Lockheed Martin Robocopter
Drone Project

Kelsey Cameron, Trisha Singh, Justin Bates, and
Jacob Hazelbaker

Dept. of Electrical and Computer Engineering
University of Central Florida, Orlando, Florida,
32816-2450

Abstract — Lockheed Martin has expressed interest in
developing autonomous, aerial drones which are capable of
identifying other drones (“prey drones”) in order to
deliberately collide with the prey drones, causing the prey
drones to fall to the ground. Our team, referred to as “Blue
Team”, has developed a prototype to meet the design
requirements provided by Lockheed Martin. The prototype
utilizes a convolutional neural network (CNN) to identify the
prey drones. Autonomous flight algorithms were developed to
provide various flight modes, including a “pursuit mode”
which will guide the prototype drone towards an identified
prey drone, in order to collide with the prey drone. Various
sensors were integrated with the on-board embedded system
and the flight controller to provide situational awareness.
First Person Video (FPV) streaming functionality was
implemented, enabled individuals on the ground to view a live
stream video feed from the perspective of the prototype drone
with a Heads Up Display (HUD) providing relevant
information.

Index Terms — Quadrocopters, drones, convolutional
neural network, first person video, heads up display

1. INTRODUCTION

Aerial drones are becoming increasingly available on the
consumer markets, presenting unique challenges not faced
by previous generations. On October of 2016 a drone
impacted a commercial airliner in Quebec City, Canada
near the Jean Lesage International Airport. [1] The
collision did not cause any injuries, but has raised concerns
about the potential risks which readily available consumer
drones may pose to commercial aircraft. Military
installations are also at risk, as was demonstrated by the
January of 2018 attack on a Russian base in Syria by a
swarm of drones constructed from plywood, small engines,
and rudimentary electronic components which are readily
available on the consumer markets. [2]

To address the growing risks posed by commercially
available aerial drones, Lockheed Martin has provided
funding for several teams engineering students at the
University of Central Florida (UCF) to develop
autonomous drones which can identify target drones and
deliberately collide with the target drones to knock them

out of the sky. This approach does not require any
projectiles to take out the target drones, henceforth referred
to as “prey drones”. Moreover, with a budget of $1500 for
the prototype and an additional $500 for initial
development, the final product will be a relatively
inexpensive solution, as opposed to having personal and
weapons on hand to shoot or jam the electronics of the prey
drones.

Known simply as “Blue Team”, we are a group of UCF
engineering students who have taken on this challenge
presented by Lockheed Martin. The solution we have
created is a drone which can fly around autonomously as it
searches for prey drones within the vicinity. Utilizing a
high-definition, wide-angle camera, our drone can detect
prey drones by processing camera footage through a
convolutional neural network. All computational
processing is performed on-board the drone via an NVIDIA
TX1 Jetson module. Various sensors provide vital
readings, including LiDAR for measuring relative altitude
from our drone to the ground. Autonomous flight
algorithms we developed run on the TX1, which sends
rotational and translational flight commands to the Pixhawk
flight controller, thus moving the drone accordingly.

Our team, Blue Team, is but one of many teams which
are being sponsored by Lockheed Martin to produce a
viable prototype. To determine which team has produced
the most effective prototype, Lockheed Martin will be
hosting a competition.

II. LOCKHEED MARTIN DRONE COMPETITION

On Saturday, April 14, 2018 at 7:00 a.m. Lockheed
Martin will host a competition to determine which team has
produced the most effective drone prototype. Located
between the Engineering building and the Business
Administration building, the competition will be held
outdoors. The competition area will be marked with red
tape on the ground, indicating the boundary region in which
in the drones should remain within.

The prey drones in the competition will be of two main
body types: a small rectangular drone approximately 3
inches wide and a slightly larger dome-shaped drone
approximately 5 inches wide. While each of the two prey
drone types come in only a few colors, Lockheed Martin
has indicated that the prey drones may be painted different
colors not typically available for those drone models. There
will also be decoy versions of the prey drones in the form
of printed pieces of paper depicting an image of the various
prey drone types.

During the competition each team will have a set amount
of time to have their prototype drone in the arena without
the other team’s drone prototype drones in the competition

arena. Prey drones will then be introduced into the arena
and will be flown by Lockheed Martin employees. The
prototype drone will then be expected to fly around
autonomously within the arena and locate the prey drones
in order to intentionally collide with the prey drone. Points
will be awarded for colliding with a prey drone, and more
points will be awarded if the prey drone falls to the ground
as a result of the in-air collision. Points will be deducted if
the prototype drone targets one of the printed paper prey
drone decoys, which will be placed around the arena.
Points will also be deducted if the prototype drone wanders
outside of the arena boundaries, including going above the
40 feet high upper boundary.

III. PROTECTIVE CAGE ENCLOSING DRONE

To protect the prototype drone from being damaged
while colliding with a prey drone, a 3 foot by 3 foot by 1
foot cage has been constructed to enclose the prototype
drone. The supporting frame of the cage is composed of
PVC pipe, providing a sturdy, light structure. The sides of
the cage are enclosed with lightweight, plastic chicken-wire
fencing.

Fig. 1. Protective Cage Enclosing Prototype Drone

Initially, the protective cage was planned to be composed
of carbon fiber tubes as the supporting frame and
transparent polycarbonate tubes to cover the sides of the
cage. While this design was anticipated to be high
structurally sound, it was soon realized that these materials
would drastically increase the weight of the drone. The
design decision was therefore to go with the
aforementioned PVC pipe and plastic chicken-wire design
for the prototype drone cage.

IV.NETWORK AND COMMUNICATION

The prototype drone can be controlled autonomously or
manually. Autonomous control of the drone is performed
via commands sent from the NVIDIA TXI1 Jetson module

to the telemetry port of the Pixhawk flight controller. This
is the method by which all commands to the drone will be
sent during the competition to ensure that the drone meets
the autonomous flight design requirement of our sponsor,
Lockheed Martin. Manual control of the drone can still be
performed via a remote control which wirelessly sends
flight commands to the radio port of the Pixhawk flight
controller. Moreover, a flight control mode has been
implemented into the remote control to provide a manual
override command to ensure that an operator on the ground
can take full command of the drone if needed, thus
instructing the drone to ignore all autonomous flight
commands sent to it via the NVIDIA TX1 Jetson module.

Fig.2. Network Diagram of Drone Controls and FPV

Drone
NVIDIA TX1
Camera ' p— Plxhawk
El — b2l — &
| yoca
E AR
4 \\
< '
/\" s, Manual
o +, Controls
,’IVideo ‘\\
./ Stream M
v 7z
L]
g - =
Bexiiss Controller

Laptop

First Person Video (FPV) is provided via the use of a
high-definition camera which streams live video to the
NVIDIA TX1 Jetson module, which then transmits the data
over Wi-Fi to a nearby router. Bystanders on the ground
within the vicinity may connect to the router to view the
live FPV with a Heads-Up-Display (HUD) overlay
depicting relevant information, such as altitude. If any prey
drones have been detected then the HUD will also display
a bounding box around the identified prey drone to indicate
the location of the prey drone within the camera frame.

V. HARDWARE DESIGN DECISIONS

Prior to purchasing any of the hardware components for
the drone prototype, our team carefully compared the
various options on the market for each of the major
hardware components. Special consideration was granted
to products which not only met our design requirements,
but was also easy to integrate with the other hardware
components, included thorough documentation, and could
be shipped to our location within a few days.

Very early within the design phase, our team decided to
create two drones: a large drone which will be used during
the competition, and a smaller drone which will serve as a
test bench for debugging and experimentation while the
large drone is still being constructed. This design decision
proved to be exceedingly useful, providing our 13 person
team with valuable information from lessons learned while
building and experimenting with the smaller test drone.
When it was time to construct the large, main drone our
team had a much more clear idea of what to do and what
not to do, thus saving precious time and resources.

A. On-Board Embedded System

Considerable computational processing power would be
required to detect the prey drones and to run the
autonomous flight algorithms. The convolutional neural
network (CNN) implemented to identify the prey drones is
particularly taxing on the system resources and is highly
GPU intensive. While a desktop or laptop computer with a
dedicated GPU could provide more than enough system
resources to smoothly run the CNN, such hardware is not
an option for this project due to the design requirement that
all processing be on-board the drone. The embedded
system chosen must be light enough to easily be carried by
an aerial drone, yet powerful enough to smoothly run the
CNN and autonomous flight algorithms.

Of the many embedded systems considered, 3 stood out
as potentially viable options: Raspberry Pi 3 Model B,
BeagleBoard, NVIDIA TX1 Jetson module, and the newer
NVIDIA TX2 Jetson module. Table 1 below summarizes
the main specifications of these 4 embedded systems.

TABLE 1

COMPARISON OF POTENTIAL EMBEDDED SYSTEMS
System Ra:p' B.Board | TX1 X2
Dual-

ARM ARM Denver

S A53 ARM A8 A57 + Quad
ARM

256
GPU none none CUDA 256 CUDA

MEMORY 1 GB 256 MB | 4GB 8 GB
STORAGE | Flash Flash 16 GB 32 GB

Upon realizing that a CNN would be necessary to detect
the prey drones, the Raspberry Pi 3 Model B and the
BeagleBoard had to be ruled out as possible choices for the
embedded system, due to low memory and lack of a
dedicated GPU. The new NVIDIA TX2 Jetson module
therefore seemed like a prime choice for the embedded
system. However, at the time of writing this paper, the

NVIDIA TX2 is a very new product and is woefully lacking
in proper documentation. Even more concerning were a
plethora of customer reviews online and reports from
fellow engineering students who purchased the NVIDIA
TX2 that the system is buggy and does not yet have
properly working drivers for some of the I/O ports. The
design decision was therefore made to purchase its
predecessor, the NVIDIA TX1 Jetson module, which has a
very well-established wealth of documentation and also
still has 256 CUDA cores.

B. Flight Controller Module

While the NVIDIA TX1 Jetson module will handle all of
the on-board computational processing, the motors of the
drones must be controlled by a flight controller. The flight
controller is able to interact with the motors via an
Electronic Speed Controller (ESC), one of which is
connected to each of the 4 drone motors. The desired flight
controller must be capable of converting basic navigation
commands sent from the remote control or the NVIDIA
TX1 Jetson module into commands which can be
interpreted by the ESC to spin each of the 4 drone motors
appropriately to perform the desired aerial maneuver.
Special consideration was given to flight controllers which
have various sensors built into them, including a
magnetometer, barometer, and an Inertial Measurement
Unit (IMU).

Quite soon it became apparent that the Pixhawk line of
flight controllers is the industry leader for consumer drone
projects. There are a wide array of generic flight controllers
readily available on the market, but these flight controllers
were found to be far less compatible with other drone
components. With Pixhawk as the industry standard, so
many vital drone components have been designed to be
compatible with Pixhawk, often only requiring that the
component be plugged into the Pixhawk for it to function
correctly. After careful consideration it was decided that
the Pixhawk 1 flight controller is the best option for our
project. There is a smaller version of the Pixhawk 1 called
the Pixhawk Mini, but it costs $50 more than the Pixhawk
1 and the size difference is negligible in contrast to the large
size of our drone. There is also a newer Pixhawk 2 flight
controller, though it is as much as $100 more expensive
than the Pixhawk 1.

C. First Person Video (FPV) Camera

The camera is a vital component to the autonomous drone
project, serving as the means by which prey drones are
detected. Such a camera would need to be able to see the
small prey drones with some detail at distances up to 40
feet, the length of the competition area. Moreover, the
camera would need to be able to stream FPV continuously

to the NVIDIA TX1 Jetson module, ruling out all cameras
which can only store video footage to writable forms of
media such as to flash memory cards.

To determine the necessary camera resolution required to
effectively identify prey drones, tests were performed with
various cameras of differing resolutions and image quality.
There are a wide array of high-definition (HD) cameras on
the market at a low cost. However, a major concern of this
project was that the NVIDIA TX1 Jetson module would be
not be capable of processing a continuous stream of HD
video nearly as quickly as it could process lower quality
video at a reduced resolution. The convolutional neural
network (CNN) is particularly resource intensive to run,
especially for processing real-time video.

It was soon realized that the CNN could not reliably
identify prey drones at a distance if the camera utilized is
of a lower resolution and image quality. Utilizing cameras
with a low Megapixels (MP) rating of 5.0 MP or below
demonstrated that any prey drones at a distance appeared to
be little more than a few blurry pixels, providing very little
detail for the CNN to analyze. Further testing and research
also revealed that the quality of the camera sensor quality
is a critical factor. Having a high MP rating merely denotes
the amount of pixels utilized to represent the image, but the
MP rating alone does not explicitly describe the quality of
the image produced.

To find a viable balance between providing HD video
and not taxing the system resources of the NVIDIA TX1
Jetson, the design decision was made to utilize a 1080p
camera. The particular model chosen is the WIMIUS Q2,
12 MP Action Camera which is capable of streaming video
via USB. An appealing feature the WIMIUS Q2 is the fish-
eye lens, which provides a 170 degree field of view (FoV).
While it is true that a fish-eye lens does have some
distortion around the edges of the image, typical cameras
have a smaller FoV and thus less peripheral vision. Prey
drones which are within the edges of a fish-eye lens camera
will appear slightly distorted, but a camera with a normal
lens would not be displaying these far peripheral edges of
the image at all. It would therefore be more useful to see a
distorted image of the prey drone along the periphery and
possibly still be able to detect the prey drone, than to not
see the prey drone at all.

VI. PREY DRONE OBJECT DETECTION

The most mission-critical aspect of the project is the
ability to detect nearby prey drones. Without this
functionality, the resulting prototype would only be able to
blindly fly around at best, entirely oblivious to any prey
drones which may or may not be in the vicinity. This is
made possible by streaming FPV via the WIMIUS Q2

Action Camera to the NVIDIA TX1 Jetson module, which
runs an object detection algorithm on each frame to
determine if a prey drone is currently in sight of the drone.
A wide array of object detection algorithms were tested and
evaluated for effectiveness. The primary object detection
algorithms which were most promising are discussed
below.

A. Template Matching

Perhaps the most simplistic solution is to use a template
matching object detection algorithm. The template
matching algorithm is setup by providing it with a sample
image of the object which the algorithm is to detect.
Thereafter, the algorithm can analyze images or video to
see if that exact template image is present within the frame.
In order for a match to occur, every pixel of the template
image must match up perfectly within the image or video
which the template matching algorithm is analyzing. While
easy to implement, template matching is extremely
inaccurate for real-time video applications.

Fig. 3.
Image Depicted on the Top-Left and Returning a False Positive

Template Matching Algorithm Using the Template

Figure 3 above represents the primary issue with the
template matching algorithm. The algorithm is only
capable of recognizing the drone if template image is found
exactly the same in the image being analyzed. The drone
depicted in Figure 3 is rotated differently than it is in the
template image, thus the algorithm was unable to find the
drone.

B. Color Histogram Analysis

An alternative method for detecting objects is to deploy
a color histogram analysis algorithm. A template image is
provided, which is then analyzed to determine how much
of each color range is present within the template. For
example, if the template image is of a blue ball in front of a
yellow background, then the resulting color histogram
might state that the template image is 60% blue and 40%
yellow, for example. The color histogram analysis
algorithm then searches an image or video for a region in
which there is also approximately 60% blue and 40%
yellow.
Fig. 4.
Template Image, as Seen on the Left, and Detects the Object

Color Histogram Analysis Successfully Takes a

Within the Provided Image, Depicted to the Right

Color histogram analysis works quite well for identifying
objects which have been rotated, since a successful object
match is based upon recognizing similarities in the amount
of each color. Problems arise, however, when the lighting
of the template image is different from the lighting of the
image being analyzed. For instance, if the template image
was taken in a dark room and the image being analyzed was
taken in a well-lit room, then it would be unlikely that the
algorithm could successfully detect the object. This
drawback makes the color histogram analysis algorithm a
poor choice for our project. Moreover, it is unknown what
the colors of the prey drones will be, since Lockheed Martin
has indicated that some of the prey drones will be painted
to alter their default colors.

C. YOLO Convolutional Neural Network (CNN)

The solution chosen for this project to detect prey drones
within a live stream of video, is the You Only Look Once
(YOLO) convolutional neural network (CNN). YOLO is
trained by providing thousands of images with XML
annotations which describe the bounding boxes around the
prey drones within the images. The particular version of
YOLO utilized for this project is Tiny YOLO, a streamlined
version of the YOLO CNN which provides efficient object
detection at a reduced cost to system resources. [4] This is
particularly useful since a key design requirement of the
project is that all processing be performed on-board the
drone. YOLO is able to run faster than most CNN as a
result of YOLO applying the CNN to the entire image once,
whereas traditional neural networks often run the network

across an image in many locations. Therefore, the YOLO
network requires only one evaluation per image whereas
traditional networks can require thousands of evaluations.

(3]

Fig.5. YOLO Detecting a Prey Drone

VII. SENSOR COLLABORATION

The two main sensors included in this system are the
LiDAR rangefinder and the optical flow sensor. We opted
not to use a GPS component to determine our position,
altitude, and heading because of the nature of the
competition location. GPS signal in between buildings were
inaccurate and altitude measurements from the flight
controller barometer were difficult to calibrate and
inaccurate at best. Both the LIDAR and optical flow sensors
together work to replace the functionality of a GPS and can
even successfully work indoors.

A. Optical Flow

An optical flow sensor is a low resolution downward
pointing camera that compares ground detail in consecutive
frames. The difference in ground features from frame to
frame along with the systems gyros give an accurate
velocity and position value measurement to the flight
controller. In autopilot flight modes such as loiter, and
position hold the aircraft can remain extremely stable at a
consistent location or heading. This stability is necessary
for our systems object detection algorithm accuracy and for
eliminating drift to stay within boundaries. Calibrating and
testing the sensor required focusing the lens and running a
few flight tests to ensure the flight controller IMU and
optical flow are consistent in their x and y positions
respectively. (Shown in figure X.) The optical flow sensor
we chose was the PX4FLOW; this sensor is highly sought

after for its accuracy and compatibility with the Pixhawk
flight controller but will only work with an accurate
rangefinder.

Fig. 6. Optical Flow Sensor Calibration

Value Graph
GyrX

stabilize

B. Rangefinder

The purpose of the rangefinder is to give accurate altitude
measurements for our flight controller in place of a
barometer. It is essential for the optical flow to work
accurately and is a requirement for compatibility with the
flight controller. We chose the Benewake TFMini LiDAR
because of its size, price, reliability, and accuracy as a
rangefinder. This rangefinder communicates serially
through the Pixhawk serial 4/5 or telemetry 2 port.
Configuring the LIDAR was extensive and required quite a
few steps including an FTDI serial to USB converter.

T [

-~ 12m

Distanceicm)

et

-
R R R e e
po0 1000 VU

! wo 80
. b . . Number of Poimsian) R

3

1

]
0
1

|

:

3

Fig.7. LiDAR Sensor Returning Data

After soldering the LiDAR serial cable to the FTDI chip
we were able to configure the LIDAR module through the
Benewake GUI to output in a decimal format (the flight
controllers designated input/output format for data) rather
than its preprogrammed hexadecimal output format. We
used Tera Term, an open sourced terminal emulator to
ensure we were outputting in the correct format before we
unsoldered and re-soldered the serial cable. There were

quite a few parameters to configure in the mission planner
software which enable this particular LiDAR and that
disabled the use of a GPS module. (The flight controller
will not arm or take off until you disable the GPS
functionality.)

VIII. FLIGHT CONTROL SOFTWARE

Throughout the development of this project various free
software tools were implemented to speed up the design
process. These tools were extremely useful and sometimes
irreplaceable for configuring the hardware.

A. Mission Planner

Mission planner is the software we used to incorporate
and configure sensors with our flight controller. The
software provides an easy way to program flight modes, test
motors, calibrate peripherals, and upload firmware.
Another great feature of the mission planner software is the
pre-arm check feature which ensures critical systems are
functioning properly before taking off.

Calibrating the frSky Taranis radio transmitter through
mission planner allows for accurate manual control of the
quadcopter by setting minimum and maximum PWM
signals for all switches and sticks Switches on the
Controller can be set to a specific PWM frequency and
within mission planner can be programed to initiate
autonomous flight as a failsafe. One switch signal is set to
immediately land, one signal is for hold position, and one
for a preprogrammed mode

Calibrating the flight controller accelerometer is an
essential part of flight only accessible through mission
planner. Accelerometer calibration involves placing the
drone flat on all of its sides consecutively to allow the IMU
to understand where it is spatially. This allows the drones
PID settings to autocorrect if the drone’s stability becomes
unnecessarily disrupted.

B. DroneKit

DroneKit is an open-source platform which allows
developers to create flight control, obstacle
detection/avoidance, and computer vision applications. The
software uses MAVLink to communicate with the Pixhawk
flight controller and is also compatible with our companion
computer, the Nvidia Jetson TX1. The advantage of
DroneKit is that the code is written in Python and it is much
easier to understand than the code for the ArduPilot
firmware which runs on the Pixhawk. [5]

In this project, DroneKit was specifically used to
integrate the computer vision algorithms with the flight
control algorithms and program the search mode. For the
search mode we used a yaw command in DroneKit which

rotated the drone in place for 10 degrees. It continued to
rotate the drone 10 degrees until a prey drone was detected
in the frame. After the drone was detected using Tensorflow
and Tiny Yolo, we performed some calculations to figure
out the exact angle and the x,y,z velocities that the drone
needed to travel to pursue the drone. Using these
calculations, we fed the angle into the yaw function and the
velocities to the velocity function.

IX. AUTONOMOUS FLIGHT CONTROL STRATEGIES

The flight mode describing how to autonomous control
the drone when a prey drone has not yet been found, is
referred to as “search mode”. If a prey drone is identified,
then the autonomous flight control algorithm switches to a
mode referred to as “pursuit mode”.

Fig. 8.

Flight Algorithms
. :

Data Collected for Autonomo

frameY = 1080

dX= 1102.

Once YOLO has processed an image and detected a prey
drone, the autonomous flight algorithm collects useful data
from the image, including the bounding box dimensions in
pixel-space and the mid-point of the detected prey drone.
A displacement vector in pixel-space is then calculated.
Fig. 9.

Displacement Vector in Pixel-Space is Calculated

frameY = 1080

preyMidX= 1102

> preyMidY= 605

distMidX™="preyMidX - frameMidX
distMidY = preyMidY - frameMidY

frameX = 1920

This pixel to degree ratio was then normalized so we
could use any resolution camera with our algorithm. Based
on this idea, we created a similar algorithm to match the

altitude of the prey drones within the z-axis. We measured
the approximate height of prey drones and we knew the
total pixel height of our camera, 1080p. From there, we
created a pixel-to- distance ratio that should theoretically
allow us to move our drone the correct distance (up or
down) based on where the prey drone located.

Fig. 10. Normalized Displacement Vectors Which Are

Adaptable to any Camera Resolution

-0.5
distPercentX = distMidX / frameMidX
distPercentY = distMidY / frameMidY
-1.0
There were many pitfalls with this approach, like the
blurry edges of our fish-eye camera, along with a difference
between our drone and the simulation drone. However,
given the time constraints and budget constraints, we
believe this is the most effective approach to move our
drone around the field to pursue the prey drones. Given the
size difference between our drone and the prey drones (3
feet versus 5 inches), we may even be able to make contact
even if the algorithm ratios are not perfect. TensorFlow
allowed us to run the 23,000 training data images through a
neural network on the TX1 chip, and then use the detection
results to navigate our drone around the field. To direct the
drone autonomously, flight control algorithms were
developed. There are 3 primary flights: search mode,
pursuit mode, and manual mode.

VII. POWER DISTRIBUTION

Onboard the drone, we have several DC voltage sources
-28 Volt 10000mah battery used to power the motors and
ESCS. We also used a 5500mabh battery as a backup battery
and two 4200mah batteries for the prototype quadcopter.
Since each motor draws an approximate current of 30 amps,
we have a total of 120 amps running through our subsystem.
This large current amount unfortunately was not
compatible with many of our connection joints, and we
resoldered new connections to use a better current-rated
connector.

We used the PCB to power the Pixhawk, because our
main power distribution board fried last minute due to high

current levels. We were able to remedy this by providing
Pixhawk with a steady 5 volts. Additionally, we decided to
mount and power the NVIDIA Orbitty Carrier board, we
required an additional DC voltage source and purchased a
smaller, 9 Volt DC Battery. All of our power management
research enabled us to solve last minute problems like our
battery fusing together from too much current flowing
through each connector, and the power distribution board
frying. As a result, we were able to directly modify our
hardware design to prevent any battery failures, fire risks,
and other safety issues.

VIII. CONCLUSION

The Lockheed Martin Robocopter project has proven to
be quite challenging, yet rewarding. Much has been learned
about concepts we previously knew very little to nothing
about. Creating both a large prototype drone for the actual
competition, as well as a smaller drone for prototyping and
testing, was an incredibly useful strategy which enabled our
team to discover many solutions to common issues before
experimenting with the large, prototype drone.

Our team communication between each member was
remarkably effective. When one member needed help in a
particular area, 3 or 4 people would offer to jump in and
help with any issues in any area — regardless of particular
majors. Every single member of our team put in effort to
ensure our success within this project, which is quite rare in
larger projects like these.

As a result, we were able to put our efforts together to
achieve far more, and ensure that the bridge between
hardware and software would allow us to fly effectively.
Our team consists of Mechanical, Aerospace, Electrical,
and Computer engineers, along with the Computer Science
Team as well. This multi-disciplinary project gave us all a
unique experience to learn about areas that integrate within
other engineering fields, and also enabled us to learn the
most effective ways to collaborate as a team. We were very
pleased when our final flight tests reflected that immense
effort. By learning every possible failure and how to solve
it — we learned how to succeed.

ACKNOWLEDGEMENT

The authors wish to thank Lockheed Martin for providing
funding and mentorship for this project.

ABOUT THE AUTHORS
Kelsey Cameron is a computer
engineering student at UCF. Upon N
graduating in May of 2018, Kelsey
will be moving to Texas to begin
working at Texas Instruments (TT).
She enjoys embedded systems,
everything about engineering, and
composing piano music.
|

Jacob Hazelbaker will be
attending Carnegie Mellon
University in the fall to study a
Masters of Science in Information
Security. Despite being hit by a car
this semester from walking to
campus, he still enjoys long walks
by the beach.

Justin s an Electrical
Engineering student at UCF. He
will be working as an electrical

engineer at DRS Technologies in &2,
Melbourne Florida. He’s interested
in computer hardware and music as L

a hobby.

Trisha Singh is a computer
engineering student at the
University of Central Florida. She
is considering pursing a Masters in
Computer Science. She enjoys
high-level software development,
singing, and biking.

REFERENCES

[1] J.R.Miller. (October 16, 2016). Drone hits passenger plane
for first time in North America. New York Post. Retrieved
from https://nypost.com/2017/10/16/drone-hits-passenger-
plane-for-first-time-in-north-america/

[2] D. Reid. (January 11, 2018). A swarm of armed drones
attacked a Russian military base in Syria. CNBC. Retrieved
from https://www.cnbc.com/2018/01/11/swarm-of-armed-
diy-drones-attacks-russian-military-base-in-syria.html

[3] Redmon, Joseph.”YOLOV3: An Incremental Improvement.”
YOLO: Real-Time Object Detection, 2018. [Online].
Available: pjreddie.com/darknet/yolo/.

[4] Hollemans,Matthjis. “Real-time Object Detection with
YOLO” 20 May 2017. [Online] Available:
machinethink.net/blog/object-detection-with-yolo/.

[5] “About Dronekit” About Dronekit. [Online]. Available:
python.dronekit.io/about/overview.html/.

