
- Applications that includes sensoring of analog signals and conversion of the same to digital to be transmitted to a host system for display
- Ultra low power settings

N packaging allowing easy mounting of the MCU in the launch pad for

flashing



# Microcontroller comparison table

| Manufacturer                      | Atmel                           | Microchip<br>PIC | Freescale       | Texas Instruments           |
|-----------------------------------|---------------------------------|------------------|-----------------|-----------------------------|
| Manufacturer part #               | ATSAM4L52CA-AU                  | PiC32MX120F032B  | SPC5601PEF0MLH6 | MSP430G2553IN20             |
| Image                             |                                 |                  |                 |                             |
| Availability                      | Immediate                       | In production    | Available       | Available                   |
| Unit price                        | \$6.39                          | \$1.71           | \$6.59          | Free Samples                |
| Packaging                         | TQFP                            | SSOP,SOIC        | LQFP64          | PDIP(N)                     |
| Series                            | SAM4L                           | PC132MX1         | MPC564XA        | MSP430                      |
| Core processor                    | ARMCortexM4                     | DMIPS16e         | E200zoh         | 2 Series                    |
| Core Size                         | 32 bits                         | 32bits           | 32bits          | 16 bits                     |
| Speed                             | 48MHz                           | 50MHz            | 64MHz           | 16MHz                       |
| Connectivity                      | I2C,IrDA,LIN,SPI,UART/USART,USB | UART,SPI,I2C     | CAN,LIN,SCI,SPI | I2C,IrDA,UART/USART,USB,SPI |
| Digital communication Peripherals | Brown-out detect/Reset DMA,I2S  |                  | DMA,PWM,WDT     | Brown-out detect/reset, PWM |
| Comparator                        | 1                               | 3                | 1               | 1                           |
| Number of I/O                     | 80                              | 28               | 45              | 21                          |
| Program memory type               | Flash                           | Flash            | Flash           | Flash                       |
| Program Memory size               | 128KB                           | 32KB             | 192KB           | 128KB OR 256KB              |
| RAM                               | 32KB                            | 8.192KB          | 12KB            | 8KB                         |
| Voltage Supply                    | 1.68V-3.6V                      | 2.3V-3.6V        | 3.3V-5V         | -0.3V-3.9V                  |
| Oscillator                        | Internal                        | Internal         | Internal        | Internal                    |
| Operating Temperature             | -40°C to 85°C                   | -40°C to 85°C    | -40°C to 85°C   | -40°C to 85°C               |
| ADC channel                       | 3                               | 10               | 12              | 8                           |
| Watchdog                          | 1                               | 1                | 1               | 1                           |

# Microcontroller for the HUB: CC2540F256RHAT

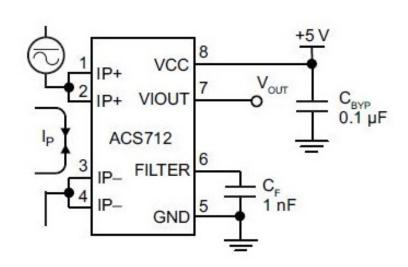
- True Single chip BLE solution: can run both applications and BLE Protocol
- Includes Peripherals to interface with our LCD screen
- Enhanced 8051 MCU, in-system programmable flash memory
- 8KB ram and other powerful supporting features
- Very low power sleep modes available



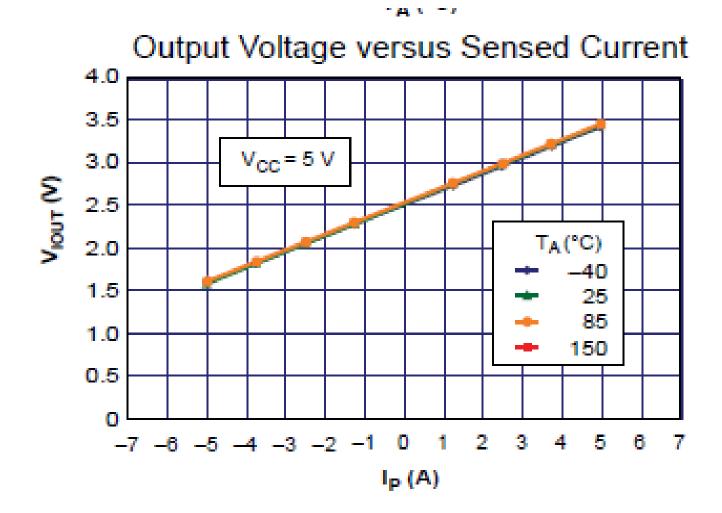
X

6.3mm

# Types of Sensors


- Current Shunt Monitor
- Current Sense Amplifier
- Magnetic Current Sensor
- Current Transformer

• Our Choice: Current Hall Sensor

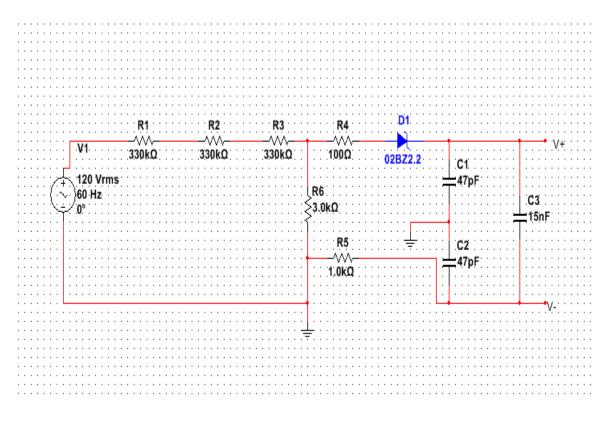

• ACS712



# Mechanism for the Current Hall Sensor ACS712

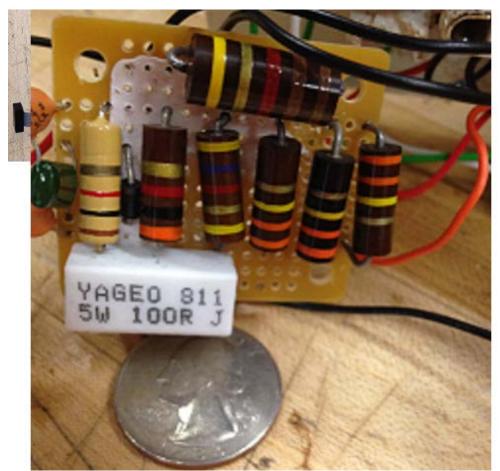


Output signal Vout varies linearly with the bidirectional AC primary sample current Ip

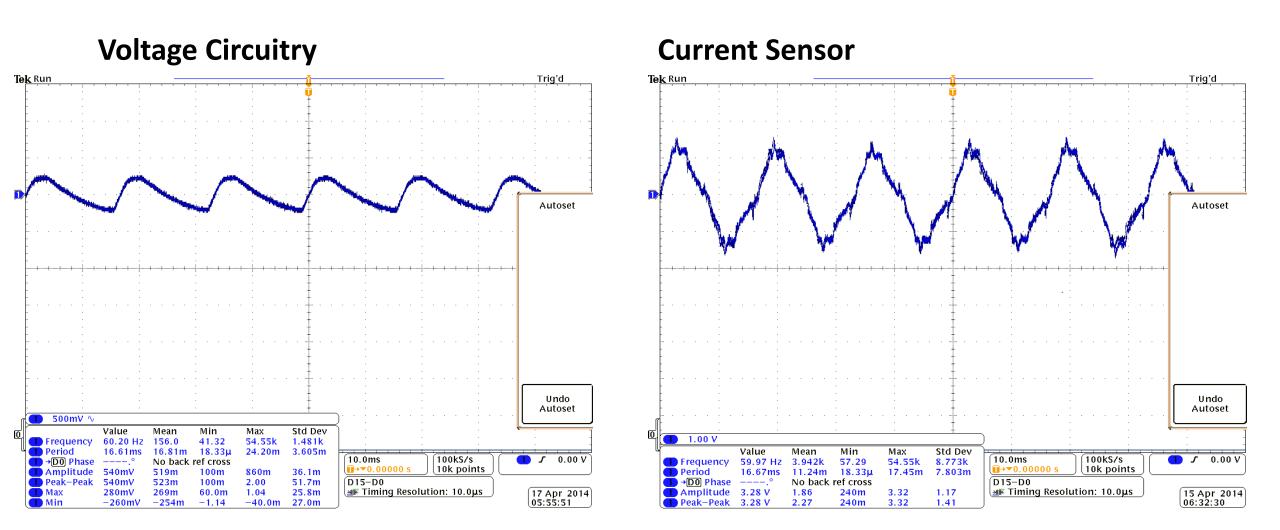



# Key features for the ACS712 Current Sensor IC

| Feature                                             | Value | Unit      |
|-----------------------------------------------------|-------|-----------|
| Single Supply Operation                             | 5     | V         |
| Output Sensitivity                                  | 185   | mV/A      |
| Minimum isolation voltage(from pin 1-4 to pins 5-8) | 2.1   | kVRMS     |
| Bandwidth                                           | 80    | kHz       |
| Total output error                                  | 1.5   | %         |
| Internal conductor resistance                       | 1.2   | $m\Omega$ |
| Hysteresis                                          | 500   | mV        |


# Voltage Circuitry: Analog Front End for Voltage Inputs

**Schematic for Voltage Circuitry** 




**Actual Circuit as in the monitoring** 

node



## Measurements with the Oscilloscope



## Calculations for Voltage, Current, Power

$$V_{RMS} = K_V * \sqrt{\frac{\sum_{j=0}^{Sample} v^2(n)}{\sum_{j=0}^{Sample} v^2(n)}} P_{ACT} = K_p \sqrt{\frac{\sum_{j=0}^{Sample} v(n) \times i(n)}{\sum_{j=0}^{Sample} v(n) \times i(n)}}$$

$$P_{ACT} = K_p \sqrt{\frac{\sum_{n=1}^{Sample} v(n) \times i(n)}{\sum_{n=1}^{Sample} count}}$$

Sample
$$\begin{array}{c} count \\ \Sigma & i^{2}(n) \\ I_{RMS} = K_{i} * \sqrt{\frac{n = 1}{Sample \ count}} \end{array}$$

Sample
$$\begin{array}{c} Sample \\ count \\ \sum v_{90}(n) \times i(n) \\ n = 1 \\ \hline Sample count \end{array}$$

# REMOTE SWITCH ON/OFF OR LOAD MANAGEMENT



A device that will control a circuit with a low power signal is necessary.

#### **Options:**

Electromechanical Relay, SS relay or Darlington Arrays

## Our choice Solid State Relay

#### **SS Relay**

- No contact relay
- Activated by the control signal to control the load
- Faster response
- Highly reliable
- If large currents additional heat sink is required

#### **Darlington Array**

- IC's capable of high voltage, high current
- Open collector output
- Free-wheeling clamping diode
- No need for diodes across relay
- IC has internal resistance

### S108T01 Series

#### Description:

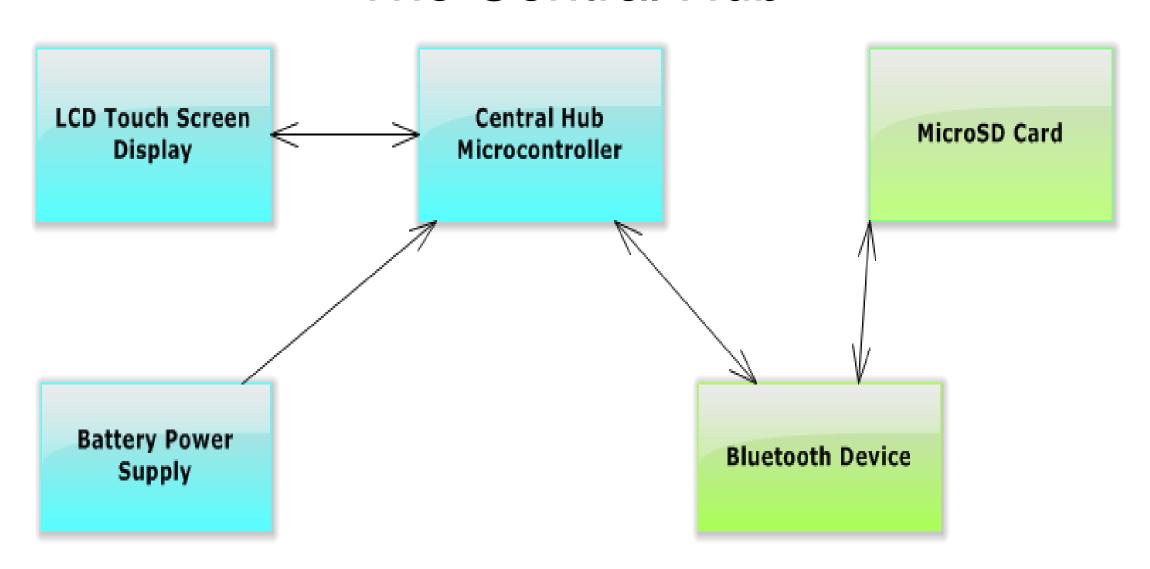
Solid State Relay(SSR) with integrated infrared emitting diode (IRED), Phototriac Detector and Main output Triac

#### **Important Features:**

Output Current, Ir(rms)<=8.0A

Non-zero crossing functionary

Ideally suited for controlling high voltage AC loads


3.0kV isolation (Viso(rms) from input to output

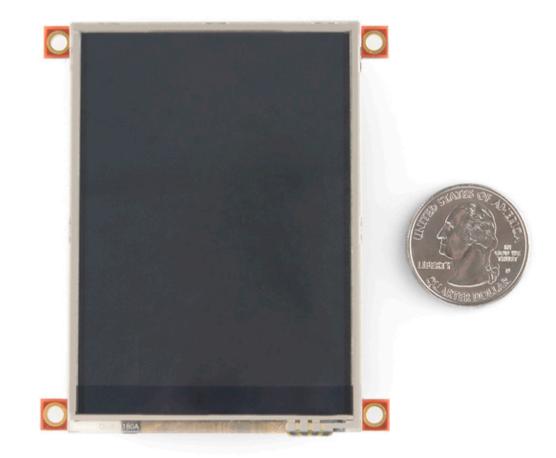
#### Applications:

Phase or power control



### The Central Hub




# LCD: Features and Specifications

| Serial TFT LCD - 3.2" (Chosen)** (\$84.95)                                                                                              | arLCD - 3.5" Touchscreen<br>(\$89.95) |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Not Arduino                                                                                                                             | Arduino Compatible                    |
| 4.0V to 5.5V range operation (single supply)                                                                                            | 6 – 9V Operating Voltage              |
| 65K true to life colors, TFT screen with Integrated 4-Wire Resistive Touch Panel                                                        | Thin Film Transistor                  |
| 320 x 240 Resolution                                                                                                                    | 320 x 240 Resolution                  |
| Display full color images, animations, icons and video clips                                                                            | 65k colors                            |
| 14KB of flash memory for user code<br>storage and 14KB of SRAM for user<br>variables, or 14KB shared user code and<br>program variables | 4MB Flash Memory                      |
| A 30 pin header for I/O expansion and future plug-in daughter boards                                                                    | LCD Backlight                         |

### LCD

Technology chosen: Resistive LCD technology Chosen: Serial TFT LCD - 3.2"

- Cost effective
- Sophisticated software makes it compatible with almost any application
- Range voltage is ideal
- More suitable for further expansion or additions if necessary
- The software used (4D Workshop)
   makes it really easy to code Drag and
   put into the LCD interface



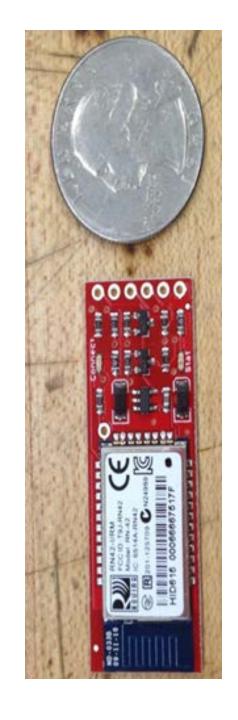
### Bluetooth or Wi-Fi

| Bluetooth                                             | Wi-Fi                                                   |
|-------------------------------------------------------|---------------------------------------------------------|
| Pros:                                                 | Pros:                                                   |
| New Technology commonly used nowadays by many gadgets | Universally used                                        |
| Very secure                                           | Depending on the network the range can be very large    |
| Low power                                             |                                                         |
| Cons:                                                 | Cons:                                                   |
| Limited range                                         | Signal strength could be an issue (need a good network) |
|                                                       | Needs more protection of user's personal data           |

#### Bluetooth

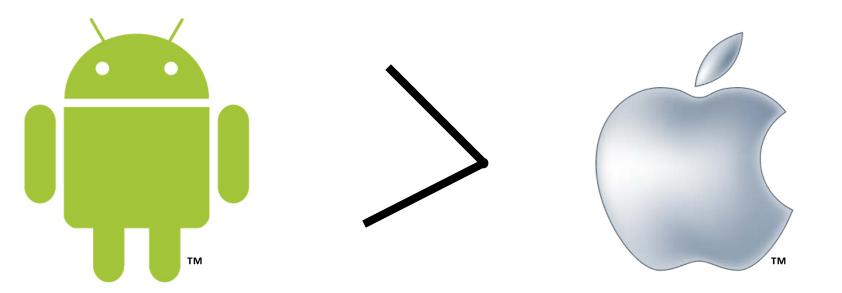
The decision was the Bluetooth

- It is more secure
- Can be connected with multiple devices
- Can be used with Android app
- Good for the group to familiarize and work with Bluetooth technology


# Bluetooth Parts: Features and Specifications

| Bluetooth Mate Silver Module - RN-<br>42 – from Sparkfun<br>(\$39.95) | TI CC2564<br>(Free Samples)                           | TI CC2540F256<br>(Free Samples)<br>– Development Kit<br>(\$100) |
|-----------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|
| Fully qualified Bluetooth module                                      | Fully qualified Bluetooth module                      | RF transceiver/Bluetooth                                        |
| FCC certified                                                         | Low Energy                                            | Low Energy Technology                                           |
| Compatible with Bluetooth modules that support SPP  Built in antenna  | Supply voltage range: -0.5 – 4.8 V  RF inputs: 10 dbM | Programmable flash memory of 256 KB (and 8KB of SRAM)           |
| Lower Power Consumption: 25 mA                                        | Class 1.5 TX Power Up to +12 dBm                      | Low power: 15.8 mA avg for RX and 18.6 mA for TX                |
| 3.3V Operation Low power sleep mode                                   | Shutdown current: 7 uA<br>Deep sleep mode: 105 uA     | Operating Voltage: 3V                                           |

### Bluetooth Chosen

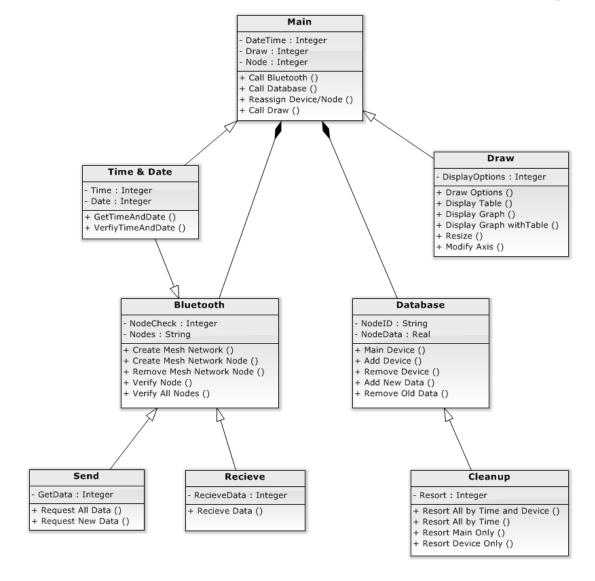

#### **Bluetooth Mate Silver**

- Low Power Consumption and voltage operation
- Good range ideal for the project
- Cost effective cheaper than the TI development kit
- Because the Bluetooth is separate from the microcontroller, no code is needed to make the connections
- All processes are encapsulated inside the Bluetooth no code needs to be done
- It is compatible with the microprocessor chosen MSP430
- It is easy to connect to the circuit RF/TX connectors

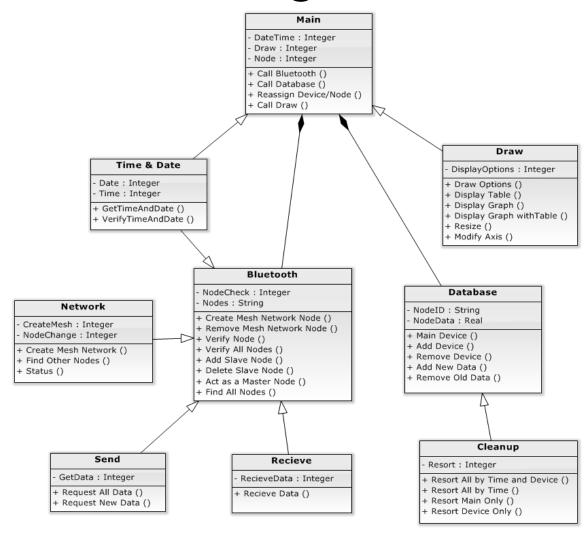


# Apple vs. Android

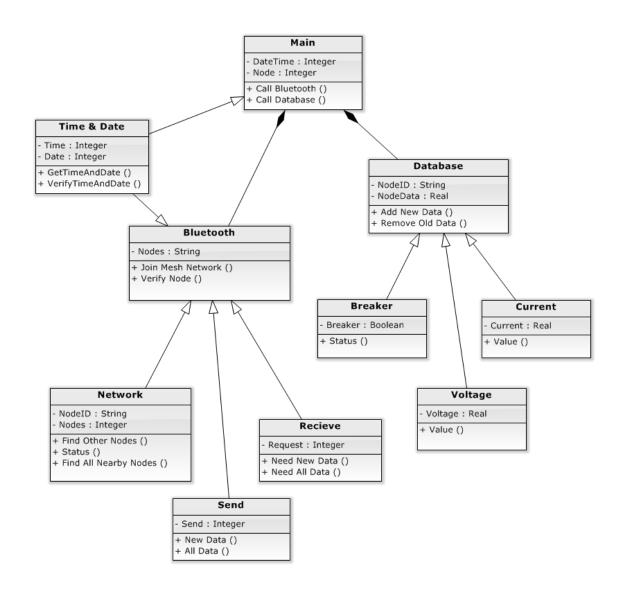
| Options               | Android                 | Apple                     |
|-----------------------|-------------------------|---------------------------|
| Cost                  | Free                    | \$99 per year             |
| Usage                 | Widely used Globally    | Widely used in the US     |
| Past Development With | Java coding             | None at all               |
| Hardware needed       | Android device & any PC | Apple device and computer |
| Conclusion            | We will use Android     | We will not use Apple     |




## Android App Development


- Android device
- Bluetooth interactions
- Display the Data in a simple and nontechnical way
- Ideally we would like to use a SQLite database to store the information in
- If we use a SQLite database we will want to refactoring data




## Android App Class Diagram



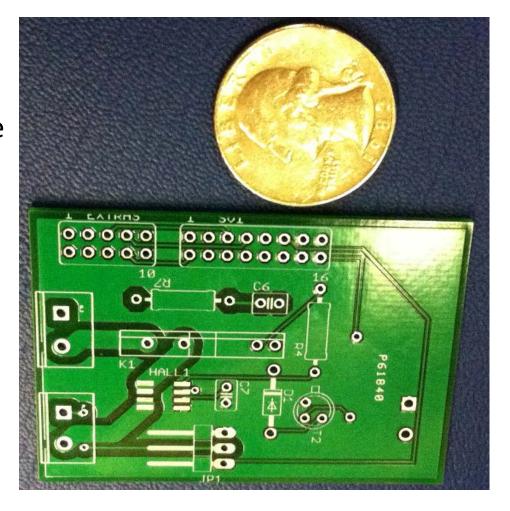
# Central Hub Microcontroller Class Diagram



# Satellite Microcontroller Class Diagram



### Power supply for Central Hub


Wall Outlet Vs Battery Powered

- -We decide on battery power
  - -Portability
  - -no need for ac/dc converter
  - -voltage requirement of the devices



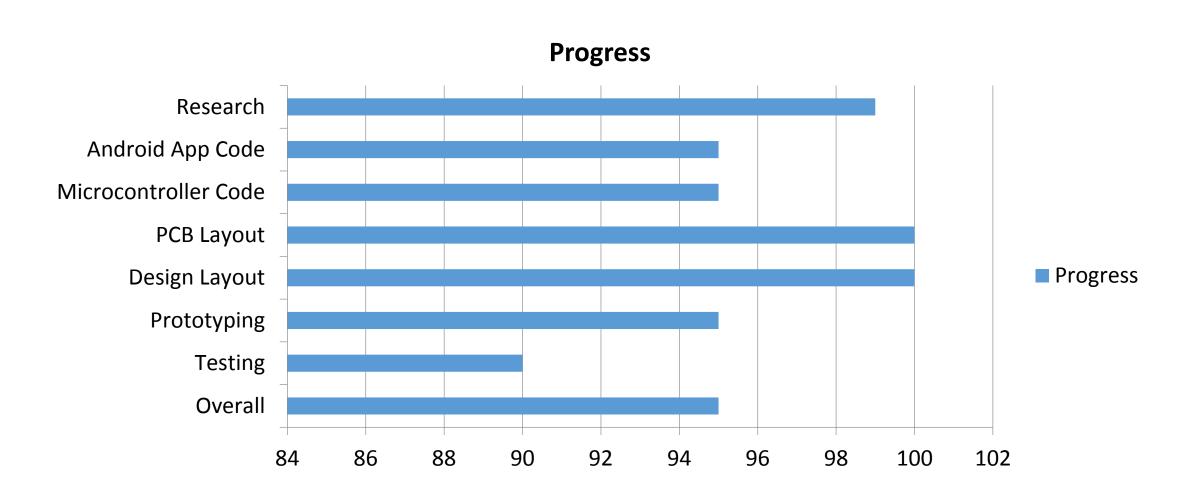
# PCB Advanced circuits

- Currently done on 2 layers
- Most inexpensive for the quality they provide
- Very fast shipping



### Division of Labor

| Main Component                           | Subcomponents       | Persons Responsible                 |
|------------------------------------------|---------------------|-------------------------------------|
| Central Hub                              | LCD display         | Zaida Gonzalez then Wayne Rodenburg |
|                                          | Bluetooth Device    | Zaida Gonzalez then Wayne Rodenburg |
|                                          | Microcontroller     | Wayne Rodenburg then everyone       |
|                                          | Circuit Board       | Alejandro Dirksen then Marisa Vega  |
| Individual Satellite Monitoring Stations | Bluetooth Devices   | Zaida Gonzalez then Wayne Rodenburg |
| (Five in all)                            | CT Current Meters   | Alejandro Dirksen then Marisa Vega  |
|                                          | Surge Protectors    | Marisa Vega then Alejandro Dirksen  |
|                                          | Relays              | Alejandro Dirksen then Marisa Vega  |
|                                          | Outlets             | Marisa Vega then Alejandro Dirksen  |
|                                          | Microcontrollers    | Alejandro Dirksen then everyone     |
|                                          | Circuit Boards      | Marisa Vega then Alejandro Dirksen  |
| Android Application                      | Android Application | Wayne Rodenburg then Zaida Gonzalez |


# Budget

| Item                                      | Expected Cost | Actual Cost |
|-------------------------------------------|---------------|-------------|
| LCD 1x                                    | \$ 150        | \$120       |
| Outlet 2x                                 | \$ 10         | \$20        |
| Relays 4x                                 | \$ 25         | \$20        |
| Hall Effect Current Sensors 4x            | \$ 25         | \$120       |
| Microcontrollers for the Stations & Hub   | \$ 150        | \$99        |
| Wiring                                    | \$ 15         | \$0         |
| Housing for the Hub 1x                    | \$ 10         | \$10        |
| Housing for the Stations 2x               | \$ 50         | \$20        |
| Circuit Board 4x                          | \$ 150        | \$216       |
| Shipping and Handling                     | \$ 200        | \$300       |
| Board assembly and learning how to solder | \$ 150        | \$20        |
| Total amount                              | \$ 1535       | \$945       |

### Milestones

| Milestone                     | Expected Time to Complete Each | Expected Start Dates &                               |
|-------------------------------|--------------------------------|------------------------------------------------------|
|                               | Milestone                      | Expected Completion Dates                            |
| Form Group and Pick Project   | 1 week                         | August 19 <sup>th</sup> – September 9th              |
| Research                      | 6 months                       | September 2 <sup>nd</sup> – March 1st                |
| Decide on Project Features    | 1 month                        | September 2 <sup>nd</sup> – October 1 <sup>st</sup>  |
| Form a Design we all agree on | 1 month                        | September 2 <sup>nd</sup> – October 1 <sup>st</sup>  |
| Decide on parts we will use   | 5 months                       | September 9 <sup>th</sup> – February 1 <sup>st</sup> |
| Duke Energy Grant Proposal    |                                | Submit by October 18 <sup>th</sup>                   |
| Order the Parts               | 3 months                       | December 1 <sup>st</sup> – March 1 <sup>st</sup>     |
| Meter Design                  | 2 months                       | December 1 <sup>st</sup> – February 1 <sup>st</sup>  |
| Plug Design                   | 2 months                       | December 1 <sup>st</sup> – February 1 <sup>st</sup>  |
| Relay Design                  | 2 months                       | December 1 <sup>st</sup> – February 1 <sup>st</sup>  |
| Surge Protector Design        | 2 months                       | December 1 <sup>st</sup> – February 1 <sup>st</sup>  |
| Android Application           | 6 months                       | October 1 <sup>st</sup> – April 1 <sup>st</sup>      |
| Android Testing               | 6 months                       | October 1 <sup>st</sup> – April 1 <sup>st</sup>      |
| Circuit Board Design          | 3 months                       | November 1 <sup>st</sup> – February 1 <sup>st</sup>  |
| Circuit Board Testing         | 4 months                       | November 1 <sup>st</sup> – March 1 <sup>st</sup>     |
| Microcontroller Coding        | 5 months                       | November 1 <sup>st</sup> – April 1 <sup>st</sup>     |
| Microcontroller Testing       | 5 months                       | November 1 <sup>st</sup> – April 1 <sup>st</sup>     |
| Interface Testing             | 5 months                       | November 1 <sup>st</sup> – April 1 <sup>st</sup>     |
| Senior Design 1 Paper Due     |                                | December 2 <sup>nd</sup> 2013                        |
| First Prototype               | 3 months                       | December 1 <sup>st</sup> – March 1 <sup>st</sup>     |
| First Prototype Testing       | 3 months                       | December 1 <sup>st</sup> – March 1 <sup>st</sup>     |
| Final Prototype               | 3 months                       | January 1 <sup>st</sup> – April 1 <sup>st</sup>      |
| Final Prototype Testing       | 3 months                       | January 1 <sup>st</sup> – April 1 <sup>st</sup>      |
| Senior Design Day Showcase    |                                | April 18 <sup>th</sup> 2014                          |
| Final Presentation            |                                | April 2014                                           |

# **Project Progress**



#### Issues

- A few Android application bugs
- A few microcontroller code bugs
- Time constraints

## Special Thanks

- Duke Energy for the grant money that funded much of our project
- TI for the contest money that helped us buy our development boards and all of the free samples and information that aided us
- Matt our lab TA for his help and insights
- Mr. David Douglas for his help in procuring some of the testing equipment we needed
- Dr. Samuel Richie our faculty advisor
- Professors Chatterjee, Abichar and Mikhael for taking time out of their busy schedules to sit as our senior design committee

# Questions