Smart Security Dash Camera
(SSDC) Project

Matthew White, Scott Levine, Austin Sturm,
Joseph Labauve, Timothy Deligero

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract — This paper describes the functionality and
purpose of the Smart Security Dash Camera (SSDC) project,
which is a device that senses and tracks the immediate
environment of a vehicle, and allows notifications to be sent
to the user in the event of a burglary or accident involving
the parked car in which the device is installed into. It utilizes
both hardware and remote software in order to accomplish
this task. This system is a more modern and safer car alarm,
which allows the owner to take immediate action.

Index Terms — Server API, GPS tracking, MEMS,
Streaming Video

1. INTRODUCTION

With the recent automotive break-ins on the UCF
campus over the span of one night in spring 2017 it is
apparent that there is a need for more in depth automotive
security rather than just a horn alarm. The need for the 360
automotive security is evident. While this is a very recent
noteworthy event there are many less known incidents that
go unreported.

Fig. 1 Example of car damage and car theft caused to
vehicle.

The project goal was to create an affordable product that
can be bought and used as a vehicle theft deterrent device.
This product is able to detect a disruption due to motion

that is unwarranted to the vehicle. Once an anomaly is
detected video will commence recording when an instance
occurs. With the technology readily available to make this
product the cost to produce this type of device for most
young professionals and working individuals can be
within affordable ranges, and become even cheaper as
time passes.

II. SysteEM COMPONENTS

The layout of the PCB for the SSDC is based on the
arduino model 2560. The choice of the model 2560 as the
base model was chosen due to many of the parts being of
an acceptable accuracy for project specifications. The base
model was modified for the needs of the project, and will
control the sensory data as well as activating the
Raspberry pi board. The Raspberry pi will control the
cameras, and sending of the video. The main additions to
the PCB compared to the base arduino model are the
inclusion of a voltage regulator system to allow the device
to be connected directly to a car battery as well as
circuitry to support extra voltages as needed by different
chips. Also a gps chip and cdma board were added with
supporting circuitry.

A. Microcontroller

As stated in the introduction the PCB will be based on
the arduino 2560. Originally a Ti board was considered for
the base model of the SSDC. However due to the
complexity of the board, along with the cost of
manufacturing such a large multilayer board the choice
was made to switch to the arduino 2560. The arduino will
be essentially the brains of the project recording sensory
data to check if an alert is raised. The ATMEGA 2560
chip is the MCU that controls operations of the PCB.
Software will control the alerts the arduino sends to the
raspberry pi through a rolling average to detect
fluctuations in sensor data. Any alerts will cause the
arduino to raise an alert pin to high, and the pin will be
connected by a wire to the pi which will initiate the
recording sequence. The data that the arduino measures
are accelerometer, gps, and in the future magnetometer.
To make better use of the space on the PCB board a
number of GPIO pins were removed that were not
required, and in their place the GPS chip was secured as
well as the voltage system.

B. Raspberry Pi (mini-computer)

The Raspberry Pi 3 acts as the eyes that the SSDC PCB
controls. It contains built in ethernet and a wifi chip
allowing for mobile communication. The Pi 3 also
contains 40 GPIO pins for communication; however a

number of pins won’t be used. Important features that are
needed for the SSDC project are multiple usb ports for
multiple camera usage, and a processor capable of
handling HD video for streaming purposes. It is also
important to note that the Pi comes with external ram to
assist in the processing of the footage. While the base pi
model has a majority of the features needed it lacked the
gps, accelerometer, and a voltage regulator for jumping
down a car battery’s higher voltage. These areas however
will be controlled and communicated by the SSDC PCB.
When the PCB detects noticable changes in the sensor
readings of the gps or accelerometer, and as a result the
pins on the PCB will be raised to a value of high. These
pins will be connected via a wire to the pi to signal to start
recording.

C. MEMS Telemetry Sensor

For this project the LSM6DS3, an all in one chip, was
used for the accelerometer and gyrometer data collection.
This sensor was chosen due to its ability to detect within
2g to 16g motion, work in low power mode, and its ability
to communicate through I2C or SPI. This proformance
meets design requirements to detect motion, and to
implement more advanced hardware for additional sensors
that only provide minimal additional accuracy and
precision would be considered over engineering.

Figure 1. Pin ions
b 4
Y
X (TOP VIEW)
DIRECTION OF THE
DETECTABLE w 38
ACCELERATIONS oo
]
)
NC SDO/SA0
BOTTOM
Ne"O PFew | O sbx
INT2 | [scx
VDD =] INT1
(TOP VIEW) 0
DIRECTIONS OF THE oa o
DETECTABLE 2 Z5
ANGULAR RATES 00 e

Fig. 2 This is the board view of the LSM6DS3 which
contains the accelerometer and gyrometer used for
detecting motion variants of the device.

D. GPS Module

The gps module chosen for the PCB was the
FGPMMOPAG6H. This was chosen due to its high
precision of up to -165 db coupled with low power
consumption. precision for certain components is
important but it was a concern for gps, so the FGP module
was chosen to detect any movement variations along with
locating lost vehicles with high precision.

Fig. 3 The FGPMMOPAGH that tracks the
coordinates of the device.

GPS

II1. BOARD DESIGN

For the board design of the PCB some of the original
board layout did not need to be tampered with however
after removal of a number of GPIO pins, and the inclusion
of key parts. Pieces had to be properly organized to
prevent issues in frequencies as well as voltages. The GPS
chip was isolated by itself on the right side of the board
with the intention to reduce any noise that it may receive
from digital components.

Fig. 4 PCB board design of the SSDC device.

Near the bottom of the board the voltage regulator was
added with supporting circuitry obtained from its
datasheet, and this placement was chosen due to the main
voltage line from the base arduino board being located
here. The new stepped down voltage will be fed in this
main voltage line for simplicity, and additional smaller
circuits were added to get the 3.3 volts for the
accelerometer. The accelerometer module was added
above the voltage regulator far enough away to guarantee
proper clearance from any thicker traces.

IV. REST SERVER

An application programming interface (API) server
established on a remote Amazon Web Services EC2
micro-instance acts as the communication medium

between the mobile application and the hardware device.
Without the central server the device would be unable to
establish remote connections between the two devices due
to a lack of address routing over unknown networks. The
device and application both utilize Hyper Text Transfer
Protocol (HTTP) requests in order to post data to the
server. The protocol allowed for streamlined development
of the communications over a common protocol. The
downside to the protocol utilization being the increased
packet size. The average HTTP request requires “700-800
bytes” [1], as opposed to the utilization of raw sockets
which nearly only require the number of byte for the
payload.

The Django Rest Framework, developed in Python3,
handles the HTTP requests sent to the server. Utilization
of a “View, Model, Serializer” design allows for the
backend to function appropriately. The current
implementation allows for large scale deployment,
supporting thousands of Devices and Users. A user may
register numerous devices to their account and manage
them separately through the API.

Common security flaws: cross-site scripting, SQL
injection, authentication bypass; All have been handled
through secure programming practices along with built in
security features to the Django Rest Framework. The
framework provides automatic insecure input escape to
protect against illegal characters through regex based
string stripping function. Authentication implemented
through the utilization of supported Token Based
authentication allows for the users and devices to be only
available to the owning account; Unauthenticated access
through either invalid or missing token errors stating
invalid access. Video feed security relies on an obfuscated
url for each video stream, no authentication is built into
this stream only the URL is required to view the stream.
Future designs hope to implement an authenticated based
streaming service.

The live video stream sends the data over the RTMP
protocol to an NGINX relay hosted on the AWS
micro-ec2 instance. The relay provides a public interface
for the mobile application to receive the live video feed,
without the relay the application would be incapable of
reaching the video feed. The NGINX relay while
rebroadcasting the stream as well saves the video locally
on the device to allow the user to retrieve their stored
streams separately from the local video on the device.
Utilization of abstracted methods to achieve these goals
decreased performance while allowing for an achievable
development time.

V. DEVICE SOFTWARE

Device development utilizes core linux functionality
along side development in both C and Python3.5. The
device runs headless raspbian to support utilization of
prebuilt linux utilities such as avconv/ffmpeg and wpa_cli
to minimize development cycle. Avconv facilitates the
streaming of the device through the Real Time Streaming
Protocol (RTSP), over the provided connection medium
(wireless, cellular).

The connection medium is determined through a custom
wrapper over the linux, wpa_cli command line utility; The
wrapper allows for automated network joining to either
known secure networks as well as auto-join for open
networks. In order to verify connection the device
attempts to reach out to google’s DNS servers (8.8.8.8), if
no connection may be made an attempt to bypass any
potential web-portal occurs. In order to bypass the captive
portal a few challenges are presented, the main issue being
the variety in captive portals as well as any potential
captcha which may be presented on the page. Simple list
of curl requests will be made to beat the majority of major
captive portals, future implementation of a machine
learning system to beat the captive portals will be
implemented. A second attempt to verify connection
occurs, upon failure the device repeats these steps for a
new wireless network until success or complete failure.

20000.0

Simulating a hit
and run with a
car door slam.
Driver door and
passenger door.

15200.0

18400.0

17600.0

iy b v JM il “'”'w'

"JLN" .u,\ ‘Nl
\di

16800. Gigg 7 B ED 4

Fig. 5 Accelerometer testing for triggered events.

The statistical analysis of the device and decision
making beyond the event queue rely on triggers and data
sent from the secondary board to the primary. An interrupt
listening on the primary board over a designated pin
enables the camera’s to record the event occuring. A
circular buffer containing data collected at an equal time
delta (At) computes the average of the statistical data to
determine a baseline for anomalies. The tolerance must be

high enough to avoid a false positive rate below 8%, with
a 90% success rate.

The algorithm used utilizes a rolling average which
stores a number of previous sensor input data and
produces an average based on that dataset. The number of
stored data has to be sufficiently large such that an
accurate environment model is made, but also must be
small enough so that a previously louder set of events does
not affect the triggering logic in a more quiet time. This
rolling average is used to compare to the current sensor
values. If the difference is outside a threshold value, a
trigger is sent to start recording and transmitting data.

Device decision making also occurs through the
utilization of the mobile application. An event listener
triggers periodically to obtain required actions, the event
listeners blocks other actions as user events are prioritized
over application events; except in the case of secondary
board interrupt. The event listener class defines numerous
available functions for the event queue listener to execute.
The API issues commands in the format of:
“methodlargllarg2” which are parsed and executed by
matching the method to the appropriate function available
in the class and executed. Any event in the queue failing
to match to an available function or failing to execute
deletes from the queue ensuring only valid events remain.
Upon successful completion the event is deleted from the
queue.

{ SSDC Device
i, T

v

Record Live Feed (<

Record GPS

—>|Record Sensor Data Location

x v
- Trigger ™. -~ 4 ‘
= . Motion > Send GPS ~ FrontRear .
NO . Detection Location Values . Camera On? NO
YES ‘ l YES
v o = 4
> REST Server j«——— Send Live Video

Send Alerts -
S [Y
[

|

‘ Receive Data ‘

Send R to
Server/Device

Mobile App

Fig. 6 SSDC, Server, and Mobile App interaction
FlowChart

Logic allowing for utilization of the device over a
software access point ensures availability within dead
zones as well as initial setup. Interaction with the device
over the local network requires separate functionality from

that of the normal interaction. The interaction between the
device and the mobile application must modify their
communication channel as communication no longer
occurs over the REST server. The device configures Layer
3 networking to static addressing with the device available
at local TP Address: 192.168.0.100 and subsequent
connected devices incrementally above “.100”. Control of
the device may be executed by sending specified data in
the same manner used in the event queue management. A
socket server listening on port 8888, listens for the
specified format in the buffer and executes the called
function.

VI. MOBILE APPLICATION

The mobile application is provided for users to interact
with the server to send and receive data from the device
for this project. The mobile application includes these
features:

(1) Login/Register Accounts

(2) View/Receive Alerts

(3) View Live Feed from device’s cameras
(4) View Vehicle Location with GPS

(5) Manage Stored Videos/Images

(6) Manage Devices/Networks

(7) Edit User Information

This section will provide a description on how the
mobile application works and how its features were
implemented.

A. Android Studio Software

The software used to develop the mobile application is
Android Studio. Android Studio is the official Integrated
Development Environment (IDE) for Android app
development, based on IntelliJ IDEA. This also includes
features such as:

(1) A fast and feature-rich emulator.

(2) Instant run to push changes to the running app without
building a new APK.

(3) Code templates (activities) and GitHub integration to
help app developers build common app features and
import sample code.

(4) Built-in support for Google Cloud Platform, making it
easy to integrate Google Cloud Messaging and App
Engine. [2]

The programming languages that are used to develop
this app are Java and XML in the form of activities. The
Java class files are used to respond to the user’s inputs on

the mobile application and send and receive data from the
server and the XML files are used to format the data
viewed by the user on the GUIs. Creating a new activity
will create a code template with a Java file and XML
file(s) to interact with. The mobile app will consist of
many activities for the features mentioned above. The app
will also utilize HTTP requests to send and receive data
from the server within these activities when needed.

B. User Information

User information must be stored and used throughout
the mobile app. This includes, the user’s username,
authorization key, the connected device’s ID and primary
key, etc. Android Studio provides an Application class
that allows the mobile app to access global variable data
from a single Java class with this extension. Activities will
be able to access stored global data in this class without
having to pass data through each activity.

The user has the option to change their personal user
information for their username and email. Changing the
user’s username will require the user to input there current
username and new username, while changing the user’s
email only requires a new, valid email address. After
confirmation of these changes an HTTP GET request will
receive the user’s current user information from the server
and add changes to the account to be saved to the user’s
account.

C. User Accounts

The user must either log into a previously created
account or register a new account in order to access the
main features of the mobile app. When logging in, the user
must input valid user information, in the form of a
username and a password, and after confirmation that the
user has finished inputting their information, an HTTP
POST request will be sent to the server with the inputted
user information to validate that the account exists and is
correct within the server’s list of user accounts. If the user
has not inputted information in either the username or
password or if the server responds that the user
information is invalid, then the activity will display a
message to the user to input any missing user information
or that their user information is invalid and to input their
information again.

The user can also register a new account to the server,
int the form of an email, username, and password. The
new user information must be filled in, otherwise a
message will be displayed to fill in the rest of the missing
information. The user must input unique user information
that does not match with the list of registered accounts in
the server. The email must also be in a valid format and
the password must be more than 8 characters long. After

the user has confirmed creating a new account, an HTTP
POST request will be sent with the new user information
to the server to validate that the user information is
unique.

When the user is logged into their account, they will
gain access to an authorization key from the JSON Object
received after the HTTP request if the user information
inputted was valid. The authorization key is essential for
many of the HTTP requests used in the features and
activities in the mobile app. The authorization key itself
will not be known by user and can only be obtain after
logging into their account. This authorization key cannot
be used when logged out of the user’s account.

NO vUser . YES

Login/Register Ul =— | Input User p 3 8
- Information Again 3 _Imt\"!r;ﬂadﬂon # Token

Send Authorization

Input User
Information

LOGIN

; ’Login or ™ :
“ Register? Login to Account —

. Server
REGISTER —I—f
Create Account -
|

Fig. 7 User Login/Register functions Flowchart

D. Devices and Networks

In order to interact with the device, or have the ability to
receive alerts, view the device’s location or live feed, and
view any stored media, the user must first connect to a
device and gain access to their ID and primary key, which
is essential for HTTP requests used in other activities to
receive data from the server. The user must add devices to
their user account via inputting the device’s ID and using
an HTTP POST request to add that device to the user’s
account, which will be displayed in a list with multiple
options on each device. The list of devices will be
obtained using an HTTP GET request to the server to
receive the all devices stored in the user’s account and
each device’s information.

If there are devices available to the user in their list,
they have the option to clear alerts, connect to the device,
delete the device from their list, or view the network list
for each device. Clearing the alerts will send an HTTP
DELETE request to clear the alert queue in the device.
Connecting to the device will store the device’s ID and
primary key to be used in other features of the app.
Deleting a device will send an HTTP DELETE request to
delete the device from the user’s list of devices. Viewing
the networks will send an HTTP POST request to get the

Main Menu Ul

device’s networks based on its ID and will list the
networks that the device is connected to.

The user will have the option to add networks to the
device to connect to. The user must input the SSID, PSK,
and the network type, either WEP, WPA, WPA2, or None
as selective options. After the user confirms to add this
network to the device, then an HTTP POST request with
the network information will be used to add the network to
device for the user to view in the networks list. This will
include the SSID, PSK, and network type information for
each network.

E. Alerts

The user will be able to view a list of alerts recorded by
each device. This will include information of the type of
alert, time recorded, the details of the alert, and which
device the alert originated from. These alerts will be
obtained using an HTTP GET request to receive alerts
from each device the user has added to their list of
devices. On default, if no device is connected, then the
user will view all alerts listed from every device that is
listed in the server. If the user is currently connected to a
device, then alerts will only be listed for that device. If
there are no alerts currently listed, then it is displayed that
no recorded alerts are provided for that device.

The mobile app will detect for new alerts from a
connected device. This will be done using a Timer
function provided by Android Studio that executes
functions periodically given a period of time. Between
each execution of the Timer, an HTTP GET request will
be sent to look at the most recent alert of the alert queue.
The most recent alert will be analyzed of the time it was
recorded to ensure that this alert has occurred at recently
from the current time. If the code detects that the alert is
recent, then a push notification will be sent to the user’s
mobile device to notify them that car theft or car damage
has occurred to their vehicle. The most recent alert will
also be recorded to ensure that only one push notification
has been sent for a new alert. These push notifications will
be done in the background of the mobile application by
utilizing the Service component of the Android Studio. A
Service is an application component that can perform
long-running operations in the background, and it does not
provide a user interface. Another application component
can start a service, and it continues to run in the
background even if the user switches to another
application. [3] This means that a user can access the
features of the mobile app and be able to use different
apps while the mobile app will continuously detect for
new alerts. The Service and Timer are cancelled once the
user logs out of their account with confirmation that they

will no longer receive anymore push notifications/alerts
from the mobile app.

¥ NO
. Notification Service <
Alerts Ul —| Timer Function: Detect ——— g;:cggz ;

for New Alerts - 7

X YES |

. . ‘éf
" Device . ,| Display Alerts Send Push
. Connected 2~ for all Devices Notification

b B . v

_,| Display Alerts for

"| connected device Mobile Device

Fig. 8 Alerts functions Flowchart
F. Vehicle Location

The mobile app allows the user to view the
device’s/vehicle’s location using the GPS data from the
server received from the device. The mobile app uses the
Google Maps API and the Google Maps Activity template
to display the location of the user’s vehicle. A device must
be connected in order to obtain the specific GPS data of
the device. Once the user is connected to a device, a map
will be displayed showing marker of the user’s vehicle
location. The GPS data will be received using an HTTP
POST request to receive the GPS data in the form of
latitude and longitude values for the connect device from
the server.

Hétd i3 Four wehbchs

Fig. 9 Example of the GPS location of the vehicle in the
mobile app.

In order to update the vehicle’s position, a Timer
function is used to execute the POST request at a certain

time period to receive the updated latitude and longitude
values recorded. This is also used to locate the vehicle in
case of car theft or if the vehicle potentially moves in
some other cases. The marker will move and the map will
focus on the vehicle’s location on every update.

G. Live Feed

The user will be able to view live feed from the front
and rear view cameras of the device through the mobile
app with two interfaces for each view. Android Studio
provides VideoView widgets that allows the mobile app to
display videos with a URL connection string provided for
the video. The URL would be parsed and converted into a
URI object reference, which is used to identify and
reference a resource, in this case a video. By setting a
Video URI reference to the VideoView, the user will be
able to view the live video in current time. The live feed
will be received using an HTTP GET request to take the
URL string of the live feed from the connected device.
There will also be boolean values received from the
request as well to indicate if the cameras are currently on
or off. The user will have the options to toggle the
cameras ON or OFF or switch between the front view or
rear view cameras in an options menu in the interface.

v !Channe Camera 7| Send Live Video
Views |

WR— | ;
i YES T

Send Toggle
Commands NO

Live Feed Ul

>

= Camera is

| ON?

v v
|

| Receive Live Video ——————————»{ Server o T

l $5DC Device

i

! Receive Toggle
| Ccommands

Display Live Video
from camera

N
YES /” B
] /Camerais-,
e
. g

NO

NoLive Videois | T
Displayed

Fig. 10 Live Feed flowchart of toggle commands and
displaying live video.

Unfortunately, Android Studio, as of version 3.1,
supports limited network protocols for audio and video
playback.. This makes some URL connection strings
unable to use and view the video from the mobile app. The
live feed from the device is using an RTMP protocol,
which is not supported in the current version of Android
Studio. Instead, Vitamio, an open source library, is used in
order to compensate for the Android Studio’s limited uses
with VideoView. Vitamio is an open multimedia
framework or library for Android and iOS, with full and
real hardware accelerated decoder and renderer. Vitamio

| Wait for Camera ‘
’| to be Toggled DN‘

can play 720p/1080p HD mp4, mkv ,m4v, mov, flv, avi,
rmvb, rm, ts, tp and many other video formats in Android
and i0S. Almost all popular streaming protocols are
supported by Vitamio, including HLS (m3u8), MMS,
RTSP, RTMP, and HTTP. [4] Vitamio has its own custom
VideoView that works similarly to the VideoView widget
in Android Studio, but is able to accept many network
protocols and media formats. With this included to the
mobile app, live feed can be received and viewed by the
user.

H. Stored Media

The device will send recorded images during instances
of recorded alerts to the server. The user will be able to
view the recorded media stored in the device. The user
must first connect to a device in order to receive the stored
media. The user will receive the stored media by using an
HTTP GET request to receive any stored images for the
device based on the connected device’s ID.

The images will give the user the options to view the
full recorded image or delete the image from the server.
The list of images will contain Bitmap values from
decoded streams from the stored image’s URL path.
Android Studio provides an ImageView widget that
allows images to be viewed by the user on a mobile app.
The Bitmap values will be used to set the ImageView
widgets so the user can view the stored image. When
deleting a stored image from the server and device, the
URL path must be given to remove the reference and data
stored. This will send an HTTP DELETE request to the
server to delete the specified image.

L. Testing

Android Studio provides an emulator to test the mobile
app on an emulated Android device. When the mobile app
is being run, the processes are recorded in the Logcat of
Android Studio, which can also be used to debug the
mobile app code. Whenever the app crashes or has errors,
Fatal Exception errors are recorded in the app to detect the
reasoning and where in the code that causes the app to
crash. This is used to improve the mobile app by fixing
these issues. The following features for this project’s app
are tested multiple times on the emulator to detect any
errors or potential issues within the code.

However, the emulator from Android Studio is not
always reliable, as it can be comparably slow to actual
hardware devices and there have been instances of the
emulators being buggy when run on certain emulated
devices. The mobile app code can run on an Android
device by having a built APK. The APK can be emailed
and downloaded onto an Android device to be run and

tested. The mobile app on the Android device will work
the same as the emulator on Android Studio.

VII. CoNcLUSION

This project has provided valuable experience to the
whole group on learning how to work and plan in
developing an actual product. Throughout the group’s
experience, there was an emphasis that contribution and
effort in ideas, planning, and giving different roles and
responsibilities to each member are important in
developing a project. Despite having difficulties, issues,
and learning curves during the process, it became valuable
experience to learn the hardships and obstacles it takes to
creating a product. Overall, the group has learned and
developed their skills as engineers that will be valuable in
their future professions.

THE ENGINEERS

Matthew White, senior
Electrical Engineering student
at The University of Central
Florida College of Engineering
and Computer Science, will
start to pursue his career as an
entrepreneur. He has accepted
an offer to work for a large
fortune 500 company. He will
continue working on his own business. He joined the
Upstarts program at University of Central Florida. During
his time at UCF he has placed 2nd in the Business Model
Competition and 2nd in a statewide business competition.
He has spent more time in the business building then the
engineering building at UCF. He owns a US Patent and
plans to have many more under his name in the upcoming
years.

Austin Sturm, senior
Computer Engineering student
in the College of Engineering
and Computer Science at the
University of Central Florida.
Employed at the Walt Disney
World Company for the past
two years as a Security
Analyst. An avid member of
competing in numerous security

Hack@UCEF,
competitions across the nation.

Timothy Deligero, a senior
Computer Engineering student
at University of Central Florida
graduating after spending 3
years in the university. After
graduating, he will be enrolled
in to a graduate school in UCF
to earn a Master’s Degree in
Computer Engineering and
pursue a job in the same

background.

Scott Levine, senior Electrical
Engineering student in the
College of Engineering and
Computer Science at the
University of Central Florida.
Hopes to pursue a career in the
automotive field.

Joseph Labauve, senior
Electrical Engineering
student in the College of
Engineering and Computer
Science at the University of
Central Florida.

ACKNOWLEDGEMENT

We would like to acknowledge Samuel Richie for
continued support and coming out of retirement to be our
Senior Design teacher at UCF. Jerry Reed is a Valencia
Professor that has helped immensely on our project
coding.

REFERENCES

[1] “SPDY: An experimental protocol for a faster web”
The Chromium Projects,
http://dev.chromium.org/spdy/spdy-whitepaper.

[2] “Meet Android Studio.” Android Developers, 26 Mar. 2018,
developer.android.com/studio/intro/index.html.

[3] “Services.” Android Developers, 13 Mar. 2018,
developer.android.com/guide/components/services.html.

[4] “What's Vitamio?” What's Vitamio? - Basic Introduction,
www.vitamio.org/en/docs/Basic/2013/0509/4.html

