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Abstract  —  Lockheed Martin has expressed interest in 
developing autonomous, aerial drones which are capable of 
identifying other drones (“prey drones”) in order to 
deliberately collide with the prey drones, causing the prey 
drones to fall to the ground.  Our team, referred to as “Blue 
Team”, has developed a prototype to meet the design 
requirements provided by Lockheed Martin.  The prototype 
utilizes a convolutional neural network (CNN) to identify the 
prey drones.  Autonomous flight algorithms were developed to 
provide various flight modes, including a “pursuit mode” 
which will guide the prototype drone towards an identified 
prey drone, in order to collide with the prey drone.  Various 
sensors were integrated with the on-board embedded system 
and the flight controller to provide situational awareness.  
First Person Video (FPV) streaming functionality was 
implemented, enabled individuals on the ground to view a live 
stream video feed from the perspective of the prototype drone 
with a Heads Up Display (HUD) providing relevant 
information. 

Index Terms  —  Quadrocopters, drones, convolutional 
neural network, first person video, heads up display 

I. INTRODUCTION 

Aerial drones are becoming increasingly available on the 
consumer markets, presenting unique challenges not faced 
by previous generations.  On October of 2016 a drone 
impacted a commercial airliner in Quebec City, Canada 
near the Jean Lesage International Airport. [1]  The 
collision did not cause any injuries, but has raised concerns 
about the potential risks which readily available consumer 
drones may pose to commercial aircraft.  Military 
installations are also at risk, as was demonstrated by the 
January of 2018 attack on a Russian base in Syria by a 
swarm of drones constructed from plywood, small engines, 
and rudimentary electronic components which are readily 
available on the consumer markets. [2] 

To address the growing risks posed by commercially 
available aerial drones, Lockheed Martin has provided 
funding for several teams engineering students at the 
University of Central Florida (UCF) to develop 
autonomous drones which can identify target drones and 
deliberately collide with the target drones to knock them 

out of the sky.  This approach does not require any 
projectiles to take out the target drones, henceforth referred 
to as “prey drones”.  Moreover, with a budget of $1500 for 
the prototype and an additional $500 for initial 
development, the final product will be a relatively 
inexpensive solution, as opposed to having personal and 
weapons on hand to shoot or jam the electronics of the prey 
drones. 

Known simply as “Blue Team”, we are a group of UCF 
engineering students who have taken on this challenge 
presented by Lockheed Martin.  The solution we have 
created is a drone which can fly around autonomously as it 
searches for prey drones within the vicinity.  Utilizing a 
high-definition, wide-angle camera, our drone can detect 
prey drones by processing camera footage through a 
convolutional neural network.  All computational 
processing is performed on-board the drone via an NVIDIA 
TX1 Jetson module.  Various sensors provide vital 
readings, including LiDAR for measuring relative altitude 
from our drone to the ground.  Autonomous flight 
algorithms we developed run on the TX1, which sends 
rotational and translational flight commands to the Pixhawk 
flight controller, thus moving the drone accordingly. 

Our team, Blue Team, is but one of many teams which 
are being sponsored by Lockheed Martin to produce a 
viable prototype.  To determine which team has produced 
the most effective prototype, Lockheed Martin will be 
hosting a competition. 

II. LOCKHEED MARTIN DRONE COMPETITION 

On Saturday, April 14, 2018 at 7:00 a.m. Lockheed 
Martin will host a competition to determine which team has 
produced the most effective drone prototype.  Located 
between the Engineering building and the Business 
Administration building, the competition will be held 
outdoors.  The competition area will be marked with red 
tape on the ground, indicating the boundary region in which 
in the drones should remain within. 

The prey drones in the competition will be of two main 
body types: a small rectangular drone approximately 3 
inches wide and a slightly larger dome-shaped drone 
approximately 5 inches wide.  While each of the two prey 
drone types come in only a few colors, Lockheed Martin 
has indicated that the prey drones may be painted different 
colors not typically available for those drone models.  There 
will also be decoy versions of the prey drones in the form 
of printed pieces of paper depicting an image of the various 
prey drone types. 

During the competition each team will have a set amount 
of time to have their prototype drone in the arena without 
the other team’s drone prototype drones in the competition 



arena.  Prey drones will then be introduced into the arena 
and will be flown by Lockheed Martin employees.  The 
prototype drone will then be expected to fly around 
autonomously within the arena and locate the prey drones 
in order to intentionally collide with the prey drone.  Points 
will be awarded for colliding with a prey drone, and more 
points will be awarded if the prey drone falls to the ground 
as a result of the in-air collision.  Points will be deducted if 
the prototype drone targets one of the printed paper prey 
drone decoys, which will be placed around the arena.  
Points will also be deducted if the prototype drone wanders 
outside of the arena boundaries, including going above the 
40 feet high upper boundary. 

III. PROTECTIVE CAGE ENCLOSING DRONE 

To protect the prototype drone from being damaged 
while colliding with a prey drone, a 3 foot by 3 foot by 1 
foot cage has been constructed to enclose the prototype 
drone.  The supporting frame of the cage is composed of 
PVC pipe, providing a sturdy, light structure.  The sides of 
the cage are enclosed with lightweight, plastic chicken-wire 
fencing. 
Fig. 1. Protective Cage Enclosing Prototype Drone 
 

Initially, the protective cage was planned to be composed 
of carbon fiber tubes as the supporting frame and 
transparent polycarbonate tubes to cover the sides of the 
cage.  While this design was anticipated to be high 
structurally sound, it was soon realized that these materials 
would drastically increase the weight of the drone.  The 
design decision was therefore to go with the 
aforementioned PVC pipe and plastic chicken-wire design 
for the prototype drone cage. 

IV. NETWORK AND COMMUNICATION 

The prototype drone can be controlled autonomously or 
manually.  Autonomous control of the drone is performed 
via commands sent from the NVIDIA TX1 Jetson module 

to the telemetry port of the Pixhawk flight controller.  This 
is the method by which all commands to the drone will be 
sent during the competition to ensure that the drone meets 
the autonomous flight design requirement of our sponsor, 
Lockheed Martin.  Manual control of the drone can still be 
performed via a remote control which wirelessly sends 
flight commands to the radio port of the Pixhawk flight 
controller.  Moreover, a flight control mode has been 
implemented into the remote control to provide a manual 
override command to ensure that an operator on the ground 
can take full command of the drone if needed, thus 
instructing the drone to ignore all autonomous flight 
commands sent to it via the NVIDIA TX1 Jetson module. 
Fig. 2. Network Diagram of Drone Controls and FPV 

 
First Person Video (FPV) is provided via the use of a 

high-definition camera which streams live video to the 
NVIDIA TX1 Jetson module, which then transmits the data 
over Wi-Fi to a nearby router.  Bystanders on the ground 
within the vicinity may connect to the router to view the 
live FPV with a Heads-Up-Display (HUD) overlay 
depicting relevant information, such as altitude.  If any prey 
drones have been detected then the HUD will also display 
a bounding box around the identified prey drone to indicate 
the location of the prey drone within the camera frame. 

V. HARDWARE DESIGN DECISIONS 

Prior to purchasing any of the hardware components for 
the drone prototype, our team carefully compared the 
various options on the market for each of the major 
hardware components.  Special consideration was granted 
to products which not only met our design requirements, 
but was also easy to integrate with the other hardware 
components, included thorough documentation, and could 
be shipped to our location within a few days. 



Very early within the design phase, our team decided to 
create two drones: a large drone which will be used during 
the competition, and a smaller drone which will serve as a 
test bench for debugging and experimentation while the 
large drone is still being constructed.  This design decision 
proved to be exceedingly useful, providing our 13 person 
team with valuable information from lessons learned while 
building and experimenting with the smaller test drone.  
When it was time to construct the large, main drone our 
team had a much more clear idea of what to do and what 
not to do, thus saving precious time and resources. 

A. On-Board Embedded System 

Considerable computational processing power would be 
required to detect the prey drones and to run the 
autonomous flight algorithms.  The convolutional neural 
network (CNN) implemented to identify the prey drones is 
particularly taxing on the system resources and is highly 
GPU intensive.  While a desktop or laptop computer with a 
dedicated GPU could provide more than enough system 
resources to smoothly run the CNN, such hardware is not 
an option for this project due to the design requirement that 
all processing be on-board the drone.  The embedded 
system chosen must be light enough to easily be carried by 
an aerial drone, yet powerful enough to smoothly run the 
CNN and autonomous flight algorithms. 

Of the many embedded systems considered, 3 stood out 
as potentially viable options: Raspberry Pi 3 Model B, 
BeagleBoard, NVIDIA TX1 Jetson module, and the newer 
NVIDIA TX2 Jetson module.  Table 1 below summarizes 
the main specifications of these 4 embedded systems. 

 
TABLE I 

COMPARISON OF POTENTIAL EMBEDDED SYSTEMS 

System Rasp. 
3 B.Board TX1 TX2 

CPU ARM 
A53 ARM A8 ARM 

A57 

Dual-
Denver 
+ Quad 
ARM 

GPU none none 256 
CUDA 256 CUDA 

MEMORY 1 GB 256 MB 4 GB 8 GB 
STORAGE Flash Flash 16 GB 32 GB 
 
Upon realizing that a CNN would be necessary to detect 

the prey drones, the Raspberry Pi 3 Model B and the 
BeagleBoard had to be ruled out as possible choices for the 
embedded system, due to low memory and lack of a 
dedicated GPU.  The new NVIDIA TX2 Jetson module 
therefore seemed like a prime choice for the embedded 
system.  However, at the time of writing this paper, the 

NVIDIA TX2 is a very new product and is woefully lacking 
in proper documentation.  Even more concerning were a 
plethora of customer reviews online and reports from 
fellow engineering students who purchased the NVIDIA 
TX2 that the system is buggy and does not yet have 
properly working drivers for some of the I/O ports.  The 
design decision was therefore made to purchase its 
predecessor, the NVIDIA TX1 Jetson module, which has a 
very well-established wealth of documentation and also 
still has 256 CUDA cores. 

B. Flight Controller Module 

While the NVIDIA TX1 Jetson module will handle all of 
the on-board computational processing, the motors of the 
drones must be controlled by a flight controller.  The flight 
controller is able to interact with the motors via an 
Electronic Speed Controller (ESC), one of which is 
connected to each of the 4 drone motors.  The desired flight 
controller must be capable of converting basic navigation 
commands sent from the remote control or the NVIDIA 
TX1 Jetson module into commands which can be 
interpreted by the ESC to spin each of the 4 drone motors 
appropriately to perform the desired aerial maneuver.  
Special consideration was given to flight controllers which 
have various sensors built into them, including a 
magnetometer, barometer, and an Inertial Measurement 
Unit (IMU). 

Quite soon it became apparent that the Pixhawk line of 
flight controllers is the industry leader for consumer drone 
projects.  There are a wide array of generic flight controllers 
readily available on the market, but these flight controllers 
were found to be far less compatible with other drone 
components.  With Pixhawk as the industry standard, so 
many vital drone components have been designed to be 
compatible with Pixhawk, often only requiring that the 
component be plugged into the Pixhawk for it to function 
correctly.  After careful consideration it was decided that 
the Pixhawk 1 flight controller is the best option for our 
project.  There is a smaller version of the Pixhawk 1 called 
the Pixhawk Mini, but it costs $50 more than the Pixhawk 
1 and the size difference is negligible in contrast to the large 
size of our drone.  There is also a newer Pixhawk 2 flight 
controller, though it is as much as $100 more expensive 
than the Pixhawk 1. 

C. First Person Video (FPV) Camera 

The camera is a vital component to the autonomous drone 
project, serving as the means by which prey drones are 
detected.  Such a camera would need to be able to see the 
small prey drones with some detail at distances up to 40 
feet, the length of the competition area.  Moreover, the 
camera would need to be able to stream FPV continuously 



to the NVIDIA TX1 Jetson module, ruling out all cameras 
which can only store video footage to writable forms of 
media such as to flash memory cards. 

To determine the necessary camera resolution required to 
effectively identify prey drones, tests were performed with 
various cameras of differing resolutions and image quality.  
There are a wide array of high-definition (HD) cameras on 
the market at a low cost.  However, a major concern of this 
project was that the NVIDIA TX1 Jetson module would be 
not be capable of processing a continuous stream of HD 
video nearly as quickly as it could process lower quality 
video at a reduced resolution.  The convolutional neural 
network (CNN) is particularly resource intensive to run, 
especially for processing real-time video. 

It was soon realized that the CNN could not reliably 
identify prey drones at a distance if the camera utilized is 
of a lower resolution and image quality.  Utilizing cameras 
with a low Megapixels (MP) rating of 5.0 MP or below 
demonstrated that any prey drones at a distance appeared to 
be little more than a few blurry pixels, providing very little 
detail for the CNN  to analyze.  Further testing and research 
also revealed that the quality of the camera sensor quality 
is a critical factor.  Having a high MP rating merely denotes 
the amount of pixels utilized to represent the image, but the 
MP rating alone does not explicitly describe the quality of 
the image produced. 

To find a viable balance between providing HD video 
and not taxing the system resources of the NVIDIA TX1 
Jetson, the design decision was made to utilize a 1080p 
camera.  The particular model chosen is the WIMIUS Q2, 
12 MP Action Camera which is capable of streaming video 
via USB.  An appealing feature the WIMIUS Q2 is the fish-
eye lens, which provides a 170 degree field of view (FoV).  
While it is true that a fish-eye lens does have some 
distortion around the edges of the image, typical cameras 
have a smaller FoV and thus less peripheral vision.  Prey 
drones which are within the edges of a fish-eye lens camera 
will appear slightly distorted, but a camera with a normal 
lens would not be displaying these far peripheral edges of 
the image at all.  It would therefore be more useful to see a 
distorted image of the prey drone along the periphery and 
possibly still be able to detect the prey drone, than to not 
see the prey drone at all. 

VI. PREY DRONE OBJECT DETECTION 

The most mission-critical aspect of the project is the 
ability to detect nearby prey drones.  Without this 
functionality, the resulting prototype would only be able to 
blindly fly around at best, entirely oblivious to any prey 
drones which may or may not be in the vicinity.  This is 
made possible by streaming FPV via the WIMIUS Q2 

Action Camera to the NVIDIA TX1 Jetson module, which 
runs an object detection algorithm on each frame to 
determine if a prey drone is currently in sight of the drone.  
A wide array of object detection algorithms were tested and 
evaluated for effectiveness.  The primary object detection 
algorithms which were most promising are discussed 
below. 

A. Template Matching 

Perhaps the most simplistic solution is to use a template 
matching object detection algorithm.  The template 
matching algorithm is setup by providing it with a sample 
image of the object which the algorithm is to detect.  
Thereafter, the algorithm can analyze images or video to 
see if that exact template image is present within the frame.  
In order for a match to occur, every pixel of the template 
image must match up perfectly within the image or video 
which the template matching algorithm is analyzing.  While 
easy to implement, template matching is extremely 
inaccurate for real-time video applications. 
Fig. 3. Template Matching Algorithm Using the Template 
Image Depicted on the Top-Left and Returning a False Positive 

 

Figure 3 above represents the primary issue with the 
template matching algorithm.  The algorithm is only 
capable of recognizing the drone if template image is found 
exactly the same in the image being analyzed.  The drone 
depicted in Figure 3 is rotated differently than it is in the 
template image, thus the algorithm was unable to find the 
drone.   

 

B. Color Histogram Analysis 



An alternative method for detecting objects is to deploy 
a color histogram analysis algorithm.  A template image is 
provided, which is then analyzed to determine how much 
of each color range is present within the template.  For 
example, if the template image is of a blue ball in front of a 
yellow background, then the resulting color histogram 
might state that the template image is 60% blue and 40% 
yellow, for example.  The color histogram analysis 
algorithm then searches an image or video for a region in 
which there is also approximately 60% blue and 40% 
yellow. 
Fig. 4. Color Histogram Analysis Successfully Takes a 
Template Image, as Seen on the Left, and Detects the Object 

Within the Provided Image, Depicted to the Right  
 
Color histogram analysis works quite well for identifying 

objects which have been rotated, since a successful object 
match is based upon recognizing similarities in the amount 
of each color. Problems arise, however, when the lighting 
of the template image is different from the lighting of the 
image being analyzed.  For instance, if the template image 
was taken in a dark room and the image being analyzed was 
taken in a well-lit room, then it would be unlikely that the 
algorithm could successfully detect the object.  This 
drawback makes the color histogram analysis algorithm a 
poor choice for our project.  Moreover, it is unknown what 
the colors of the prey drones will be, since Lockheed Martin 
has indicated that some of the prey drones will be painted 
to alter their default colors. 

C. YOLO Convolutional Neural Network (CNN) 

The solution chosen for this project to detect prey drones 
within a live stream of video, is the You Only Look Once 
(YOLO) convolutional neural network (CNN).  YOLO is 
trained by providing thousands of images with XML 
annotations which describe the bounding boxes around the 
prey drones within the images.  The particular version of 
YOLO utilized for this project is Tiny YOLO, a streamlined 
version of the YOLO CNN which provides efficient object 
detection at a reduced cost to system resources. [4] This is 
particularly useful since a key design requirement of the 
project is that all processing be performed on-board the 
drone.  YOLO is able to run faster than most CNN as a 
result of YOLO applying the CNN to the entire image once, 
whereas traditional neural networks often run the network 

across an image in many locations.  Therefore,  the YOLO 
network requires only one evaluation per image whereas 
traditional networks can require thousands of evaluations. 
[3] 

 
Fig. 5. YOLO Detecting a Prey Drone 

 

VII. SENSOR COLLABORATION 

The two main sensors included in this system are the 
LiDAR rangefinder and the optical flow sensor. We opted 
not to use a GPS component to determine our position, 
altitude, and heading because of the nature of the 
competition location. GPS signal in between buildings were 
inaccurate and altitude measurements from the flight  
controller barometer were difficult to calibrate and   
inaccurate at best. Both the LiDAR and optical flow sensors  
together work to replace the functionality of a GPS and can 
even successfully work indoors.  

A. Optical Flow 

An optical flow sensor is a low resolution downward 
pointing camera that compares ground detail in consecutive 
frames. The difference in ground features from frame to 
frame along with the systems gyros give an accurate 
velocity and position value measurement to the flight 
controller. In autopilot flight modes such as loiter, and 
position hold the aircraft can remain extremely stable at a 
consistent location or heading. This stability is necessary 
for our systems object detection algorithm accuracy and for 
eliminating drift to stay within boundaries. Calibrating and 
testing the sensor required focusing the lens and running a 
few flight tests to ensure the flight controller IMU and 
optical flow are consistent in their x and y positions 
respectively. (Shown in figure X.) The optical flow sensor 
we chose was the PX4FLOW; this sensor is highly sought 



after for its accuracy and compatibility with the Pixhawk 
flight controller but will only work with an accurate 
rangefinder. 

 
Fig. 6. Optical Flow Sensor Calibration 

B. Rangefinder 

The purpose of the rangefinder is to give accurate altitude 
measurements for our flight controller in place of a 
barometer. It is essential for the optical flow to work 
accurately and is a requirement for compatibility with the 
flight controller. We chose the Benewake TFMini LiDAR 
because of its size, price, reliability, and accuracy as a 
rangefinder. This rangefinder communicates serially 
through the Pixhawk serial 4/5 or telemetry 2 port. 
Configuring the LiDAR was extensive and required quite a 
few steps including an FTDI serial to USB converter.  

 

Fig. 7. LiDAR Sensor Returning Data 
 
After soldering the LiDAR serial cable to the FTDI chip 

we were able to configure the LiDAR module through the 
Benewake GUI to output in a decimal format (the flight 
controllers designated input/output format for data) rather 
than its preprogrammed hexadecimal output format. We 
used Tera Term, an open sourced terminal emulator to 
ensure we were outputting in the correct format before we  
unsoldered and re-soldered the serial cable. There were 

quite a few parameters to configure in the mission planner 
software which enable this particular LiDAR and that 
disabled the use of a GPS module. (The flight controller 
will not arm or take off until you disable the GPS 
functionality.) 

VIII. FLIGHT CONTROL SOFTWARE 

Throughout the development of this project various free 
software tools were implemented to speed up the design 
process. These tools were extremely useful and sometimes 
irreplaceable for configuring the hardware.   

A. Mission Planner 

Mission planner is the software we used to incorporate 
and configure sensors with our flight controller. The 
software provides an easy way to program flight modes, test 
motors, calibrate peripherals, and upload firmware. 
Another great feature of the mission planner software is the 
pre-arm check feature which ensures critical systems are 
functioning properly before taking off.  

Calibrating the frSky Taranis radio transmitter through 
mission planner allows for accurate manual control of the 
quadcopter by setting minimum and maximum PWM 
signals for all switches and sticks Switches on the 
Controller can be set to a specific PWM frequency and 
within mission planner can be programed to initiate 
autonomous flight as a failsafe. One switch signal is set to 
immediately land, one signal is for hold position, and one 
for a preprogrammed mode 

Calibrating the flight controller accelerometer is an 
essential part of flight only accessible through mission 
planner. Accelerometer calibration involves placing the 
drone flat on all of its sides consecutively to allow the IMU 
to understand where it is spatially. This allows the drones 
PID settings to autocorrect if the drone’s stability becomes 
unnecessarily disrupted.  

B. DroneKit 

DroneKit is an open-source platform which allows 
developers to create flight control, obstacle 
detection/avoidance, and computer vision applications. The 
software uses MAVLink to communicate with the Pixhawk 
flight controller and is also compatible with our companion 
computer, the Nvidia Jetson TX1.  The advantage of 
DroneKit is that the code is written in Python and it is much 
easier to understand than the code for the ArduPilot 
firmware which runs on the Pixhawk. [5] 

In this project, DroneKit was specifically used to 
integrate the computer vision algorithms with the flight 
control algorithms and program the search mode. For the 
search mode we used a yaw command in DroneKit which 



rotated the drone in place for 10 degrees. It continued to 
rotate the drone 10 degrees until a prey drone was detected 
in the frame. After the drone was detected using Tensorflow 
and Tiny Yolo, we performed some calculations to figure 
out the exact angle and the x,y,z velocities that the drone 
needed to travel to pursue the drone. Using these 
calculations, we fed the angle into the yaw function and the 
velocities to the velocity function.  

IX. AUTONOMOUS FLIGHT CONTROL STRATEGIES 

The flight mode describing how to autonomous control 
the drone when a prey drone has not yet been found, is 
referred to as “search mode”.  If a prey drone is identified, 
then the autonomous flight control algorithm switches to a 
mode referred to as “pursuit mode”. 

 
Fig. 8. Data Collected for Autonomous Flight Algorithms 

 
Once YOLO has processed an image and detected a prey 

drone, the autonomous flight algorithm collects useful data 
from the image, including the bounding box dimensions in 
pixel-space and the mid-point of the detected prey drone.  
A displacement vector in pixel-space is then calculated. 
Fig. 9. Displacement Vector in Pixel-Space is Calculated 

 

This pixel to degree ratio was then normalized so we 
could use any resolution camera with our algorithm. Based 
on this idea, we created a similar algorithm to match the 

altitude of the prey drones within the z-axis. We measured 
the approximate height of prey drones and we knew the 
total pixel height of our camera, 1080p. From there, we 
created a pixel-to- distance ratio that should theoretically 
allow us to move our drone the correct distance (up or 
down) based on where the prey drone located. 
Fig. 10. Normalized Displacement Vectors Which Are 
Adaptable to any Camera Resolution 

 

There were many pitfalls with this approach, like the 
blurry edges of our fish-eye camera, along with a difference 
between our drone and the simulation drone. However, 
given the time constraints and budget constraints, we 
believe this is the most effective approach to move our 
drone around the field to pursue the prey drones. Given the 
size difference between our drone and the prey drones (3 
feet versus 5 inches), we may even be able to make contact 
even if the algorithm ratios are not perfect. TensorFlow 
allowed us to run the 23,000 training data images through a 
neural network on the TX1 chip, and then use the detection 
results to navigate our drone around the field. To direct the 
drone autonomously, flight control algorithms were 
developed.  There are 3 primary flights: search mode, 
pursuit mode, and manual mode.   

 

VII. POWER DISTRIBUTION 

   Onboard the drone, we have several DC voltage sources 
-28 Volt 10000mah battery used to power the motors and 
ESCS.  We also used a 5500mah battery as a backup battery 
and two 4200mah batteries for the prototype quadcopter.  
Since each motor draws an approximate current of 30 amps, 
we have a total of 120 amps running through our subsystem.  
This large current amount unfortunately was not 
compatible with many of our connection joints, and we 
resoldered new connections to use a better current-rated 
connector.   

   We used the PCB to power the Pixhawk, because our 
main power distribution board fried last minute due to high 



current levels. We were able to remedy this by providing 
Pixhawk with a steady 5 volts. Additionally, we decided to 
mount and power the NVIDIA Orbitty Carrier board, we 
required an additional DC voltage source and purchased a 
smaller, 9 Volt DC Battery.  All of our power management 
research enabled us to solve last minute problems like our 
battery fusing together from too much current flowing 
through each connector, and the power distribution board 
frying.  As a result, we were able to directly modify our 
hardware design to prevent any battery failures, fire risks, 
and other safety issues. 

VIII. CONCLUSION 

The Lockheed Martin Robocopter project has proven to 
be quite challenging, yet rewarding.  Much has been learned 
about concepts we previously knew very little to nothing 
about.  Creating both a large prototype drone for the actual 
competition, as well as a smaller drone for prototyping and 
testing, was an incredibly useful strategy which enabled our 
team to discover many solutions to common issues before 
experimenting with the large, prototype drone. 

Our team communication between each member was 
remarkably effective. When one member needed help in a 
particular area, 3 or 4 people would offer to jump in and 
help with any issues in any area – regardless of particular 
majors.  Every single member of our team put in effort to 
ensure our success within this project, which is quite rare in 
larger projects like these.   

As a result, we were able to put our efforts together to 
achieve far more, and ensure that the bridge between 
hardware and software would allow us to fly effectively. 
Our team consists of Mechanical, Aerospace, Electrical, 
and Computer engineers, along with the Computer Science 
Team as well.  This multi-disciplinary project gave us all a 
unique experience to learn about areas that integrate within 
other engineering fields, and also enabled us to learn the 
most effective ways to collaborate as a team. We were very 
pleased when our final flight tests reflected that immense 
effort.  By learning every possible failure and how to solve 
it – we learned how to succeed.   
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