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1. Executive Introduction 
Military personnel face many unique challenges on a daily basis in their work 
compared to civilians. Many of these challenges can be aided or overcome by 
having more information at the right times. Intelligence is generally gathered in 
many ways including covert operations, communication interception, 
interrogation, aerial surveillance, and ground surveillance. All of these techniques 
help gather intelligence that can promote successful missions and save the lives 
of troops on the ground. One of the most direct and relied upon forms of this 
intelligence is ground surveillance. Ground surveillance is so key because there 
is no more reliable intelligence than a person on the ground having visual 
confirmation of a target. Unfortunately, ground surveillance can also be the most 
dangerous form of intelligence gathering because of the proximity to the target 
that is required by the personnel on the ground. Covert operations are designed 
to be secretive, interrogation doesn’t involve risk to the personnel conducting it, 
and aerial surveillance can now be easily done by unmanned drones. Ground 
surveillance however typically requires a soldier or reconnaissance team to 
physically see the target, putting them at risk. This creates a need for an 
unmanned device that can be used on the ground to perform the reconnaissance 
without the need of a human being with it.  

 
The simplest solution is to have a trained personnel operate a robotic vehicle 
remotely to gain a visual of the target area with a camera. The simplest design of 
this would be to just have a remote controlled vehicle with a camera strapped to 
it. Some of the problems of this are that the range of the vehicle is severely 
limited due to the use of RF to communicate to the vehicle. This means that once 
the vehicle reaches its maximum range, the operator would have to move closer 
to regain control. The second problem is that the operator is required to be sitting 
with the remote controlling the vehicle while viewing the video that is being sent. 
This means that a dedicated operator must be selected and trained with the 
vehicle. If the remote could be even more portable by removing the use of 
physical controls from the remote and instead making the vehicle autonomous, it 
would free up the operator. Also, if the vehicle could perform certain tasks 
completely autonomously, this would take away a lot of the responsibility of the 
operator. The operator could simply tell the robotic vehicle where to go and what 
task to perform, and the vehicle will do the rest. 
 
Our design seeks to improve on the simple solution by allowing for an 
autonomous robot to be given commands via a portable handheld device using 
only voice controls. This robotic vehicle will take in the voice command from the 
operator, and using its built in software, will carry out the command until the 
operator gives it a new command. The vehicle will have the ability to carry out 
three tasks, which are to scout a desired area, track a designated target, or find a 
designated target. These functions are key in any ground reconnaissance 
mission to allow for appropriate information to be gathered. For example, a user 
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could first give the command to scout an area by giving it a distance and 
direction, causing the vehicle to travel in the specified direction and distance. 
Once it reaches the desired area, it will perform a routine to move around the 
area to collect a full range of visual data with its camera. The user can then give 
the command to find a target (based on a pre-programmed designation, such as 
a color or specific target), which will then make the vehicle search the area again 
until it sees the target. Once the target is sensed, it will lock its camera onto the 
target. Finally, the track command can be given to get the robot to move in the 
direction of the target, so that the robot can follow it even if it tries to move. 
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2 Project Description 

2.1 Project Motivation and goals 
Our project seeks to improve the solution of robotic ground surveillance by 
developing an autonomous robotic vehicle using computer vision and ultrasonic 
sensors that will aid the military personnel in finding a point of interest such as an 
injured individual, bomb, enemy combatant, vehicle, and much more. The robotic 
vehicle will have three primary functions to demonstrate how our robot could 
achieve this. The functions being survey for a point of interest (POI), track a POI, 
or find a POI. Surveying a POI means that the robot will move to the target 
location and use its camera to gain a visual of an entire area. This is a basic 
reconnaissance mode that is useful gaining information on an area and for 
finding a potential target. The “track” command will be used to follow a desired 
target. A color or special target will be designated as the tracked object, and the 
robot will be programmed to recognize the designation and once it is locked, it 
will follow the target and keep a visual of it in the camera. The “find” command 
will cause the robot to find a target with the designation. Along with the survey 
function, the robot can move to a desired location and search an area for a 
target, then with the track function the robot can lock onto that target and follow it 
until the command is canceled. 
 
All of the mentioned functions would aid in ground reconnaissance by making it 
so that the robot can autonomously perform the reconnaissance without having a 
dedicated operator constantly controlling the robot. The controlling device would 
be simple to use, so that anyone could operate the robot, and the commands 
would allow for the user to simply give a command and the robot will 
automatically perform the task while freeing the operator to do another task while 
the robot performs its mission.  These three functions mentioned will be activated 
from a voice command given into a smart phone or device by the military 
personnel.  
 
Our motivation for choosing this project is that we would like to incorporate a 
project the includes equal elements of Computer Engineering and Electrical 
Engineering so that we can use the full spectrum of our degrees equally since we 
have two members from each discipline. We feel that his project offers unique 
challenges by designing smart algorithms that allow the user to interact with the 
vehicle in a much more unique fashion. Unlike some other robotics projects, our 
design is aimed at being a functional real world device that can be a useful tool 
for military or police. 
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Figure 2-1: Functional Diagram 

 
The robotic vehicle will be Wi-Fi enabled to allow for communication of the voice 
commands from the user to the vehicle for which mode to enter. This will also be 
used for the capability to provide camera feed back to the user. This will provide 
the user with the ability to see what is being surveyed, tracked, and/or found. The 
camera mentioned will also be used for the computer vision section of our project 
allowing the robot to distinguish between what is a POI and what is not. The last 
addition to the base robotic vehicle is ultrasonic sensors that will be positioned 
around the vehicle to allow it to run autonomously without collision. 

2.2 Objectives 
Below is a list of objectives that we have determined are a requirement for our 
vehicle to meet. Each of these objectives are will be explained in the following 
subsections. 

2.2.1 Autonomous Operation with voice commands 
One of the major components of our design is the ability for the robotic vehicle to 
be controlled through voice commands. This is desirable because it allows the 
operator to command the vehicle without the use of manual controls. This means 
that the controller can be a light and small device that leaves the operator free to 
perform other tasks while still having control of the vehicle. The vehicle must also 
be able to operate autonomously. The more that the vehicle can operate on its 
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own, the less attention that the operator has to put into controlling it. The 
operator should be able to simply give a command and then the vehicle should 
be able to carry out the command without extra input from the user. The operator 
can then simply watch the display to gain the visual information without having to 
worry about steering the vehicle.  

2.2.2 Operation in different modes 
Our design will feature three modes of operation to carry out different types of 
tasks. These three modes will be “survey”, “find” and “track”. The function of 
these three modes will be implemented in the software of the vehicle with the use 
of a microcontroller. The external components such as the servos and camera 
shall be interfaced with the software to serve as inputs or outputs. For example, 
when a command of “track” is given through the controller device, the software 
shall recognize the keyword and execute a subroutine that reads the input from 
the camera to find the designation. Then the software shall output to the servos 
the signals required to move the vehicle in the direction of the target while 
reading the input from the ultrasonic sensors to avoid collisions. A similar 
procedure shall be executed for the other two modes to ensure correct operation.   

2.2.3 Integrating multiple components onto a Printed Control 
Board (PCB) 
From the requirements of the design project, we must incorporate a PCB into the 
design. With multiple sensors and servos utilized in our design, the PCB is 
required for us to combine all the electronic components together and provide 
power to the system. Some of the components can be directly interfaced with the 
microprocessor so they will not be included directly in the PCB design. The 
overall block diagram of the system is shown in Figure 2-2.  
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Figure 2-2: Functional Diagram 

 

2.3 Specifications/Requirements 
The specifications to achieve our objectives will give a more detailed approach 
on how we will achieve our final design. These specifications and requirements 
are of much greater detail then the objectives and will influence the strategic 
parts selection that we discuss later in this report. 

2.3.1 Physical/Electrical components 
● The robotic vehicle shall utilize a printed circuit board (PCB) 

● The robotic vehicle shall be no larger than 2’/2’/2’ (L/W/H) 

● The robotic vehicle shall have an internal battery 

● The robotic vehicle receiver will have a feedback control system 

● The robotic vehicle shall utilize sensors for collision detection 

● The robotic vehicle shall be Wi-Fi enabled. 
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● The robotic vehicle receiver shall utilize a microcontroller to process data 
and communicate to the smart device. 

● The robotic vehicle shall utilize a camera for basic vision 

2.3.2 Functional Requirements 
● The robotic vehicle shall accept functional commands over Wi-Fi 
● The robotic vehicle shall be able to scan a 120-degree area in front of 

itself. 
● The robotic vehicle shall stop when it reaches the specified location or is 

prompted to by voice command. 
● The smart device shall communicate to the robotic vehicle wirelessly 
● The portable device shall receive voice commands including: survey, 

track, find, and stop 
● The robotic vehicle shall have a response delay of less than 3 seconds 

from the user giving the command to the vehicle responding.  
● The robotic vehicle shall have a maximum range of at least 25ft 
● The robotic vehicle shall provide imaging back to the user from the 

vehicle’s camera. 
● The robotic vehicle shall detect a predefined point of interest. 
● The robotic vehicle shall be able to find a point of interesting that is 5ft 

away from the vehicle. 
● The robotic vehicle shall hold a track on a POI for at least 30 seconds. 
● The robotic vehicle will stop within 10ft of giving the stop command. 

2.3.3 Software requirements 
● The smart device shall receive voice commands as input. 
● The software shall command the vehicle through Wi-Fi based on the input 

command 
● The software shall determine whether a track is being held or if the vehicle 

needs to reacquire.  
● The software shall prevent the robotic vehicle from colliding with objects. 
● The software shall identify a predetermined point of interest (POI). 
● The software shall allow the robotic vehicle to track a POI. 

2.3.4 Marketing requirements 
● The robotic vehicle shall be portable 

● The device shall be intuitive for a new user 

● The robotic vehicle shall be accurate in terms of tracking and response 
time 

● The robotic vehicle shall have a cost of no more than $450 

● The device shall be programmed with smart functionality, ability to prevent 
collision, run autonomously after a given command until command is 
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stopped or new command is issued. 

2.3.5 Project Constraints 
● Financial constraints due to no sponsorship and average funds of college 

age persons. 

● Time constraints 8 months are given for the development of an idea, 
documentation, and finished product. 

● Experience constraints, members have little to no industry experience and 
are unfamiliar with project management, design analysis, requirement 
standards, documentation, and others that will be dealt with during this 
project cycle. 

2.3.6 Project Standards 
● Group will use Google documents for easy access and updating for all. 

● IEEE will be researched and referenced if applicable to our project. 

● Lei Wei’s designated documentation standards will be follow 

2.4 House of Quality 
The House of Quality shown in figure 2-1 represents how each of the engineering 
functionalities of our design affect the marketing variables. Each engineering 
feature is based off our requirements specified in section 2.3. Understanding how 
each feature affects the marketability of our design is important to creating a 
useful product.  
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Table 2-1: House of Quality 

2.4.1 Dimensions 
The dimensions of the vehicle affect the portability and cost of the design. The 
size of the vehicle directly correlates to the overall weight and viability of the 
design. Since the idea of our design is to create a small and efficient design that 
could be easily deployable in the field, the dimensions must be kept small 
enough to make it feasible to transport and deploy the vehicle with only one 
operator. Because of this, our requirement specifies that the vehicle shall be 
smaller than 24’’/24’’/24’’. This was determined to be small enough to deploy 
easily. The larger the design, the harder it is to carry which reduces portability. 
Therefore, the dimensions have a strong positive relationship to portability. The 
tradeoff is that lowering the dimensions requires smaller components and a more 
compact design, which can be more expensive, thus giving a negative 
relationship to cost. 

2.4.2 Voice Control 
With voice commands being a critical part of the design, the impact they have is 
large in regards to the marketing requirements. The better the voice control is, 
the less effort is required by the operator to control the vehicle, making it more 
portable and much more intuitive. Having effective voice control also makes it 
less likely for miscommunication which helps the accuracy of the vehicle. The 
resources required to make more effective voice control highly depend on the 
technology of the smart device and communication lines between the device and 
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the vehicle. Better technology can improve the voice control, but at the cost of 
more expensive components for both the device and the vehicle.  

2.4.3 Battery Operated  
One requirement that was set was for the vehicle and device to be powered by 
self-contained batteries. This means no external cords or wires should be 
necessary to power the device or the vehicle. The battery life of the self-
contained power source should also last enough to carry out a reasonable 
mission, which can be set as two hours. The longer the batteries last, the longer 
that the vehicle can be deployed without having to return to the user to be 
charged. This helps the portability of the product. The tradeoff is that a larger 
battery would be more expensive.  

2.4.4 Wi-Fi enabled 
With Wi-Fi now easily available and an effective form of communication, using 
Wi-Fi will help make our design much more marketable. The wireless form of 
communication allows for greater portability, and the ease of setting it up makes 
it more intuitive for the operator. The effectiveness of Wi-Fi will also make the 
vehicle more accurate since it can communicate better to the controller device. 
However, the use of Wi-Fi requires specialized modules which will increase the 
cost. 

2.4.5 Range 
The range of the vehicle with respect to the smart device is another factor in 
making the device useful for military applications. The range of the vehicle will be 
dependent mostly on the Wi-Fi connectivity. Having this increased Wi-Fi depends 
on the technology in the Wi-Fi module, which can be more expensive. 

2.4.6 Response Time 
Having a reasonable response is required for effective communication between 
the operator and the vehicle. If the operator needs to switch to a different mode, 
they must be able to do so in a short amount of time to be sure no unwanted 
behavior is seen with the vehicle. Thus, the response time needs to be lowered 
as much as possible. This will increase the accuracy by making commands 
happen as soon as the operator gives them. Any delay in response could reduce 
the effectiveness of the vehicle. Lowering the response time requires better 
communication technology and higher processing speed, which causes the need 
for a better microcontroller.  

2.4.7 Collision detection 
Collision prevention is a necessary component for an effective reconnaissance 
robot. Not only is it required for effective movement, but in order to track a target 
it must be able to consistently move towards the target without being blocked by 
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obstacles, as hitting an obstacle could cause the robot to get stuck. The better 
the detection capability, the more reliable and accurate the vehicle will be with all 
of its modes. It also prevents the vehicle from suffering damage by running into a 
wall or into another moving object.  
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3 Research related to Project Definition 

3.1 Existing similar products 
The need for an unmanned reconnaissance vehicle has been one the military 
has been trying to fulfill for a while. They search for robotic vehicles that are 
small enough to be easily deployable and be able to carry reconnaissance in a 
stealthy manner. Many of these products already in use are large, clunky robots 
that can weigh between 40-80 pounds, making them hard to deploy as they 
require special transportation. A cutting edge product called the Throwbot XT 
made by ReconRobotics fills a similar role that this project seeks to create. As 
shown in figure XIt is a small, lightweight reconnaissance system that uses an 
infrared optical system and video to provide valuable intelligence. This system 
however requires an operator to deploy it and then manually control it, so it is not 
autonomous. 

 

 
Figure 3-1: Throwbot XT vehicle made by ReconRobotics [1] (Permission 

Granted) 
 

As for voice controlled robotic systems, there aren’t many in existence for military 
or other practical applications. Most voice controlled robots currently available 
are simply toys with very little voice control functionality. This shows that there is 
an opening in the market for a robot that can commanded by only voice for 
practical applications. 
 
The closest existing product that is similar to the product we have conceived is 
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an urban reconnaissance robot developed by the California Institute of 
Technology. This robot is made to be robust to survive dangerous urban 
environments. It combines obstacle avoidance and programmed goal seeking 
behaviors to be able to carry out user defined missions. It can operate in multiple 
modes, ranging from manual control to fully autonomous. It uses a sonar 
proximity sensors and a camera for video. It also incorporates a laser rangefinder 
to assist in obstacle detection. As previously discussed, the disadvantage of this 
robot is portability. It weighs roughly 44 pounds, making it difficult for a person to 
carry and deploy anywhere. It typically must be transported by a vehicle and then 
deployed.  

3.2 Relevant Technologies 
There are several industry standards that will be explored in the following 
sections when discussing the components. These standards are often the 
relevant technologies used and adopted by many manufacturers. These 
technologies allow for ease of use in the design of the device and the speed of 
the data. These technologies are i2c, CSI, MIPI, PWM and Analog based signals. 
These communication protocols determine how the devices interact with each 
other and ultimately impact the overall design structure. Certain communication 
protocols will utilize different areas of the MCU and based off that will determine 
the PCB board layout structure as well as the physical device structure. 

 

3.3 Strategic Components and Part Selections   
The strategic component and part selection process is meticulous in nature in 
that it must satisfy the requirements of the RSV in order to properly fulfill the 
objectives of the design. Ideally we want to be on the lower end of power 
consumption and size. The components won’t necessarily take a minimalist 
approach, however, more weight will be given to components with smaller sizes 
and power consumption except in the instances where more processing power is 
required. 
 
The below sections will cover the components that were selected to be used and 
why they were chosen. The sensor arrays were chosen for their abilities to 
perform the desired role of collision avoidance, the ability for the device to 
interpret movement axially and for the device to understand the speed of the 
individual electric motors. These three roles are the primary ability for the device 
to function in the test environment. The MCU was chosen on its ability to 
interface with coding. For this project a higher end MCU will be chosen to ensure 
that the device is capable of operating autonomously. Any future revisions of this 
project should consider the use of a lower powered MCU as some of the features 
of the device will not be used.  
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3.3.1 Ultrasonic detector 
In order to safely operate autonomously the vehicle needs the ability to actively 
avoid object detection. The ability requires some sort of sensor feedback to the 
MCU in order for the processor to determine whether the object is within range of 
collision with the vehicle. There are variety of methods for collision detection 
used in robots, however, the main methods are Infrared, Sonar, and Laser. 
Ideally to keep a lower power setup you would choose the method to best suit 
the project's goals. The key characteristics to judge the viability of the component 
for the project are the detecting distance of the component, the power 
consumption of the component and the. This means where the detection can 
start and where the detection can stop. Some devices are highly accurate at 
close ranges of around 1-2 cm whiles others can range up to 900 cm. Some of 
the advantage to using the Sonar is that the average angle for measurement is 
30 degrees from the point of detection and minimal power consumption of around 
15mA. The figure below shows that as distance increase the device becomes 
less precise with its readings and has a reduced margin of error. 
 
Below shows a picture of the Ultrasonic detector connected to a breadboard 
used to test the effective range and width of detection. The picture is used for 
reference only and does not represent the actual testing implementation of the 
device. As you can see in the below picture the device has a reasonable degree 
of confidence up to 6 feet and a width of about 30 degrees. However, the further 
the object is from the device the less accurate the device will be if the object isn’t 
directly in front of it.  
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Figure 3-2: Example of viewing angle of ultrasonic sensor 
 

  
When looking into the laser based applications most of the laser detection tends 
to be a narrow focused beam which eliminates the ability for the sensor to be 
stationary mounted. The power consumption for the systems tend to be higher 
when receiving data but have a low idle point. Since the device needs to be 
turned on and the angle of detection needs to be sufficiently wide the laser based 
sensor was not selected. 
  
The infrared based sensor use much less power in comparison to the Ultrasonic 
or sensor based sensor and would not be susceptible to matching frequency 
interference. The infrared sensors also take up less over all space and are 
efficient at close range detection. These sensors would be ideal for our 
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applications however their range is shorter in comparison to the ultrasonic sensor 
with long range sensors reaching up to 5 feet. The infrared sensor needs a 
minimum distance to function of 10-15 cm while the ultrasonic sensors can 
typically operate at a minimum distance of 2 cm. 
  
After choosing the ultrasonic sensor for its better fit qualities for the project 
design the next important consideration is the method of communication to the 
MCU. The Ultrasonic sensors can come in a variety of output methods, Pulse 
Width Modulation, Analog and serial communication. Depending on the quality of 
the one or more of these options may be available. We chose a module the 
specified the Pulse Width Modulation method as this correlated with a lower cost 
component. The PWM works by initializing the unit through the sending of a 5-
volt source for at least 10 µs. This triggers the unit to emit a series of pulses at a 
40 kHz frequency. The pulses then bounce off an object and return to the 
receiver where they are echoed back to the MCU via 5-volt source for a period of 
time. The length of the time corresponds to the distance where the distance in 
centimeters is equal to the time output divide by 58. The time of the pulse is 
measured in a range of 150 µs – 25 ms. The formula is: 
 

 
 

The signal output is detailed below. The output response signal shows the length 
of the Pulse that is used to determine the distance of the object. 
 

 
Figure 3-3: Timing diagram for ultrasonic sensor [15] (Permission 

Pending) 
  

Based off the selections for vehicle collision avoidance we will need three 
sensors to accurately guide the vehicle through its directives while avoiding 
obstacles. By placing them on the sides and the front of the vehicle the vehicle 
will be able to determine an obstacle upcoming in its path. 
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Since we do not intend for the vehicle to work in a dynamic environment we 
intentionally left off a fourth detector in the back of the rear of the vehicle as the 
tests will be done in a controlled and static environment. The one important 
consideration is that the pulse needed to activate the sensor is 5 volts, found on 
most MCU’s however the return pulse will be 5 volts so we will need a simple 
voltage divider to reduce the voltage as most MCU I/O pins operate at 3.3 volts 
or lower. When introducing this component to the PCB board we will need to 
ensure that this remains separate from the components that utilize the i2c 
protocol. As this device communicates exclusively with a basic PWM I will need 
to be connected to the GPIO line of the MCU.  

 

3.3.2 Camera Module 
When determining the camera choice for the autonomous robot design the 
choice was slightly more difficult than expected. While many devices make use of 
optical sensors and camera modules with varying pixels, it was difficult to find an 
industry standard when it came to MCU’s. There some Display Serial Interface 
standards utilized by various manufacturers for Cameras one of which is the 
Camera Serial Interface (CSI) which is a specification of the Mobile Industry 
Processor Interface Alliance (MIPI). These were developed to define an interface 
between a camera and a host processor. The idea for the industry alliance was 
to allow the system integration of the interfaces to have less involved and make 
the processor easier and smoother for the companies involved. [13] 

 
When it comes to the MCU’s a few of the products have adopted the while some 
products have adopted the i2c serial interface to allow fewer input lines and 
faster communications. There are some modules that also utilize traditional 
UART interfaces allowing the user to customize the Baud rate based on 
communications protocols. Given that most of the cameras designed to interface 
with the various MCU’s are sufficiently small we chose to go with the Raspberry 
Pi Camera for two reasons. The main reason is that the camera was designed to 
interface with our MCU choice. This allows for less debugging and less 
initialization of the camera based software. This particular camera meets a 
minimalist design and weight while having a robust interface following the MIPI 
Alliance standard. Our second is reason is that not only does it follow the MIPI 
standard is that it also follows the CSI specification. By using this specification, 
the camera can connect directly to the Raspberry PI GPU and bypass the CPU. 
This gives an increased performance as you can have the data sent straight to 
the GPU for encoding. 
 
Due to the length of the cable we will most likely need to add extensions to the 
length. This will allow the camera to be mounted on a separate physical platform 
that can be raised above any jumper wires and subsystems of the RSV. The 
below picture illustrates the size of the camera relative the Chassis of the RSV. 
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The overall size of the camera has to be small enough as to not interfere with the 
multiple subsystems 

 
Figure 3-4: Raspberry Pi Camera 

 
Ideally the camera should operate as its own independent smaller subsystem 
with direct connection to the MCU for both power and data. The reason is that 
this will allow the camera to operate optimally via the CSI interface directly to the 
GPU. 
 

3.3.3 Processing Unit 
In order for our robotic vehicle to accomplish its complex tasks, a fairly powerful 
controller is required. This controller should have Wi-Fi compatibility as well as 
enough I/O pins to support having a camera, ultrasonic sensors, and servo 
control. It should also be inexpensive and fairly easy to integrate into our design. 
Since both digital and analog signals will be used, the microcontroller must be 
able to interface both signals. The two controllers that may meet these criteria 
and were considered are the Raspberry Pi and the Arduino. Specifically, the 
Raspberry Pi 3 and Arduino UNO.  

3.3.3.1 Arduino 
The Arduino UNO, shown in figure 3-5, is a true microcontroller that is made to 
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be simple to use and offers basic functionality of a microcontroller to help reduce 
power costs. It specializes in interfacing with sensors and devices and running 
simple programs that can monitor the states of these sensors and devices. This 
makes the Arduino a good selection for embedded systems, where a low power 
microcontroller that can perform a simple task is required. However, the Arduino 
is capable of performing greater tasks. The Arduino has available “shields”, 
which are expansions that offer different functionalities to the base Arduino 
board. These can be used to obtain specific functionalities based on the desired 
application. Some examples of shields are breadboard shield that allow for 
prototyping, or a shield that allows for Wi-Fi or Ethernet connectivity. The Arduino 
UNO has an operating voltage of 5V with a recommended input voltage of 7-12V. 
The I/O pins draw 20mA of current per pin. The 3.3V pin draws a current of 
50mA.  

  
Advantages:  

● In terms of software, the Arduino uses its own IDE that is based on java 
with its own compiler. This makes it relatively simple to code basic 
programs into the controller.  

● comes with both digital output pins and analog input pins. This would 
make it so that both digital and analog signals could be interfaced easily.  

● Some of our components are also built for the Arduino, which would make 
it much easier to interface them with the board as well as program with the 
board. 

 
Disadvantages:  

● The downside of the Arduino is that the hardware limits software 
compatibility due to low memory size and processing speed, as indicated 
in the specification table 2.  

● Since the board was meant for more simple embedded processes, it can’t 
handle large data manipulation or calculations. Since our project will 
require graphical processing and constant pinging of input/output devices, 
a powerful processor and large memory size are required that can handle 
the amount of data and processing required to carry out a surveillance 
vehicle with collision prevention and target tracking. 

● To support such processes as computer vision on an Arduino, there are 
solutions. A separate image processing module could be attached, which 
would process all imagery and recognition and then send signals back to 
the Arduino board to then send the outputs to the servos. This will add an 
extra step and component to the design which could lead to increased 
power consumption or increased complexity.  
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Figure 3-5: Arduino UNO REV 3 [2] (Permission Pending) 

 

3.3.3.2 Raspberry Pi:  
The Raspberry pi 3 shown in figure 3-6 is a single board computer that is 
intended to be cheap and powerful. Unlike the Arduino, the Raspberry Pi is not a 
typical microcontroller. The Raspberry pi operates similarly to a normal desktop 
or laptop computers, as it can support specialized operating systems and has 
enough processing power and memory to run large programs. It is also capable 
of utilizing an SD card for external storage to store its programs and operating 
system. The latest release of the Raspberry Pi is the Raspberry Pi 3 model B. 
This board offers the same features as the Raspberry Pi 2, but with 
improvements in processing speed and main memory size. It also offers built in 
Bluetooth and Wi-Fi capability, which is extremely useful for our application and 
helps reduce costs. The full specifications are listed below. The Raspberry Pi 3 
requires a 5V, 2.5A micro USB power source.  
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Figure 3-6: Raspberry Pi 

 
Advantages:  

● The Raspberry Pi 3 is essentially a full computer packed into a single 
board.   

● It is more powerful, which allows for more flexibility to program complex 
software.  

● Since it is possible to connect a keyboard and monitor to it directly and 
uses known operating systems, a programmer could conveniently 
program the board directly in a somewhat familiar environment.  

● The Pi also features many built in capabilities, such as Wi-Fi and 
Bluetooth as well as ports for a camera, audio, and digital I/O pins as 
shown in figure 8.  

● It uses the Inter-Integrated Circuit (i2c) communication protocol, which will 
allow for separate controllers to be interfaced with the Pi.  

● With the high processing power and memory size, the Raspberry Pi 3 is 
able to perform computer vision and image processing without the use of 
an external module 

● Large external memory size, large capacity micro SD cards can be bought 
for cheap 
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Disadvantages:  
● One of the main disadvantages to the Raspberry Pi 3 is that all of its input 

and output are digital. Our project uses several analog signals for 
components such as the servos and accelerometer. This means it would 
be required to also purchase an analog to digital converter in order to 
interface the Raspberry Pi to our components. This could potentially lead 
to a loss of accuracy, although the loss can be overcome in the software.  

● Another Disadvantage is that the cost of the Raspberry Pi 3 is higher than 
the Arduino. Since the Arduino is much simpler, it’s cheaper than the 
Raspberry Pi 3 as just the boards. The Raspberry Pi 3 also requires a 
separate power source and SD card, which add to its base cost. 

● Complexity is another disadvantage of the Raspberry Pi 3. Unlike the 
Arduino, the Pi requires much more setup and is more complex to 
integrate sensors to. Integrating external sensors requires knowledge of 
I2C communication as well as electrical knowledge to lower the I/O 
voltages down to 3.3V as required to sense low/high readings. 

 

3.3.3.3 Summary of Controllers 
The specifications for both controllers are shown in table 2 for comparison 
purposes. Looking at both controller’s side by side, one can see the key 
differences in the pure numbers for both controllers. These specifications 
however do not solely determine if a controller is better or worse for our 
purposes. 
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Specification Raspberry Pi 3 Arduino UNO 

Processor 
Chipset 

Broadcom BCM2837 64Bit 
Quad Core Processor 
powered Single Board 
Computer 

ATmega328P 

Processor 
Speed 

QUAD Core @1.2 GHz 16Mhz 

Memory 1GB SDRAM @ 400 MHz 2K(SRAM), 1K(EEPROM), 
32KB(Flash) 

Storage MicroSD None 

USB 4x USB Ports 1x USB port (for power) 

Max Power  
Draw/voltage 
 

2.5A @ 5V 5V operating,20mA current 
per I/O port 

GPIO 40 pin 12 (6 digital, 6 analog) 

Ethernet Port Yes No 

Wi-Fi Built in No 

Bluetooth LE Built in No 

Table 3-1: Specification comparison 
 

In order to gain a fair comparison of both boards, a full comparison of the 
advantages and disadvantage must be made. Table 3 shows a side by side look 
at the pros and cons to assist in determining which controller fits our project 
better.  
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 Raspberry Pi 3 Arduino UNO 

Cost More expensive Less expensive 

Power Faster processor, 
more memory 

Slower Processor, very small 
memory 

Simplicity More complicated to 
program and interface 
with sensors 

Easier to use, compatible 
sensors are easily available.  

Compatibility 
With project 

Requires more work 
from EE side to 
interface I/O and 
sensors to the 
controller 

Easier to integrate hardware. 
Harder To Integrate software. 

 Table 3-2: Controller Pros and Cons 

3.3.3.4 Final Selection 
After weighing the advantages and disadvantages of both microprocessors, it 
was decided that the Raspberry Pi 3 would be the best choice. This was 
determined because the Raspberry Pi 3 offers much more power built into the 
board than the Arduino. In order to perform computer vision tasks, we require 
processor with high clock speed and a memory size large enough to carry out the 
tasks without stalling. 
 
The Pi also has the capability for a large amount of external storage with 
separate SD cards. This means we can store large amounts of data or features 
in the SD card that far exceed the main memory capacity of either of the boards. 
The Raspberry Pi also offers much more flexibility with the software. It can be 
programmed in a familiar environment to make it easier to implement the 
features required for the vehicle.  

 
There are tradeoffs however that must be addressed. One tradeoff is that analog 
to digital and digital to analog converters must be used to generate useful 
outputs and gather useful inputs. Also many of the external sensors and devices 
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are built to be compatible with the Arduino. This means the hardware side will be 
more difficult to figure out how to interface these components to the Raspberry Pi 
as opposed to if the Arduino was used. 

 

3.3.5 Magnetometer 
When choosing the digital compass, the primary focus was to have the device to 
determine its current position relative to the magnetic north. The reason this 
information is needed is that the device can accurately determine where it went 
to help created a 2d map of travel. This along with an accelerometer can provide 
two methods to determine the amount the vehicle rotated. This will allow the 
vehicle to know the direction it has turned in to help determine its vector when 
plotting the map. The sensor arrays for the magnetometer has become limited in 
choices with most variations of the components are of higher accuracy or include 
extra sensor technology. At first our original thought was to only include a digital 
compass however many components are sold with triple-axis accelerometers 
and magnetometers combined. 

 
We have decided on a lower cost solution that has an accuracy relevant for the 
project and the tasks that are needed to accomplish. The unit comes 
recalibrated, however, the component can be calibrated using the MCU or a 
traditional PC. This will help to determine axis offsets for both the accelerometer 
and magnetometer. 

 
The device uses i2c communication protocol. The i2c communication protocol 
will reduce the wiring needed between the device and our MCU. Rather than 
having an input pin for each axis in each component this allows for serial 
communication between the MCU and the device via to serial ports. The most 
important about of our calibration is to get the component level on installation so 
that when the device reads a change in direction its true to our vehicle. Any 
deviations in the placement of the component could allow for incorrect position 
recordings and require extra calibration steps. The accelerometer and 
magnetometer will read out in the X, Y and X axis and allow for the reading of 
orientation of the device. In the absence of the local magnetic fields the device 
can read the Earth’s magnetic field (20-60 micro Teslas) and determine the angle 
of the magnetic field relative to its position. This will allow us to utilize the X and 
Y axis for the compass component. [11] 
 
At this point there is no information specifying the power consumption of 
continuous use nor are is there information on the ability to turn off the 
accelerometer if we find that it is not needed. When building the device and 
testing we will need to determine the average power output of the component to 
ensure our power supply will accurately account for the device. We will also 
research the ability to read only the components required to ensure we have an 
efficient use of code and power consumption. 
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The figure below shows the schematic and size of the device, the device 
occupies a relatively small space with minimal I/O pins. This is important as the 
more sensors we add to the vehicle the more physical cramping will occur 
causing our device to become overcrowded and more difficult to repair, 
troubleshoot and operate. 

  

 
Figure 3-7: Magnetometer size 

 
Due to the relatively small size of the device as shown in figure 3-7, we have the 
ability to place the component conveniently and with respect to any size 
constraints of the other systems. This device uses the i2c communication so we 
will need to consider the wiring layout to the PCB as well as any pull up resistors 
needed to complete the circuit. Ideally we will have the device mounted directly 
onto or close to the PCB board to minimize the use of the jumper wires. 
 

3.3.6 Servo Control 
The proposed rover will be driven by two electric motors.  Each motor controls 
the tracks on one side of the vehicle chassis. At minimum, the motors need to be 
operated in forward and reverse modes with independent control for each 
engine. With this configuration, the robot would be able to drive forwards, 
backwards and turn. Turning is accomplished by operating one motor in forwards 
mode while the other is in reverse. This method of turning is known as differential 
steering, shown in figure 3-8. A primary drawback to differential steering is a lack 
of precision motion. Differential steering is easy to program and is lower cost 
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than comparable steering methods. The increased ease of design more than 
compensates for the slightly decreased precision. 

 

 
Figure 3-8: Differential Turning Diagram 

 
Ideally the servos could operate at various frequencies to allow for motion at 
different speeds. The motors are driven by pulse width modulation and this is 
facilitated by a servo driver. Through variations in the width and frequency of 
pulses shown in figure 3-9 the engine can be controlled. The control enables the 
motors to be precisely directed and enables the functionality that makes this 
design feasible. 
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Figure 3-9: PWM Diagram 

 
Further considerations should be assessed when deciding on a servo controller. 
The servo controller used in this rover contains an internal clock. The propulsion 
system can be given a command and left to manage its execution until a change 
is made. Without a clock the processing unit would need to send continuous 
commands to manage movement. The constant instruction is wasteful and can 
be a drain on computing power and battery life. Outsourcing some of the 
functionality allows the design to be more efficient.  The servo driver utilizes I2C 
based communication. Most of the modules in this design rely on this system and 
it is efficient to have consistency throughout the design. 
 



Military Surveillance Robot 
November 13, 2016 

Page 36 of 166 

 

 
Figure 3-10: Servo Driver Diagram [16] (Permission Granted) 

 
In light of the design advantages of a I2C capable servo driver, it is prudent to 
include a servo controlling chip with this capability.  The Adafruit PCA9685 
contained all the desired functionalities, including an internal clock to reduce the 
computing power required for propulsion.  A drawback of the PCA9685 is that the 
chip is designed to power up to sixteen different servos.  It is arguably inefficient 
to use a component with wasted capabilities.  In this instance the criticism would 
not be accurate.  Though not all of the output pins are utilized, all of the features 
of the PCA9685 are applied to the design and make the robot more functional.  
The I2C communication and internal clock of this servo driver enable the robot to 
operate more successfully and to achieve the desired design outcomes.  
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Figure 3-11: PCA9685 Servo Driver 

  
The electric motors in this design have an operating voltage that ranges from 3V 
to 12V. a wide operating range allows for flexibility with regard to component 
choices. Most electric motors for small robot design are intended to operate in 
the 1.5V to 3V range. This is consistent with the voltage range of many 
microcontrollers. The proposed design uses a raspberry pi based system which 
operates at 5V.  It was expedient to choose a motor that matched the 
characteristics of other components in the design. Importantly the higher voltage 
motors were also more efficient. The 1.5V to 3V options consumed 150mA while 
the higher voltage motors had a free run current at 75mA.  With any battery-
operated device power consumption is an important concern and this was a 
significant factor in determining the choice of motor.  



Military Surveillance Robot 
November 13, 2016 

Page 38 of 166 

 

 
Figure 3-12: Electric Motors and Gear Assembly 

 

3.3.7 Optical Rotary Encoder 
Rotary encoders measure the rotation of a shaft, either digitally or through an 
analog signal.  The majority of encoders are either magnetic or optical.  Optical 
encoders are cheap and rely on a photo sensor which measures visual changes 
on a disk rotating around the axis being measured.  The principal drawback of 
this technology is a susceptibility to conditions that obscure visibility, such as 
dust.  Magnetic encoders are robust, but they are more expensive than optical 
encoders.  The proposed design is intended to work indoors. It is unlikely that 
dust or smoke would be a significant issue under these operating conditions.  An 
optical sensor is sufficient for the proposed design and it would be superfluous to 
include a magnetic encoder.  For these reasons an optical rotary encoder is the 
ideal choice for this design. 

 
Encoders can be either absolute or incremental.  The absolute rotary encoder 
measures the specific orientation of the shaft. The angle of rotation is determined 
by a series of concentric rings which each correspond to a binary value.  All bits 
set to zero might represent the smallest positive angle and the binary number 
would count towards the largest measured angle.  The caveat to this precision is 
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that each ring requires a separate sensor and increases the design complexity.  
To justify the increased intricacy, there must be a palpable benefit to the angle 
information. In the current design the rotary encoder is used to determine 
information about an axle powering a vehicle.  Wheels and tracks, the two 
proposed systems of propulsion, are uniform along all points of rotation.  Both 
designs are not going to be significantly different at any orientation so there is 
little justification for recording angular information. 
 
 

Figure 3-13: Absolute Rotary Encoder Diagram 
 

An incremental encoder measures changes in shaft position without recording 
the exact location relative to a known value.  A general design involves a sensor 
which detects changes which are evenly spaced around the axle.  From the 
evenly spaced indicators the amount the shaft has rotated can be calculated. 
Since each increment is identical, it is impossible to know the precise angle of 
rotation.  The benefit of an incremental encoder is that it requires one sensor 
which is considerably simpler than an absolute encoder.  In this design, the 
rotary encoder is utilized to determine distances traveled.  Each rotation can be 
interpreted as propelling the rover a set distance which should be consistent.  
The pertinent information is the number of rotations, not the absolute orientation 
of the axle. 
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Figure 3-14: Incremental Rotary Encoder 

 
Incremental rotary encoders can be further divided into standard or quadrature 
devices.  The standard encoder records only changes in position with one sensor 
reading the increments around the axle.  A quadrature encoder uses two 
staggered sensors that are ninety degrees out of phase.  Depending on which 
sensor triggers first the direction of rotation can be registered.  As the design 
relies on the encoder data to determine distances, it is plausible that the 
quadrature encoder is justified.  Such devices would allow the rover to use 
reverse motion and record the data.  A standard incremental encoder would not 
be able to distinguish between the two drive modes and would categorize both as 
forward motion. 
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Figure 3-15: Quadrature Rotary Encoder Diagram 
 

Though the extra data is potentially useful it is likely redundant.  The rover is 
providing the propulsion directly through its engines and both the engine and 
encoder data are available.  If the engine is operating in advancing mode, the 
encoder information should be interpreted as forward movement.  If the engine is 
providing reverse motion the encoder data should be analyzed to indicate 
retreating distance.  As this system accomplishes the same objectives as the 
more intricate quadrature sensor with a streamlined design, a standard 
incremental optical rotary encoder should be used.    
 
The most prudent option was the Robot Shop RB-Rbo-122 encoder pair.  These 
are a pair of low cost optical, incremental rotary encoders. The RB-Rbo-122 
encoders contain all of the functionality required to implement this design, without 
excessive inclusions that would overcomplicate the robot.  The encoders contain 
sixteen counts per rotation and it is not a quadrature design.  Though not the 
most precise encoders available, they allow all of the precision required to 
implement the proposed rover.  
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Figure 3-16: Optical Rotary Encoder 

 
While the RB-Rbo-122 encoder is an attractive option for this design, it has a 
significant drawback.  The output from this chip is analog and there are not any 
analog input pins on the Raspberry Pi.  Though analog output without any 
available input is the primary drawback, it is not a significant obstacle.  The 
inclusion of an analog to digital converter is an easily manageable addition to the 
current design.  The Adafruit MCP3008 is an eight channel, ten bit analog to 
digital converter and enables the two optical encoders to be used with a 
Raspberry Pi.  In our alternate design plan the analog to digital conversion would 
be  

3.3.8 Battery Power  
There are two main components to consider when determining the battery 
requirements of the device. The first if the Servos and the Second is the 
Raspberry Pi. The Raspberry pi will be capable of powering the Sensor Arrays 
and peripherals through the GPIO Pins. Since we have a small number of 
peripherals we won’t be at risk for drawing too much current through the GPIO 
pins. The raspberry Pi requires a 5-volt power source and can draw up to 2.5 
amps of power. Most lightweight batteries that have significant storage capacities 
won’t be able to meet that specification. However, since we do not intend to use 
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the USB peripherals we won’t be drawing that picture. For compact simplicity 
sake we will utilize a mobile power pack. We will start off with a device around 
this specification. 

 
Figure 3-17: ROMOSS Mobile Battery [3] (Permission Granted) 

The above battery is a typical mobile battery that can be used to satisfy our 
requirements. It offers two USB ports, both a full USB and a Micro USB port. IT 
maxes at 1-amp current draw so as long as we don’t task the raspberry pi to 
engage all 4 cores and all the components we shouldn’t exceed the maximum of 
the current output. If needed a similar device can be used but there are slight 
variations in size and weight as outlined in the sable below. 
 

 Battery Option 1 Battery Option 2 

Dimensions (inches) 1.91 x 3.5 x 0.8 5.4 x 2.3 x 0.8 

Weight (grams) 126.7 289 

Max Current (amps) 1  2 

Size (mAh) 4000 10000 

Table 3-2: Battery Comparison 
As you can see the second option will be significantly longer, with a slightly 
smaller width and same height. The dimension’s difference will have a marginal 
effect on the device as the chassis is quite long as well.  
 
The second device to consider powering are the servos. The Chassis mount 
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comes with a built in placement for AA batteries, depending on the final 
construction the servos can be powered separately through the AA enclosure or 
through the Raspberry Pi itself. 

3.3.9 Servos and Gearbox 
The servo selection was limited in that the servos needed to function in the 
tracked based chassis. We would need a motor for each track as the chassis 
operates each track separately. This allows for precise turning and is superior in 
pivoting over other concepts. Since we do not require the device to reach high 
speeds the overall speed limitation of this device can be negated. 
 
When deciding the servos for the vehicle we had to major selections. We could 
go with a standard DC motor and no gearbox, or a DC motor with a gearbox. In 
either configuration we would need to ensure that the device can fit into the 
chassis and a rotary encoder can be installed to see the movement of the device. 
 
The HS-322 pictured below can be used in the chassis design with some 
modifications done to the chassis. The advantage is that this a standard design 
and has good usage and review around the motor design to ensure that this 
device would be useable in our application and has a high top speed. 

 
Figure 3-18: HS-322 [4] (Permission Pending) 

 
The Tamiya FA-130 motor shown in figure 3-19 is a general purpose that can be 
used in a variety of applications. The advantage to this motor is that it is less than 
half the weight of the HS-322. While it doesn’t compete in torque in top speed it 
does compete in size and weight as well as a lower power consumption. Since 
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we will be utilizing two servos to control each tank tread we chose the smaller 
servo as the extra power isn't needed in our application. We do not have specific 
weight requirements or speed requirements of the vehicle so the servo was 
sufficient for the design and is depicted below. 
 

 
Figure 3-19: Tamiya FA-130 

 
The lone drawback of the Tamiya FA-130 was its power consumption; it draws 
150mA while running.  Additionally, its operating voltage was at 3V, while the 
design used a 5V power source.  Both of these issues are resolved by using a 
similar DC motor with a higher voltage and lower current.  The Pololu Size 130 
Brushed DC motor shown in figure 3-20 is the same size as the Tamiya model 
but draws only 70mA and operates anywhere from 3V to 9V.  This motor is 
depicted below and meets all of our design specifications, though similar to the 
Tamiya design they are distinguished by a lighter plastic cap. 
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Figure 3-20: Pololu Size 130 Brushed DC motors 

 
The device can be purchased with a gearbox with a twin motor configuration to 
make the connection to the tracked chassis much easier. Shown in Figure 3-21 is 
the twin-motor gearbox made by the manufacturer of the FA-130 motors. This is 
a best fit for our vehicle as it offers a small concise package to house both of the 
of the motors. We chose this to power the device over the larger more powerful 
motor. 
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Figure 3-21: Motors with Gearbox 

3.4 Parts Selection Summary 
Based on the above parts and their needs we have decided on including the 
following components: 
 

● 3 Ultrasonic Sensors 
● 1 Optical Encoder 
● 1 PCB to buffer sensors 
● 1 Raspberry PI MCU 
● Resistors for pull-up and voltage division 
● Camera Module with extended cable 
● Servo controller to translate analog signals 
● Camera Servo’s (Optional)  
● Robot Vehicle Chassis 
● Servo Motor 
● Platforms and connecting wires 
● Mobile battery pack 

 
While it's possible some substitutions may need to be performed in Senior 
Design 2 we believe the components listed above will give us the device that 
functions closely to our required specifications outlined in our requirements 
section. If any component fails, the testing procedure a new part will be 
implemented with any changes in the new spec requirements of the device. 
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4. Related Standards and Realistic Design 
Constraints 

 

4.1 Standards 
Standards promote innovation by facilitating the exchange of ideas. Common 
terminology and testing methods allows for efficient comparisons between similar 
products and concepts. The current project requires both physical and coding 
standards. Combining both types of standards enables a comprehensive set of 
regulations that would be difficult without consulting both varieties of regulations. 
Following established standards allows for a consistent design that can be 
replicated by other investigators. 

 

4.1.1 Design impact of relevant standards 
Robotics standards dictate common terminology and consistent assessment 
methods. Safety is arguably the most important consideration when constructing 
an autonomous vehicle. Though the current rover is too small to be conceivably 
dangerous, the concept could be applied to a larger robot. In testing, the rover 
should be treated as having the potential for harm and this requires safety 
standards. The device is also a battery operated design. There are important 
standards regarding battery safety and the potential for fire and other adverse 
reactions is a serious concern. The following list should be considered as a 
preliminary list of robotics standards: 

 
● Engineering Standards 

o Navigation  
▪ Mapping data should be defined by the IEEE Standard for 

robot map data representation for navigation (1873-2015). 
o Terminology 

▪ Robot terminology is defined by the IEEE standard 
ontologies for robotics and automation (1872-2015). 

▪ Robot motion will be described using the ISO robotics 
coordinate systems and motion nomenclatures (ISO 
9787:2013). 

o General  
▪ General safety is dictated by the IEC household and similar 

electrical appliances – safety general requirements 
(IEC60335-1). 

 
Coding standards ensure the production of consistent and high quality code. 
Standards enable the code to be efficiently debugged and ensures that the codes 
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purpose is clear to an outside observer. Intelligibility of the code is essential for a 
scalable product as it allows the inclusion of other developer. Facilitating an easy 
understanding of the code enables cooperative work in a team environment. The 
following list includes relevant coding standards/conventions: 
 

● Coding Standards 
○ Functionality Conventions 

■ Local variables should be declared as close to their usage 
as possible 

○ Naming Conventions 
■ All variable/function names should be descriptive of their 

purpose 
■  Member variables should be prefixed with an “m” (e.g. 

myVar becomes mMyVar) 
○ Comments 

■ Public member functions should use Javadocs style 
comments, with @param and @return included 

■ In most cases, code should be self-commenting by using 
descriptive function and variable names 

■ Comments should always have a single space between the 
comment designator and the start of the comment (e.g. 
//This is incorrect. // This is correct) 

○ Whitespace 
■ Tab characters should not be used, 4 spaces should be 

used instead 
■ Braces should be placed on their own line 
■ An additional tab level should be used after every opening 

brace, and removed after every closing brace 
■ A single space should follow control statements (before the 

opening  
  

4.2 Realistic Design Constraints 
Constraints will dictate choices through the development process and will have 
an important influence in shaping the final design. At this early stage in the 
project it is difficult to have a comprehensive assessment of design constraints. 
While it is unlikely all constraints can be predicted, by making educated guesses 
obvious pitfalls can be avoided. The constraints most likely to cause potential 
issues have been identified and described here. Broadly, the constraints can be 
divided into four categories. 

 
● Economic and time constraints. 
● Environmental, social and political constraints.  
● Ethical, health and safety constraints.  
● Manufacturability and sustainability constraints. 
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4.2.1 Economic and Time constraints  
The current project is being developed by a team of students and this is reflected 
in the economic and time constraints. In a corporate environment, it is unlikely 
either of these constraints would be so stringent.  The total design time is 
dictated by the university and the project is to be completed over a two-semester 
period. The eight months available for this project includes the development of 
the idea, documentation of the design and construction of a finished product. 
 
The economic constraints reflect the limited financial means of college age 
students. No sponsorship was forthcoming and this project will be self-funding. A 
proposed target has been a budget of no more than $350 for the construction of 
the robotic vehicle.  This is a plausible figure but it is possible that during 
construction and testing it is revealed that this is not a realistic constraint.   
 
An affordable design allows the project to achieve its intended goals.  A military 
tracking robot is likely following an unwilling target and would be met with hostility 
if discovered.  In this event, the robot would be most likely destroyed.  If the rover 
is prohibitively expensive, consumers may decide that the product is not cost 
effective.  
 

4.2.2 Environmental, Social, and Political constraints  
The design is on a small scale and the environmental impact is likely minimal.  
Noise pollution is not a plausible concern for a robot propelled by small electric 
motors.  Additionally, the robot is intended to follow an unwitting target and it 
would be counterproductive for the design to be noisy.  If the issue of noise 
pollution was plausible, the robot would not be able to achieve its primary 
purpose.  
 
The design is made of inert plastic and aluminum.  It is unlikely that this 
constitutes a source of water or land based pollution.  The design is not intended 
for manufacture on a scale that would enable the volume of plastic to be a 
significant environmental issue. 
 
The proposed project is a battery powered robot and the battery source will be 
the largest environmental issue associated with the design.  Current battery 
technologies contain materials that are environmentally sensitive.  Most batteries 
contain heavy metals that and these can have a negative impact if not disposed 
of properly. California considers all batteries to be hazardous material and they 
cannot be included in regular trash.  It seems reasonable to limit the project to 
reusable battery technologies.  
 
In addition to environmental concerns, there is a steady decline in disposable 
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battery use and a continuing increase in rechargeable battery capacity.  Since 
smaller, more efficient batteries reduce weight, it further reduces the need for 
battery power.  For these reasons the project should be constrained to 
rechargeable battery technologies.  
 
A primary social constraint, when automating an activity, is the potential impact 
on employment.  The current climate has seen growing resistance to policies that 
impact blue collar workers.  This group is currently the most vulnerable to 
automation related job loss.  Due to an increasing reliance on robotic 
manufacturing, employment in this sector has decreased by five million jobs 
since the year 2000, while maintaining constant output.  Though it is important to 
be aware of potential concerns, the surveillance robot is not a serious threat to 
employment.  The design is intended to add a new capability, rather than 
automate an existing one.  This robot will aid soldiers in their duties, instead of 
replacing them.   

 

There are important political and social constraints to consider as part of an 
autonomous robot design. The constraints are compounded by the potential for 
political resistance to a device that tracks individuals without human input.   Most 
of the political resistance centered around weaponized autonomous robots, but it 
is conceivable that the opposition could extend to tracking robots.  An open letter 
signed by one thousand individuals involved in various tech fields, including Elon 
musk and Stephen Hawking, has called for a ban on autonomous military robots.  
The primary concern raised in the letter was the danger posed by robots that 
could autonomously target and engage humans.  Specifically, the letter details 
concern with a platform that has the potential to keep humans out of the decision 
process.   

 

Though the proposed robot is intended to track a human, it is limited to following 
a target and is not weaponized.  The proposed project has no offensive capability 
but, it is important to be cognizant of potential concerns.  A reasonable 
constraint, that should hopefully ease potential concerns, is to have human 
override for all robotic actions. Though the app there will be an ability to stop or 
override the autonomous activity.  A human veto on autonomous decisions 
should help to address fears of renegade robots.  

  

4.2.3 Ethical, Health, and Safety constraints  
Ethical concerns for this design are related to privacy concerns that are inherent 
in designing a robot that is intended to follow an individual.  When working 
properly the robot will be operating without consent of the target.  In this instance 
the use of a ground based robot helps to resolve this concern.  If the robot had 
been an airborne platform, the robot would be able to more invasively track a 
target.  The current design can only follow a target along relatively flat terrain and 
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is limited, effectively, to public places.  A quadcopter robot would be able to track 
a target, for instance, into a walled backyard.  This could constitute an invasion of 
privacy, while tracking in a public place would not.  When there is no reasonable 
expectation of privacy there is a diminished ethical problem with tracking a target. 

 

The current robot is a proof of concept, intended to demonstrate the capability to 
follow a specific human target.  Potentially, it could be turned into a toy or game, 
for domestic consumption.  The design, for either the proof of concept or toy 
variant, needs to be aware of the potential privacy concerns, outlined in the 
paragraph above.  If the robot, following a successful proof of concept, is turned 
into a functioning military tracking version, it is less restricted by privacy issues.  
Informed consent is not a part of combat interactions, in the future design would 
be free to use more invasive tracking methods.  In the current proof of concept 
version, the robot should be designed with personal privacy in mind.  To this end 
the robot is designed to operate indoors in relatively controlled conditions and it 
is not plausible that it could be used for invasive activities.  

 

There are minimal health and safety concerns for this design.  The robot is going 
to weigh roughly one to two kilograms and it is unlikely that a collision could 
present a risk to personal safety.  The robot is composed primarily of inert plastic 
and metal so it does not present a risk of toxicity above any other type of 
household electronics.  As a check against any unintended personal risk posed 
by the robot acting autonomously, a human override will be included in the 
associated phone application.  
  

4.2.4 Manufacturability and Sustainability constraints 
The manufacturability of the robot is not particularly challenging for this design.  
The robot, in broad strokes, is similar to other commercial robots that are 
successfully manufactured for domestic use.  The tolerances required for the 
intended implementation are reasonable and within current manufacturing 
capabilities.  The design uses widely available materials and technologies and it 
is unlikely that manufacturing this robot will be excessively difficult. 

 
Sustainability of this project is an important concern, if the design is going 

to be realized.  If the business plan is not realistic, the robot will not be built.  The 
longer goal of this design is a military application, but in the meantime, it could 
function as a toy.  Military robots are required to operate under rigorous 
conditions and have low tolerances for failure.  In contrast, a domestic toy is 
required to operate in a narrow window of temperatures under ideal 
circumstances.  While it may be a reasonable criticism that a military robot 
breaks down in a sandy environment when temperatures reach over 100 
degrees, this is not a reasonable critique of a household toy.  Targeting the 
underlying technology at two markets, first as a toy and then as a military robot, 
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makes the business plan more robust.  After the proof of concept there is a 
potential source of revenue as a toy while the more involved challenges of 
implementing a military robot are addressed.    
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5 Project Hardware Design Details  
 

5.1 Research of initial project design  
 

5.1.1 Interface for Microcontroller 
The interface for the microcontroller from the hardware aspect will consist of 
various connectors to interface with the physical components as well as the PC 
interface. The main user interface will be via USB for programming and 
debugging. This will allow the programming of the device and the testing of 
subsystem designs. The raspberry pi 3 utilizes a standard USB hubs and an 
HDMI port for a Mouse, Keyboard and Monitor as well as a micro SD card to 
program the Operating System. Once the device is configured, calibrated and 
tested the user will primarily interact with the device via Wi-Fi through a phone 
application that will be linked to the Raspberry Pi. The microcontroller interface 
diagram is shown in figure 5-1. 

 

 

Figure 5-1: Interface Functional Diagram 
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5.1.2 GPIO 
The General Purpose Input Output lines operate on a 3.3v maximum for the 
Raspberry PI. These are used to interface with the various components and 
sensors on the device. These will be used in a LOW and HIGH based 
communication corresponding to typical 0 and 1 bit based logic. If the voltage 
input to the device is below designed threshold the port will be considered to be 
LOW. If low the software will read it as a 0. If the pin is above the threshold it will 
be read as 1 or HIGH. Ideally we want our GPIO lines to either be reading 0 volts 
or close to it and 3.3 volts or close to it. We can accomplish this with voltage 
dividers in order to deal with any of the peripherals that may output higher than 
3.3 volts. 

  

5.1.3 i2c Driver system 
When looking into the i2c subsystem it’s important to consider how the i2c 
communication protocol works. As depicted in figure 5-2, the most recent Rev 6 
protocol uses two lines Serial Data (SDA) and Serial Clock (SCL) [1]. The 
protocol I designed for general purpose circuits with LCD’s, servos, I/O ports, 
EEPROM and A/D converters as well as other sensor inputs. The ultra-fast-mode 
is capable of data transfers of up to 5 Mbit/s and is unidirectional in nature. If 
utilizing lower speeds, the bus can handle bidirectional data transfers. Below is 
an example configuration for a typical i2c bus line. 

 

 
Figure 5-2: I2C Communication Diagram [10] (Permission Pending) 

 

One of the primary reasons to use the i2c communication protocol is to reduce 
the number of busses traveling to the MCU. The accelerometer and 
magnetometer use the i2c protocol as well as the servo driver.  
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5.1.4 Power system across board layout 
The power system across the board will be dependent on the power required by 
each of the sensor. The highest consumer of power will be the MCU and the 
Servo motor for the RSV. They position of the power supply and these 
components will take priority when determining the ideal placement. The other 
sensors will use 5 Volts or less. Based on the positioning of the sensors we will 
add power lines from the main power source or from the Raspberry Pi’s GPIO 
lines.  For the i2c lines we utilize a pull-up resistor to the bus line. For the 
ultrasonic sensors we may need to add a transistor to increase the voltage 
depending on the tolerances of the component. We will need to have the physical 
hardware to test the full functionality of the component to determine the viability 
and placement on the PCB board. 

  

5.2 Raspberry Pi system   
 

5.2.1 User interface 
The Raspberry Pi can be booted using many different operating systems, 
including a Linux OS, RISC OS, and Windows 10 IOT OS. This allows for a 
programmer to pick an environment that they are comfortable with. The 
advantage of this flexibility of having a full computer is that the programmer can 
pick whatever is easiest for the application. Any language can be selected as 
long as the proper libraries can be obtained to interface with the PI. Using these 
libraries and the addresses of the GPIO pins and i2c connections, each 
component can be monitored and processed. The software will then take over 
and execute the proper instructions to complete the task. Depending on the 
status of the various sensors, the software will cause the PI to generate an 
output to the connected devices such as moving the servos in a specific 
direction. The code example below shows how the GPIO pins can be accessed 
in C using the Raspberry Pi. 

 
wiringPiSetupGpio() 

pinMode(17, INPUT); 
pinMode(23, OUTPUT); 
pinMode(18, PWM_OUTPUT); 

digitalWrite(23, HIGH); 
 

Each pin can simply be assessed by its number and set to whatever I/O setting is 
desired. These pins can be manipulated just as any other variable. All other parts 
of the software can be done just as any other program, using the GPIO pins as 
variable for calculations or input/outputs 
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5.3 Sensor system for collision avoidance and 
relative positioning 
The goal of the main system is to interface effectively and efficiently with all of 
the subsystems so that the vehicle works in a manner that is capable of 
completing any designed directives of the software components. When looking at 
the layout the system needs to take into some major and minor components.  

 

The first major component to consider is the chassis of the RSV. The chassis 
typically includes the wheels/treads to allow the vehicle to move. It often doesn’t 
include any of the servos which will allow the user to customize the components 
to tailor the system. The design we have chosen is to use tank based treads to 
allow the vehicle to pivot at the center of the vehicle. This will allow for more 
precise movements and easier control for the MCU. 

 

The next major component is the MCU. The MCU will have a significant footprint 
in comparison to the other sensors, servos and optical components. 
Understanding this we may choose to build a separate compartment to house the 
MCU to keep it elevated away from the other components as many of the 
components will need to be connected directly to the PCB. 

 

5.3.1 PWM for sensor detection for controller interface 
The sensors use the i2c communication protocol which allows all of the 
components to be connected in parallel which respective lines and pull-up 
resistors. Some of the components will not use this and will need direct access to 
the GPIO lines and voltage dividers for PWM. The servos typically communicate 
with either PWM or Analog. With all of that in mind we need to carefully consider 
the PCB size and placement relative to the size of the chassis. Fortunately, we 
only have the Ultrasonic sensors that require dedicated GPIO ports. While the 
other components have some flexibility in placement. 

  

The PCB board will interface primarily with the i2c sensors and secondarily with 
any sensors that need some sort of signal modulation, or voltage difference. The 
ultrasonic sensor will send a signal directly to the MCU however the voltage will 
need to be have reduced to meet the requirements of the General Purpose Input 
Output lines. Since we will be utilizing three ultrasonic sensors we will utilize 
jumper wires to get the correct placement. 

 

In order to determine the layout for the PCB board we will need to look at the 
Chassis of the vehicle. We will be utilizing a track based wheel design. The 
chassis has a prebuilt spot to attach the Raspberry PI MCU. It also has a spot for 
the power storage. Either 4 AA’s or a Lithium Polymer battery. The ability to use 
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the AA’s allow for a quick replacement of the components and will help in the 
hardware testing phase. 
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Figure 5-3: Robot Chassis Diagram [5] (Permission Granted) 

 

Figure 5-3 shows the top layout of the chassis the left hand side has fitted 
mounting for the MCU while the right side has the fitted mounting for the servo 
mother and possible battery pack. Considering this we will need to build a 
platform above these components to install the PCB. We will also need a 
separate mount for the Camera Module so that the device can see forward. 

 

  

Figure 5-4: Ultrasonic Sensor Location Diagram [6] (Permission Granted) 

  

The above figure shows the physical location needed for the ultrasonic sensors 
this will allow for the vehicle to get enough feedback to allow feedback in the 
collision avoidance system. The portion of the PCB needed for sensors is shown 
in figure 5-4 below. We need each of the sensors to be located physically as 
shown above but to connect to the MCU we will need to run the output PWM 
through the divider to correctly communicate with MCU. Since these components 
are needed for the major portion of the vehicle movement these will take priority. 
This will allow the vehicle to make auto corrections based off its distance from 
other objects. 

 

The benefit of using i2c protocol is that in our design we are utilizing one MCU 
and we are expecting it to process the data for all the sensor arrays. If we utilized 
the various GPIO of the MCU we would have numerous jumper cables and wires 
running all over our circuit. It’s much easier to configure the design to utilize the 
i2c bus and allow the MCU to call each of the components via their serial based 
address. 

 

5.3.2 Sensor array  
The Vehicle will utilize four primary sensors. It will utilize the Rotary Encoder, the 
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Ultrasonic Sensors, the Magnetometer and the Camera. The information below 
will focus on the layout of the sensor array as it pertains to collision avoidance. 
The rotary encoder will be covered more in the servo section. The sensor array 
will exclusively utilize the ultrasonic sensors. This will allow the vehicle to avoid 
any obstacles in the testing environment. Below are the schematics for the 
design of these sensors as well as the Magnetometer/Accelerometer. This 
component will not directly be involved with the collision avoidance, but it will play 
a vital role in determining how to move in relation to an object detected. The 
device will sample data points from the Magnetometer to determine what the 
neutral position will be. Once the device knows what the neutral position is it can 
then turn itself at a tangential angle to avoid the object. Sensors will be located 
on the sides and front of the vehicle so the device will know once it has moved 
past the object. 

 
Figure 5-5: Sensor Operation 

Figure 5-5 above shows how the sensor array will work during operation. As the 
device is moving along a path based off of its operation mode it will begin to 
detect an object. The vehicle will begin to slowly decelerate until it reaches a 
point in which it needs to move a different direction. At this point the vehicle will 
engage the magnetometer. 
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Figure 5-6: magnetometer depiction 

As shown in Figure 5-6 when the device engages the magnetometer the device 
will make a decision on how to move away from the object. In the example with 
the object above the device can orient itself to the 270-degree position then 
move forward till the object is sufficient distance or disappears off the radar. 
When the device set itself to a neutral position the 0 degree because whatever 
the reading of that magnetometer receives in the X-Y plane. For the purposes of 
navigation this degree will be stored in memory so the device understands its 
current heading relative to its last.  

Figure 5-7 shows the sensor array for the ultrasonic sensors. It is an electrical 
schematic so the physical location will vary. The components need a 5-volt 
power source to power the instrument on. Each of the components will be 
connected to a GPIO to send signals and receive signals. The pulse coming in 
will initiate a trigger sequence that is shown in the prior section about the 
ultrasonic sensors. The device well then initiate a sequence of high frequency 
pulses at around 40 KHz. The pulses will then bounce off an object and return to 
the device. The pulse returning to the GPIO will natively be at 5 volts. This will be 
an issue for most MCU as typically the required voltage should not exceed 3.3 
Volts. The Raspberry PI will need a voltage divider placed in between the 
returning signal and the sensor.  
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Figure 5-7: Ultrasonic Sensor Schematic Diagram 

 

This is ideal for our project as we will want the ability to constantly send and 
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receive data from the sensor arrays while minimizing the foot space so the 
vehicle can be more compact. One of the important consideration in testing these 
components out is to determine if all of the devices have different serial address. 
Assuming they do we will be able to link them on the PCB board as well and run 
the output lines to the i2c communication lines on the MCU. If we feel that we 
have extra GPIO lines, we may separate the signals to have a non-interrupted 
continuous flow of readings. 
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Figure 5-8: Magnetometer Schematic Diagram 

 

Figure 5-8 shows a sample of the PCB board that will recognize the i2c sensors 
and the interface back to the MCU. The placements of these components will 
vary on the physical placement of the RSV as the Magnetometer will want to be 
further from the electro motor to avoid any interference from magnetic fields. The 
Servo controller will be placed on the device physically based on the needs of the 
other components and will fill gaps in the area to fill out the device layout on the 
chassis.  

5.4 Vehicle movement 
The robot has a tracked chassis and is powered by dual engines, with each 
powering one set of the rubber treads.  The motors are set in a gearbox that 
allows for independent articulation of each side of the vehicle.  The electric 
brushed DC motors are a relatively simple design, often used in small robot 
construction.  More intricate servos were considered but ultimately the extra 
functionality did not justify the increased complexity.  Specifically, the alternate 
motors had the ability to rotate to specific angle rotations, rather than being able 
to be set on or off.  As the robot is intended to follow simple movement 
commands, with realistic tolerances, the brushed DC motors were considered 
acceptable.   
 
The motors are controlled by a servo driver with an internal clock independent of 
the main computer.  Movement occurs by the central computer sending a 
command which is independently managed by the servo controller.  In this 
system, the movement commands are sent as they change rather than the 
central processor continuously managing the instructions.  The schematic 
diagram using the servo driver to control the two servo motors is shown in the 
following figure. 
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Figure 5-9: Schematic Diagram of the Servo Driver Assembly 

  
Turning is accomplished by activating one motor in reverse and one in forward 
motion.  Forward motion occurs when both motors are operating in forward 
mode. Reverse movement has been excluded from this design to simplify the 
robot.  The differential turning allows for a change in direction without moving the 
robot.  Since the vehicle can achieve full mobility without reverse motion, it is 
superfluous to include the capability.  If reverse motion is to be included, it would 
require a rear facing ultrasonic sensor and a whole new library of commands.  By 
omitting reverse motion, the design is simplified without sacrificing the robot’s 
utility.   
 
Movement data to the Raspberry Pi will be communicated by two rotary 
encoders, located on each axle of the robot.  The encoders tell the computer how 
much the axles have rotated and provide 16 analog pulses per full rotation.  The 
confounding issue is that the raspberry pi does not have any analog input pins.  
To solve this, issue an analog to digital converter, the Adafruit, MCP3008, will be 
used to convert the input into information usable by the Raspberry Pi.  The 
converter can communicate with the Raspberry Pi in two different configurations.  
The first is a bit banging configuration, which can interface with any of the GPIO 
pins on the Raspberry Pi and the schematic diagram is displayed in figure 5-10. 
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Figure 5-10: Schematic Diagram for Bit Banging Implementation 

  
The principal drawback of this configuration, is that it communicates slowly, 
relative to the alternate design.  The second option is a serial peripheral interface 
(SPI) configuration which communicates quickly with the Raspberry Pi.  The 
drawback is that this design requires specific pins and this could be an issue if 
they are needed for a different peripheral.  Essentially, the tradeoff is a decision 
between prioritizing speed and flexibility.  The design is a moving vehicle and 
collision avoidance will be an important concern.  If the sensor data is slow in 
reaching the Raspberry Pi, this could conceivably lead to collisions which could 
damage the robot.  Additionally, a slow unresponsive robot would not be effective 
in tracking a moving target.  Currently the pins for the serial peripheral system 
are not utilized in the design because communication speed is prioritized above 
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the potential flexibility. Unless the pins are needed after design changes, the SPI 
configuration shown in Figure 5-11 will be implemented. 
 

 
Figure 5-11: Schematic Diagram for SPI Implementation 

  

5.4.2 Testing of Servo functionality 
The motors are expected to power the robotic vehicle forwards at a maximum 
speed of 15 cm/second. This is a rough estimate and needs to be verified 
through testing. A proposed methodology would involve setting the servo to full 
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capacity and measuring the time required to travel one meter.  
 
The motor can further be set at various power thresholds and the time to travel a 
set distance can be recorded. From this data a reliable speed database can be 
determined. Such a database would allow for more efficient code that would 
allow for the design to account for the movement parameters. A database that 
accounts for stop time and distance should be recorded.  
 
The testing paradigm detailed above would also be used to calibrate the rotary 
encoders.  Collecting the number of pulses sent from the encoders and dividing 
the distance traveled by this quantity would allow the distance per pulse to be 
determined.  An accurate accounting of distance allows the robot to move 
precisely and ensures the equipment is functioning as intended.  
 
The motors can be set to act as breaks and will slow down the robot in this 
operating mode. Understanding the distance and time required to bring the 
vehicle to a stop will aid in designing the collision avoidance code. A further 
concern is the rate of turning. Turning is likely the area with the most uncertainty, 
with regard to robot movement.  
 

5.5 Summary of Design  
The purpose of the device is to function autonomously. In order to do so the 
device will need accurate measurements from the sensor array. These 
measurements will help it navigate down corridors and move around objects that 
arise in its path. The Video feed will help the robot in the form of image detection. 
When the robot is in a search based mode or follow mode the robot will actively 
seek out a target using the camera.  
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Figure 5-12: Sample navigational path of the vehicle in search mode 

 
The device will utilize the sensor array for navigation and the magnetometer to 
help form a sweep based pattern. This will allow the device to understand where 
it has been so that will not cross over an area that it has recently explored. 
Ideally the device will move in a pattern as shown below. Figure 5-12 shows a 
sample movement path of the device. If engage the device to enter search mode 
and seek out a target the device will have to accurately move around its 
surroundings without crashing into an object. On top of that the sweeping pattern 
must be accurate. At each of the turning points above the device will engage the 
sensor array and the rotary encoder to both slow down the vehicle, determine 
position, turn to the desired position and move forward.  
 
The data collected and distance traveled will be stored in the memory of the 
device to create a 2D map of where the robot has been. This will help the device 
perform a sweep pattern when actively seeking an object. With these different 
sensors the device will be able to perform multiple modes of operation to 
autonomously perform the required task. When the device has completed its 
required task the device will be programed to delete its cache memory or store it 
on the SD card space permitting. This will ensure the device has usable memory 
for the specific task and if a user log is needed we will be able to facilitate some 
of the data for user purposes. 
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6. Software Design Details 
The Robotic Surveillance Vehicle will have many layers of software design 
needed for it to operate to the developed requirements. The design will cover 
many aspects from the firmware on our microcontroller to the mobile application 
used to control the Robotic Surveillance Vehicle. The levels of software and 
communication between the levels can be seen in Figure 6-1 below The firmware 
level will include the logic required to interface with all sensors embedded into 
the Robotic Surveillance Vehicle. These sensors will be used to meet the 
software level requirements such as computer vision needed to spot and track a 
target, and collision detections will use multiple sensors including the 
accelerometer, and the ultrasonic sensors. 
 

 
Figure 6-1: Software Design Levels 
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There will be a mobile application that will be used as the control module for the 
Robotic Surveillance Vehicle, this mobile application will include the ability to 
receive Robotic Surveillance Vehicle status data and video, and send voice 
commands to the Robotic Surveillance Vehicle to control the Robotic 
Surveillance Vehicle’s active mode. This along with the firmware level will need 
to implement different aspects of the Wi-Fi communication between the mobile 
application controller and the Robotic Surveillance Vehicle microcontroller and 
sensors. 

6.1 Firmware 
Firmware is defined as the software used to allow communication of control, 
data, and data manipulation on hardware. In the case of the Robotic Surveillance 
Vehicle firmware will be used in the microcontroller chosen to allow interfacing 
and communication with the accelerometers, digital compass, camera, ultrasonic 
sensors, Wi-Fi module, and any other module that will be in the Robotic 
Surveillance Vehicle. All of these modules will be connected through our 
microcontroller. The microcontroller will receive data from each of these modules 
as well as control them (i.e. to slow down the vehicle, change directions, and 
when to transmit data).  
 
Microcontrollers use an assembly language based software to develop the logic, 
some will allow use of intermediate level languages such as Verilog, or 
microcontrollers such as the Raspberry Pi will accept high level languages i.e. 
Java, C, and CPP. Modules will often have an open source library for various 
programming languages and will be supported by various microcontrollers. 
These will have to be verified that the library for each module is compatible with 
the microcontroller and language that is chosen to develop the firmware to be 
used in the Robotic Surveillance Vehicle. 
 
The following sections will discuss the use of each module in the firmware 
implementation. Each module section will include a baseline code that will be 
built upon and used in the actual system to give a detailed look at the firmware 
logic used in each module and what role the module will play in the overall 
firmware logic. All libraries that are expected to be used in the final project 
Robotic Surveillance Vehicle will be included in Appendix B - Software Libraries 
section.  

6.1.1 Digital Compass 
A digital compass will be used to orientate the Robotic Surveillance Vehicle in 
addition to our accelerometer to ensure that the Robotic Surveillance Vehicle is 
always aware of its current orientation. This module will also be used to create a 
temporary memory of where the Robotic Surveillance Vehicle has been so that it 
can retrace its steps to return to a previous location. The base functionality of the 
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digital compass can be seen in the flowchart figure 6-2 below. 
 

 
Figure 6-2: Magnetometer Logic Flowchart  

 
The digital compass will have different frequency, gains, and measurement mode 
setting which will be set at the beginning of each startup of the Robotic 
Surveillance Vehicle. The default gain for these devices will be a gain of 1.3 dB, 
a default frequency of 15Hz, and a measurement mode set to continuous. The 
default settings will be used initially to determine if this gives us a precise enough 
measurement of the orientation of the Robotic Surveillance Vehicle. We may 
decrease the frequency of which we measure by using the single measurement 
mode or reducing the frequency setting and keeping the continuous 
measurement mode. If it is determined to save power and keep accuracy. 
Increased frequency can be used if we are not meeting our requirements due to 
lack of accuracy of this module at the default frequency. We would do this by 
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keeping continuous measurement mode and increasing the frequency setting. 
 
Below is example code showing how to initialize the default setting and produce 
a heading in radians and degrees. This will be incorporated to ensure we gather 
data from the digital compass module to orientate the Robotic Surveillance 
Vehicle. 

6.1.2 Ultrasonic Sensors 
This section contains the software functions and needs of the ultrasonic sensors 
that will be placed on the Robotic Surveillance Vehicle to help in collision 
detection. Ultrasonic sensors use pulses of sound to determine how far from 
something the sensor is. The time to receive an echo similar to echolocation is 
used to compute the distance the sensor is from an object. This sensor will 
convert this echo into a low high voltage pulse logic that will be used by software 
in the form of a distance in either centimeter or inches, centimeters will be used 
as the default unit of measure. Below you can see a flowchart figure for how the 
ultrasonic sensor will collect data. 
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Figure 6-3: Ultrasonic Sensor Logic Flowchart 

 
Multiple ultrasonic sensors are able to and will be implemented on the same 
board allowing us to detect possible collisions from multiple direction to ensure 
we can avoid unwanted collision, this will be discussed in more detail in the 
collision detection section as well as an example algorithm that will be used to 
perform the collision detection and vehicle correction. The Robotic Surveillance 
Vehicle will have three ultrasonic sensors implemented one in the front, left, and 
right of the vehicle. 
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Below is example code on how to pull the distance in centimeters from each of 
the three ultrasonic sensors. 

6.1.3 Servo Controller 
This section will contain an overview of the servo controls that will be used for the 
Robotic Surveillance Vehicle and what firmware implementations will be required 
for this controller. The servo controller will operate two servos that will provide 
movement to the Robotic Surveillance Vehicle. The servo controller is serially 
commanded accepting 8 Bit commands from the firmware. The various 
commands will be defined in the software libraries used to program the servo 
controller. This software will be crucial in the movement of the Robotic 
Surveillance Vehicle, allowing for manipulation of the servos during tracking, and 
collision detection and avoidance. This will be discussed in further detail in 
section 6.1.5 Collision Detection and Avoidance as the logic from this will directly 
affect how the servos will be adjusted to keep tracking and prevent collision. 
 
The servo controller allows for up to two motors to be controlled in both forward 
and reverse directions. The servo controller also has access to a coast command 
that allows the servos to be put in a neutral setting where they will turn naturally. 
The speed being set to 0 is essentially a brake command providing no forward or 
backward movement and holding the servo. 
 
Configuration controls are available through the serial commands as well as able 
to retrieve current and speed values from the servo controller. Error byte can be 
pulled and will be during communication testing as well as other possible 
debugging, lastly firmware version can be pulled from the servo controller which 
will only be used if update is necessary. 
 
The servo code in Appendix C is example code for how to use the servo 
controller to run the servos. 

6.1.4 Camera 
This section will contain an overview on the camera’s firmware configuration 
since it will be implemented with the microcontroller. The camera’s main function 
will be to capture video that will be processed through a computer vision 
algorithm. The algorithm will be implemented in the firmware in conjunction with 
the collision detection and avoidance algorithm. These algorithms will need to be 
coordinated as not to break the other algorithm in running this one. The Robotic 
Surveillance Vehicle must also ensure it does not collide to cause a possible 
tracking loss. The Raspberry Pi microcontroller allows for direct connection to the 
Graphics Processing Unit (GPU) by the camera bypassing the Computer 
Processing Unit (CPU). This should allow for better video processing than other 
microcontrollers might offer, and this frees processing space from the CPU to be 
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used for our other sensors and algorithms. 
 
Appendix C - Datasheets has some Python example code form how to capture 
video for some period of time using the Raspberry Pi camera. SimpleCV which is 
an open source computer vision library based in python will be used with this 
camera to develop the computer vision algorithm needed for the Robotic 
Surveillance Vehicle. 

6.1.5 Collision Detection/Avoidance 
This section will contain an in-depth look on how collision detection and 
avoidance will be implemented in the firmware of the microcontroller and how the 
other sensors mentioned above will be used in this process. This will not include 
full integration with the computer vision algorithm and the various modes that the 
Robotic Surveillance Vehicle will be able to be commanded into. This section is 
to look at the baseline collision detection and avoidance algorithm that will be 
used in all modes and modified based on the needs of those commanded 
modes. 
 
The ultrasonic sensors are crucial to the logic on the Robotic Surveillance 
Vehicle since they will be providing distance data to the Robotic Surveillance 
Vehicle on where the Robotic Surveillance Vehicle might collide with an object. 
The ultrasonic sensors data will be a significant factor that is affecting the servos 
and changing the direction and speed of the Robotic Surveillance Vehicle if 
necessary.  
 
To ensure the Robotic Surveillance Vehicle will not collide with various objects a 
threshold distance of 5cm will be maintained at all times from any object. After 
this there will be layers of reactions based on how close to an object the Robotic 
Surveillance Vehicle is. The range of distance that can be tracked in most 
ultrasonic modules is 5cm-400cm. Specific ultrasonic modules can go as low as 
1cm and as high as 500cm away from the sensor itself. After the 5cm threshold 
distance Robotic Surveillance Vehicle responses will depend on the distance 
data obtained from the ultrasonic sensors. The following ranges will call for 
different responses from the Robotic Surveillance Vehicle: 6cm-20cm, 21cm-
50cm, 51cm-100cm, and 100cm-400cm. These ranges and their corresponding 
Robotic Surveillance Vehicle responses are subject to change based on 
performance testing. The Robotic Surveillance Vehicle will have a front, left, and 
right ultrasonic sensor as discussed in section 6.1.2 Ultrasonic Sensors, the 
ranges discussed above will be implemented for each of these sensors with 
varying responses from the Robotic Surveillance Vehicle based on the sensor 
location, and other data from varying sensors on the Robotic Surveillance 
Vehicle. 
 
The front ultrasonic sensor will be used to maintain speed and prevent direct 
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collision with an object in front of the Robotic Surveillance Vehicle. At and below 
the 5cm threshold distance the servos will be stopped to stop the Robotic 
Surveillance Vehicle. After this threshold distance the ranges discussed above 
will implement a faster speed as distance from an object increases. The exact 
speeds and their increases from one range to the next has yet to be determined. 
This is to ensure the Robotic Surveillance Vehicle cannot go from its top speed to 
stopping there will always be an acceleration or deceleration based on if the 
Robotic Surveillance Vehicle is approaching an object. 
 
The left and right ultrasonic sensors will have a much more intricate position in 
the collision detection and avoidance algorithm. A sampling of distances will be 
taken from both the left and right sensors simultaneously. This sampling will be 
temporarily stored and used to determine one of the example cases described 
below: 
Cases: 

● The sensor sampling is relatively steady in value, there is no movement 
towards or away from the object on that side. 

● The sensor sampling is decreasing in value over time, the extent to which 
the value is decreasing will be used to determine how quickly the Robotic 
Surveillance Vehicle is approaching the object. 

● The sensor sampling is increasing in value over time, the extent to which 
the value is increasing over the sampling will be used to determine how 
quickly the Robotic Surveillance Vehicle is receding from the object. 

 
These cases will be used in conjunction to determine what is happening in the 
environment around the Robotic Surveillance Vehicle: 
Environment Cases: 

● Both side’s sampling is steady, there is no change in the walls near the 
Robotic Surveillance Vehicle. 

● One side’s sampling is changing in value while the other’s remains steady. 
One wall is becoming further away or closer. 

● Both side samplings are changing in value, meaning the walls are opening 
up, closing in on the Robotic Surveillance Vehicle, or one is becoming 
closer while the other is further away. 

 
These cases will be used in determining the appropriate Robotic Surveillance 
Vehicle response, along with a ranging system similar to that used by the front 
sensor. An overview of the collision detection and avoidance algorithm as 
described in detail above can be seen in Figure 6-4 below. 
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Figure 6-4: Collision Detection and Avoidance Flowchart 

6.1.6 Wi-Fi Module 
This section contains an overview of the Wi-Fi module that will be used on the 
Robotic Surveillance Vehicle and how it will be implemented in the software of 
the Robotic Surveillance Vehicle. 
 
The Wi-Fi module is already implemented into the Raspberry Pi microcontroller 
and has python implementation through the Raspberry Pi interface. This module 
will be used to implement communication between the Robotic Surveillance 
Vehicle and the smart device via the mobile application. This will be done by 
implementing sending and receiving protocols for both the Robotic Surveillance 
Vehicle and the mobile application. This will be used by the mobile application to 
send voice commands to the Robotic Surveillance Vehicle as well as receive 
video data and status reports from the various sensors. 
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A User Datagram Protocol known as UDP will be used as the specific protocol 
implemented for the Robotic Surveillance Vehicle as it most efficiently fits the 
needs of our system. This is described in more detail in the Data Transmission 
over Wi-Fi section of this document. 

6.2 Data Transmission over Wi-Fi 
Wi-Fi will be used as the form of data transfer for both the audio voice commands 
that will be used to control the Robotic Surveillance Vehicle as well as the 
method for which to stream the video from the Robotic Surveillance Vehicle back 
to the user through the mobile application. This was chosen in lieu of Bluetooth 
due to the range limitations of Bluetooth, as well as the more in depth data 
transfer functions that are already implemented in the Wi-Fi communication 
system. These Wi-Fi protocols are more reliable and quicker than a Bluetooth 
connection would be. An overview of the transmissions used for each situation 
and page can be seen in Figure 6-5. 
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Figure 6-5: Wi-Fi Data Transmission Overview 

 
A UDP connection will be the preferred protocol used for our system due to how 
data transfer occurs on the UPD protocol. The UPD protocol is quick and efficient 
when transferring data between stations. Since the UDP connection will only be 
used between the mobile device and the Robotic Surveillance Vehicle there is 
little concern of data packets being dropped due other connections. UDP does 
not have an acknowledgement system and does not have to receive the data 
packets in order. This means the sender of the data packets will never know 
what data has been properly received and in what order it is received. 
 
The UPD protocol can be implemented in multiple different ways through 
different programming languages. The mobile application will need to implement 
a receiver when in streaming mode to receive video from the Robotic 
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Surveillance Vehicle. The mobile application can be put into control mode to 
become a sender across the Wi-Fi for the voice commands to be sent to the 
Robotic Surveillance Vehicle. On the Robotic Surveillance Vehicle side of the Wi-
Fi implementation if possible Java will be used in conjunction with the mobile 
application to implement the sending and receiving of the camera video and 
voice commands. This will have to be integrated with all other sensors discussed 
in the previous sections. 

6.3 Mobile Application 
This section contains the details of the logic and functionality the mobile 
application will have in the development of the Robotic Surveillance Vehicle. The 
objective of the mobile application is to send commands to the Robotic 
Surveillance Vehicle, receive video feed from the Robotic Surveillance Vehicle 
and to check the status of the sensors and relevant data returns. The sections 
below will include a description as well as an example interface for each of the 
three pages our mobile application will have. This will include each page’s 
primary function in the mobile application and the Robotic Surveillance Vehicle 
system as a whole. 

6.2.1 Voice Command Page 
This section is to detail the page of the mobile application that will allow for voice 
commands to be inputted to control the Robot Surveillance Vehicle. This page 
when selected will display a buttons of voice commands that will be accepted by 
the Robotic Surveillance Vehicle. These buttons are selectable, but the primary 
command method would be through voice commands allowing for commanding 
of the different modes of the Robotic Surveillance Vehicle. A template of the user 
interface as described above is shown in Figure 6-6 below. 
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Figure 6-: Robot Voice Controller User Interface 

 
This page will function by implementing speech recognition through the Java 
speech API. Audio coming through the smart device and mobile application will 
be filtered through the speech recognition software. Any filtered audio that is 
recognized as one of the four voice commands will be transmitted through the 
Wi-Fi connection between the smart device and the Robotic Surveillance Vehicle. 
The UDP protocol will be the Wi-Fi protocol used to send data from the smart 
device to the Robotic Surveillance Vehicle. Once the command is received from 
the Robotic Surveillance Vehicle the firmware will take over and be set in a logic 
command based on the voice command given. Below is the logic and data flow 
diagram of the software as described in this section. 



Military Surveillance Robot 
November 13, 2016 

Page 85 of 166 

 

 

 
Figure 6-7: Voice Command Flow Chart 

6.2.2 Video Feed Page 
This section is to detail the page of the mobile application that will allow for video 
feed to be viewed from the Robotic Surveillance Vehicle. This page when 
selected will display a video stream from the Robotic Surveillance Vehicle. This is 
the simplest section as the video stream is the only functionality other than the 
ability to switch between the pages. Shown in Figure 6-8 below is the video feed 
page user interface as described in this section. 
 



Military Surveillance Robot 
November 13, 2016 

Page 86 of 166 

 

 
Figure 6-8: User Interface of Robot Video Feed Page 

 
As discussed in the Wi-Fi data transmission sections a UDP connection will be 
used for fast transfer of video to the mobile application from the Robotic 
Surveillance Vehicle. The video feed will be run through the computer 
vision/tracking algorithm for points of interest during the surveying and tracking 
modes of the Robotic Surveillance Vehicle. This will work hand and hand with the 
collision detection and avoidance algorithm to direct the Robotic Surveillance 
Vehicle both of these algorithms are discussed in more depth in their respective 
sections. 



Military Surveillance Robot 
November 13, 2016 

Page 87 of 166 

 

6.2.3 Robot Data/Status Reports Page 
This section contains the details on the Robot Data and Status Reports page. 
This page will contain reports from the various sensors housed on the Robotic 
Surveillance Vehicle. This will contain anything from the status of these sensors 
to ensure they are working correctly to the data they are relaying to be used in 
the processor. The setup of this data and its user interface can be seen in Figure 
6-9 below. 
 

 
Figure 6-9: Robot Data / Status Reports User Interface 

6.4 Computer Vision 
This section contains an in-depth look at the computer vision portion of the Robotic 
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Surveillance Vehicle that will be used in the survey and tracking modes of the Robotic 
Surveillance Vehicle. The algorithm used for the computer vision will need to interface 
and influence other portions of the firmware that have been previously discussed such 
as the movement of the Robotic Surveillance Vehicle and the collision detection and 
avoidance algorithm it uses. Figure 6-10 below shows a flowchart of the computer vision 
algorithm used by the Robotic Surveillance Vehicle. 
 

 
Figure 6-10: Computer Vision Algorithm Flow Chart 

 
The computer vision portion of the firmware needs to be able to identify a shape 
of a particular color. The key to implementing this is to define and mark the 
edges of the shape easiest of shapes to do this with will be a square or 
rectangular shape. Then using a specific color that is easily outlined in contrast to 
its surrounding environments such as a bold red. These parameters will make 
identifying the pre-determined point of interest easier to allow for focus on the 
portion of the algorithm that will affect servo and motor performance based on 
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the visual feed and logic from the camera. SimpleCV, CV standing for computer 
vision is a program that provides an easy library for implementing computer 
vision on microcontrollers for project such as this one. The flowchart below 
shows the logic mentioned above before the data is used to control the Robotic 
Surveillance Vehicle. 
 

 
Figure 6-11: Computer Vision Algorithm to Determine a Target 

 
Since the parameters for the point of interest has been defined for the benefit of 
the system now a look into how this will be implemented into the whole algorithm. 
During the survey mode the Robotic Surveillance Vehicle will scan an area of at 
least 120 degrees in front of the Robotic Surveillance Vehicle. During this time 
the Robotic Surveillance Vehicle will be attempting to identify a point of interest 
per the parameters mentioned above. Once the point of interest is identified it will 
be marked. Marking is defined as holding position on the point of interest keeping 
it in front of the Robotic Surveillance Vehicle and centered in the camera view to 
allow for tracking if initiated by the user via the smart device. 
 
Once marked as a point of interest via the survey mode of the Robotic 
Surveillance Vehicle tracking mode can be initiated. Tracking is defined as the 
Robotic Surveillance Vehicle following the point of interest at a maximum 
distance as well as keeping the point of interest centered in the camera view of 
the vehicle. This is where the algorithm interfaces with the servo controller to 
direct the Robotic Surveillance Vehicle to track the point of interest. 
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The major controls that will be implemented during the computer vision portion of 
the firmware will be to speed up, slow down, and direct the Robotic Surveillance 
Vehicle to the left or right. 
Cases: 

● The point of interest is enlarged compared to the defined center tracking 
target from the camera of the Robotic Surveillance Vehicle. The Robotic 
Surveillance Vehicle is too close to the point of interest and speed will 
need to be decreased to center the point of interest in the track. 

● The point of interest is shrunk in the center of the track. The Robotic 
Surveillance Vehicle will need to get closer to the point of interest by 
increasing its speed to center the point of interest in the track. 

● The point of interest is not center by being shifted to the left or the right. 
To follow this, shift the Robotic Surveillance Vehicle will need to increase 
or slow speed of one motor in order to turn the Robotic Surveillance 
Vehicle and center the track. 

● Lastly and most commonly will be some combination of these 3 above 
cases that will need to be implemented together to provide the proper 
correction of the Robotic Surveillance Vehicle to continue to keep the track 
centered. 

6.5 Software Summary 
The Robotic Surveillance Vehicle will have multiple software components 

including the firmware onboard the Raspberry Pi microcontroller, and the mobile 
application software. 
 
The firmware onboard the Raspberry Pi microcontroller will consist of the various 
sensors used to control the Robotic Surveillance Vehicle such as, the servo 
controller, ultrasonic sensors, camera, and digital compass. These will be used to 
implement the collision detection and avoidance as well as, computer vision 
algorithms to guide the Robotic Surveillance Vehicle as it tracks. Surveying and 
tracking points of interest will be the Robotic Surveillance Vehicle’s primary 
function, the software algorithms mentioned above will be integral to these 
functions. These functions will be implemented on the Robotic Surveillance 
Vehicle, but will need to be integrated and communicate with the smart device 
via the mobile application used on it. 
 
The software to be used outside of the Robotic Surveillance Vehicle will be 
handled through a mobile application on a smart device. The Robotic 
Surveillance Vehicle will be able to communicate with the mobile application via a 
UDP Wi-Fi connection. This will allow for voice commands to be transmitted from 
the smart device to the Robotic Surveillance Vehicle as well as, transmitting 
video and status updates of the sensors from the Robotic Surveillance Vehicle to 
the smart device. 
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7. Project Prototype Construction and 
Coding 
The prototype construction will begin once the hardware testing has been 
completed list in the next section of the report. During the testing phase the PCB 
board will be designed and ordered to match the specifications discussed earlier. 
The PCB will integrate all of the required sensor systems so that the components 
are consolidated and can be placed on the same level. 

7.1 Integrated Schematics 
Below shows the integrated schematic for all of the system components. The 
schematic represents the previous schematics contained in the document. It 
includes the following major sections: 

1. Sensor Array 
a. 3 x Ultrasonic Sensors 
b. Magnetometer 
c. Pi Camera Version 2.1 

2. Rotary Motor Control 
a. Servo Driver 
b. 2 x Servos with gearbox 

3. Rotary Encoder 
a. Analog to Digital Converter 
b. 2 x Rotary Encoders 

4. Raspberry PI MCU 
a. A basic layout of the device as associated with the components 

The integrated schematic is not to size or scale but is representative of the entire 
interface structure to the Vehicle. Some of the sensor arrays are summarized by 
larger components, the Sensor Array and Rotary Encoder Array are fully detailed 
in their respective schematics and the components listed below are for a high 
level view of the layout. These will be used in the final PCB design however the 
PCB schematic will be completed in Senior Design 2. 
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Figure 7-1: Integrated Schematic 

   

7.2 PCB Vendor and Assembly 
Eagle Cad will be the primary software used to make the final PCB assembly. It 
will make use of the integrated schematic for a top level layout design and all of 
the other schematic designs. There are some primary concerns and precautions 
to consider when designing the PCB and those are the specific currents and 
voltages on each line, the line layout, the device power feeds and the physical 
size of the PCB. 
 
The currents and voltages will need to be verified when we are in the testing 
phase of the project. Each of the peripherals will have different tolerances for 
voltage and current draw. This will be important so that we don’t overload the 
raspberry pi GPIO lines as well as ensure that there are no disconnects when 
one device may require a different voltage than another. The i2c lines generally 
recommend a 10kΩ pull-up resistor for each line. However, others recommend 
calculating the specific load capacitances. Before assembling the PCB, the exact 
load capacitance will need to be determined both in practice and calculation. 
Prior to determining the PCB final layout, we will test the exact pull-up resistors 
needed. 
 
The line layout for the device will be covered in the Eagle Cad software. The 
benefit to using this software is that it is an application that takes schematic 
drawings and directly exports them to PCB layout manufacturing. We will use a 
PCB manufacturer that will suit our time constraint needs and is of market level 
cost. Currently there has been recommendation to use the Elecrow company for 
their quick turnaround time. Once we produce the PCB drawing if their prices are 
within the average market range with no more than a 10-15% variation then we 
will purchase the PCB from them. 
 
The device power feed lines will be important. It will be important for us to test 
the maximum power draw through the battery and the MCU to ensure that we 
remain within operation tolerance. The power supply is limited in the supply 
current and the MCU is limited in the amount of power that can be drawn from 
the device. Since the components offer a range of values and do not accurately 
document their max. current draw we will need data from our own testing to verify 
the size of the power supply needed and the ability for the MCU to power the 
components. 
 
The final important layout aspect to consider is the physical dimensions of the 
PCB. The ultrasonic sensors will need to be located on the outside edges to they 
don’t pick up and interference from the device. We also need them in specific 
locations relative to the size of the device. For that reason, the PCB size may be 
larger than needed for the electrical components in order to satisfy the size 
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requirements on the device.  
 
Finally, when we move on to the prototype construction in Senior Design 2 we 
will utilize the data collected from the tests. We will construct two different 
prototypes to help smooth the process and troubleshoot any issues. The first 
prototype will consist of a breadboard based layout with the sensors attached 
and the servos in place. We will fix temporarily attach all of the components to 
the device so that we can run through some of the testing programs and basic 
operations. This will allow us to troubleshoot any issues before we create the 
permanent PCB mount for the device. At this point we will most likely already 
have ordered the PCB so pending any design changes we will attempt to 
troubleshoot the problems with the PCB created based of the single component 
testing. If needed, we will rush a second PCB but we feel confident from 
component and system level testing that we can mitigate any potential errors.  
 
The second prototype will be the test vehicle. This version won’t have jumper 
cables unless absolutely needed and most of the components will be soldered 
onto the PCB board. At this point of the testing process we expect everything to 
be operating correctly and we will be optimizing the coding to ensure we meet all 
of our design objectives. If we run into electrical component issues, we will 
replace them with the extras we have ordered. If design changes are needed, we 
will attempt to modify the PCB board or order a second board to alleviate this. If 
absolutely necessary, we will redesign the original PCB of the vehicle. If it comes 
to this, we will consult with the program director on the best method moving 
forward in order to complete the project within all of our time constraints. 

   

7.3 Senior Design 2 Alternate design concept 
While researching the design of the device we’ve realized that our vehicle uses 
multiple components that require Pulse Width Modulation. This is used in the 
Ultrasonic Sensors, Rotary encoders and the Servo Driver. Due to this 
requirement we’ve implemented and Analog to Digital converter, a voltage divider 
and the General Purpose Input and Output pins of the MCU. After much research 
we’ve come across another solution that varies from the processes described 
above. In this solution we will utilize either a small MCU that can be programmed 
with the primary MCU. This device will be small in size, around the same number 
of pins as a typical Op-Amp but will be able to perform basic logic commands. 
The benefit to using the device is we will be able to combine some of the 
functionality of the Analog Digital Converter, the Servo Driver and the GPIO pins 
used in the sensor Array. The Servo driver is meant to be used with up to 16 
different servos while the analog to digital converter is capable of 8 channels. 
Since this is far exceeding the needs of our device we have determine that we 
can replace these components plus the logic inherent in the GPIO to Ultrasonic 
Sensor Array with a Slave MCU. 
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The Slave and Master Concept isn’t a new concept and has been utilized for 
some time primarily being credited to the Motorola Company. [17] This concept 
arose as a way to communicate with a Master controller and Slave controllers. 
The primary method of communication is the MOSI and MISO lines described 
below. Each of the slaves can be wired up in parallel with a Slave Select line 
enabling the device the Master MCU chooses to communicate with. The protocol 
utilizes Serial Synchronous Interface which means that the device will send data 
over sequentially one bit at a time. The advantage is that this means the devices 
can use less lines to communicate with. To ensure that the two devices are 
communicating properly and data is not lost the Master MCU will set a serial 
clock. The Slave MCU will communicate synchronously with the Master MCU via 
the two serial lines, MOST and MISO.  
 
The Slave MCU we researched is the ATtiny25/85 produced by Atmel. They 
have the following characteristics shown in table 7-1. We also included a larger 
MCU that had extra pins as the ATtiny25/85 do not have enough pins to 
accommodate the number of devices for our project.  
 

 ATtiny25 ATtiny85 ATtiny2313A 

Flash(KiB) 2 8 2  

RAM (bytes) 128 512 128 

ADC Channels 4 4 - 

PWM  2x2 sharing 3 pins 2x2 sharing 3 pins 1x4 

Operating Freq 
(MHz) 

20  20 20 

Number of Pins 8 8 20 

Table 7-1: MCU comparisons 
 

We will need to research the design of the master and slave concept further to 
determine the exact specifications that we can replicate to help remove the Servo 
Driver and the ADC. Depending on the desired layout we may utilize multiple 
smaller MCU’s or a larger MCU to control all of the devices. 
 
There are major benefits to using an MCU slave master design concept over the 
use of the traditional single MCU. One of the biggest benefits is the Voltage 
tolerance of the smaller MCU’s. The voltage range for the I/O ports are typically 
1.8 to 5.5 volts. This is of particular importance to the ultrasonic sensors as they 
will output in 5 volts and our Raspberry Pi can only handle a 3.3 volt input to the 
GPIO. The next advantage is some come with built in analog to digital 
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converters, this can help us with our rotary encoders as we won’t need a larger 
fully dedicated ADC. Since these slave type MCU’s typically perform multiple 
functions it will allow us to utilize the ADC while still operating the devices that 
require PWM. The last beneficial ability is that the device can communicate i2c. 
The reason why this is important is that will reduce the need of the GPIO lines. It 
will allow the Raspberry pi communicate with all of our components via two lines.  
The ATtiny can be programmed via the large microcontrollers including our 
choice of the raspberry pi. We will be able to specify any of the coding inside the 
smaller device so that it can act as an interface to the Sensor Array and Servo 
Controller. We can specify the i2c address so we won’t have any conflicts with 
the magnetometer. This will also allow us to run multiple ATtiny’s in parallel so 
that each can perform a different function. 
 
Based off our preliminary research we know that the smaller MCU can drive up to 
5 servos, but we may be able to add more components to the MCU depending 
on the coding we choose. I have seen examples of running more than 5 servos 
but that will be dependent on the demands of the code and how often we need to 
communicate with our devices. We will be able to determine this in the testing 
phase and will need additional research in SD2 of the limits of the slave MCU. 
 

 
Figure 7-2: ATtiny pin diagram [7] 

 
Above shows the pin diagram for our suggested slave MCU. Pin 7 and Pin 5 will 
need to be utilized for the communication line to the master MCU. That will leave 
us with Pin 1,2,3 and 6.  
 
In the use of the Ultrasonic Sensor array that will gives us one spare pin as each 
array can connect the Echo and Trigger Pin to one of the pins in the slave MCU. 
When programming the device, we can utilize the pin to trigger the device for a 
reading and then use that same pin to receive the echo. Depending on the speed 
and memory specification we may have the ATtiny process the data or send the 
raw data back to the master MCU for processing. 
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When using the servo controller, we can also utilize those same pins as they 
operate via PWM similar to the ultrasonic sensors. The rotary encoder utilizes an 
analog to digital converter so we would use the same pins for this section as well. 
We would need to research and test the capabilities of the MCU running multiple 
devices to ensure it is capable of simultaneous operation of all the devices. 
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Figure 7-3: Slave integrated schematic 
 

Figure 7-3 is an integrated schematic utilizing the slave and master MCU design. 
The primary benefit is reduced lines with only 2 lines of data running to the 
Raspberry Pi, SDA and SCL. These are the i2c lines that will be able to 
communicate the information from our sensors. We will also power the 
components via the Raspberry Pi’s power pin which is a direct connect to its 5-
volt power source. If additional current is needed there are options on using the 
battery source as the primary supply to the components. We will determine this 
need via testing. 
 
The final part to consider when implementing the ATtiny microcontroller is the 
programming steps required. There are publicly available libraries that contain 
some of the code required to have the device control Servos, to function as an 
Analog to Digital converter or to have the device read and use Pulse Width 
Modulation. The ATtiny85 contain 8 pins that are used by the device to control 
other peripherals. Since the ATtiny is small and only contains 8 pins the same 
pins are used to program the device. When comparing the pin diagrams, you will 
notice that the ATtiny has similar GND, VCC, MISO, MOSI pins. On the data 
sheet for the ATtiny the Serial Clock input is given as well as the Reset input 
being active low. 
 

1. Pin 1 (ATtiny) Reset Pin 24 (Raspberry PI) 
2. Pin 2 (ATtiny) Not Used 
3. Pin 3 (ATtiny) Not Used 
4. Pin 4 (ATtiny) GND Pin 06 (Raspberry PI) 
5. Pin 5 (ATtiny) MSOI           Pin 19 (Raspberry PI) 
6. Pin 6 (ATtiny) MISO           Pin 21 (Raspberry PI) 
7. Pin 7 (ATtiny) SCLK             Pin 23 (Raspberry PI) 
8. Pin 8 (ATtiny) VCC           Pin 01 (Raspberry PI) 

 
The ATtiny microcontroller utilizes the Serial Peripheral Interface Bus. This 
interface utilizes a master slave architecture for the purposes of programming the 
device. The standard utilizes the Master Output, Slave Input and the Master 
Input, Slave Output as stated above. The Serial Clock is set by the Master MCU 
for synchronous serial communication. The i2c communication protocol isn’t built 
into the device but the Universal Serial Interface is. With the manufacturer's 
datasheet the device can easily be programmed to communicate with the i2c 
protocol via the Two-wire serial interface on the ATtiny. This along with the basic 
function of the ship will have to be programmed prior to use. We will take this into 
consideration as it may cause extra work load on the programming portion of our 
project. If needed, we will redistribute some of the work so that the programming 
portion is properly dispersed among the group members. 



Military Surveillance Robot 
November 13, 2016 

Page 101 of 166 

 

7.4 Final Project Coding Construction 
This section contains the overview of the software logic that will be implemented 
in the final design of the Robotic Surveillance Vehicle project. Each sensor is 
looked at extensively from a software logic side to be implemented in the 
firmware in Section 6. The collision detection and avoidance, and computer 
vision algorithms are also explored in-depth in section 6. Each of this can be 
looked at individually in section 6. However, implementation and integration of 
these individual logic flowcharts is needed for the final project in senior design II. 
All functioning steps of the firmware integration below will be proceeding 
concurrently with the mobile application development for the Robotic Surveillance 
Vehicle. 
 
The primary logic to being implementing will be the computer vision to ensure 
that video feed is being inputted and an accurate target is being acquired for the 
Robotic Surveillance Vehicle to track. Raspberry Pi Camera integration is 
required to complete this development. This step will also require development of 
the mobile application’s video feed functionality, the implementation of the Wi-Fi 
protocol described in section 6 will be used to communicate between the mobile 
application and the Robotic Surveillance Vehicle. Once this functionality is 
completed and verified through the performance testing outlined in section 8 
phase 1 will be completed. 
 
As you can see in the figure below all three phases are outlined to show the 
progression of the project as we move through implementation of the final 
coding.  
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Figure 7-4: Software Phase Diagram 

 
Phase 2 of the software integration will require the use of all other sensors on the 
device including the motors as well as the collision detection and avoidance 
algorithm. This algorithm will take the inputs from the sensors to determine a 
proper path forward for the Robotic Surveillance Vehicle by controlling motor 
functionality. This will need to work hand and hand with the phase 1 computer 
vision logic to help the tracking algorithm retain its track according to the 
requirements specified. The computer vision algorithm will also need to notify the 
collision detection algorithm if a track is present to begin to follow or if the 
Robotic Surveillance Vehicle is in an idle mode. 
 
Once both of the phases have been complete final performance testing per 
section 8 of this document will need to occur verifying all requirements are met, 
Phase 3. If failures occur the failure management process will be used to help 
navigate and debug the Robotic Surveillance Vehicle in hopes to create a final 
product that meets all requirements. The figure below shows the phases of 
software integration for the final software of the Robotic Surveillance Project. 
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8. Project Prototype Testing Plan 
The project Prototype Testing Plan will primarily focus on testing the hardware 
and software components of the device. It will determine if the components will 
meet our required specifications. The following sections will describe the testing 
environment and how were will proceed with the testing, the hardware specific 
testing, the software testing and the software testing environment.  

8.1 Hardware Test Environment  
The hardware testing environment will consist of three primary phases. The first 
phase will be breadboard and component testing. This will primarily focus on the 
testing of each individual sensor and their interactions with the MCU. This 
purpose of the first phase will be to isolate the function of the sensor and test its 
response. The key here is to look at any variations from expectations and to 
determine if the variations can be mitigated through code or other methods. We 
can connect each of the sensors and components to the MCU individually to 
determine their individual responses. We will also connect the components to an 
oscilloscope to determine if the pulse width modulation signals are being sent 
from the components to the MCU. For the i2c lines we can also test that the 
signals are being sent correctly through the oscilloscope. Since it would be 
difficult to determine what data is being sent we can at least determine if there is 
any attenuation in the signals. 

 

The second phase of testing will be the integration of the PCB board testing. At 
this point in the project we will move to testing the PCB design. Some 
components will be connected via jumper cables to their individual Breakout 
Boards while other components will be soldered and attached to the PCB board 
design. The importance of this step is to determine again if each component is 
functioning properly. We will also look to see if there are variations in the 
functionality of the components when connected all together. We will use data 
collected in first phase of testing to determine if any additional calibrations steps 
will be needed to be adjusted with the additional equipment added. For example, 
we know that the weight of the vehicle will change so the calibrations for the 
servos may need to be adjusted to account for this. 

 

The final phase of testing will be the assembly of the RSV in its final build. The 
importance here will be to mimic the second phase of testing in a working form. 
At this point the testing will be focused on troubleshooting. We will need to 
ensure the vehicle is operating as expected this may involve all of the steps in 
the other two phases to attempt to isolate any problem areas.  
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8.1.1 Breadboard component Testing 
Below shows the raspberry pi with the GPIO ports connected to for testing. 
Below is a picture showing the important ports located on the raspberry pi for 
testing. The GPIO ports will be used to control the sensors. The HDMI will need 
to be plugged into a monitor and a keyboard will need to be plugged in through 
the USB ports. The card will be preloaded with the OS and the programming for 
hardware testing can begin. 

 
Figure 8-1: Raspberry Pi 

Below shows the process to test the ultrasonic sensors. During the breadboard 
testing phase we will use jumper wires as shown below. By doing this we can set 
our voltage rails to exactly what is required from the devices. We can also hook 
the components to the oscilloscope to determine if the information’s being across 
the GPIO is accurate. We will be able to see the pulses and any possible 
attenuation that may occur from a faulty device. 

 
 

Figure 8-2: Ultrasonic Sensors 
Each of the components will be different the purpose of this section is to show 
the basic setup used to test each individual component. 
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8.1.2 PCB testing in lab 
In Senior Design 2 we will have completed our PCB design. Once complete we 
will implement the final circuit implementation in the lab. This will involve deciding 
which component we will commit to the PCB board and which components we 
may have to connect with the jumper cables as shown above. Our goal in this 
process is to place as many of the components as possible on the PCB board. 
Depending on the method we choose to build in Senior Design 2 we may be able 
to achieve placing all the components on the PCB board through a compact 
design using the master and slave MCU method mentioned earlier. 
 

8.1.3 Full component testing in field 
While the device will be operational the primary focus will be the smooth 
functionality of the components. While we may achieve proper functionality of the 
Servos, Sensor arrays, and the Camera we will still need to determine if the 
device is properly functioning as expected. We will need to ensure the RSV as a 
whole is functioning as expected. The Servo movements may need tweaking if 
we find the movement to be jerky we may also need to increase the power of the 
battery of the vehicle. 

8.2 Hardware Specific Testing 
First download the datasheet for the HC-SR04, LSM 30DLHC, Camera V2.1 and 
the Raspberry Pi. This is used for pin layout identification and comparison of 
testing values. These layouts with their respective pin numbers and locations are 
consistently used for all the following sections and is a direct correlation to the 
pin configuration of the physical device schematic.  

8.2.1 Microcontroller  
Raspberry PI 3 perform the following steps to calibrate for the testing of the 
components in the device. 

1. Connect the raspberry pi to a 5-volt power source via the micro USB 
2. Upload the Raspberry PI OS from the following site  

a.  https://www.raspberrypi.org/downloads/ 
3. Hook up the Raspberry PI to a monitor via the HDMI cable as well as the 

keyboard through the USB ports 
4. Follow the instructions in the software portion to setup the device. 
5. Use the below schematic to ensure that that each of the GPIO ports are 

function properly 
6. Connect each port to a breadboard via jumper cables to check the 3.3 and 

5-volt power sources. 
7. Use a program to turn on each of the GPIO ports to ensure the device is 

sending the proper voltage to the port. This can be done in conjunction 
with the testing of the Ultrasonic Sensors 

8. Use a program to communicate through the SDA and SCL lines. This will 
require communication with one of the i2c compliant devices. This can be 

https://www.raspberrypi.org/downloads/
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done with the testing of the Magnetometer and the Accelerometer. 
9. Hook up an oscilloscope to read the SDA and SCL lines. This will ensure 

that the device is receiving proper signals.  

 

 

Figure 8-3: Raspberry Pi GPIO Chart [8] (Permission Granted) 

  

8.2.2 Sensors 

8.2.2.1 Ultrasonic Sensor 

To test the ultrasonic sensor, perform the following steps.  
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1. Use the pin diagram below. 
2. Set the VCC voltage to 5 volts. 
3. Attach the Trig pin to a GPIO pin on the MCU 
4. Set up a voltage divider to reduce the voltage of the wire leaving the Echo 

pin. To 3.3 volts from 5 volts 
5. Have the reduce voltage output of the Echo pin wired to a different GPIO 

pin 
6. Hook the Trig and Echo pins to the Oscilloscope  
7. Load a test program on Raspberry PI and have the device detect an 

object from the ultrasonic sensor. Place an object within 6 feet and no 
more than a 15-degree deviation from center of the device.  
 

 
Figure 8-5: Ultrasonic Sensor 

Once the functionality of the device has been tested the range in which it can 
operate needs to be tested. Perform the following steps and record the data that 
will be relevant for operation of the device. At this point we will not be testing the 
full functionality of the vehicle in operation we will however be testing the 
capability of the sensor to determine if the sensor will be adequate for collision 
avoidance. It is noted that this is performed in a laboratory environment under 
semi ideal conditions. Any obstacle we place in the path of the device will be 
recognizable to the ultrasonic sensor.  
 

1. Lay down a measuring stick from 2 cm to 400 cm.  
a. This is the effective range of the device 
b. Move an object from 2 cm all the way to 400 cm and verify the 

results through the MCU 
2. Starting at 2 cm record the effective range of the device. 

a. Record the distance of detection around the device. To do this start 
at the 2 cm mark and move in a semicircle from the specified 
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distance in 1 degree increments. This data will be used during the 
assembly phase of RSV. If an object is in the no detection zone we 
will need the code to prepare for this so that we stop the vehicle 
prior to this point. 

b. Move out an additional 1 cm and repeat the above step A 
c. Repeat step B until you’ve reached 15 cm. 
d. Repeat step A moving starting at 1 distance of 1 foot and move out 

an additional foot until the device can no longer detect an object 
e.  

This will conclude the testing of the ultrasonic sensor. This will need to be 
performed with all three ultrasonic sensors. The detail of the testing doesn’t need 
to be in depth as the results for each should be within a small margin of error if 
the device is functioning properly. 

8.2.2.2 Magnetometer and accelerometer 

For the testing of the magnetometer device perform the following steps. Use the 
below picture for a pin diagram of the device. 
 

1. Connect Vin to the 3.3-volt source on the GPIO pin of the Raspberry pie 
2. Load the testing software for the compass and accelerometer 
3. Perform the necessary calibration steps to add any adjustments as 

needed 
a. Display the output in real time 
b. Use another device to determine cardinal directions 
c. Move the device a few times so that it is oriented 
d. Starting at True north turn the device clockwise in 1 degree 

increments 
e. Use the secondary device to determine the reference 
f. Ideally attach the device together so that as the magnetometer 

moves so does the testing device 
g. Once the device has been verified use the following site to program 

the internal calibration  
i. https://learn.adafruit.com/lsm303-accelerometer-slash-

compass-breakout/calibration 
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Figure 8-6: Magnetometer 

Once the sensors are connected and tested the device assembly platform can 
begin. Use a small breadboard such as the one below. 

 
Figure 8-7: Breadboard 

The purpose of semi-permanently mounting it to the device is that the sensor 
arrays will need to be fixed in place on a platform that will be placed above the 
MCU. We will need precise accelerometer and magnetometer readings to 
determine how the device moves when in operation. If the mounts are moving 
this could give false, sensor readings when determining the device’s exact 
positioning and movement. 
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8.2.2.3 Pi Camera Version 2 

Below shows the Pi Camera Version 2. From a hardware perspective there isn’t 
much that can be tested without hooking up the device and running the software 
programs associated with the device 

 
Figure 8-8: Pi Camera Version 2 

As you can see in the next picture the camera has a pre-built in port to the 
Raspberry pi. This will be useful in the testing of the device and hardware 
troubleshooting. The only issue we will run into is the device mounting of the 
Camera. We may need to utilize a cable extender to allow for better placement of 
the camera. 

 
Figure 8-9: Raspberry PI Camera Port 
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8.2.3 Servos 

8.2.3.1Testing Procedure Summary: 
To test the motors and the servo drivers the following general steps must be 
performed. 

1. Attach the Raspberry Pi to the servo driver. 
a. Connect the power  

i. For the PCA9685, accomplished by connecting the VCC and 
GND (left) pins to a 5V and GND pins on the Raspberry Pi.   

ii. The motor power inputs are connected directly from a 5V 
source and attach to the V+ (top) and GND (top) pins 

b. I2C communication is established between the PCA9685 and 
Raspberry Pi. 

i. Connect the data line (SDA) to pinout 5. 
ii. Connect the clock line (SCL) to pinout 3. 

2. Attach the electric motors to the servo driver.  
a. The positive motor pin of the left motor is connected to the PWM 

pin of column 0. 
b. The motor ground pin of the left motor is linked to the GND pin of 

column 0. 
c. Repeat steps 3a and 3b for the right motor and column 1. 

3. Calibrate the engine alignment. 
a. Set the rover on 3 meters of two-inch-wide painters tape in a 

straight line and run it along the length with the PWM set to 10% 
duty cycle. 

b. If the robot drifts to one direction instead of straight, increase the 
duty cycle of the engine on that side.  

c. Repeat until the robot drives along the tape without leaving the path 
d. Repeat steps 4 a-c for 10% increments of increasing duty cycle 

until 90% duty cycle is completed.  
  

8.2.3.2 Detailed Testing Procedure 
Movement for the robot will be achieved with two 5V motors controlled by a servo 
driver. The Adafruit PCA9685 servo driver communicates with the Raspberry Pi 
using I2C, which is a serial communication bus.  The preliminary step in testing 
the driver and motors involves attaching the components to the proper pins on 
the Raspberry Pi.  The 5V pin 4 on the Raspberry pi should be connected to the 
Vcc pin on the right side of the PCA9685.  Pin 6 which is a ground should be 
attached to the ground, labeled GND, pin on the right side of the servo driver.  
These pins provide the power that runs the servo driver, next the power to the 
motors must be supplied.  The following table contains a summary of the pins 
and their connections. 
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Table 8-1: Pin Connection Chart 

 
The servo power sources should bypass the Raspberry Pi and directly connect to 
the power supply.  The positive terminal of the battery connects to the V+ 
terminal on the top side of the PCA9685 next to the red LED labeled “power.”  
Immediately next to this, a ground for the power supply needs to be affixed to the 
servo driver.  The servos will draw more current, especially under sustained 
motion and it is beneficial to have a separate energy source for their operation.  
Excess current can cause the Raspberry Pi to shut off.  The motors are noisy 
and this can adversely impact the operation of the Raspberry Pi and is an 
additional reason to have a separate motor power supply. Now that the power 
supplies are connected to the PCA9685, the communication pins are the next to 
be attached.  The schematic diagram below shows the correct configuration for 
the servo driver attached to the Raspberry Pi and motors. 
 
Information is shared in in I2C communication using two pins that correspond to 
SDA and SCL.  I2C is a master slave protocol and the Raspberry Pi sends 
commands and the PCA9685 receives this data.  SDA stands for the data bus 
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and communicates the commands and the SCL bus is the clock.  On the 
Raspberry Pi the SCL bus uses pin 3 and the SCL pin is 5.  The servo driver is 
more straightforward, and the SCL line is attached to a pin labeled SCL on the 
left side of the board.  Similarly, the SDA is also directly labeled and can be 
found directly below the SCL pin.  Once these steps have been followed the 
PCA9685 has been fully connected to the Raspberry Pi and it is time to connect 
the motors to the servo driver. 
 

 
Figure 8-10: Servo Driver Connected to Raspberry Pi, Motor and Power Supply 

 
Two pins are required for each servo for proper operation of the electric motors.  
The servo driver has units of three pins assembled in columns for each individual 
motor.  The columns run along the bottom edge of the PCA9685 board and from 
bottom to top they are GND, V+ and PWM.  The GND pin should be connected to 
the ground on the electric motor.  The PWM pin represents the pulse wave 
modulation output, and this pin provides the output that controls the electric 
motors.  The PWM pin should be attached to one of the pins on the electric 
motor.  Setting the frequency of the pulse width modulation determines the speed 
of the connected motor.  The modulation can be set on or off for each channel 
and this enables individual motors to be controlled.  The left motor should be 
attached with its pins connected to the first column labeled “0.”  The right motor 
in the gear assembly should attach to the column labeled “1.”  The labels are 
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located immediately above the columns and each set of three pins in encased in 
a white oval.  Now that the Raspberry Pi, servo driver and motors are connected, 
the hardware testing can begin. The following picture shows the PCA9685 
attached to the raspberry pi and servo motors. 
 
First the proper connection should be verified and the power supply activated.  If 
the power is attached correctly, the LED should activate on the servo driver 
board.  Once the power is verified, basic commands should be sent to the servos 
to verify their function.  The duty cycle of the pulse width modulation will 
determine the speed of the motor and for this initial testing should be set to 50%.  
Additionally, the frequency of the pulse width modulation can be set on a range 
of 40Hz to 1000Hz and should be set to a value of 500 Hz for initial testing.  To 
verify motor function each motor should be turned on at these configurations.  
Each should be activated individually and then the two motors should be run 
simultaneously.  By verifying the motor operation at these basic values the initial 
setup of the Raspberry Pi, PCA9685, and two motors can be verified.  Next the 
motors should be calibrated to ensure proper function. 
 
A likely concern is a differential in motor output.  In this scenario, the two motors 
would receive identical input but provide different rotation.  To verify that the 
motors are functioning properly, the rover should be set to run in a straight line 
and the robot should be inspected to see if it turns.  If the rover turns, the motors 
are likely providing different output.  The robot should be placed on a hard 
surface with a straight line of tape two inch painters tape extending four meters.  
the rover would straddle the tape and proceed along its length and if a wheel 
crosses onto the tape the robot will be considered misaligned.  Differential motor 
output could be accounted for by varying the pulse width modulation of each 
motor individually.  If the rover crosses onto the tape in a direction, the duty cycle 
of the motor on the side corresponding to the direction the rover moved should 
be increased. Through this process the rover can be calibrated to travel in an 
acceptably straight line.    
 
The rover will operate at variable speed and the exact values need to be 
obtained for each speed configuration.  The speed settings will consist of nine 
values starting at 10% duty cycle, stepping up at 10% increments and ending at 
90% duty cycle.  At each stage the alignment will need to be verified to ensure 
that the robot travels in a predictably straight path.  Corrections at one duty cycle 
may not be applicable to different pulse widths and the proper calibrations need 
to be determined 
  

8.2.4 Wi-Fi Control Interface 
The Raspberry PI has a built in Wi-Fi adapter. The hardware will be tested in the 
software section of this report. Since the module is built into the PCB of the 
microcontroller we won’t be able to determine if the device malfunctions through 
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hardware means. In the event of a device malfunction we will implement a 
backup plan via a Wi-Fi adapter. 

8.2.5 Rotary Encoders  

8.2.5.1 Testing Procedure Summary: 

Installation, calibration and testing of the rotary encoders that communicate 
vehicle movement information requires the following steps. 

 
1. Connect the Raspberry Pi to the analog to digital converter. 

a. Power 
i. Converter pin 16 (VDD) and pin 15 (VREF) are connected to 

Raspberry Pi pin 1 (3.3V). 
ii. MCP3008 pin 14 (ground) is attached to GPIO pin 14 

(ground) 
b. Communication 

i. Bit Banging Configuration 
1. Converter CLK pin (13) is connected to Raspberry Pi 

pin 18. 
2. DOUT on the converter (12) is linked to GPIO pin 23. 
3. DIN (11) is connected to the GPIO pin 24. 
4. MCP3008 pin 10 (CS) is connected to the Raspberry 

Pi pin 25.  
5. The DGND pin (9) is connected to the same ground 

as the power (14). 
ii. SPI Configuration 

1. Converter CLK pin (13) is connected to Raspberry Pi 
pin 40 (SCLK). 

2. DOUT on the converter (12) is linked to GPIO pin 35 
(MISO). 

3. DIN (11) is connected to the GPIO pin 38 (MOSI). 
4. MCP3008 pin 10 (CS) is connected to the Raspberry 

Pi pin 24 (CE0).  
5. The DGND pin (9) is connected to the same ground 

as the power (14). 
iii. Use the SPI configuration if the GPIO pins are available. 

2. Connect the rotary encoder to the analog to digital converter. 
a. The VCC pin for the encoders are connected to the VDD (15) of the 

analog to digital converter. 
b. The grounds of both rotary encoders are attached to the ground pin 

(14) of the converter. 
c. The left encoder communication pin is attached to analog to digital 

converter channel 0 (pin 1). 
d. The right encoder communication pin is attached to analog to digital 

converter channel 1 (pin 2). 
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3. Rotary encoder calibration. 
a. Let the robot move a known distance and count the output pulses 

from the rotary encoders. 
b. Divide the distance traveled by the number of pulses to determine 

the distance per output. 
c. Repeat 10 time and average results to determine calibrated 

distance per encoder output pulse. 

 

8.2.5.2 Detailed Testing Procedure 

The implementation of the two rotary encoders is complicated because they only 
produce analog output.  Raspberry Pi devices do not have any analog input pins 
and to utilize the data, it must be converted to a digital format.  A simple solution 
to this issue is to use an analog to digital converter, in this case the Adafruit 
MCP3008.  The rotary encoders must be connected to an analog to the 
MCP3008 digital converter which is connected to the Raspberry Pi GPIO.  The 
general schematic for this design is presented in the following diagram. 

 
Table 8-2: Pin Connection Chart 
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The MCP3008 must be attached to a number of Raspberry Pi GPIO pins in order 
to function properly.  The analog to digital converter draws its power from the 
Raspberry Pi and the VDD pin, number 16 on the MCP3008, needs to be 
connected to GPIO pin 1 to draw 3.3V.  The VREF pin on the MCP3008 also 
needs to be connected to the same pin as VDD and they should be linked 
together.  Next the converter should be grounded by attaching the fourteenth pin 
on the MCP3008 to a ground pinout on the Raspberry Pi, in this case number 
fourteen.  Now that the power pins are connected, the communication output 
needs to be attached. 
 
There are two possible configurations for the output from the converter to the 
Raspberry Pi.  The first implementation uses bit banging and can communicate 
with any pin on the GPIO.  This is a flexible option and allows for a more 
adaptable design because, by using any available pin, it enables the creation of 
new configurations with minimal difficulty.  If a new component is needed and 
requires any of the pins being currently utilized for communication, the alteration 
could be achieved without disrupting the current design. The bit banging 
configuration is implemented by attaching the CLK pin on the converter, number 
thirteen, to GPIO pin 18.  The DOUT pin, number 12 on the MCP3008, is 
attached to the GPIO pin number 23 and the DIN, number 11, is attached to 
Raspberry Pi pin 24.  The CS pin on the converter, number 10, is attached to the 
GPIO pin 25 and finally the DGND pin, number 9, is attached to a GPIO pin 
ground, in this case the same one as the converter pin number 14 for the power 
ground.  The primary drawback of this configuration is that the bit banging is 
slower than the dedicated hardware communication pins.  Though this design is 
more flexible, the robot does not have an excessive number of peripherals.  
Since the faster configuration is available it should be used in this design.  

 

The second configuration, and the one to be used in this design, is the specific 
hardware Serial Peripheral Interface (SPI) of the Raspberry Pi.  The power is 
connected the same way as the bit banging, as well as both grounds.  MCP3008 
pin 13, CLK is attached to GPIO pin SCLK, number 40, and DOUT, pin number 
12, is attached to the Raspberry Pi pin for MISO, number 35.  Converter pin 11, 
DIN, is attached to the Raspberry Pi pin 38, which corresponds to MOSI.  Finally, 
the pin for CS on the converter, number 10, attaches to the GPIO pin for CE0, 
which corresponds to GPIO 24.  The increased speed of this configuration makes 
it more desirable for our purposes.  The primary benefit of the previous design 
was the ability to use any pin for communication.  Since there is no shortage of 
pins in the project design, this benefit does not offset the decreased speed of the 
bit banging configuration.  For these reasons the hardware SPI is the superior 
choice for this design. 

 
The encoders now need to be attached to the assembled analog to digital 
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converter.  The encoders have three pins each, a power pin, a ground and a 
communication pin.  The ground can be connected to one of the grounds for the 
MCP3008.  Similarly, the power pins can be attached to the 3.3V source pins for 
the converter.  Finally, the communication pin needs to be connected to one of 
the input pins of the MCP3008.  Any of the eight input pins would work but to stay 
consistent with the convention used for the motors, the left rotary encoder should 
be connected to CH0, pin 1, and the right should be connected to CH1, pin 2. 
Once the two encoders are assembled in this way, their hardware is fully 
implemented.  
 
The rotary encoders now need to be tested and calibrated.  The encoders send 
information to the Raspberry Pi which tells the computer how many times the 
axle has rotated.  The specific encoders used in this design send 16 pulses per 
rotation.  This information does not directly tell the computer how far the robot 
has traveled.  The rate of conversion needs to be determined, so that the 
distance can be gathered from rotary encoder information.  A simple method of 
determining the amount of distance traveled per packet sent from the encoder 
would be to have the robot straddle a meter stick.  The rover would be arranged 
so that the tip of the chassis is above the beginning of the stick.  The rover would 
be told to travel forward and told to stop as it nears the end.  The exact distance 
traveled would be measured and this distance would be divided by the number of 
data points sent by the encoders.  If this process is done ten times and the 
amount of distance per data point is averaged, a reasonable rate of distance per 
pulse from the encoders can be found. 

8.3 Software Testing 
This section will contain an overview of all testing that will be completed on our 
software as well as the objectives to be met in each of the testing to follow. This 
will include an overview on how to conduct this testing. 

8.3.1 Communication Testing 
This section will contain the test procedures required to ensure each module is 
communicating. Communicating for the purposes of these tests is defined as the 
ability for the microcontroller to send commands to the module being tested and 
for the module to respond in a trackable way such as with an LED flashing or 
sending data back to the microcontroller. Each subsection of this section must be 
completed before continuing on with integration of the module into the complete 
system. Such that section 8.3.1.1 Digital Compass Communication Testing must 
be completed before integrating the digital compass module into the Robotic 
Surveillance Vehicle system. Preferably all communication testing will be 
completed before any of the modules are integrated however this is unlikely due 
to timing of when parts are to be obtained as well as time to develop the Robotic 
Surveillance Vehicle system.  
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8.3.1.1 Digital Compass Communication Testing 

The objective of this section is to confirm that the digital compass module is 
correctly communicating with the microcontroller as defined in section 8.3.1 
Communication Testing. This will confirm that no part of the digital compass 
module or microcontroller are defective and that the digital compass module is 
properly installed. 
 

1. Connect the digital compass module to the Raspberry Pi microcontroller. 
2. Load the Digital Compass Communication Testing software from 

Appendix C-Datasheets into the Raspberry Pi microcontroller. 
3. Run the loaded software and confirm that the normalized X, Y, and Z axis 

values are printed to the screen. Record the results and a Pass/Fail in the 
Software Communication Testing Data Sheets. 

4. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 

8.3.1.2 Ultrasonic Sensors Communication Testing 

The objective of this section is to confirm that the ultrasonic sensors are correctly 
communicating with the microcontroller as defined in section 8.3.1 
Communication Testing. This will confirm that no part of the ultrasonic sensor or 
microcontroller are defective and that the ultrasonic sensor is properly installed. 
 

1. Connect the ultrasonic sensor to the Raspberry Pi microcontroller. 
2. Load the Ultrasonic Sensors Communication Testing software from 

Appendix C-Datasheets into the Raspberry Pi microcontroller. 
3. Run the loaded software and confirm that the ranging and timing values 

are printed to the screen. Record the results and a Pass/Fail in the 
Software Communication Testing Data Sheets. 

4. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 

 
NOTE: The ultrasonic sensor communication testing code in Appendix C-
Datasheets is given to test a single ultrasonic sensor additional commented code 
is added and highlighted in yellow to allow this to test all three ultrasonic sensor 
communications at once. Just uncomment the highlighted sections of the code 
then follow the steps above. 

8.3.1.3 Servos/Servo Controller Communication Testing 

The objective of this section is to confirm that the servo controller and servos are 
correctly communicating with the microcontroller as defined in section 8.3.1 
Communication Testing. This will confirm that no part of the servo controller, 
servos, or microcontroller are defective and that the ultrasonic sensor is properly 
installed. 
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1. Connect the servo controller to the Raspberry Pi microcontroller. 
2. Connect the two servos to the servo controller. 
3. Load the servo controller communication testing software from Appendix 

C-Datasheet into the Raspberry Pi microcontroller. 
4. Run the loaded software and confirm that the heartbeat LED is blinking. 

Record the results and a Pass/Fail in the Software Communication 
Testing Data Sheets. 

5. Confirm that the Error Byte is not showing an error which is a value from 
0-2. Record the result and a Pass/Fail in the Software Communication 
Testing Data Sheet. 

6. Confirm that the Servos were able to drive forward, backward then stop. 
Record the result and a Pass/Fail in the Software Communication Testing 
Data Sheet. 

7. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 

8.3.1.4 Camera Communication Testing 

The objective of this section is to confirm that the Raspberry Pi Camera is 
correctly communicating with the microcontroller as defined in section 8.3.1 
Communication Testing. This will confirm that no part of the Raspberry Pi 
Camera or microcontroller are defective and that the Raspberry Pi Camera is 
properly installed. 
 

1. Connect the Raspberry Pi Camera to the Raspberry Pi microcontroller. 
2. Load the camera communication testing software from Appendix C-

Datasheet into the Raspberry Pi microcontroller. 
3. Connect the Raspberry Pi microcontroller to a monitor 
4. Run the loaded software and confirm that the video preview is displayed to 

the connected monitor. Record the results and a Pass/Fail in the Software 
Communication Testing Data Sheets. 

5. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 

8.3.1.6 Wi-Fi Module Communication Testing 

The objective of this section is to confirm that the Raspberry Pi Wi-Fi module is 
correctly communicating with the smart device as defined in section 8.3.1 
Communication Testing. This will confirm that no part of the Raspberry Pi Wi-Fi 
module is defective as well as proper communication between the microcontroller 
and the smart device has been implemented. 
 

1. Load the Wi-Fi Module Communication Testing software from Appendix C-
Datasheet into the Raspberry Pi microcontroller. 

2. Connect the Raspberry Pi microcontroller and smart device to the same 
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Wi-Fi network. 
3. Run the loaded software and confirm that the data to be transferred is 

displayed to the smart device and back to the microcontroller. Record the 
results and a Pass/Fail in the Software Communication Testing Data 
Sheets. 

4. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 

8.3.1.7 Communicating to Modules Simultaneously 

The objective of this section is to confirm that the Raspberry Pi microcontroller is 
correctly communicating with the multiple sensors connected as defined in 
section 8.3.1 Communication Testing. This will confirm that all the sensors 
connected to the Raspberry Pi microcontroller can communicate properly to the 
Raspberry Pi microcontroller during the same session. 
 

1. Connect all sensors to the Raspberry Pi microcontroller. 
2. Load the Simultaneous Communication Testing software from Appendix 

C-Datasheet into the Raspberry Pi microcontroller. 
3. Connect the Raspberry Pi microcontroller to a monitor 
4. Run the loaded software and confirm that the video preview is displayed to 

the connected monitor. Record the results and a Pass/Fail in the Software 
Communication Testing Data Sheets. 

5. Confirm that the normalized X, Y, and Z axis values are printed to the 
screen. Record the results and a Pass/Fail in the Software 
Communication Testing Data Sheets. 

6. Confirm that the ranging and timing values are printed to the screen. 
Record the results and a Pass/Fail in the Software Communication 
Testing Data Sheets. 

7. Confirm that the heartbeat LED of the servo controller is blinking. Record 
the results and a Pass/Fail in the Software Communication Testing Data 
Sheets. 

8. Confirm that the Error Byte is not showing an error which is a value from 
0-2. Record the result and a Pass/Fail in the Software Communication 
Testing Data Sheet. 

9. Confirm that the Servos were able to drive forward, backward then stop. 
Record the result and a Pass/Fail in the Software Communication Testing 
Data Sheet. 

10. Confirm that the data to be transferred is displayed to the smart device 
and back to the microcontroller. Record the results and a Pass/Fail in the 
Software Communication Testing Data Sheets. 

11. If a failure occurs follow the failure instruction steps outlined in section 
8.3.1.8 Communication Failure Management. 
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8.3.1.8 Communication Failure Management 

This section outlines the procedure to be followed when a failure occurs during 
one of the communication testing procedures. The objective of this section is to 
resolve communication testing failures quickly and efficiently. The flowchart 
below represents the failure management process that will be used during 
integration and testing of the Robotic Surveillance Vehicle. 
 

 
Figure 8-11: Failure Management Diagram 

 
1. Review and repeat the test procedure in an attempt to resolve or repeat 

the previous failures. Record the result in the Communication Failure 
Management Sheet. 

2. Review and adjust the code to be compiled, loaded, and ran on the 
Raspberry Pi microcontroller for any errors.  

3. Follow the test procedure steps as outlined with the updated code and 
update this document to reflect the working code. 

4. Ensure proper connection between the Raspberry Pi microcontroller and 
the module being tested. Do so by disconnecting and reconnecting the 
module from the microcontroller where reasonably possible. 
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5. Repeat the test procedure once proper connection is ensured. Record the 
results as stated in the test procedure. 

6. When possible replace current module for a replacement and repeat the 
test procedure, record all results. 

7. If failure persists, seek a review board with the rest of the group and 
discuss a plan of action forward 

8. If no plan of action can be determined or all actions continue to fail seek a 
review board with Professor Lei Wei. 

8.3.2 Performance Testing 
This section will be used to define the testing required to determine whether 
performance based requirements will be met by the Robotic Surveillance Vehicle. 
These tests will be developed based on the requirement being tested. Each of 
the following sections will define tests for each software related requirement. 

8.3.2.1 Voice Command Testing 

This section is to verify the software requirement below: 
 

● The smart device will receive voice commands as input. 
● The Robotic Surveillance Vehicle shall receive voice commands including: 

survey, track, find, and stop. 
● The Robotic Surveillance Vehicle shall have a response delay of less than 

three seconds from the user giving the command to the vehicle 
responding.  

● The Robotic Surveillance Vehicle shall have a maximum range of at least 
25ft. 

 
This requirement is to ensure commands can be received by the mobile 
application on the smart device to send to the Robotic Surveillance Vehicle 
setting the current mode of the Robotic Surveillance Vehicle. 
 

1. Open mobile application on smart device. 
2. Navigate to the Voice Commands page of the mobile application. 
3. Say one of the following commands: Survey, Track, Stop. 
4. Verify the mobile application acknowledges the command and echoes it 

on screen. Record the results and any pass/fail in Appendix C -
Datasheets for Performance testing voice command. 

5. (Optional) Verify a response and if the appropriate response by the 
Robotic Surveillance Vehicle is observed. Record the results and any 
pass/fail in Appendix C -Datasheets for Performance testing voice 
command. 
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8.3.2.2 Verify Data transmission over Wi-Fi 

This section contains the test procedures to verify the software requirement 
below: 
 

● The software shall command the vehicle through Wi-Fi based on the input 
command.  

● The Robotic Surveillance Vehicle shall accept functional commands over 
Wi-Fi. 

● The smart device shall communicate to the Robotic Surveillance Vehicle 
wirelessly. 

● The Robotic Surveillance Vehicle shall have a maximum range of at least 
25ft. 

 
Wi-Fi communication is the primary and only form of communication between the 
Robotic Surveillance Vehicle and the mobile application. Verifying that the 
vehicle can both send and receive information from the mobile application for 
various situations. 
 

1. Establish Wi-Fi connection between the Raspberry Pi microcontroller and 
test environment on the computer. 

2. Open the test software as found in Appendix C - Datasheets Performance 
Wi-Fi transmission 

3. Verify the print command is echoed on the computer screen and there is 
acknowledgement on the Raspberry Pi for both sending and receiving. 
Record the results and any pass/fail in Appendix C -Datasheets for 
Performance testing. 

8.3.2.3 Verify Tracking or Reacquire determination. 

This section contains the test procedures to verify the software requirement 
below: 
 

● The software shall determine whether a track is being held or if the vehicle 
needs to reacquire.  

 
This requirement is to understand that the vehicle is aware of the current tracking 
position it is in whether that be having seen no point of interest, identified a point 
of interests, marked a point of interest, tracking a point of interest, or lastly having 
lost the track. This is important to set up what the Robotic Surveillance vehicle 
should be doing such as, attempting to reacquire the track, continue autonomous 
movement to keep the track, or wait for a command from the user. 
 

1. Open and load the test software as found in Appendix C - Datasheets 
Performance Tracking or Reacquire. 
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2. Run the software and verify the tracking and reacquiring determination is 
echoed to the screen in the appropriate order. Record the results and any 
pass/fail in Appendix C -Datasheets for Performance testing. 

8.3.2.4 Verify Collision Detection and Avoidance 

This section contains the test procedures to verify the software requirement 
below: 
 

● The software shall prevent the Robotic Surveillance Vehicle from colliding 
with objects. 

 
This requirement is to verify the Robotic Surveillance Vehicle’s collision detection 
and avoidance algorithm. This is one of the most integral parts of the software 
design and will require thorough testing beyond this section. This is to verify that 
the Robotic Surveillance Vehicle will be able to run autonomously during the 
tracking. 
 

1. Open and load the test software as found in Appendix C - Datasheets. 
2. Run the software and verify the collision algorithm by setting up a track. 
3. Observe the Robotic Surveillance Vehicle during the 30 second track. 
4. Verify no collisions occur during the track and record your observations in 

the Data sheet as well as the Pass/Fail. 
5. Make comments on the Data sheets relevant to the observations for future 

integration and testing if a fail occurred, or improvements even if a pass 
was observed. 

8.3.2.5 Verify Point of Interest Identification 

This section contains the test procedures to verify the software requirement 
below: 
 

● The software shall identify a predetermined point of interest (POI). 
● The Robotic Surveillance Vehicle shall be able to find a point of interesting 

that is 5ft away from the vehicle. 
 
This requirement is to confirm that the camera is working with the computer 
vision algorithm to ensure that the Robotic Surveillance Vehicle can determine 
edges, shapes, and colors. This will all be used to “identify” a point of interest as 
stated in the requirement. Points of interest can be marked through the 
surveillance mode that the Robotic Surveillance Vehicle has to specifically 
search for and identify points of interest. 
 

1. Open and load the test software as found in Appendix C - Datasheets. 
2. Run the software and verify the computer vision software is displaying the 
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video feed. 
3. Verify that the target is identified by the computer vision software, record 

the results in the Appendix C- Datasheets and whether the test was a 
pass/fail. 

4. Measure and verify the target is at least 5ft from the Raspberry Pi camera 
when the track is acquired after identifying. Record the results in Appendix 
C-Datasheets and whether the test was pass/fail. 

8.3.2.6 Verify Tracking. 

This section contains the test procedures to verify the software requirement 
below: 
 

● The software shall allow the Robotic Surveillance Vehicle to track a point 
of interest. 

● The Robotic Surveillance Vehicle shall hold a track on a point of interest 
for at least 30 seconds. 

● The Robotic Surveillance Vehicle shall provide imaging back to the user 
from the vehicle’s camera. 

 
This requirement requires that section 8.3.2.5 has been verified as the Robotic 
Surveillance Vehicle will have to identify and mark a point of interest before being 
able to track. This is in hopes that there will be a lower likelihood that a 
misidentification will occur. This tracking will also be verified through a duration of 
holding and following the point of interest through the track. 
 

1. Open and load the test software as found in Appendix C - Datasheets 
Performance Tracking or Reacquire. 

2. Run the software. 
3. Initiate survey mode and verify a target is marked. 
4. Initiate tracking mode and verify the Robotic Surveillance Vehicle is 

tracking the target. Record the results in Appendix C-Datasheets and 
Pass/Fail. 

5. Once track is initiated time the duration of the track. Record the time and 
Pass/Fail in Appendix C-Datasheet, verify that the time is greater than 30 
seconds. 

6. Open the mobile application for the Robotic Surveillance Vehicle. 
7. Go to the Robotic Surveillance Vehicle Video Feed page on the Mobile 

application. 
8. Verify the video is being received by the mobile application record the 

results and pass/fail in Appendix C-Datasheets. 
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8.3.2.7 Performance Failure Management 

This section outlines the procedure to be followed when a failure occurs during 
one of the performance testing procedures. The objective of this section is to 
resolve performance testing failures quickly and efficiently. The flowchart below 
represents the failure management process that will be used during integration 
and testing of the Robotic Surveillance Vehicle. It is important to follow the 
correct performance failure management process as this will help mitigate the 
issues quickly and identify where the issue is coming from. Even though this is 
the software portion of the testing environment it is still possible to have 
hardware failures at any point during the operation of the vehicle.  
 

 
Figure 8-12: Performance Failure Management Diagram 

 
1. Review and repeat the test procedure in an attempt to resolve or repeat 

the previous failures. Record the result in the Performance Failure 
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Management Sheet. 
2. Review and adjust the code to be compiled, loaded, and ran on the 

Raspberry Pi microcontroller for any errors or proper performance of the 
Robotic Surveillance Vehicle. 

3. Follow the test procedure steps as outlined with the updated code and 
update this document to reflect the working code. 

4. Repeat the test procedure once proper connection is ensured. Record the 
results as stated in the test procedure. 

5. When possible replace current module for a replacement and repeat the 
test procedure, record all results. 

6. If failure persists, seek a review board with the rest of the group and 
discuss a plan of action forward 

7. If no plan of action can be determined or all actions continue to fail seek a 
review board with Professor Lei Wei. 

8.4 Software Test Environment 
This section will contain an overview of the environments that the software will 
see during testing with analysis on how that will change or evolve when 
implemented in the final product. There will be a few major test environments for 
the software, these being the computer where the coding and some debugging 
will be taken place, the smart device which the mobile application will run on, the 
Raspberry Pi microcontroller with various sensors connected at any time, and 
lastly the final Robotic Surveillance Vehicle with everything implemented for 
debugging. 

8.4.1 Desktop Environment 
The first line to develop, test, and debug the software will be working on the 
computer and with the Raspberry Pi microcontroller in the initial development 
where the base algorithms, syntax, and compilation errors will be caught before 
moving to integration. Once this has been completed integration and 
communication to the various sensors will be needed. This will change the 
environment by introducing single sensors at a time to the Raspberry Pi 
microcontroller which will eventually move into multiple, then all the sensors 
integrated and communicating through the Raspberry Pi microcontroller. 

8.4.2 Mobile Application Environment 
On the more software and less firmware side of the Robotic Surveillance Vehicle 
project is the mobile application which is used to communication commands and 
data to and from the Robotic Surveillance Vehicle from a smart device. As in the 
firmware compilation and syntax errors will be caught at a computer level before 
implementation on an actual smart device. This is due to the explosion of mobile 
application over the past decade allowing for integrated development 
environments or IDEs that have environments to simulate mobile applications on 
smart devices for debugging. This system will be used as the primary testing 
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environment for the mobile application associated with the Robotic Surveillance 
Vehicle. 

8.4.3 Robotic Surveillance Vehicle Environment 
Lastly will be the Robotic Surveillance Vehicle as a whole to act as a software 
testing environment. This will be the last testing environment that the software 
sees, and most issues will hopefully be debugged prior to this step. However, I 
am expecting this to be a primary software testing environment due to the 
unseen bugs that will arise from the full Robotic Surveillance Vehicle being 
integrated. This environment will consist of testing the actual adjustments motor 
and mechanical made during real world interaction based on the computer vision 
and collision detection and avoidance algorithms. This will be to develop the 
success of the performance based requirements as the previous test 
environments have been focused on the proper working of the parts and the 
system as the Robotic Surveillance Vehicle is integrated. This environment is 
assuming all of this has been checked and completed prior to full integration and 
performance testing. 
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9. Administrative Content 
 

9.1 Bill of materials 
In an effort to see how our requirements conflict with our budget Table 9-1 was 
developed to see possible parts we will need and the costs associated with them. 
This will be taken into consideration along with power consumption, size and 
other aspects of the part that will help us to meet our requirements. The minimum 
and maximum costs are listed in the table, reflecting best and worst case 
scenarios.  
 
In order to meet the cost requirement, the team will attempt to get components 
closest to the minimum end of the cost estimate. This parts estimate is subject to 
change during the course of creating the project, as extra parts may be needed 
or parts listed may no longer be needed if an alternate choice is made. 
Regardless of changes, the team will reduce the cost to under the requirement of 
$450. All members will keep a record of expenditures towards the project and 
split the cost of the project once it is completed  
 

 
Table 9-1: Budget Table 
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9.2 Milestones  

9.2.1 Semester One 
1) Initial Documentation 10-page overview of project motivation, goals, 

function, specification, and cost. 
2) Project research: similar products, relevant technologies, possible part 

and components, PCB possible designs and architectures. 
3) Project standards, and realities, and design constraints. 
4) PCB Design, part research, and part identification. This will add specifics 

to which parts we chose and the motivations for choosing those parts. 
5) Software Design and identification, specifics of what algorithms will be 

developed, and how they will be implemented. 
6) Master plan including building, testing, and evaluation. 
7) Necessary/used test equipment and facilities. 
8) Receive and test parts to ensure quality of the ordered parts before 

assembly. 
9) Project User/Owner’s Manual. 
10) Final/Updated administrative details, man hours completed/needed, part 

and design costs, updated timeline and milestones. 
11) Conclusion, references, and appendices. 
12) Finished deliverable 90-120 page. 

9.2.2 Semester Two 
1) PCB build and prototyping. 
2) Software Version 1 build, includes required functionality. 
3) PCB testing, evaluate metrics of prototyped system compared to expected 

metrics. 
4) Software metric evaluation and testing, not over processing, within 

designated tolerances. 
5) Mid semester demo/evaluation, functional prototype limited in overall 

performance meet some but not all requirements. 
6) Reevaluate a path forward to improve project accuracy and efficiency and 

complete tasks. 
7) Implement additional functionality that is not required for baseline 

functionality. 
8) Complete testing and perform corrective measures. 
9) Final working demonstration meeting specified requirements. 

 
The overall design path shown in Figure 9-1 depicts our planned general design 
process, which spans both semesters of Senior Design. This process will be 
used to keep the team organized and follow a set path for designing and 
implementing our product. This design process mimics a generalized design 



Military Surveillance Robot 
November 13, 2016 

Page 133 of 166 

 

process that is used in industry. A concept is created and then researched for 
feasibility and profitability. Then once a design is chosen, a detailed plan is 
created to bring the design to life. Prototypes are then created and tested. 
Ideally, multiple prototypes would be created and tested rigorously, and new 
prototypes would be created until a final product is made. Due to our time 
constraints, this processed will be shortened and simplified in order to complete a 
working prototype within the two semesters of Senior Design. Also the process 
does not necessarily have to follow a linear path as depicted below. For example, 
research of the design may be performed during multiple stages of the process if 
any issues are found or a design modification is required. Also testing may result 
in moving back to a previous step to fix any issues found in testing.  
 

 
Figure 9-1: Overall Design Process 

 
Figure 9-2 shows the milestones of the electronics design. First components will 
be tested on a prototype board or breadboard, and from there the PCB will be 
created and sensors will be assembled to the microcontrollers. A physical 
checkout will be done to verify that components are correctly laid out and the 
design matches the schematic. If any errors are found, the team will return to the 
previous steps with a new design or component until a physical checkout passes. 
The final step is the assembly of all electronic devices into one device, creating a 
prototype that can then be tested. It is possible however that after assembly of 
the hardware, issues can still be found during testing which can result in the 
electronics design processes being revisited to modify the previous design. 
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Figure 9-2: Electronics Design milestones 

 
Figure 9-3 shows the milestones in testing for our design. Once the first design is 
created, the electronics and software will be tested separately to ensure each is 
working properly. Next, the hardware and software will be integrated and tested 
in a modular format, where one functionality is tested at a time to verify each 
module is working correctly. Finally, a full demonstration will be done with all 
functionalities to ensure a successful final demonstration 

 

 
Figure 9-3: Testing milestones 

 

9.3 Project Roles and Labor assignments  
The roles of this project can be split into EE and CpE roles. The EE roles are in 
charge of verifying that all hardware components are integrated successfully with 
each other and with the whole system. They will be mainly in charge of PCB 
design and wiring, as well as control systems. The CpE roles will be mostly in 
charge of software design. The role breakout and labor assignments will be as 
shown below: 
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● Ryan Hromada: EE role- PCB design, component interfacing, electronics 
testing 

● Adam Baumgartner: EE role- PCB design, servo control and interface, 
vehicle assembly 

● Austin King: CpE role- Software design and testing 
Kevin Plaza: CpE role- Software design and testing 

 
Table 9-1 and 9-2 below will give a listed outline and expected completion time 
frame for each section of the project. The importance of this timeline is so that all 
parties can operate smoothly. Since the device is the joint effort of the four 
persons listed above each person’s completion date will affect the time in which a 
following member may start their portion of the project. Some of the sections can 
be completed in conjunction with other sections while some cannot. Most of the 
initial research can be completed independently but when finalizing processes 
and components each section must be complete sequentially. 
 

Task Person Responsible Start Date End Date 

Initial Project 
identification   

All parties 9/1/2016 9/9/2016 

Further Clarify the 
Objective of the 
project 

Ryan 9/9/2016 9/17/2016 

Determine MCU for 
the device 

Kevin 9/17/2016 9/27/2016 

Research Methods 
for software 
implementation 

Austin 9/27/2016 10/15/2016 

Research Sensor 
Part Selection 

Ryan 9/27/2016 10/15/2016 

Research Servo and 
Chassis Design 

Adam 9/27/2016 10/15/2016 

Research part 
integration between 
MCU and Component 
selection 

Kevin 10/15/2016 10/21/2016 

Finalize Part 
Selection 

Ryan/Adam 10/15/2016 10/21/2016 

Complete Project 
Description  and 
Related Projects 

Kevin 10/1/2016 10/21/2016 

Table of Contents 
Submission 

All Parties 9/19/2016 11/4/2016 

Current Draft of 
Senior Design 

All Parties 11/4/2016 11/11/2016 
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Documentation 

Follow up on Status 
of Corrections 

Ryan 11/14/2016 11/19/2016 

Design Software 
Testing Environment 

Austin 11/20/2016 11/30/2016 

Design Hardware 
Testing Environment  

Ryan 11/24/2016 12/2/2016 

Complete Servo 
Testing Environment  

Adam 12/2/2016 12/4/2016 

Complete 
Administrative 
Content  

Kevin 12/2/2016 12/4/2016 

Reformat MCU 
Component Selection 

Kevin 12/3/2016 12/4/2016 

Table 9-1: Senior Design 1 Project Action Plan 
 

Test Equipment Ryan/Adam 12/6/2016 1/1/2016 

Design PCB Layout Ryan/Adam 1/1/2016 1/20/2016 

Design Software 
Version 1 

Kevin/Austin 12/6/2016 1/20/2016 

PCB Testing Ryan/Adam 2/20/2016 2/27/2016 

Metric Evaluation Kevin/Austin 2/25/2016 2/27/2016 

Demo All Parties 2/27/2016 3/1/2016 

Re-evaluate 
performance 

All Parties 3/1/2016 3/7/2016 

Implement additional 
functionality 

Kevin/Austin 3/7/2016 3/14/2016 

Perform final working 
demonstration  

All Parties April April 

 
Table 9-2: Senior Design 2 Projected Project Action Plan 
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10.0 Military Surveillance Robot Version 2 
The following section will include all the pertinent information to describe the 
differences in version 2 and the reason behind the changes. The largest change 
from version 1 to version 2 was the inclusion of the ATtiny84 and Attiny85 to the 
PCB design. The other inclusion was of an Op-Amp to form a basic Schmitt 
trigger. We quickly realized in the testing of our first design concept that some of 
the function didn’t work out as expected.  
 
First we realized that the number of GPIO ports required to run the Sensor Array 
off the Raspberry Pi caused a lot of jumper wires which wasn’t as compacted as 
we had anticipated. Secondly the encoder wasn’t giving solid readable data that 
was defined well in code. This proved particularly difficult for the device to make 
autonomous decisions without well-defined hardware performance. Lastly we 
were concerned that the Raspberry Pi would have difficulties calculating the 
movement of the vehicle, sensor array data and object detection so the inclusion 
of ATtiny MCU’s would allow us too off load code. 

10.1 ATtiny85, ATtiny84 and PCB design change 
 

The primary motivation for the inclusion of the ATtiny85 was to use the i2c 
communication as a primary data line. Previously in version 1 the device was 
using a combination of i2c communication for the accelerometer and Pulse width 
modulation for the ultrasonic sensor array and encoders. When using the 
ATtiny85 we can consolidate all our communications into slave MCUs. This 
would allow the MCU’s to essentially act as multiplexers with the advantage of 
having programmable serial data addresses.  
 
During the version 1 design we had chosen to use three ATtiny 85’s to send 
signals to the LM239D motor driver and collect data from our encoders as well as 
send and receive signals from the ultrasonic sensors. We realized that we had 
timing issues trying to get two ATtiny85’s to match up since each was controlling 
a DC motor and an encoder. To reduce this issue, we decided to implement the 
ATtiny84. This had similar internal clock rates and memory but had extra pins to 
include both DC motors on one device. This helped us to avoid any issues that 
would arise between two different MCU’s trying to communicate with each other.  
 
The Raspberry PI was the Primary CPU in the i2c communication line. The 
Accelerometer was a slave device with specific commands already programmed 
in the device. By passing the specific code through the i2c line we could have 
device send back the accelerometer info which helped with the speed control of 
version 2 of vehicle. The same device also had specific commands receive 
magnetometer data that would give us values in the X-axis, Y-axis and Z-axis. 
This would help the device know which direct it was turning and could be 
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communicated via the serial i2c line. The other slave devices on the i2c 
communication line was the ATtiny85 and Attiny84. The ATtiny84 was assigned 
with the tasks of communication to both DC motors and our encoder. The 
ATtiny85 was relegated to the ultrasonic sensor array. 
 
The Encoder data was sent to the ATtiny84 with a single pin. The device was 
always powered on like the Accelerometer and Magnetometer and would 
constantly send information. The ATtiny was programmed with formula to decode 
the PWM into speed related information. This would allow the device know its 
current speed. The problem with the optical encoder we chose is that depending 
on the lighting situation a clean pulse was not achieved. In the figure below you 
can see the output of the encoder data (U) versus time (t). The Top line 
represents that direct output of the encoder. The PWM only reads high and low 
for 1 or 0 data bits. The voltage of the higher section of the line can be set with 
the code in the ATtiny’s but the issue that comes into play that there are a lot of 
spikes as false negatives or false positives.  

 
Figure 10.1 – Encoder output A:Before Schmitt Trigger B:After Schmitt Trigger 

 
As you can see in the line A the CPU will read the data of the Pulse Width 
modulation depending on the threshold chosen in the code. On top of that the 
device will read several smaller pulses that would cause false positives. Ideally 
the output should be long steady pulses whose width very with speed. Their 
widths should be relatively similar with slight variations in speed. If the device is 
operating smoothly you won’t see the numerous spikes followed by long pulses. 
This indicates that the encoder is receiving false readings. In order to clean this 
in line B a basic Schmitt trigger was implemented. The Schmitt trigger is basic 
OP-amp positive feedback circuit. Essentially we take the output of the encoder 
and send it through a Schmitt trigger with specific operation thresholds, this 
requires the voltage to drop below a certain level before switching to 0. Likewise, 
the voltage is require to rise above a certain threshold before switching to 1. This 
was particularly helpful in our application of the encoder device since certain 
lighting conditions would cause the encoder to give different values for the 
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voltage with some values being higher and lower than the others. We also 
realized that having two encoders was excessive so we decided to utilize only 
one Schmitt trigger. The reason for two Schmitt triggers originally was to 
determine if the device was turning in one direction or the other and based off the 
speed of the signals it would be easier to see the device turn left or right based of 
the speed of each motor. Since the inclusion of the magnetometer we were able 
to determine a change in the angle based of Earth’s electromagnetic field. The 
accelerometer wasn’t able to sense the changes at constant accelerations to be 
accurate enough to determine how much the device was turning. With the 
magnetometer we could have very precise data for the amount the device is 
turning. This allowed use to only use the data from one encoder that was 
primarily task with returning data on the speed of the vehicle. 
 
As discussed in version 1 the major advantage of using the ATtiny85 was the use 
of the 5 voltage pins that allowed the ATtiny85 to act as a multiplexer. We soon 
realized that we could off load the code to calculate and determine if any objects 
were around the vehicle. Rather then having the pi run and calculate the sensor 
data we offloaded this to the ATtiny85 freeing up any processor power that would 
be used. This would allow the Raspberry Pi to operate the device at a higher 
level and focus more processing power on the Computer vision. As noted above 
we realized that due to a timing issue we would encounter imperfect timing 
switches when trying to turn the device. This would prove to be a problem as the 
device was required to operate autonomously. With limited processing power we 
wanted to simplify the commands the device used so that it didn’t need to worry 
about error correction as much. The ATtiny84 doesn’t require much processing to 
operate the motors. In this application it runs a very simple program to simulate 
the PWM output to determine Servo Speed. From there we decided to tie both 
the Servo enable pins to the ATtiny84 so that either both motors are on or off. 
While this reduced our overall we don’t anticipate the vehicle needing 
functionality to turn on one servo vs the other as both are needed to keep the 
device driving straight. To turn we can simply invert the pins. 
 
One of the flaws that we will discuss in the later sections is the noise created by 
the two DC motors. In version 1 of our PCB we created a common ground plane 
on the front and the back and we left the power line relatively large to allow for 
proper current. Because we were unsure the powering capabilities of the 
Raspberry Pi we allowed the motors to be powered both by the 5 volt power 
supply of the Raspberry Pi and the battery. In version 2 we realized we are 
getting a lot of noise over the power line. In order to help mitigate this issue we 
implemented two designs. One was to remove the common ground across the 
PCB to ensure we weren’t creating extra capacitance between it and the power 
lines. We also decided to increase the thickness of the Ground line to 
compensate for this. As discussed later we added filter capacitors but in addition 
to this we decided to modify the PCB to separate the power lines. We made sure 
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the DC motors were exclusively powered via the battery pack and weren’t tied to 
any other power line. Next we powered all the Slave MCU’s, Ultrasonic Sensors 
and Accelerometer via the Raspberry Pi’s 5 volt output. Since these devices 
have very low current draw it wouldn’t cause the pi to drop power and clean up 
some of the noise created by the DC motors. 
 
The Schmitt trigger was designed to give an output that had a high of 
approximately 5V.  The goal was to make a cleaner signal than what was 
provided by the analog rotary encoder.  The rotary encoder values were heavily 
dependent on ambient light and consequently varied significantly.  The Schmitt 
trigger values were calculated using the following equations 

𝑉+ = 𝑉𝑖

𝑅2

𝑅2 + 𝑅1
+ 𝑉0

𝑅1

𝑅1 + 𝑅2
 

 
Using the following equations, it is possible to determine the high and low 
triggering points indicated as 𝑉𝑇𝐻 and 𝑉𝑇𝐿 .  These values indicate the distance 
from the transition point that the trigger activates. To determine the triggering 
values it is also necessary to know the transition voltage which is, in this case, 
the reference voltage after the voltage divider circuit.  The voltages can be 
obtained from the following equations: 
 

𝑉𝑇𝐿 = 𝑉𝑟𝑒𝑓

𝑅4

(𝑅3 + 𝑅4)
+

𝑉𝐻𝑅1

𝑅2
 𝑎𝑛𝑑 𝑉𝑇𝐻 = 𝑉𝑟𝑒𝑓

𝑅4

(𝑅3 + 𝑅4)
+

𝑉𝐿𝑅1

𝑅2
 

 
The final values that were determined are presented below: 

𝑅1 15kΩ 

𝑅2 68kΩ 

𝑅3 4kΩ 

𝑅4 11kΩ 

𝑉𝑟𝑒𝑓 5V 

𝑉𝐻 5V 

𝑉𝐿 0V 

𝑉𝑇𝐿 3.66V 

𝑉𝑇𝐻 4.77V 

Table 10.1 – Values used to determine Schmitt Trigger Thresholds 
 
The final design solves many of the issues inherent in the analog rotary encoder.  
In spite of how far or below the trigger voltages the analog input is, the trigger will 
not vary its output.  The resistance to input change is important because the 
encoder is susceptible to changes in ambient light. By including this module in 
the design, the final robot is significantly more robust and adaptable.  
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10.2 i2c Communication Issues and 
Troubleshooting 
 
The primary impediment in the development of the autonomous tracking vehicle 
was the stability of the I2C communication.  I2C was used to coordinate the 
activities of the Raspberry Pi and the two ATtiny microprocessors.  The design 
required basic sensor and movement functions of the robot to be conducted by 
the ATtinys, which acted as slaves.  The Raspberry Pi was the master and 
devoted most of its processing to computer vision and sending higher level 
instructions to the other microprocessors.  Stable efficient communication was 
essential for the design because decisions about movement were being reached 
on one processor and executed on a second.  Issues with communication 
stability were a serious obstacle in the execution of this design.  
 
The I2C communication protocol was unreliable, particularly when 
communicating with the ATtiny84 and ATtiny85.  The first issue encountered with 
I2C was an issue with clock stretching.  Ironically to increase communication 
stability, both ATtiny microprocessors will hold the clock line (SCL) low if they do 
not understand a signal.  This is a command intended to induce the master to 
resend the last signal. Raspberry Pi devices do not support clock stretching on 
I2C and the mismatch resulted in the ATtinys holding the clock low indefinitely 
and stopping all communication. It seemed possible that this might be a 
temporary status that would end after a timer that could be altered, but this was 
not the case.  The clock line would be held low until the power was restarted and 
communication reestablished.  We found no expedient way to stop the ATtinys 
from holding the line low directly, so the logical resolution was to increase the 
reliability of communication.   
 
Further examination of the issue led to a possible conclusion.  If the ATtinys did 
not miss commands they would not need to employ clock stretching.  A two-sided 
approach was employed to resolve this issue.  It was determined that the baud 
rate difference between the Raspberry Pi and ATtinys was responsible for the 
missed signals, causing the clock line to be held low.  The solution was to make 
the I2C baud rates for the ATtinys and Raspberry Pi closer.  The ATtinys could 
not be made fast enough to match the baud rate of the Raspberry Pi.  The 
Raspberry Pi would be seriously limited if it had its baud rate slowed to equal that 
of the ATtinys.  Logically, the most suitable solution was to meet in the middle.  
The I2C baud rate of the ATtinys would be increased and the Raspberry Pi baud 
rate would be decreased.  The baud rate for the ATtinys was increased by setting 
the appropriate fused in the firmware code.  The Raspberry Pi also had its baud 
rate altered by a code command.  Once these alterations were made, the I2C no 
longer suffered the same clock line issue and communication between one 
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ATtiny and the Raspberry Pi was achieved.  The next issue involved 
communication between the Raspberry Pi and two ATtinys.  
 
An additional issue rendered communication impossible when communicating 
with two ATtinys and the Raspberry Pi simultaneously.  Communication with 
each ATtiny individually was stable and functional, but when both were attached 
to the I2C lines, it was not functional.  Checking the I2C addresses on the 
Raspberry Pi showed no devices attached.  To debug the communication, an 
oscilloscope was attached to the two I2C lines between the Raspberry Pi and 
ATtinys.  The output was confused with the data line oscillating in irregular 
square waves in contrast to the stable five volt high of an idle I2C line.  The 
power was cycled many times to see how the irregular output developed.  It 
started out as a normal output for a second and then the random oscillations 
began.  A logical conclusion was that the cause of the waves concerned the 
powering on of the ATtinys.  Potentially, the issues were due to the increased 
time it took to power on the larger network of chips. As each component powered 
on it pulled the I2C lines momentarily low, which could have been interpreted as 
a signal by one of the devices.  The components would then send signals in 
response which would contribute to the confusion. This arrangement would 
explain the output observed on the oscilloscope.  With this working theory, a 
solution was devised. A switch was installed on each of the two I2C lines and the 
robot would power on without connecting I2C. Once the power was established 
the I2C busses would be connected.  This solution worked and allowed 
communication between the two ATtinys and the Raspberry Pi.  The success of 
the implemented fix supports the idea that the error was caused by the uneven 
powering on of components.  
 
Once the ATtinys and Raspberry Pi were communicating stably it was time to 
add the magnetometer and accelerometer to the I2C bus.  The component was 
designed to function on I2C and it was easy to establish communication between 
the magnetometer and the Raspberry Pi.  Unfortunately, by adding this chip to 
the device it again knocked out communication to the ATtinys. Again, an 
oscilloscope attached to the I2C lines was used to debug the issue.  The lines 
were stable, but appeared a bit “fuzzy” which implied some high frequency noise.  
The most likely situation was that the magnetometer was causing a bit of noise 
that was interfering with the ATtinys communication.  Since the noise was high 
frequency and the robot was a direct current device, bypass capacitors seemed 
to be a good solution.  
  
Capacitors act as an open circuit to direct current, but a short circuit to alternating 
current, depending on the frequency.  Since I2C functions based on oscillating 
square waves, it was necessary to be careful when selecting the capacitor size.  
If the capacitor was too large, it would act as a short to the data being sent.  The 
observed noise appeared to be of a much higher frequency than the data, so the 
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most appropriate choice was to select a very small capacitor.  After some trial 
and error, 22 nanofarads was found to be a capacitor size that minimized noise 
without impeding communication.  By attaching one capacitor from each I2C line 
to ground, the Raspberry Pi could communicate stably with all of the I2C devices.  
The successful establishment of communication with the capacitors lends 
support to the hypothesis that the magnetometer was impeding communication 
by introducing noise to the I2C lines.  
 
The last significant I2C issue that influenced the design of the robot was noise 
contributed by the motors.  The two motors were brushed direct current servos 
and were exceptionally noisy.  Once communication had been established with 
all of the I2C capable components, basic commands were run.  The ultrasonic 
sensors were successfully tested and sent data to the Raspberry Pi.  An attempt 
was made to control the motors by sending commands from the Raspberry Pi to 
the ATtinys.  Immediately communication with all I2C capable devices was lost 
and could not be reestablished until the power was cycled for the entire robot.  
Again, the oscilloscope was attached to the I2C busses and used to debug the 
communication.  There was a large amount of visible noise in the two lines when 
the motors were enabled.  The images seemed fuzzy and high frequency noise 
was the likely culprit.  There was significantly more noise observed than with the 
magnetometer alone and attempts to alter the capacitors already attached to the 
I2C lines were insufficient to resolve the issue.  Noise mitigation techniques 
directly on the motors were required. 
 
 Brushed direct current motors contribute a significant amount of noise to a circuit 
and several techniques were required to mitigate it.  First the power for the 
motors was isolated from the rest of the circuit.  There was a common ground but 
the voltage was provided independently from the rest of the robot.  The lines to 
and from the motors were made as short as possible and wound around each 
other in an attempt to further mitigate the noise.  Finally, three capacitors were 
attached to each motor.  The motors had two leads which acted as the positive or 
negative terminal depending on the direction of motion.  Capacitors were 
attached to each lead and to the outside of the motor housing.  As with the 
capacitors on the I2C lines this was intended to function as a short to noise, but 
an open circuit to the power required to drive the motors.  A further capacitor was 
attached from one lead to the other in hopes of minimizing more noise.  Once 
these modifications were made it was possible to run the motors while 
maintaining communication with the I2C capable devices.  The success of this fix 
supports the notion that the communication was being dropped because of 
excess motor noise.   
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Figure 10.2 – Brushed DC motor with Capacitor Noise Filters 

 
The obstacles to implementing I2C communication were significant and not 
anticipated in our design.  There were four significant hurtles to I2C functioning 
properly and they consumed more of the design time than any other one issue.  
In spite of the difficulties implementing the communication protocol, once it was 
functional it performed admirably.  After these fixes I2C was stable and robust, 
fulfilling all of the tasks demanded of it.  It was a challenge to implement but the 
design became stronger as a result. 

10.3 Software Design Changes 
 

Through initial research, most of the software framework was already found. The 
major steps in implementing the software for the design were first programming 
the microcontrollers to do their required processing, next programming the 
raspberry pi to take the data from the microcontrollers and execute functions 
based on the data, then implementing the computer vision used to detect a target 
from the camera, and finally developing a web app that could communicate with 
the Raspberry Pi. 
 
One of the biggest challenges with software in the design was programming the 
ATtiny microcontrollers. With the team having limited experience with the ATtinys 
and AVR, programming them became a large task in of itself. Most of the 
projects and information on the internet about using our ultrasonic sensors and 
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servos were for interfacing with an Arduino. Looking at some example code for 
programming with an Arduino, interfacing the sensors with the ATtiny85 and 
Arduino was an extremely easy task that only took a few lines of code. For our 
design however, we had to use a Raspberry Pi and I2C lines for communication. 
Without the built in plugins provided by an Arduino board and the additional task 
of interfacing the microcontrollers with the I2C lines, all the programming had to 
be done manually in C. All the pins that needed to used had to be declared as 
inputs or outputs and referenced using bitwise logic. Because of the unfamiliarity 
with this type of controller programming, a few software bugs caused weeks of 
troubleshooting due to a lack of knowledge of where the issue was coming from. 
I2C connection also became an issue as the implementation for connecting to 
I2C was quite volatile and any small error in the microcontroller code or the 
speed at which the raspberry pi communicated to them would cause the I2C 
communication to completely drop which would require a hard reset. Once this 
was stabilized, the final programming challenge was implementing the ability for 
the microcontrollers to ping the sensors appropriately. Since the sensors were 
made to interface with an Arduino, the online guides to using them simply pinged 
the sensor once, delayed for 10-15 microseconds, and then waited for the sensor 
to get an echo back. The challenge here was setting up a delay in the ATtinys. 
Since we were doing the code on the tinys instead of an Arduino or on the Pi, we 
had to read the manual for the controllers many times to find how to read the 
CPU clock and convert that into a usable time and then converting that time into 
a distance based on the specifications of the ultrasonic sensor. After doing this, 
the sensors were finally fully functional.  
 
Once the ATtiny85 was programmed, the ATtiny84 was thought to be a much 
easier task to program. To program the 84, the 85 code was copied over and 
modified to use the same I2C callback routine used as well as a similar 
programming structure. Based on the necessary pin locations to control the 
servos, the 84 was also programmed using bitwise logic to access each 
individual pin. The software for the 84 was also much more straightforward than 
initially thought because it was simply a matter of turning certain pins high or low 
that would cause one or both of the servos to turn a difference direction. It didn’t 
require two way communication like for the sensors. When actually connecting to 
the servos however, there were issues with keeping I2C communications, 
especially when the 85 was also connected to the I2C line. Later this would be 
found to be a noise problem coming from the servos, however it caused a delay 
in software because the problem wasn’t known and the code had to be inspected 
multiple times and changed to try to fix the issue.  
 
When programming the Raspberry Pi as the master, changes also had to be 
made from the initial design. In order to keep I2C connections stable, the 
baudrate and command delays had to be adjusted to make sure that the Pi 
wasn’t communicating faster than the microcontrollers could handle. Also in the 
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final stages of our prototyping, it was discovered that running the sensor code on 
the ATtiny85 at the same time as the ATtiny84 caused issues with the entire 
communication line. The first idea to fix this was implementing threading so that 
the Pi could do multiple actions at the same time. This threading was 
implementing using the Pthread library for the Raspberry Pi. This would be useful 
for adding in greater functionality and efficient resource use in the future, 
although wasn’t fully used in the final design. To solve the communication issues, 
new “stop” commands were added to both the microcontrollers so that the 
Raspberry Pi could get both controllers to stop running code while it switched to 
a different command. This made communications much more stable, although it 
made the vehicle move a little more rigidly.  
 
The next hurdle to overcome was installing and implementing SimpleCV on the 
Raspberry Pi to add tracking functionality to the project. This was initially thought 
of as one of the easiest portions of the software in the initial research stage, 
however it was quickly realized that the documentation was fairly limited and 
most installation methods were somewhat outdated and required special steps to 
install on the Raspberry Pi 3. It was also discovered that the Raspberry Pi 
camera was extremely slow when interfaced with SimpleCV due to the fact that 
the camera had to first communicate with the Pi and then SimpleCV, instead of 
just directly interacting with SimpleCV. After some research, a driver was found 
that could be activated on the Pi that would allow for the Picamera to detect as a 
USB camera, which is what SimpleCV is able to directly interface with. This 
greatly increased the speed at which the Raspberry Pi could execute the 
computer vision. Even with this speed increase though, the Raspberry Pi’s 
limited processing power set a hard ceiling on how fast the computer vision could 
execute. The fastest time that was achieved was processing about one frame per 
second. This added a challenge of dealing with the delay on the processing that 
would sometimes cause the robot to not detect the target immediately even 
though it was directly in front of it. There really wasn’t solution to this problem 
other than finding a larger and more expensive computer to run the computer 
vision on. Since it was too late in the design to obtain and integrate a completely 
new master computer, it was decided that the live video feed from the Pi could 
not work as the computer vision could not process that many frames per second. 
Instead, the camera would have to take one image a time and process it before it 
could take the next image. A change that was also made in the final prototype 
was adding regions to each image and having the computer vision detect on 
what side of the vehicle the target was on. As shown in figure 10.3, the original 
image was split into 3 smaller images, left, middle, and right This made the 
design more impressive because now the vehicle could move left or right to 
adjust itself so that the target will be in the center of it’s field of view. This allowed 
for it to execute true tracking as long as the target stayed within the image 
frames.  
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Figure 10.3 – Computer Vision Image Regions 

 
 As for the actual execution of the computer vision, some tinkering had to 
be done with how the images were and actually processed using the given 
libraries in SimpleCV. Initial testing showed that the computer vision was very 
sensitive to light. The color that the computer vision detected in the image varied 
greatly with how dim or bright the lighting was. This was because the algorithm 
would actually invert the colors of the image and would detect blobs that were the 
opposite of the desired target, as this increased accuracy in finding the correct 
colors. For example, a blue target would be expected to detect when the 
algorithm was set to filter objects that were red, since red is the opposite of blue. 
Depending on the lighting however, the blue target was actually detected as 
orange or yellow after inversion. To make sure of the reliability of the tracking, it 
was determined that the design would have to be demonstrated in an area with 
decent lighting. In the future however, this problem could be avoiding by looking 
into the HSV color spectrum used in computer vision, that takes into account the 
lighting quality when detecting colors. This phenomenon can be seen in figure 
10.3 as the program doesn’t the very bottom of the target as it appears to be a 
different color than the rest of the target due to the shadows and lighting.  
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Figure 10.4 - Object Detection using white circle 
 
 
 
End.  
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Appendix B-Software Libraries 
  

Magnetometer/Accelerometer 

// Author: Austin King 

// Date: November 8, 2016 

// Original Source Code cited below: 

/* HMC5883L Triple Axis Digital Compass. Compass Example. Read 

more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-magnetometr-

hmc5883l.html 

GIT: https://github.com/jarzebski/Arduino-HMC5883L 

Web: http://www.jarzebski.pl 

(c) 2014 by Korneliusz Jarzebsk i*/ 

  

#include <Wire.h> 

#include <HMC5883L.h> 

 

HMC5883L compass; 

 

void setup() 

{ 

Serial.begin(9600); 

  

// Initialize  HMC5883L 

// Set measurement range 

compass.setRange(HMC5883L_RANGE_1_3GA); 

 

// Set measurement mode 

compass.setMeasurementMode(HMC5883L_CONTINOUS); 

 

// Set data rate 

compass.setDataRate(HMC5883L_DATARATE_15HZ); 

 

// Set number of samples averaged 

compass.setSamples(HMC5883L_SAMPLES_8); 

 

// Set calibration offset. We shouldn’t need an offset. 

compass.setOffset(0, 0); 
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} 

 

void loop() 

{ 

Vector norm = compass.readNormalize(); 

 

// Calculate heading 

float heading = atan2(norm.YAxis, norm.XAxis); 

 

// Set declination angle on your location and fix heading 

// You can find your declination on: http://magnetic-declination.com/ 

// (+) Positive or (-) for negative 

// For Bytom / Poland declination angle is 4'26E (positive) 

// Formula: (deg + (min / 60.0)) / (180 / M_PI); 

float declinationAngle = (6 + (16.0 / 60.0)) / (180 / M_PI); 

heading -= declinationAngle; 

 

// Correct for heading < 0deg and heading > 360deg 

if (heading < 0) 

   heading += 2 * PI; 

  

if (heading > 2 * PI) 

  heading -= 2 * PI; 

  

// Convert to degrees 

float headingDegrees = heading * 180/M_PI; 

}  
Ultrasonic sensor  

// Author: Austin King 

// Date: November 8, 2016 

// Original Source Code cited below: 

// Ultrasonic - Library for HR-SC04 Ultrasonic Ranging Module. 

// Rev.4 (06/2012) 

// J.Rodrigo ( www.jrodrigo.net ) 

// more info at www.ardublog.com 

  

#include <Ultrasonic.h> 

 

 

 

 

 

 

http://www.ardublog.com/
http://www.ardublog.com/
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Ultrasonic left(25,8);   // (Trig PIN,Echo PIN) 

Ultrasonic right(4,17);   

Ultrasonic front(23, 24) 

  

void setup() { 

Serial.begin(9600); 

} 

  

void loop() 

{ 

left.Ranging(CM); 

delay(50); 

right.Ranging(CM); 

delay(50); 

front.Ranging(CM); 

delay(50); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

Servo Controller 

#define QIK_GET_FIRMWARE_VERSION         0x81  
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#define QIK_GET_ERROR_BYTE               0x82 

#define QIK_GET_CONFIGURATION_PARAMETER  0x83 

#define QIK_SET_CONFIGURATION_PARAMETER  0x84 

  

#define QIK_MOTOR_M0_FORWARD             0x88 

#define QIK_MOTOR_M0_FORWARD_8_BIT       0x89 

#define QIK_MOTOR_M0_REVERSE             0x8A 

#define QIK_MOTOR_M0_REVERSE_8_BIT       0x8B 

#define QIK_MOTOR_M1_FORWARD             0x8C 

#define QIK_MOTOR_M1_FORWARD_8_BIT       0x8D 

#define QIK_MOTOR_M1_REVERSE             0x8E 

#define QIK_MOTOR_M1_REVERSE_8_BIT       0x8F 

  

Void setup() 

{ 

Serial.begin(9600); 

  

//Initialize Servo Controller 

qik.init(); 

byte cmd[5]; // serial command buffer 

} 

  

Void loop() 

{ 

//Drive Servo M0 Forward at full speed 

cmd[0] = QIK_MOTOR_M0_FORWARD 

cmd[1] = 127; 

write(cmd, 2) 

  

//Drive Servo M1 Forward at full speed 

cmd[0] = QIK_MOTOR_M1_FORWARD 

cmd[1] = 127; 

write(cmd, 2) 

  

//Stop Servo M0 

cmd[0] = QIK_MOTOR_M0_FORWARD 

cmd[1] = 0; 

write(cmd, 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Military Surveillance Robot 
November 13, 2016 

Page 160 of 166 

 

  

//Stop Servo M1 

cmd[0] = QIK_MOTOR_M1_FORWARD 

cmd[1] = 0; 

write(cmd, 2) 

} 

 

  
Raspberry Pi Camera 

//Author: Austin King 

//Date: November 10, 2016 

//Original Source Code from: The Raspberry Pi Learning Source 

//https://www.raspberrypi.org/learning/getting-started-with-

picamera/worksheet/ 

  

//Import functions 

from picamera import PiCamera 

from time import sleep 

 

 

//create object camera that is PiCamera 

camera = PiCamera() 

 

 

//Begin video preview 

camera.start_preview() 

sleep(X)     //X is the length of time you want to preview the video feed in 

seconds 

camera.stop_preview()     //Stops the video feed. 

  

Communication testing for Digital Compass 

// Author: Austin King 

// Date: November 10, 2016 

// Original Source Code cited below: 

/* HMC5883L Triple Axis Digital Compass. Compass Example. Read 

more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-magnetometr-

hmc5883l.html 

https://www.raspberrypi.org/learning/getting-started-with-picamera/worksheet/
https://www.raspberrypi.org/learning/getting-started-with-picamera/worksheet/
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GIT: https://github.com/jarzebski/Arduino-HMC5883L 

Web: http://www.jarzebski.pl 

(c) 2014 by Korneliusz Jarzebsk i*/ 

  

#include <Wire.h> 

#include <HMC5883L.h> 

 

HMC5883L compass; 

 

void setup() 

{ 

Serial.begin(9600); 

  

// Initialize  HMC5883L 

// Set measurement range 

compass.setRange(HMC5883L_RANGE_1_3GA); 

 

 

// Set measurement mode 

compass.setMeasurementMode(HMC5883L_CONTINOUS); 

 

 

// Set data rate 

compass.setDataRate(HMC5883L_DATARATE_15HZ); 

 

 

// Set number of samples averaged 

compass.setSamples(HMC5883L_SAMPLES_8); 

 

 

// Set calibration offset. We shouldn’t need an offset. 

compass.setOffset(0, 0); 

} 

 

void loop() 

{ 

//Read Normalized bearings from compass 

Vector norm = compass.readNormalize(); 
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//Print out Normalized values for X, Y, and Z axis. 

Serial.print(“X Normalized = “); 

Serial.print(norm.XAxis); 

Serial.print(“Y Normalized = “); 

Serial.print(norm.YAxis); 

Serial.print(“Z Normalized = “); 

Serial.print(“norm.ZAxis); 

Serial.println(); 

} 

  
Communication testing for Ultrasonics Sensors  

// Author: Austin King 

// Date: November 10, 2016 

// Original Source Code cited below: 

// Ultrasonic - Library for HR-SC04 Ultrasonic Ranging Module. 

// Rev.4 (06/2012) 

// J.Rodrigo ( www.jrodrigo.net ) 

// more info at www.ardublog.com 

  

#include <Ultrasonic.h> 

 

 

//Ultrasonic left(25,8);   // (Trig PIN,Echo PIN) 

//Ultrasonic right(4,17);   

Ultrasonic front(23, 24) 

  

void setup() { 

Serial.begin(9600); 

} 

  

void loop() 

{ 

Serial.print(“Front Distance = “); 

Serial.print(front.Ranging(CM)); 

Serial.print(“cm”); 

Serial.print(Front Timing = “): 

http://www.ardublog.com/
http://www.ardublog.com/
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Serial.print(front.Timing()); 

//Serial.print(“Left Distance = “); 

//Serial.print(left.Ranging(CM)); 

//Serial.print(“cm”); 

//Serial.print(Left Timing = “): 

//Serial.print(left.Timing()); 

//Serial.print(“Right Distance = “); 

//Serial.print(right.Ranging(CM)); 

//Serial.print(“cm”); 

//Serial.print(Right Timing = “): 

//Serial.print(right.Timing()); 

} 

  
Communication testing for Servo Controller 

#define QIK_GET_FIRMWARE_VERSION         0x81 

#define QIK_GET_ERROR_BYTE               0x82 

#define QIK_GET_CONFIGURATION_PARAMETER  0x83 

#define QIK_SET_CONFIGURATION_PARAMETER  0x84 

  

#define QIK_MOTOR_M0_FORWARD             0x88 

#define QIK_MOTOR_M0_FORWARD_8_BIT       0x89 

#define QIK_MOTOR_M0_REVERSE             0x8A 

#define QIK_MOTOR_M0_REVERSE_8_BIT       0x8B 

#define QIK_MOTOR_M1_FORWARD             0x8C 

#define QIK_MOTOR_M1_FORWARD_8_BIT       0x8D 

#define QIK_MOTOR_M1_REVERSE             0x8E 

#define QIK_MOTOR_M1_REVERSE_8_BIT       0x8F 

  

Void setup() 

{ 

Serial.begin(9600); 

  

//Initialize Servo Controller 

qik.init(); 

byte cmd[5]; // serial command buffer 

//Commands the get error byte and then prints it out 

write(QIK_GET_ERROR_BYTE); 
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Serial.print(read()); 

} 

  

Void loop() 

{ 

//Drive Servo M0 Forward 

cmd[0] = QIK_MOTOR_M0_FORWARD 

cmd[1] = 1; 

write(cmd, 2) 

  

//Drive Servo M1 Forward 

cmd[0] = QIK_MOTOR_M1_FORWARD 

cmd[1] = 1; 

write(cmd, 2) 

  

//Drive Servo M0 in Reverse 

cmd[0] = QIK_MOTOR_M0_REVERSE 

cmd[1] = 1; 

write(cmd, 2) 

  

//Drive Servo M1 in Reverse 

cmd[0] = QIK_MOTOR_M1_REVERSE 

cmd[1] = 1; 

write(cmd, 2) 

  

//Stop Servo M0 

cmd[0] = QIK_MOTOR_M0_FORWARD 

cmd[1] = 0; 

write(cmd, 2) 

  

//Stop Servo M1 

cmd[0] = QIK_MOTOR_M1_FORWARD 

cmd[1] = 0; 

write(cmd, 2) 

} 

  
Communication testing for Raspberry Pi Camera 
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//Author: Austin King 

//Date: November 10, 2016 

//Original Source Code from: The Raspberry Pi Learning Source 

//https://www.raspberrypi.org/learning/getting-started-with-

picamera/worksheet/ 

  

//Import functions 

from picamera import PiCamera 

from time import sleep 

 

 

//create object camera that is PiCamera 

camera = PiCamera() 

 

 

//Begin video preview 

camera.start_preview() 

sleep(5)     //Video feed should appear for 5 seconds 

camera.stop_preview()     //Stops the video feed. 

Appendix C-Datasheets 

Software Datasheets 

Communication Testing 

Test Comments/Observations Pass/Fail 

Digital Compass/ 
Accelerometer 

  

Ultrasonic Sensors   

Servo/ Servo 
Controller 

  

Camera   

Wi-Fi   

https://www.raspberrypi.org/learning/getting-started-with-picamera/worksheet/
https://www.raspberrypi.org/learning/getting-started-with-picamera/worksheet/
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Communication 
Simultaneously 

  

Performance Testing 

Test Comments/Observations Pass/Fail 

Voice Command Test   

Data Transmission 
Over Wi-Fi 

  

Software Track 
Determination Test 

  

Collision Detection and 
Avoidance Test 

  

Point of Interest 
Identification Test 

  

Verify Track Test   

 


