

ASLBoT: Assistive Sign Language Bot Translator

University of Central Florida
College of Engineering and Computer Science

Department of Electrical and Computer Engineering

Final Report
Senior Design II
Dr. Samuel Richie
Group 14

Members
Gustavo Camero Computer Engineering gcamero@knights.ucf.edu
Luis Hurtado Electrical Engineering luis.hurtado@knights.ucf.edu
Michael Loyd Electrical Engineering michael.loyd@knights.ucf.edu
Jared Spinks Computer Engineering spinks.jared@knights.ucf.edu

Client/Advisor

Dr. Chung Yong Chan chungyong.chan@ucf.edu

mailto:gcamero@knights.ucf.edu
mailto:luis.hurtado@knights.ucf.edu
mailto:michael.loyd@knights.ucf.edu
mailto:spinks.jared@knights.ucf.edu
mailto:chungyong.chan@ucf.edu

Page i

 Group 14 Final Report

Table of Contents
1. Executive Summary  ·· 1
2. Project Description ·· 2

2.1 Project Background  ··· 2

2.2 Motivation  ··· 2
2.2.2 GPU Based ASLBoT ·· 3
2.2.3 GPU-FPGA Based ASLBoT ·· 3
2.2.4 SBC-MCU Based ASLBoT ·· 3

2.3 Goals and Objectives ··· 4

2.4 Requirement Specifications ··· 5

2.5 Marketing Requirements. ·· 5
3. Research Related to the Project··· 7

3.1. Existing Projects and Products  ··· 7
3.1.1. Google Translate  ·· 7
3.1.2. Amazon Translate  ·· 8
3.1.3. Stratus Video  ·· 8

3.2 Relevant Technologies ··· 8
3.2.1. American Sign Language Typography ··· 9

3.2.1.1. SignWriting ·· 9
3.2.1.2 Si5s ··· 10
3.2.1.3 SignFont ··· 11
3.2.1.4 Stokoe Notation ·· 11
3.2.1.5 Gloss Notation··· 11
3.2.1.6 Extended Linear Stokoe (ELS) Notation ·· 13

3.2.2 Machine Learning ·· 19
3.2.2.1. Speech to Text ·· 19
3.2.2.2 Text to Text Translation ·· 24
3.2.2.3 Text-to-Speech ·· 33

3.2.3 Processor Technologies ··· 35
3.2.3.1. CPU ·· 36
3.2.3.2. MCU ··· 36
3.2.3.3. FPGA ·· 37
3.2.3.4. GPU ·· 38
3.2.3.5 GPU versus FPGA ·· 39

3.2.4 3D Graphics API Technologies ··· 40
3.2.4.1 OpenGL ··· 40
3.2.4.2 Direct3D 12 ·· 41
3.2.4.3 Metal ·· 42
3.2.4.4 Vulkan ·· 42

3.2.5 Internet Connectivity ··· 42
3.2.6 Voltage Regulation ··· 43

3.2.6.1 Linear Voltage Regulator··· 43
3.2.6.2 Switching Voltage Regulator ··· 44
3.2.6.3 Considerations for Voltage Regulators ·· 44

3.2.7. 3D Rendering Software Platforms ··· 45
3.2.7.1. Unreal Engine 4 ·· 46
3.2.7.2. Unity ·· 46
3.2.7.3. MikuMikuDance ··· 47

Page ii

 Group 14 Final Report

3.2.7.3. Blender ·· 47
3.2.7.4 Godot ·· 48

3.3. Initial Components and Part Selections ··· 49
3.3.1 Sound System Selection ··· 49

3.3.1.1 Amplifier ·· 49
3.3.1.2 Speaker ··· 51
3.3.1.3 Microphone ·· 52

3.3.2. FPGA Selection ·· 54
3.3.2.1 Altera Cyclone IV – EP4CE22E22xxx ··· 55
3.3.2.2 Spartan 3E - XC3S500E-xPGx208C ·· 55
3.3.2.3 Artix 7 – XC7A35T-1CPG236C ··· 55

3.3.3 Computer-on-Module (COM) Selection ·· 56
3.3.3.1 NVIDIA Jetson Nano Developer Board ··· 56
3.3.3.2 Nvidia Jetson TX2 Developer Board··· 57
3.3.3.3 ASUS Tinker Board·· 58
3.3.3.4 Raspberry Pi 4 Model B ··· 58

3.3.4 Display Selection ··· 59
3.3.4.1 10.1" Display & Audio IPS Panel ·· 60
3.3.4.2 Sceptre E205W-16003S LED Monitor ··· 60
3.3.4.3. UPERFECT 12.3” Touch Monitor··· 60

3.3.5 Controller Selection ··· 60
3.3.5.1 IR Remote ··· 61
3.3.5.2 RF Remote ·· 61
3.3.5.3 Push Button ·· 62

3.3.6 Wi-Fi Module Selection ·· 62
3.3.6.1 Intel Dual Band Wireless-AC 8265 ·· 62
3.3.6.2 Ultra USB Wi-Fi Adapter ··· 63

3.3.7 Voltage Regulator Selection ··· 63
3.3.7.1 LP5900 ··· 63
3.3.7.2 LP38500-ADJ ·· 64
3.3.7.3 LM7805 ·· 64

3.3.8 Initial Summary of Selected Parts ·· 64
3.3.8.1 Speaker ··· 64
3.3.8.2 Microphone ·· 65
3.3.8.3 FPGA ··· 65
3.3.8.4 COM ·· 65
3.3.8.5 Display·· 65
3.3.8.6 Controller ··· 66

3.4 Final Summary of Selected Parts ··· 66
3.4.1 Final Microcontroller ··· 66
3.4.2 Final Single Board Computer ··· 66
3.4.3 Final Microphone ··· 67
3.4.4 Final LCD Display··· 67
3.4.5 Final IR Sensor··· 67

4. Related Standards and Design Constraints ·· 68

4.1 Related Standards ··· 68
4.1.1 Wireless Communication Standards ·· 68

4.1.1.1. Wi-Fi Standards ··· 68
4.1.1.2. Consumer Infrared Standards ·· 70
4.1.1.3 Bluetooth Standard ··· 70
4.1.1.4 Zigbee ··· 70

4.1.2. Unicode 5.0 Standard ·· 71
4.1.2.1. American Standard Code for Information Interchange (ASCII) ································· 72

Page iii

 Group 14 Final Report

4.1.3 Python Programming Language Standards ·· 72
4.1.4 Compute Unified Device Architecture (CUDA) ·· 73
4.1.5 Hardware Description Language - Verilog Standards ··· 73

4.1.5.1 HDL ·· 73
4.1.5.2 Verilog ·· 73
4.1.5.3 System Verilog ·· 74

4.1.6 Machine Translation Benchmarking Models ·· 75
4.1.6.1. Bi-Lingual Evaluation Study (BLEU) Score ·· 75
4.1.6.2. Prediction Performance (PRED) Score·· 75
4.1.6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) Score ·························· 77

4.1.7 Privacy and Data Storage Standards··· 77
4.1.7.1 Health Insurance Portability and Accountability Act (HIPAA) ···································· 78

4.1.8 Serial Communication Standards ··· 78
4.1.8.1 Inter-Integrated Circuit (I2C) Standard ··· 79
4.1.8.2 Serial Peripheral Interface (SPI) ·· 80
4.1.8.3 Universal Asynchronous Receiver/Transmitter (UART) Standard ····························· 81
4.1.8.4 Inter-Integrated Circuit Sound (I2S) Standard ··· 81
4.1.8.5 Universal Serial Bus (USB) Standards ·· 82

4.1.9 Audio/Video Connection Protocols ·· 83
4.1.9.1 High Definition Multimedia Interface (HDMI)·· 83
4.1.9.2 Digital Video Interface (DVI) ··· 83
4.1.9.3 Video Graphics Array (VGA) ·· 84

4.2 Design Constraints ·· 84
4.2.1 Economic and Time Constraints ··· 84
4.2.2 Manufacturability and Sustainability Constraints ··· 85
4.2.3 Moral and Ethical Constraints ·· 86

4.2.3.1 Automation Displacing Human Labor ·· 86
4.2.4 Environmental, Health and Safety Constraints ··· 88
4.2.5 Social and Political Constraints ·· 88

5. Initial Project Hardware Design ··· 90

5.1 Initial Project Design and Component Diagrams ····································· 90

5.2 Power Supply Design ·· 91

5.3 Hybrid COM with FPGA ··· 94
5.3.1 I/O Board Description ··· 94

5.3.1.1 Mode Selection Module ··· 95
5.3.1.2 Voice Recording Module ··· 96
5.3.1.3 Status Module ··· 96

5.3.2 General Layout of the I/O Board ·· 96
5.3.3 Communication for Hybrid System ·· 97

5.3.3.1 Audio Transmission ·· 97
5.3.3.2 Status Transmission ·· 98

5.4 LCD Interface ··· 98

5.5 Initial Hardware Design ··· 98
5.5.1 Initial Hardware Block Diagram ·· 98
5.5.2 Initial Hardware Schematics ·· 100

5.5.2.1 FPGA Diagram··· 100

5.6 Initial Hardware Design & Bill of Materials (BOM) ································ 102
6. Project Software Design ·· 104

6.1 Initial Software Functionality ·· 104

Page iv

 Group 14 Final Report

6.1.1 User Options ·· 104
6.1.1.1 Option A: Speech-to-Speech Translation Mode ·· 104
6.1.1.2 Option B: Speech-to-Sign Mode ··· 105

6.1.2 Software Procedure ··· 105
6.1.2.1 Step 1: Speech Capture ·· 105
6.1.2.2 Step 2: Speech-To-Text Conversion ··· 105
6.1.2.3 Step 3: Neural Machine Text-to-Text Translation ·· 106
6.1.2.4 Step 4: Mapping ASL-Gloss to Custom ELS Notation ·· 106
6.1.2.5 Step 5: Rendering ASL Gestures in 3D Graphics Platform ·· 106

6.2 Changes to Software Functionality in Final Design ································ 108
6.2.1 Obsoletion of ELS Notation ·· 108
6.2.2 Revision of User Options ·· 109
6.2.3 Revision of Software Procedure ··· 109
6.2.4 Unity Engine Script Functionality··· 110

7. Project Testing and Prototyping ·· 115

7.1 Initial OpenNMT Model Testing ··· 115

7.2 Changes to OpenNMT Training Approach ··· 124

7.3 Changes to PCB Design and Hardware Functionality ····························· 144
7.3.1 Hardware Prototyping ··· 144
7.3.2 PCB Design ·· 146
7.2.3 Final Hardware Block Diagram ·· 150
7.2.4 Final Bill of Materials ··· 151

8. Operator’s Manual ·· 152
9. Administrative Content ·· 156

9.1 Budget and Finance ·· 156
9.1.1 Initial Budget Cost ··· 156
9.1.2 Final Budget Cost ··· 157

9.2 Project Milestones ·· 157
9.2.1 Important Deadlines ·· 159

9.3 Work Distribution ··· 159
Appendix A: Copyright Permissions ··· 160
Appendix B: NMT Training Corpora ··· 161
Appendix C: Acknowledgements ··· 165
Appendix D: Works Cited ·· 166

Page v

 Group 14 Final Report

List of Figures.
Figure 1. House of Quality of ASLBoT. ··· 6
Figure 2. Examples of Different ASL Notation Styles. (Public domain.) ····································· 9
Figure 3. Example of a SignWriting Sign Box. (Public domain.) ··· 10
Figure 4. Example of a Sentence in ASL-Gloss. ·· 12
Figure 5. Comparison of Original Stokoe Notation (left) and ELS Notation (right) ················· 14
Figure 6. Example of a Sentence in ELS. Note that this sentence is the same as the ASL-Gloss

sentence in Figure 4. ··· 14
Figure 7. Break-Down Diagram of a Single-Handed ELS Gesture. ··· 18
Figure 8. Break-Down Diagram of a Bimanual ELS Gesture. ··· 18
Figure 9. Example of a basic speech recognition system. (Public domain.) ······························· 20
Figure 10. Example of the statistical model (a) Hidden Markov Model with (b) state sequence

and (c) symbol sequence. (Public domain.) ··· 20
Figure 11. Example of Dynamic Time Warping for (A) Two Sequence Representation of a

Person Spelling out “Pen” in Sign Language, (B) with the Dynamic Time Warping Finding

the Proper Alignment. (Public domain.) ··· 21
Figure 12. Wav2letter++ Architecture using Convolutional Layers. (Public domain.) ············· 22
Figure 13. Deepspeech2 Model using the Deep Neural Network Approach which includes

Convolutional Layers during Training. (Public domain.) ··· 23
Figure 14. Example of hybrid rule-based machine translation architecture. (Public domain.) 25
Figure 15. Example of basic statistical machine translation. (Public domain.) ························· 26
Figure 16. Example of the Neural network used in Neural Machine Translation. (Public

domain.) ··· 27
Figure 17. Diagram depicting Moses’s factored translation model approach. (Public domain.)

 ·· 27
Figure 18. Neural network algorithm representative of the OpenNMT model. (Public domain.)

 ·· 28
Figure 19. The pipeline architecture of the OpenLogos system. (Public domain.) ···················· 29
Figure 20. Diagram depicting how Google’s AutoML Translation performs the custom

training for the user. (Public domain.) ··· 30
Figure 21. General Representation of a Text-to-Speech system. (Public domain.) ···················· 33
Figure 22. Diagram of Causal Convolutional Layers. (Public domain.) ···································· 34
Figure 23. Example of NVIDIA GPU Architecture. (Public domain.) ······································· 39
Figure 24. Basic flow of Machine Learning on a GPU. (Public domain.) ································· 39
Figure 25. An example of the architecture of OpenGL. (Public domain.) ································· 41
Figure 26. Organization of the OSI Model. (Public domain.) ··· 69
Figure 27. Zigbee Stack Architecture. (Public domain.) ··· 71
Figure 28. Standard Testing Environment for System Verilog. (Public domain.) ····················· 74
Figure 29A. Calculation of the Regression Factor. (Public domain.) ·· 76
Figure 29B. Calculation of the Adjusted Regression Factor. (Public domain.) ························· 76
Figure 30. Calculation of the Normalized Root-Means-Squared Error. (Public domain.) ········ 76
Figure 31. Calculation of the Matthews Correlation Coefficient. (Public domain.) ·················· 76
Figure 32A. The I2C Bus. (Public domain.) ·· 79
Figure 32B. Master-Slave I2C Communication. (Public domain.) ··· 80
Figure 33. SPI Communication Setup. (Public domain.) ·· 80
Figure 34. SPI Modes of Operations. (Public domain.) ·· 81
Figure 35. UART Communication Scheme. (Public domain.) ·· 81
Figure 36. Different Configurations for the I2S Protocol. ·· 82
Figure 37. Hardware Block Diagram of the Second Initial Project Design. ······························ 90
Figure 38. Power Supply Circuit Schematic. ··· 93
Figure 39. Block Diagram of I/O Board. ·· 95

Page vi

 Group 14 Final Report

Figure 40. State Machine for Mode Selection. ··· 95
Figure 41. State Machine for Voice Recording. ··· 96
Figure 42. General Board Layout. ·· 97
Figure 43. Block Diagram of I2S Controller IP. ··· 97
Figure 44. Initial Hardware Block Diagram. ··· 99
Figure 45. Breakdown of Conversion of ELS Notation into 3D Graphics Rendering. ············ 106
Figure 46. Initial Software Flow Chart. ··· 107
Figure 47A. Final Software Diagram. ·· 113
Figure 47B. Final Animation Flow Diagram. ··· 114
Figure 48. Test English and Gloss Corpora used in Attempt 1. ·· 116
Figure 49. Validation English and Gloss Corpora for Attempt 1. ··· 116
Figure 50. Example Results of Attempt 1 Post-Training. ·· 117
Figure 51. Test English and Gloss Corpora used in Attempt 2. ·· 118
Figure 52. Validation English and Gloss Corpora for Attempt 2. ··· 119
Figure 53. Example Results of Attempt 1 Post-Training, Part 1. ·· 119
Figure 54. Example Results of Attempt 1 Post-Training, Part 2. ·· 119
Figure 55. Sample of Test English and Gloss Corpora used in Attempt 3. ······························· 121
Figure 56. Sample of Validation English and Gloss Corpora for Attempt 3. ··························· 121
Figure 57. Example Results of Attempt 3 Post-Training, Part 1. ·· 122
Figure 58. Example Results of Attempt 3 Post-Training, Part 2. ·· 122
Figure 59. Example Results of Attempt 3 Post-Training, Part 3. ·· 122
Figure 60. Example Results of Attempt 4 Post-Training, Part 1. ·· 122
Figure 61. Example Results of Attempt 4 Post-Training, Part 2. ·· 122
Figure 62. Sample of Test English and Gloss Corpora used in Attempt 5. ······························· 123
Figure 63. Example Results of Attempt 5 Post-Training. ·· 123
Figure 64. Example of breaking down a sentence from the corpus into smaller phrases for

redundancy. ·· 125
Figure 65. Two translation examples from English to Gloss using the first training corpora

modification approach. Neither of the attempts were satisfactory translations. ······················· 125
Figure 66. Here the first and second approach compared for two translation examples of

English to Gloss. ·· 126
Figure 67. Prototyping with LEDs and MSP430FR6989. ··· 145
Figure 68. Final Schematic - MSP430FR6922 connections. ·· 147
Figure 69. Final Schematic - Component Connections. ·· 147
Figure 70: Final printed circuit board layout. ··· 149
Figure 71: Final Hardware Block Diagram. ·· 150

Page vii

 Group 14 Final Report

List of Tables.
Table 1. Requirement Specifications. ··· 5
Table 2. Orientations used in ELS Notation. ·· 15
Table 3. Movements used in ELS Notation. ··· 15
Table 4. Hand Shapes used in ELS Notation. ·· 16
Table 5. Locations used in ELS Notation. ·· 16
Table 6. Other Modifier Characters used in ELS Notation. ·· 17
Table 7. Comparison of Ratings for CPU, MCU, FPGA, and GPU.··· 40
Table 8. Comparison of Hardware/Licensing between 3D Graphic-Rendering Platforms. ······· 49
Table 9. Comparison of Significant Parameters of Amplifiers. ··· 51
Table 10. Comparison of Significant Parameters of Speakers. ··· 52
Table 11. Comparison of Significant Parameters of Microphones. ·· 54
Table 12. FPGA Comparison. ··· 56
Table 13. COM Comparison. ··· 59
Table 14. Total Cost of Final Device. ··· 67
Table 15. Summary of the Various I2C Standard Data Transfer Speeds. ·································· 79
Table 16. Summary of Major USB Revisions. ·· 82
Table 17. Overall Power Requirements. ··· 92
Table 18: Power Supply BOM. ·· 94
Table 18. I/O Board BOM. ·· 101
Table 19. Initial BOM. ··· 103
Table 20. ASLBoT OpenNMT Set of BLEU Scores. ·· 127
Table 21. Full OpenNMT Training Corpus, Part 1. ·· 127
Table 22. Full OpenNMT Training Corpus, Part 2. ·· 128
Table 23. Full OpenNMT Training Corpus, Part 3. ·· 129
Table 24. Full OpenNMT Training Corpus, Part 4. ·· 130
Table 25. Full OpenNMT Training Corpus, Part 5. ·· 131
Table 26. Full OpenNMT Training Corpus, Part 6. ·· 132
Table 27. Full OpenNMT Training Corpus, Part 7. ·· 133
Table 28. Full OpenNMT Training Corpus, Part 8. ·· 134
Table 29. Full OpenNMT Training Corpus, Part 9. ·· 135
Table 30. Full OpenNMT Training Corpus, Part 10. ·· 136
Table 31. Full OpenNMT Training Corpus, Part 11. ·· 137
Table 32. Full OpenNMT Training Corpus, Part 12. ·· 138
Table 33. Full OpenNMT Training Corpus, Part 13. ·· 139
Table 34. Full OpenNMT Training Corpus, Part 14. ·· 140
Table 35. Full OpenNMT Training Corpus, Part 15. ·· 141
Table 36. Full OpenNMT Training Corpus, Part 16. ·· 142
Table 37. English to ASL-Gloss Validation Corpus, Part 1. ·· 143
Table 38. English to ASL-Gloss Validation Corpus, Part 2. ·· 144
Table 39. Final Bill of Materials. ·· 151
Table 40. Original Business Budget Approximations for each Component. ···························· 156
Table 41. Final Budget Cost of the ASLBoT system. ··· 157
Table 42. Senior Design I – Milestones. ··· 158
Table 43. Senior Design II – Milestones. ·· 158
Table 44: Senior Design I Deadlines. ··· 159
Table 45: Senior Design II Deadlines. ·· 159
Table 46: Final Work Distribution. ·· 159

Page 1

 Group 14 Final Report

1. Executive Summary 

Translation is the medium for maintaining a meaningful conversation between two

individuals who speak different languages. Human-based translations are widely applied

in many aspects of society including the financial, medical, legal, and travel industries. The

process of translating through human interpreters, however, proves to be erratic, difficult

to arrange, and expensive. Deaf students enrolled in a typical classroom environment

require robust translation rather than an abridged translation, just like a child of hearing

requires a dynamic language environment to learn their language. Research has shown

correlation in school the performance of deaf students versus hearing students in terms of

grades. The research concluded that deaf students performed poorly due to poor-quality

interpretation services provided by the school. Moreover, in recent years, deaf students

have been facing the issue of fast responsiveness as the request of ASL interpretation

services enabled by the Services for Students with Disabilities requires at least a three-day

notice. Thus, the need for a more accurate, responsive, read to use, and low-cost translation

system is required for such applications.  

Neural machine translation (NMT) provides the next generation of real time translation

with minimal errors. NMTs have proven to be useful for their flexible deployment and their

ease of use. Despite requiring large data sets to function properly, there are open-source

NMTs that can be used for product commercialization. However, most NMTs only perform

the translations for spoken languages and often neglect sign languages such as American

Sign Language (ASL). People who are congenitally deaf or have never developed an

understanding of spoken language use ASL as their primary language. These people lack

the same understanding of the language as an individual who is able to listen and speak the

language. Thus, an any-to-text translation is insufficient for the Deaf. This is where the

NMT algorithms’ primary ability to translate any text-to-text falls short of providing the

service to ASL users. In this document, we are proposing a real-time translator with virtual

ASL interpretation. This device will be designed to require minimal overhead, low budget,

and be accurate on speech acquisition and translation delivery. In addition, the device will

deliver real time translations such that conversations between both users are continuous

with no wait on the translation. The functionality of the translator is to provide spoken

English-to-ASL translation.

Our proposed real-time translator with ASL interpretation bridges the gap between

universal machine translation and physical human translation. This is critical in modern

society where the greater population, including those with disabilities, rely on advanced

artificial intelligence to enrich their daily lives. The goal of our Assistive Sign Language

Bot Translator (ASLBoT) is to provide a user-friendly experience, effective sign language

rendering and a high level of accuracy. Ultimately, ASLBoT aims to provide students with

hearing disabilities the capability to provide and receive effortless and natural

communication within classroom environments.

Page 2

 Group 14 Final Report

2. Project Description 

This section provides a brief overview of our project, including the overall design and user

interface. This overall design was modified from the original project design, which

included a built-in speaker, microphone, and integrated display. This original design also

included internal battery power. These components of the project have since been removed,

as explained throughout the paper.

2.1 Project Background 

The product consists of a single-board computer (SBC), a monitor, an IR remote, an MCU-

controlled circuit board, an LCD, and peripheral LEDs. The external microphone will

record the user’s speech, the speech will be translated into text, and then the speech that

was recorded will output on the built-in speakers. The user will be able to control the

system by using the MCU-controlled circuit board. They will be able to choose when to

start recording, stop recording, reset the board, and wake up the system. The software will

also display the original and translated text on the LCD monitor behind the ASL translation

to show insights to the user on how the translation is being done. The product will utilize

the LCD monitor to display the sign language output using a 3D modeling software. The

SST mode will also include functionality from the SAT such as displaying the original and

translated text. For powering the product, we have several approaches. Our first approach

would consist of a portable battery supply. This internal battery would supply power to the

display, the GPU, etc. We are considering the use of a lithium-ion battery that will be able

to power the console for at least three to four hours on a single, full charge. The battery

will be rechargeable from a standard US AC wall outlet (120V at 60 Hz). Our other

approach would be to have the unit be plugged into the wall; that is, the power supply to

the system would be from an external source, which would be a standard US AC wall

outlet. This is possible since the unit is being developed for medical use, such as in

hospitals. Most machines and stations inside of hospitals are installed into rolling carts;

and when needed, they are rolled into the patient's room and plugged into the wall. Our

product will utilize Wi-Fi to connect to translation services such as Watson API. These

services include speech recognition, real time translation, and speech to text. We decided

that utilizing APIs for the speech to text translation will allow us to focus more on the text

to sign language translation. With the speech-to-speech translation processing offloaded to

cloud services, we would have more data storage and processing power available for the

speech-to-ASL translation.    

2.2 Motivation 

The motivation of the product originated from one of our members who works in a hospital

where medical professionals see patients regularly who cannot speak English. In the

beginning, the project was proposed as a standalone machine translation, since in this way

hospitals can save money from buying in-person translators. With enough research, we

figured out that no machine translator has been able to translate from one language to sign

language. Furthermore, there have been court cases since 2011 where there were multiple

Page 3

 Group 14 Final Report

deaf hospital patient complaints that the hospital interpreting services for ASL were poor.

Most of the cases reached a settlement of $70,000 due to the poor services that the hospitals

were offering to their deaf patients [2]. Hence, the proposed device can do both speech-

to-text and speech-to-sign translations. In addition, we decided to market our product to

school settings since the language complexity in such environments are simpler and allows

us to create a more precise NMT model given the timeframe. Moreover, the use of small

corpora is not present in NMT model development. We want to be able to show that we

can achieve effective results using small corpora. Finally, working in a group setting can

be very challenging as communication is the most important aspect which can serve as a

very valuable tool before graduating as we head to graduate school or industry jobs.  

2.2.2 GPU Based ASLBoT

To design a device that generates machine translations using NMTs with the GPU as the

main system to handle every component on the device. 

• The GPU will manage and control the touchscreen LCD, the microphone, and

the speaker 

• The GPU will store the model generated by the NMT in its memory for

machine translations. 

• The GPU will also generate the sign language translation by applying image

generation techniques from the output file created by the machine translation

model.  

• The GPU will send the image generated translation to the touchscreen LCD. 

 

2.2.3 GPU-FPGA Based ASLBoT

To design a device that generates machine translation using NMTs with an GPU-FPGA

architecture to handle every component on the device. The reason behind this design is

because the performance of the device may be greatly affected with the GPU as the sole

controller of the system.  

• The GPU will manage and control the touchscreen LCD, the microphone and

the speaker, basically a CPU. 

• The GPU will also store the machine translation model inside the main

memory and send the output of the translation as an input to the GPU. 

• The FPGA will then proceed to create the pertaining sign language translation

using imagine generation techniques.  

• The GPU will then send the file to the FPGA so that it will get displayed on

the touchscreen LCD.

  

2.2.4 SBC-MCU Based ASLBoT

To design a device that generates machine translation using NMTs with an SBC-MCU

architecture to handle every component on the device. The reason behind this option was

because the initial design of GPU-FPGA based ASLBoT proved to be too difficult to

implement given the time frame of Senior Design 2. We instead opted for something

Page 4

 Group 14 Final Report

feasible but still challenging as we never had done intercommunication between an MCU

and an SBC.

• The SBC will handle all the 3D rendering animations.

• The SBC will also store the machine translation model inside the main

memory.

• The SBC will host the NMT model and the vocabulary developed by the team.

• The SBC will also host other processes such as access to cloud services.   

• The MCU will control the SBC by user buttons input and IR remote.

• The MCU will communicate with the SBC to know in which step the SBC is

currently in.

• The MCU will display the current status of the system through LEDs and an

LCD

 

2.3 Goals and Objectives

Based on our research findings, the main objective and overall goal of the ASLBoT is to

be able to translate from English speech to American Sign Language (ASL). To achieve

this the system will use a neural machine translation model using only small corpora and a

novel training framework. The system must perform speech-to-text and speech-to-ASL

language translations. To achieve speech-to-text translation, the system requires wireless

capabilities to access cloud-based services. The system will indicate the current status of

the system through LEDs and an LCD. To provide reliable translations, the system will

capture audio recording from the user on real-time. To make the system more interactive,

the system allows the user to dictate when to start the recording process and when to stop

it. Finally, the system will display real-time rendering animation of the sign language

gestures of the user-input sentence. Additionally, to show transparency of the system, the

system will show the original English sentence and the ASL translated sentence.

Additionally, as aforementioned, the design chosen for the product was the SBC-MCU

architecture approach since this is the most viable approach with minimal error currently

possible.

Upon completion of our project, our device will be able to:

• Translate English speech into American Sign Language.

• Connect wirelessly to access cloud-based services.

• Perform speech-to-text, speech-to-speech, and speech-to-ASL language

translations.

• Indicate the current status of processors and peripherals via LED status lights.

• Capture audio at frequencies around natural human pitches that can be translated

into text via speech-to-text algorithms.

• Display real-time rendering of an avatar making sign language gestures.

• Have enough storage to contain the rendering software, avatar animations, and

other peripheral programs.

• Receive input from the user regarding intent to record voice and wake up

functionalities.

Page 5

 Group 14 Final Report

2.4 Requirement Specifications

This section covers the requirement specifications that are necessary to ensure proper

functionality of the final device.

Table 1. Requirement Specifications.

 Component Parameter Design Specification

Microphone Frequency Response 300 Hz to 3kHz

Memory Size 32 GB

Power Supply Power 32 W

System Translation Accuracy 20% (BLEU Average)

System Cost $500

System Response < 5 seconds

Vocabulary Model Complexity > 50 words

Neural Machine Translation Size < 1000 Entries

2.5 Marketing Requirements.

We are marketing the ASLBoT as an accurate, energy-efficient and cost-effective device

that can potentially replace human interpreters in hospital settings. Based on customer

complaints on accuracy, the device will focus on delivering and displaying accurate

translations that can support speech-to-speech, speech-to-text and speech-to-sign language

translations. We will perform one-to-one translation so that no word or context is lost

between translation. To ensure continuous exchange of information between the doctor

and patient, we will access cloud-based services to deliver real time translations through

Wi-Fi connectivity. In addition, we will offer quality service to the deaf patients by

providing real time sign language translations using 3D generated ASL models. Moreover,

our advisor, Dr. Chan, gave us the following requirements for the device:

• Real Time Translations

• Usage of Small Corpora

• Novel Training Framework for NMT

• Accuracy of NMT Translation

• Cost-effective

• Display ASL Models on an LCD

• Speaker Clarity

• Screen Clarity

Page 6

 Group 14 Final Report

All of the aforementioned requirements can be found in Figure 1. In addition, Figure 1 also

possesses the engineering requirements that we tasked ourselves with. It can be noted that

we decided to go for a power supply system that can support both battery and electrical

outlets in case of a power outage so that the device can still be operational. Every

requirement has a pertaining level of polarity (for positive or negative impact on the device)

and correlations (how one requirement can benefit or hinder another requirement).

Figure 1. House of Quality of ASLBoT.

Page 7

 Group 14 Final Report

3. Research Related to the Project

In this section, we will discuss research regarding the project. The researched found below

will range in a wide range of topics ranging from existing projects to different part

selections. We will start by first researching the different projects that exists on the market

that are similar to our project. It can be noted however that our device is the first attempt

of commercialization of Speech-to-Sign Language translation by using NMTs in a hospital

setting. Afterwards, we will discuss possible parts for the overall device and explain in

depth the specific selection of certain parts over other parts. We will consider peripherals

such as microphones and speakers that interface nicely with the GPU. Finally, we conclude

the section by giving a summary of the parts pick that will be used in the device.

3.1. Existing Projects and Products 

In the market for interlingual translation, there are several available programs in place.

Although these programs provide translations between a multitude of spoken languages,

very few of them support translation between spoken and manual languages, such as

English-to-ASL translation or Japanese to JSL (Japanese sign language), for example.

3.1.1. Google Translate 

Google Translate is a multilingual machine translator created in 2006 using statistical

machine translation (SMT). This is a free service that started by translating any source text

to a designated target text as requested by the user with a support of 105 languages. In its

early stages, however, it would translate first into English then to the target language. This

service was novel at translating from source word-by-word while also providing

disambiguation between the original word and the translated word by providing possible

alternate translations. When translating phrases or sentences, Google’s SMT would

translate erroneously and would often have grammatical errors. In 2016, Google

redeveloped Google Translate using neural machine translation (NMT) instead of the

previous SMT used. Called “Google Neural Machine Translation (GNMT)”, the new,

updated Google Translate uses deep learning techniques to translate phrases or sentences

and provides accurate context of the sentence. The free service provides many free

functionalities that are embedded with Google products in which the service translates

more than 100 billion words a day. This GNMT can translate text, speech, images and

videos. Some of its functionality is used in translation of websites, documents, mobile

applications, and handwriting. Moreover, the service provides a technique called “zero-

shot translation” in which the service can translate between two given languages that have

not been trained previously by the NMT.  

In addition, software developers can integrate their service into their products for a paid

fee. Google Translate can be requested through Google Cloud services at the range of

prices from $20 to $80 for every 1 million characters, depending on the features desired by

the software developer. However, even with the implementation of the GNMT, the service

still suffers greatly from trying to disambiguate homonyms and translate free of

Page 8

 Group 14 Final Report

grammatical errors. There have been instances that these services have been used to replace

a human translator, such as in court hearings.  

3.1.2. Amazon Translate 

Amazon Translate is a cloud service provided by Amazon Web Services (AWS) that uses

an NMT to deliver fast, high quality, and affordable language translation. It uses deep

learning techniques similar to Google to provide accurate and contextual-rich translations.

The service is not open to the public since it is catered towards software integrations in

application development due to its simplified API calls. This enables straightforward

localization of applications and enables the program to process multilingual data for the

ease of workflow data in workspaces.

Their NMT also uses a continual-learning model that improves its translation constantly

by learning new datasets to deliver the highest level of accuracy and fluency for various

cases. Unlike support of 105 languages in Google Translate, Amazon Translate supports

137 languages ranging from Arabic to Vietnamese, encompassing about 125 language

pairs. However, there are some exceptions that Amazon are still trying to fix such as

Korean to Hebrew, Chinese (Simplified) to Chinese (Traditional). 

Amazon Translate supports the following extra features: secure machine translations for

secure communications between web pages and applications using SSL encryption,

automated language identification, named entity translation customization, etc. Amazon

Translate offers a free tier of 2 million characters per month for 12 months. Afterwards,

the user must choose a premium tier which costs $15 per million characters. The advantage

of Amazon Translate over Google Cloud is the easy integration that offers through AWS.

Companies such as One Hour Translation, that benchmark NMTs, have praised Amazon

Translate for its overall best performance, pricing and easy integration. 

3.1.3. Stratus Video 

Stratus Video is a language-translation service company that gives clinics and hospitals

access to on-demand language translation for a variety of languages. In their Video Remote

Interpretation (VRI) service, the clinic is lent hospital-grade metal stands and iPads with

which they can use the VRI. After subscribing to their services, medical staff can use the

iPad to reach certified medical interpreters for over 35 different languages. The Stratus

company also offers alternative translation solutions including audio translation, text

translation, and in-person translation. With all of their translation services, however, there

is always the implementation of human language translation; that is, there is no use of

machine translation in their services.  

3.2 Relevant Technologies

This section covers the current technologies related to our project off of which the final

design was created.

Page 9

 Group 14 Final Report

3.2.1. American Sign Language Typography

American Sign Language (ASL) is a mode of communication based solely on visual

gestures; that is, a statement or concept is transferred between speaker and listener through

a specific movement of the hand(s) and face. Generally, the head, torso, and legs remain

stationary while signing. The translation from English to sign language, however, poses

several problems. The use of an NMT requires that both languages have some form of

typography. Since ASL is entirely gesture based, there have been several attempts at

transcribing ASL from gesture-based to text-based while maintaining the meaning of the

original ASL.

Each ASL typographical system makes use of several radicals that, when written in one

block, form one morpheme; this is similar to the structure of pictographic languages such

as Korean and Chinese. The variety between the different notation styles is the uniqueness

of the character registry of each system and the placement of each character to represent

the face, hands, and motions.

A few examples of typographical ASL are displayed below in Figure 2; some of these

notation styles are discussed below. Note that with most of these notation systems, single-

hand gestures are assumed to be for the right hand.

Figure 2. Examples of Different ASL Notation Styles. (Public domain.)

3.2.1.1. SignWriting

SignWriting is an iconic typography where each symbol represents the shape, direction,

and orientation of the hands, face, and body. Each gesture is arranged within a “sign box”,

and these sign boxes are arranged from left to right. The order and the location of each

symbol within each sign box begins with the facial expression at the top, followed by the

relative orientation of each hand. Within each sign box, the starting gesture is located at

the top and the final gesture at the bottom, with the middle gesture(s) signifying important

intermediary gestures. Motion radicals are added to the hands and face to signify the major

movements of the respective body part. SignWriting originated as a handwritten ASL

notation style, as shown in Figure 2, but a digitized version of SignWriting is available as

shown in Figure 3.

Page 10

 Group 14 Final Report

Figure 3. Example of a SignWriting Sign Box. (Public domain.)

A major drawback of SignWriting is the requirement of specialized characters that are not

available in the ASCII library. Also, the arrangement of sign boxes requires a specialized

program to create and share sentences.

As each gesture requires one sign box consisting of several symbols, and each sign box

often represents only one or two words in the English equivalent, SignWriting requires a

lot of space; likewise, each sign box would require a high data requirement for each word,

making this typographical system ineffective in our project.

We considered representing the various aspects of the symbols in SignWriting using ASCII

characters: the face would be the first encoded, then the left hand and right hand, then the

motion. This encoding style would be similar to taking each radical of a Chinese character

and using current ASCII characters in a certain order to represent the position of each

radical in the Chinese character.

However, due to the complicatedness of this process, and the availability of other notation

styles that already employ such linearization, we decided that this approach would be too

time-consuming.

3.2.1.2 Si5s

Si5s is a simplified version of SignWriting; the simplification of SignWriting to si5s is

similar to the transition between Traditional Chinese and Simplified Chinese, where the

overall meaning of the word is preserved, but the simplified version is not as detailed as

the traditional version. The radicals in this system give the same meaning as a SignWriting

gesture but uses a simpler radical.

For example, the face is reduced only to its significant expressions; the movements are

reduced to short lines or diacritics. Since this system is relatively simpler, more gestures

can fit on one page; however, since this system still employs symbols not used in the

extended ASCII library, this typographical system would be difficult to transcribe for use

in the NMT.

Similar to the potential circumvention for SignWriting, we could derive an encoding

method that represents the SignWriting symbols using ASCII characters; however, because

of the complicatedness of the free-form placement of the symbols, even the use of ASCII

Page 11

 Group 14 Final Report

characters would render using this notation style difficult. An example of Si5s is shown in

Figure 2.

3.2.1.3 SignFont

SignFont is a linearized transcription of ASL; whereas SignWriting and Si5s utilize blocks

for gestures, SignFont writes gestures in the following order: handshape contact point for

the right hand, handshape and contact point of the left hand, right hand location, left hand

location, and movements. Other symbols are used as superscripts; that is, these act as

diacritic modifiers for the superscript character. An example of a SignFont glyph is shown

in Figure 2.

The major drawback for SignFont is the lack of support and information regarding this

system: the explanation of the writing system and its grammar is not available. Another

drawback, like the aforementioned systems, is the complicatedness of the symbols; very

few of the characters are available in the ASCII library.

3.2.1.4 Stokoe Notation

Stokoe notation is a more linearized transcription of ASL, similar to SignFont. The most

significant differentiation between Stokoe and SignFont notation is the use of Unicode

characters in the notation. In this writing system, the order of the symbols are as follows:

the location of the gesture, the shape of the left hand, the shape of the right hand, and the

motion(s) as a superscript.

Motions done simultaneously are stacked, while motions done successively are placed

adjacently. Subscripts are added to the handshapes to signify their orientation. Symbols are

added between the two hand positions to signify their relative positions. An example of a

handwritten form of Stokoe notation is shown in Figure 2.

The major drawback for Stokoe notation is its use for mapping single words only. Another

drawback is the lack of non-manual transcriptions; only the hand gestures are mapped. This

would pose a problem during the 3D model rendering, since there would be no information

encoding for facial expression. Also, the use of superscripts and subscripts also poses a

problem, since standard text files do not support the use of such; that is, the characters must

progress on one line.

However, a method could be made in which the superscripts and subscripts are indicated

using special characters while keeping the entire string on one line. A further drawback is

the use of diacritics that would not be applicable to standard ASCII characters.

3.2.1.5 Gloss Notation

Gloss is a universal form of writing a certain language in another language known by the

user. For example, someone learning German would write the direct translation of a

sentence into English but using the grammar, syntax, and special rules of German. In this

Page 12

 Group 14 Final Report

same way, ASL can be “glossed” using English words. The word order of ASL-Gloss

matches the same order of ASL itself; however, the successive gestures are notated by their

written-English equivalent.

Special modifications to the ASL word are written around the English word, such as

classifiers, repetition, or the indication to spell the word letter-by-letter. Non-manual

expressions, i.e. the use of facial expressions, are notated above specific words to indicate

when or which non-manual expressions are to be used. ASL-Gloss is more of a

transcriptive notation rather than a gesture-descriptive notation like the aforementioned

notations. An example of ASL-Gloss is shown in Figure 4.

The limitation of ASL-Gloss is the requirement of several lines of ASCII characters to

describe a single gesture. This poses complications during the use of the NMT. We

considered applying the top and bottom lines of each gloss into one line, such that the NMT

can recognize an entire ASL-Gloss sentence in one line.

Figure 4. Example of a Sentence in ASL-Gloss.

Of these four ASL transcriptions, we believe that the Stokoe notation is the optimal

transcription method due to its flexibility in notation and the availability of the characters

in the ASCII library. There are also several resources regarding the structure and rules

regarding writing Stokoe notation. Despite Stokoe notation being limited to single words,

there is no deficit when expanding the notation to phrases or sentences. Also, since we are

using an ASL notation as a translation medium, we require some way for the computer to

recognize the characters in each language.

While we could encode SignWriting, Si5s, or SignFont notations, these typographies are

not well-documented and require a free-form style of notating; that is, the symbols used in

these notation styles are not readily available in the Unicode library, and the placement of

the symbols are not linear.

The notations that use a linear style of Unicode characters are Stokoe and ASL-Gloss

notation. Since the use of an NMT requires the comparison of sentences line-by-line, both

of these notation styles could not be used in the NMT as-is, as explained earlier. However,

in attempting to linearize these two notation styles, we realized that linearizing the Stokoe

notation is simpler than that for ASL-Gloss.

This is due to ASL-Gloss having the top and bottom lines applied to several words at once.

One facial expression may be shown throughout several words, so a dashed line is used to

indicate its duration.

While we could represent this dashed line, for example, throughout the sentence, this may

become complicated as we include compound expressions and the use of modifiers. For

Page 13

 Group 14 Final Report

Stokoe notation, however, since each diacritic modifier is applied only to a single character,

we can represent these by placing the respective character after the character.

Because of the readily available Unicode library used by the Stokoe notation, the ease of

linearizing its notation for use in the NMT, and the ease of including modifiers to each

character, we decided that Stokoe notation would be preferred over ASL-Gloss notation.

Although Stokoe notation omits the use of non-manual expressions, due to the flexibility

of the notation we may be able to include non-manual expressions by appending its

corresponding information to the end of each gesture.

Despite the removal of subscripts, superscripts, and diacritics, the potential drawbacks of

using the Stokoe notation in its original form would be the ambiguity of the various

symbols used in Stokoe. For example, the character “∅” refers to the empty space in front

of the signer, but there is no differentiation between signs being done in front of the chest

or in front of the face.

Likewise, there is no differentiation between how the hands are positioned: for example,

the original Stokoe notation would suggest a handshape/orientation of “S^”, which implies

the handshape “S” pointed upwards; however, there is no indication whether this upward

orientation refers to the fingers or palms. Also, with the removal of subscripts and

superscripts, there is a requirement to distinguish between symbols that are orientations

(originally in the subscript), movements (originally in the superscript), or hand positions.

3.2.1.6 Extended Linear Stokoe (ELS) Notation

ELS is our proposed continuation of the Stokoe notation: the overall form of the notation

is preserved. However, many new symbols are included to disambiguate between different

hand orientations, spaces, and motions. The list of proposed alterations to the Stokoe

notation can be found in Table 2 below. This notation would also linearize the original

notation while maintaining the significance between subscript and superscript characters.

Symbols between two periods (e.g. “.⊥!.”) signifies the hand position for the handshape

indicated before it (called a period-pair), while those between two commas (e.g. “,^>,”)

signifies the hand motion for that handshape (called a comma-pair). The motion can be

indicated for both hands by the use of the vertical bar character ‘|’ placed before the second

handshape.

Another alteration of the Stokoe notation implemented in ELS is the disambiguation of the

various spaces utilized in ASL. As aforementioned, the empty set character ‘∅’ is not

sufficiently explanatory. In ELS, this character is placed before a location to signify using

the space around that location; e.g. ∅} would signify the space around the ear. There are

six regions which correspond to either the lateral or middle space of the face (upper), chest

(middle), or abdomen (lower).

Disambiguation of the hand orientations is also achieved by the combination of identifying

the palm and finger orientations. Within each period-pair are two symbols: the symbols

Page 14

 Group 14 Final Report

correspond to the palm orientation then the finger orientation, respectively. (For simplicity,

the finger orientation refers to the direction the fingers point when extended fully.)

The complete list of orientations, movements, hand shapes, and locations used in ELS

notation are shown in Tables 2, 3, 4, and 5, respectively. Symbols not found in the original

Stokoe notation or those whose original meaning were altered from the original Stokoe

notation are highlighted in yellow. Supination and pronation orientations from the original

Stokoe notation were abandoned with its replacement with palm and finger orientations

only. These antiquated symbol usages are grayed out in Table 2.

A comparison between the original Stokoe notation and ELS is shown in Figure 5. Note

that in the original Stokoe notation, the chin space (‘U’) is notated, then a supinated hand

in a ‘B’ shape with a prominent forearm (‘√’, ‘B’, and ‘ɑ’, respectively), then a

“downward” movement. This description of the first gesture alone is not descriptive

enough: for example, the fingers can either be pointing up or to the side and have the same

notation. This is disambiguated with the palm position towards the user (‘T’) and the

fingers upward (‘!’) in ELS.

Likewise, the general downward movement should be a motion toward the chin of the user;

this is disambiguated with a symbol for contacting the chin (“x[U]”). (Here, the character

“U” is used instead of “∪” for simplicity of typing.) Note the complete linearization of the

ELS notation versus the superscript and subscript characters in the original Stokoe.

Also note the lack of spaces for a single gesture in ELS versus the use of separation of the

different components in the original Stokoe. The removal of spaces is crucial for the

computer to recognize and distinguish individual gestures (e.g. the “split” function in C).

An example of a sentence in ELS is shown in Figure 6.

Figure 5. Comparison of Original Stokoe Notation (left) and ELS Notation (right)

Figure 6. Example of a Sentence in ELS. Note that this sentence is the same as the ASL-

Gloss sentence in Figure 4.

Page 15

 Group 14 Final Report

Table 2. Orientations used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Descripti

on

ORIENTATION

a Sup. wrist T F/P toward user v P down

ɒ Pro. wrist ⊥ F/P away from

user

^ P up

< P left > P right ! F up

→ F right ← F left ¡ F down

Abbr. in Table 1: “F” → “fingers”, “P” → “palm” for orientations.

Table 3. Movements used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Description

MOVEMENT

^ Upwards N Side-side e Wiggling fingers

v Downwards > Rightward ☐ Opening of hand

< Leftward Z Up-down t Crossing of

hands

T Towards self ⊥ Away from self Linking of hands

I Back-forth a Wrist

supination

÷ Divergence of

hands

ɒ Wrist pronation ω Alt. sup/pro of

wrist; “twist”

Closing of hand

% L. tilt of wrist $ R. tilt of wrist)(Convergence of

hands

ώ Elbow

extension

Ώ Elbow flexion x Contact of hands

ὦ Elbow pro. @ Lateral

circulation

¤ One hand inside

another

ϋ Elbow sup. ¿ Sagittal circ. ‘’ Alt. hand signs

η Wrist ext.* & Coronal circ.

ή Wrist flexion ə Hand waving

Abbr. in Table 2: “sup.” → “supination”, “pro.” → “pronation”, “circ.” → “circulation”,

“ext.” → “extension”, “alt.” → “alternation”.

Page 16

 Group 14 Final Report

Table 4. Hand Shapes used in ELS Notation.

Symbol Type
Char. Description Char. Description Char. Description

HANDSHAPE

B Flat hand,

fingers together

A Fist, thumb at

side of palm

L Fist, thumb and

index at right

angle

S “A” with thumb

on fingers

1 “G” with thumb

on fingers

K “V” with thumb

touching index

and middle

G Fist, extend

thumb and

index in same

direction

C Curved hand R Cross index and

middle

5 All fingers

spread apart

4 “5” but thumb

on palm

3 Spread index,

thumb, and

middle

V Fist, extend

index and

middle

O Curved fingers

touching thumb

ε “E” but fingers

are looser

D “O” with index

extended

F Touch index

and thumb,

extend other

fingers

Y Pinky and thumb

extended

8 “F” but ring to

thumb

7 “F” but middle

to thumb

I Fist, extend

pinky

X Fist, index

extended but

bent

H Index and

middle extended

and together,

thumb touches

both

W Thumb holds

pinky, other

digits spread out

E Fingers and

thumb folded in

Table 5. Locations used in ELS Notation.

Page 17

 Group 14 Final Report

Symbol Type Char. Description Char. Description Char. Description

LOCATION

∅∩ Middle upper

space

∅} Lateral upper

space

ω Breasts

∅ Center space* ∅= Lateral mid.

space

N Flanks (side of

abdomen)

∅ε Middle lower

space

∅N Lateral lower

space

ɒ Pronated wrist

❍ Eye ∆ Nose √ Elbow/Forearm

} Ear] Temple or

Eyebrow

ε Abdomen

) Cheek U Chin a Supinated wrist

∏ Neck = Shoulders \ Upper arm

* When ‘∅’ is used as a primary location, defined as center space in front of the user. When

used as a destination, i.e. x[∅], indicates touching the chest (sternal area).

Table 6. Other Modifier Characters used in ELS Notation.

Symbol Type Char. Description Char. Description Char. Description

Relative Hand

Positions

- Left hand under

right

+ Right hand

under left

| Parallel position

and movement of

both hands

‡ One hand

behind another

† Crossed hands ~ One hand lags

behind another

Indicator .___. For orientation ,___, For motion

Hand Shapes
; Thumb next to

palm

''' Curled fingers * Ext. thumb

Motions + Simultaneous * Repeated

Fingerspelling
= “___” Spell letters

within quotes

Our proposed method of an ELS gesture follows the following format, which is also

illustrated in Figures 7 and 8. One to two characters comprise the space in which the gesture

Page 18

 Group 14 Final Report

is performed. Afterwards, one handshape character represents one hand shape; this

character can be followed by another modifier character to denote an alteration of the

original hand shape.

For single-hand gestures, this character denotes the right-hand shape, as shown in Figure

7; for bimanual gestures, this character denotes the left-hand shape only, as shown in Figure

8. A period-pair follows the handshape character containing two characters. The first

character denotes the direction in which the palm is pointing, while the second character

denotes the direction of the fingers on that hand.

For simplicity, the finger orientation describes the direction pointed by the fingers when

the fingers are fully extended. There must be only two characters within each period-pair.

If two hands are used in a particular gesture, the right handshape character is given next. If

there is a relationship between the two hands, another modifier character is placed before

the second handshape.

Like the first handshape character, another handshape modifier character can be placed

after this second handshape. Another period-pair after the second handshape denotes its

orientation. At the end of each gesture string, a comma-pair denotes the motion of the

hands. There can be any number of motions denoted between this comma pair; in Figure

7, this example shows two different, consecutive motions. The modifier before the second

handshape character explains whether both hands move or only the right hand.

Figure 7. Break-Down Diagram of a Single-Handed ELS Gesture.

Figure 8. Break-Down Diagram of a Bimanual ELS Gesture.

Page 19

 Group 14 Final Report

As of the final project design, this process of encoding ELS into the final code was

considered too costly and overgeneralized for the scope of the number of gestures used in

this project. However, this notation would definitely have been considered in the future in

the sense of scaling up the project.

3.2.2 Machine Learning

This section of the report focuses on the utilization of machine learning techniques for the

entire process once the user speaks into the microphone. The process begins when the

system recognizes the input voice as its digital and discrete version, then uses machine

learning to perform speech to text processing. Once the speech is processed into text, the

machine translation algorithm is employed to translate the input source text into the target

text. The output target text is in the language of choice, and this process is referred to as

text-to-text translation. Finally, the translated text will then have to be processed again to

turn the text back into speech using the final machine learning technique, called speech-to-

text. These three steps, when done in succession, define the methodology for the machine

translation process. For each of these techniques, there are various approaches and

algorithms that can be utilized depending on the application. There are open-source toolkits

and APIs that can be applied to perform the various machine learning techniques;

alternatively, there are proprietary APIs that are offered by certain companies and offer

their services through a paid subscription. In the following subsections a closer look is

given at the various options in terms of approach and various programs, both open-source

and proprietary, that have been developed as solutions for each step in the machine

translation process.

3.2.2.1. Speech to Text

Speech-to-text, or speech recognition, is vital in obtaining the most accurate representation

of the voice input as text. The basic component to the speech recognition systems are

statistical models with the representation of the distinct sounds pertaining to the language,

or phonemes, that need to be recognized. There are two models associated with speech

recognition, an acoustic model and language model. Furthermore, there is not a universal

method in obtaining the best speech recognition, as the models are tweaked for any given

language or application. The specialization of these models for any language is what allows

speech recognition to become accurate for converting the spoken words into text. The

errors that arise from speech recognition are attributed to the speaker, style of speech, and

the environment therein. Therefore, it is critical to select the most suitable model available

for use in speech recognition to ensure that the user receives the most accurate intended

translation. The following are the more popular and most used models for speech

recognition, each model delivers and lack certain features. Figure 9 demonstrates a basic

block diagram of a speech recognition system. This diagram depicts the process starting

from the preprocessing stage after the signal is retrieved and ends with the language

modeling.

Page 20

 Group 14 Final Report

Figure 9. Example of a basic speech recognition system. (Public domain.)

3.2.2.1.1. Hidden Markov Models (HMMs)

HMMs are based on statistical models that assign symbols or quantities for the output as

shown in the Figure 10. HMMs administer a much simpler groundwork for the modeling

of time-varying spectral vector sequences; as a result, most continuous speech-recognition

systems are based on HMMs. Moreover, the popularity of HMMs for speech recognition

stems from the statistical framework, availability of training algorithms, flexibility of fine-

tuning parameters specific to words, and ease of application. Some of the issues that affect

the usability of HMMs involve the intensive memory and computation consumption, the

large training data, the time to execute the training, difficulty in choosing the correct seed

sequence.

Figure 10. Example of the statistical model (a) Hidden Markov Model with (b) state

sequence and (c) symbol sequence. (Public domain.)

3.2.2.1.2. Dynamic Time Warping (DTW)

Based on HMMs and neural networks (NNs), DTW can be utilized for its facile

implementation with embedded systems; this is due to its simple hardware integration and

Page 21

 Group 14 Final Report

training speed. DTW is based on the mechanism of template matching, in which classic

DTW utilizes one template for each word recognized. In this process the DTW compares

the parameters of an unknown word with the template; with this, increasing the templates

for that particular word would result in improved recognition of that word in speech

recognition. However, increasing the number of available templates leads to a longer

computation time and memory usage. In Figure 11, an example of the DTW matching the

alignment of two sequences is shown.

Figure 11. Example of Dynamic Time Warping for (A) Two Sequence Representation of a

Person Spelling out “Pen” in Sign Language, (B) with the Dynamic Time Warping

Finding the Proper Alignment. (Public domain.)

3.2.2.1.3. Deep Neural Networks (DNNs)

A much newer approach to speech-to-speech recognition is the use of artificial neural

networks. In comparison to HMMs, neural networks allow for discriminative training to

be more efficient and can be utilized to provide preprocessing for continuous speech

signals. Neural networks have demonstrated better results in terms of speech recognition.

An example is the MAVIS system developed by Microsoft which yielded a reduction in

error by 30%. For speech recognition, neural network algorithms are trained similarly to

other applications. During the training of the neural networks the system finds features by

adjusting the weights of its hidden layers, and the system uses the features extracted as

inputs to the next layer.

3.2.2.1.4 End-to-End Automatic

This approach also uses deep neural networks; however, it provides a simplified model,

joint training, direct output which presents a contrast to HMMs that utilize direct deep

neural networks (DNNs). This approach detects an input sequence as a corresponding label

sequence, and the audio is mapped to characters or words. Since this process relies entirely

on DNNs, it does not require expertise in domains to construct a large training database,

thus allowing for training to be much easier.

3.2.2.1.5 Open-Source Speech-to-Text Algorithms

CMU Sphinx is an example of an open-source platform for utilizing the HMM approach.

This program can be used on low-resource platforms, has flexible design for practical

development, a large language support database (English, UK English, Mandarin, German,

Dutch, Russian), a BSD license which allows for commercial distribution, and an active

development and release schedule.

Page 22

 Group 14 Final Report

Julius is another example of an open-source platform for utilizing the HMM N-gram

approach. The N-gram approach refers to the number of words used as a single entity when

passed through the machine translation algorithm, as explained in Section 4.1.7. Julius

offers a real-time, high-speed, accurate recognition through its use of a two-pass strategy.

This program utilizes less than 32MB for its workspace, supports rule-based grammar,

isolated word recognition, and is highly configurable with various search parameters and

alternate decoding algorithms.

Kaldi is an example of an open-source platform for utilizing the DNN approach. This

program provides code-level integration with Finite State Transducers (FSTs), extensive

linear algebra support, extensible design, and its intended use is for researchers, as the

source code for Kaldi is written in C++.

Project DeepSpeech is an open-source speech-to-text engine which uses end-to-end deep

learning and Google’s TensorFlow software library to simplify its implementation. This

program currently only supports 16-bit, 16-kHz, mono-channel WAV audio files. The

model needs to be trained for its target language; however, a pre-trained English model is

available on GitHub.

Wav2letter++ is an open-source speech processing toolkit for end-to-end speech

recognition developed by the Natural Language and Speech research team at Facebook AI

Research. The source code is C++-based and utilizes the ArrayFire tensor software library,

and flashlight machine learning library. This toolkit also must be trained by the developer.

The design is intended to operate effectively when trained with thousands of hours of voice.

Facebook states that Wav2letter++ is the first fully convolutional speech recognition

speech, utilizing convolutional layers for the learning aspect of the architecture. The

architecture for the Wav2letter++ is demonstrated in Figure 12.

Figure 12. Wav2letter++ Architecture using Convolutional Layers. (Public domain.)

DeepSpeech2 is another open-source speech recognition model that is based on Baidu. The

model takes the input waveform, preprocesses it, converts it into a log-spectrogram, which

is then applied with the convolutional layers for training and verification. The model

utilizes a Word Error Rate (WER) as its main evaluation metric, and the model is trained

with a stochastic gradient descent. The architecture for the DeepSpeech2 is demonstrated

in Figure 13.

Page 23

 Group 14 Final Report

Figure 13. Deepspeech2 Model using the Deep Neural Network Approach which includes

Convolutional Layers during Training. (Public domain.)

3.2.2.1.6 Proprietary Speech-to-Text Algorithms

Hidden Markov Model (HTK) is a free-to-use platform which utilizes the HMM approach.

HTK is primarily used for speech recognition; however, it has been used in other

applications such as speech synthesis research, character recognition and DNA sequencing.

The software provides proper speech analysis, HMM training, testing, results, and it

supports the HMMs using both continuous density mixture Gaussians and discrete

distributions.

RWTH ASR is another free-to-use platform for speech recognition decoding with the tools

necessary for acoustic models. This software consists of several libraries written in C++

and has a decoder for a large vocabulary, feature extractions, acoustic modeling, speaker

adaptation, lattice processing, language modeling, and input/output formats. The newer

versions of this software also feature neural networks.

Dialog Flow is a speech-to-text software that utilizes Google's machine learning algorithms

and Google Cloud. This program is intended to be used as a browser extension, allowing

its use on multiple platforms such as Facebook, Skype, Twitter, and other text-centered

websites. Dialog Flow supports more than 20 languages.

Dragon Dictation is another speech-to-text software that utilizes a DNN speech engine to

detect voice accurately while filtering background noise, accent, and voice distortion

through extreme (soft/loud) volumes. This program is used primarily for dictating, editing

and formatting text on several word-processing applications such as Microsoft Office.

Google Cloud Speech-to-Text is paid-subscription API developed by Google for voice

recognition. This software utilizes neural network models, recognizes 120 languages, and

can process real-time or pre-recorded audio. The user can customize the speech recognition

to specify common words used in a designated application. The API supports automatic

language detection and automatic punctuation.

Page 24

 Group 14 Final Report

Microsoft Azure Speech-to-Text is another paid-subscription API developed by Microsoft

for voice recognition. This software utilizes the same voice recognition technology that is

used for Cortana, but with a more limited library of available languages (compared to

Google). The interface allows for user-training of acoustic, language, and pronunciation

models for a unique environment and distinct vocabulary. Voice input can be transcribed

directly from a microphone or from stored audio files.

Amazon Transcribe is another paid-subscription API developed by Amazon for voice

recognition. This API is capable of transcribing stored audio files or live audio stream in

real time. The service transcribes WAV and MP3 files, with the transcriptions having an

added time stamp to make locating dialogue simpler. The algorithm utilizes neural network

models to include punctuation and formatting to the transcribed text. The program also

allows for a user to include a custom vocabulary; that is, to add commonly used words for

each user. The voice recognition algorithm is capable of differentiating a change in speaker

and will transcribe accordingly.

3.2.2.2 Text to Text Translation

The text generated from the processed speech input (with the output being the text from

the input speech-to-text algorithm) is directly translated into the equivalent representation

in another language such as Spanish, Chinese, ASL, etc. For proper execution of the

translation, the system must be able to recognize the context of the sentence or paragraphs.

For example, translation word-by-word would not be sufficient to produce an accurate

translation. Thus, we decided that machine learning will be required to perform the

complex task of text-to-text translation.

The use of machine learning-based software to compute the translation of source text to

target text is termed “machine translation”. Machine translation brings together linguistics,

computer science, artificial intelligence, translation theory, and statistics to provide

translation between two different languages [V]. Within machine translation, there are

several different approaches with each approach providing a different algorithm for

achieving the translation. The most common approaches are rule-based, statistical, and

neural machine translation. Each machine learning method aims to translate the

source sentence into a target sentence while accounting for the necessary context of the

original sentence to produce an accurate translation. In other words, the meaning of the

input text in one must be fully realized in the output text in another language [W]. The

following approaches were compared to determine which approach would best suit the

needs for the project.

3.2.2.2.1. Rule-Based Machine Translation (RBMT)

The rule-based machine translation (RBMT) is a system composed of a large database of

linguistic rules and millions of dictionary entries in multiple languages. Therefore, it is a

database that produces these rules and provides the linguistic resources between the two

languages of focus. While RBMT allows for users to follow the linguistic rules used in the

translator, this processing is deemed to be very time-consuming during implementation

Page 25

 Group 14 Final Report

and debugging. Since these translations are also provided by user-defined rules, the text

may be translated completely but may lack fluency. An example of a hybrid rule-based

machine translation architecture is shown in Figure 14, which is a hybrid RBMT utilizing

Moses.

Figure 14. Example of hybrid rule-based machine translation architecture. (Public

domain.)

The process of producing fluent translations requires the use of post-processing techniques

to refine the translated text. Attempts to mitigate these issues is the use of different hybrids

between RBMT- and SMT-based translation systems. In a paper by Dove et al., they used

the RBMT output as the standard translation and subsequently refined the translated text

by comparing it to a translated model developed through SMT techniques. Overall, to

maximize the use of RBMTs for newly discovered languages or for developing new

language translation pairs, the quality of the RBMT method will need to be improved. For

the use of RBMT in text to ASL text translation, a massive database with the rules and

resources will need to be created. However, even with the necessary extensive database,

an RBMT can run successfully on ideal hardware.

3.2.2.2.2. Statistical Machine Translation

The statistical machine translation (SMT) system utilizes statistical models with the

framework based on the analytical observation of bilingual text corpora. While the process

of RBMT is word-based, SMT processes phrases for its translation as well as overlapping

phrases during its training. An extensive database is required for SMT with a minimum of

2 million words required for successful translation for a specific language domain and even

more for creating a general language translation. SMT requires extensive CPU usage even

for simple translations. An example of a statistical machine translation representation is

demonstrated in Figure 15.

Page 26

 Group 14 Final Report

Figure 15. Example of basic statistical machine translation. (Public domain.)

3.2.2.2.3. Neural Machine Translation (NMT)

Compared with the recently mentioned approaches, RBMT and SMT, a more modern

approach to machine translation is neural machine translation (NMT). This approach has

driven machine translation to exceptional improvements, considerably in human

assessment. In comparison to SMT, the NMT approach produces a single neural network

that is tuned through the training process, which differs from how SMT works with various

models. NMT handles its interaction with input sentences through the use of vectors; that

is, input sentences are defined by their magnitude and direction. This approach ultimately

leads to a more streamlined algorithm. Moreover, NMT utilizes a bidirectional recurrent

neural network (encoder) that processes the sentence into the vector, and then utilizes

another recurrent neural network (decoder) to develop the word prediction.

NMT was based on the development of sequence-to-sequence models and then combined

with the advancement in attention-based variants. Similar to the previously aforementioned

approaches to machine translation, NMT requires a large training set to produce accurate

predictions. These datasets are more straightforward to compose since the only contents in

these dataset corpora are the source text in one language and the target text in the other

language. The NMT will then tweak its weights to predict the word that was used in the

translation. As a result, much of the language-translation industry, including Google, has

moved towards the usage of NMT for their online translators. A representative example of

the neural network used in NMTs is demonstrated in Figure 16.

Page 27

 Group 14 Final Report

Figure 16. Example of the Neural network used in Neural Machine Translation. (Public

domain.)

3.2.2.3.1 Open-Source Text-to-Text Translation Algorithms

Apertium is an open-source platform for utilizing the rule-based machine translation

approach. This program is being applied extensively to machine translation systems for

various language pairs.

Moses is another open-source toolkit which utilizes the SMT approach and supports

linguistically motivated factors, confusion network decoding, and efficient data formats for

translation and language models. It allows for the user to automatically train the system

with various translation models for the desired language pairs. The algorithm then finds

the translation with the highest probability utilizing a search system. Moses offers phrase-

based, and tree-based for the translation models. It also features a factored translation

model that allows the integration linguistic at the word level. Furthermore, it allows for the

decoding of confusion networks and word lattices, this enables speech recognizers or

morphological analyzers. Figure 17 shows the diagram of Moses’s factored translation

model.

Figure 17. Diagram depicting Moses’s factored translation model approach. (Public

domain.)

Page 28

 Group 14 Final Report

Apache Joshua Home is a Java-based, open-source toolkit that utilizes the SMT approach,

allowing for phrase-based, hierarchical, and syntax-based machine translation.

Great is an open-source toolkit which utilizes the SMT approach, is based on the bilingual

language modeling approach, and offers phrase-based translation while utilizing a reduced

amount of model parameters and decreased response time in comparison to Moses.

OpenNMT is an open-source toolkit which utilizes the NMT approach. This toolkit

emphasizes efficiency, modularity, and extensibility. OpenNMT utilizes neural machine

translation as the basis model to deliver the most optimum translation through its training

from large datasets. When first realized, OpenNMT was utilized for standard sequence to

sequence modeling applied to machine translation; however, it has now been developed to

employ additional models and features. These features include image to text, language

modeling, sequence classification, sequence tagging, sequence to sequence, speech to text,

and summarization. The models included with OpenNMT are convs2s, deepspeech2, gpt-

2, im2text, listen attend and spell, RNN with attention, transformer. Depending on which

OpenNMT implementation used, either with PyTorch or with tensor flow, certain features

will be available. Furthermore, the toolkits mentioned (PyTorch, TensorFlow) provide

various configurable models and features that include other types of generation such as

summarization, speech to text, and image to text. The OpenNMT also includes

CTranslate2, which is a custom inference engine that explores model quantization, it also

includes Tokenizer that allows for a fast and customizable tokenization library. According

to the developers, OpenNMT is able to reach high translation quality and speech that

matches with the other translation competitors and they provide full support. Figure 18

demonstrates a simplified diagram of how the neural network of OpenNMT functions.

Figure 18. Neural network algorithm representative of the OpenNMT model. (Public

domain.)

To train the OpenNMT model, the user needs to utilize the source file and the target file.

These files contain sentences per line with each word of the sentence separated by a space.

It is recommended to find these files online that are open source and have built on to include

Page 29

 Group 14 Final Report

more than millions of sentences. When training the OpenNMT with these datasets, it is

recommended to use a GPU to process the algorithm; otherwise, a CPU will not be able to

quickly process it and therefore greatly prolong the process.

NiuTrans is an open source translation system that utilizes the statistical machine

translation approach. This translation system is fully developed using C++ language, and

it’s advertised to run fast and use less memory. NiuTrans currently supports phrase-based,

hierarchical phrase-based and syntax-based models that is used for research-based

purposes. Other features that it provides include multi-thread support, APIs, compact n-

gram language models, multiple SMT models.

OpenLogo is an open source machine translation system that is based on the rule-driven

machine translation system, as well as the syntactic-semantic taxonomy SAL. The

architecture of the system is that of a pipeline, that allows for the modularized, and

incremental approach to the source language analysis and the synthesis of the target

language.

The input to the system for OpenLogo, with the stream and rules, are based on SAL and

therefore the interactions throughout the pipeline are in terms of the SAL pattern. This

allows for the more efficient surmounting of the issue that occurs with the large rule-based

dataset. The languages that are included with OpenLogo includes English, German, French,

Spanish, Italian, and Portuguese. The pipeline architecture of the OpenLogo system is

demonstrated in Figure 19.

Figure 19. The pipeline architecture of the OpenLogos system. (Public domain.)

Page 30

 Group 14 Final Report

3.2.2.3.2 Proprietary Algorithms

IBM Watson language translator is IBM’s proprietary machine translation that is available

through APIs. This translator identifies the language of the input text and completely

translates it through the use of the available translation models. It also provides the user

the ability to create custom models that are helpful when using the translation for specific

languages or applications. It is based on neural machine translation, allowing the

translation to be much faster with improved accuracy. Allows the user to translate entire

documents while preserving the formatting and type of file. The custom models that it

allows users to manipulate are done through the use of forced glossary or parallel corpus.

Google Translate is Google’s proprietary machine translation that is available through

APIs. Google states that the translator dynamically translates between thousands of

available language pairs. The system utilizes Google’s pre-trained and allows user to create

custom learning models. This customization is made at a level that is facile for developers,

translators, and localization experts with limited expertise to quickly develop production-

ready models. This is accomplished through uploading translated language pairs, and the

AutoML Translation then trains the custom model that allows the user flexibility when in

specific domains. The diagram depicting the AutoML functionality of Google Translate is

shown in Figure 20.

Google Translate also offers an advanced API that provides much faster and dynamic

results in contrast with the Basic API, and it also provides additional features that support

further customization. The Basic version of the API allows for the instant translation and

uses the neural machine translation that google pre-trains.

Figure 20. Diagram depicting how Google’s AutoML Translation performs the custom

training for the user. (Public domain.)

Microsoft Translator Text API is Microsoft’s proprietary machine translation system, a

cloud-based service that features more than 60 languages. It is branded as a proven,

customizable, and scalable technology for the use of machine translation in translating text.

Page 31

 Group 14 Final Report

This is the same translation model that Microsoft utilizes for its other software such as

Microsoft Office, Edge, SharePoint, Yammer, etc. The API also comes with additional

features such as transliteration and bilingual dictionary that aid the functionality of

multilingual apps and workflows.

Some of its other main API features include natively neural, translating multiple languages

at once, and translation detection. Natively neural means that the system is based on neural

machine translation (what most modern systems use) and this allows it to provide higher

quality translation. The transliteration feature converts words and sentences from a specific

script to another, and the bilingual dictionary provides alternative translations from or to

English.

Amazon Translate is Amazon’s proprietary machine translation API that utilizes neural

machine translation to deliver the fast, and high-quality language translation. It utilizes

deep learning models to provide a more accurate translation and translation that is more

natural in contrast to rule-based and statistical algorithms. A of the features that Amazon

Translate includes is the easy integration of the system into applications, that allows users

to use the system to perform the real time translation within their application by simply

calling the API.

Another feature is the customization of the terminology for specific domain texts, and it

also has a scalable feature that allows for large volumes of text. Additional usage of this

system is for enabling multilingual sentiment analysis of social media content, providing

on demand translation of user generated content, and added real time translation for

communications applications.

Yandex Translate is a proprietary machine translation system that utilizes statistical

machine translation. Therefore, the system compares thousands of texts in order to learn

the language and develops the system so that it is able to identify parallel texts by their web

address. Because this is based on statistical machine translation, the system is much less

accurate and efficient than those based on neural machine translation. Nonetheless, this

system requires hundreds of millions of phrases in different languages to obtain quality

translation standards.

The three key components of this machine translation system are the translation model,

language model and the decoder. Within the language model is the list of all the words and

phrases that are known to the system for one of the languages, these are also linked to the

possible translations and there is a probability assigned to each. The decoder of the

translation system then performs the actual translation through the selection of the

translation options, combination of phrases, and sorting thereafter.

SYSTRAN is a proprietary machine translation system that allows the user to translate

bother structured and unstructured multilingual content. These contents include user

generated content, social media, web content, and others. It is branded as being scalable

and reliable, providing the best-of-breed language processing technologies to apps and

websites. This system utilizes SYSTRAN machine translation, with natural language

Page 32

 Group 14 Final Report

processing. The natural language processing includes language identification, named entity

recognition, segmentation and tokenization, transcription, morphological analysis, and part

of speech tagging.

The named entity recognition is a neat feature that recognizes and displays the person’s

name, locations, numbers, dates organization names, etc. The translation system also

provides resource management that includes dictionary management, dictionary lookup,

corpus management, and corpus match. Furthermore, the system includes multimodal text

extraction that includes text extraction, speech recognition, and optical character

recognition.

GramsTrans is a proprietary machine translation system that allows for high quality and

domain-independent machine translation for the Scandinavian languages. The product set

that is offered with GramsTrans are the free version, personal, commercial lite, commercial

standard, and schools. The free version allows for translation with the limitation of 70

words maximum, 10 translations, and not for commercial use. The personal version

includes a user subscription that allows for the translation of unlimited amounts of text.

The main approach that GramsTrans utilizes is rule-based for the translation. The core

linguistic features that are included are robust source language analysis, morphological and

semantic disambiguation, large linguist-made grammars and lexica, high degree of

domain-independence, name recognition and separation, dependency formalism for deep

syntactic analysis, context-sensitive selection of translation equivalents, insertion, deletion,

and splitting of words, word and phrase reordering, and terminology customization. Some

of the acceptable data types include plain text, formatted documents, web pages, movie

subtitles, arbitrary XML structures, SMS, WAP (mobile protocols) and remote API access.

Promt is a proprietary machine translation system that is based on advanced neural machine

translation approach. This translation system also includes confidential translation, more

than 25 languages, high-speed translation, customization, and integration. The features of

this machine translation product include the translation of documents (preserves the

formatting and allows for various file types), allows for immediate translation through

word selection, user tools that allow for the customization of the system for domain specific

texts, and integrated reference resources.

Babylon is a proprietary machine translation system that is free software, it allows for the

automatic translation of single words, full texts, phrases, and other features. It features over

77 languages, over 1,700 dictionaries, glossaries, thesauri, encyclopedias, and lexicons that

cover a wide range of subjects. Furthermore, it has the capability to translate single words,

and sentences.

IdiomaX is a proprietary machine translation system that provides several features and

tools for businesses but has a limited amount of languages. This software works closely

with word processing applications in order to translate the document immediately before

emailing. It also has the ability to translate webpages.

Page 33

 Group 14 Final Report

3.2.2.3 Text-to-Speech

The final technique in the translation process is text-to-speech, also known as speech

synthesis, shown in Figure 21. This technique converts the translated text into human

speech, allowing the user to listen to the resulting translation. The process of human created

speech can be modeled using the source-filter model and then applied in more complex

models. Therefore, the synthesis of speech can be accomplished digitally through the linear

prediction model and concatenative speech synthesis.

The linear prediction model is currently the most utilized when it comes to digitally

synthesized speech. The modeling of time series for the speech signal allows for the

approximation of short-time speech spectra. Therefore, the poles are considered to be

related to the speech spectral representation and it has led to extensive studies for modeling

speech. Ultimately, the speech signal is approximated through the linear combination of

the previous samples with a predicted error.

Figure 21. General Representation of a Text-to-Speech system. (Public domain.)

The concatenative speech synthesis accomplishes the generation of speech from text by

associating pronunciation models to text through analysis and does this through the

segmentation of real speech into units. The synthesis parameters from the units are taken

and concatenated according to the pronunciation specific to each text. This approach,

however, depends on the use of pre-recorded speech material to be available. The following

are other approach synthesizes that need to be considered when deciding open source or

proprietary speech-to-text toolkits.

The Formant synthesis is a source-filter based model where the source is modeled after the

glottal pulse train and the filter is modeled after the formant resonances of the vocal tract.

The formant model also utilizes the linear prediction model mentioned to estimate the

parameters but could also use the short-time spectrum for the estimation. Therefore, it is

typically used in cascade or parallel second order filter sections, and the model is mostly

used by rule-based text to speech systems.

The Articulatory synthesis provides an alternative approach that provides the direct

simulation of speech production principles. In contrast to the formant synthesizer, the

articulatory approach produces the characteristics of the vocal tract filter through the

implementation of a vocal tract geometry and manage potential sound sources throughout

Page 34

 Group 14 Final Report

the geometry. This approach has huge potential; however, it is difficult to understand and

to implement.

The HMM approach is a statistical time series model used for speech-to-text has also been

recently applied to text-to-speech. The model is a finite state machine that creates

sequences at discrete time, with each time altering according to a state transition probability

and then generates the observed data. This is applied to the speech generation by

statistically modeling the spectrum, fundamental frequency, and phoneme duration which

are the speech parameters, the HMM’s maximum likelihood criterion then generates these

models. Therefore, for this approach a sequence of HMM parameters are used to model the

transitions of sound, and it results in a smoother output in comparison with concatenative

synthesis. Utilizing a large collection of data sets that contain speech, the HMM can more

easily estimate these parameters.

The sinewave synthesis approach models the speech signal with three or four time-varying

sinusoids. The goal of utilizing the sinusoids is to clone the estimated frequency and

amplitude pattern associated with the resonance peaks in order to create the synthetic

acoustic. While there are current numerical methods used to compute the frequency and

amplitude values, there are estimate errors that need correction for the actual synthesis

parameters.

In contrast to the previously mentioned approaches to speech synthesis, the DNNs utilize

the use of large recorded data training sets to adjust weights and provide high accuracy

output. There have been challenges in using DNNs for speech synthesis, however, there

have been many successful implementations as demonstrated below.

WaveNet is based on the DNN approach, the model is probabilistic based and

autoregressive with the prediction depending on the previous audio sample condition.

Therefore, WaveNet is made with stacks of convolutional layers that outputs a waveform

as shown in Figure 22 below.

Figure 22. Diagram of Causal Convolutional Layers. (Public domain.)

The model was also conditioned by WaveNet team, providing it with vocoder parameters

that allowed the resulting speech to be natural and high quality. However, this method of

Page 35

 Group 14 Final Report

utilizing convolutional layers led to extensive computation and it was reported that to

generate one second of audio it would take four minutes of computation.

3.2.2.3.1 Open Source Text-to-Speech Algorithms

The MARY Text-to-Speech System (MaryTTS) is an open-source platform capable of

producing multiple languages and is written in Java. The structure of the MaryTTS relies

on the preprocessing, natural language processing, the calculation of acoustic parameters,

and the synthesis when the parameters are converted to audio.

eSpeak Text-to Speech System is another open-source platform that utilizes the formant

synthesis that was mentioned previously. The developers of this program claim to provide

many languages in a smaller size, and the output speech is clearer but lacks the natural

aspect of human speech. Features include difference voices, production WAV files, file

compression, conversion of text to phonemes, and developmental tools available for tuning

phoneme data. This program is written in C language.

The Festival Speech Synthesis System is another open-source platform that offers text-to-

speech in English and Spanish, is written in C++, and utilizes the Edinburgh Speech Tools

library for the low-level architecture with a scheme-based command interpreter.

3.2.2.3.2 Proprietary Text-to-Speech Algorithms

Google Text-to-Speech is Google’s prime API for text-to-speech system that utilizes

WaveNet voices and Google’s neural networks. It allows for human-like speech in 180

voices, with 30 languages available. The development of this program into an API allows

for its use in devices that can deliver a REST or gRPC request, including IOT devices.

Furthermore, the API allows users to customize the speech with SSML tags, tune the

speaking rate, tune the pitch/inflection of the voice, adjust the volume, and customize audio

profiles.

Microsoft Azure Text-to-Speech is Microsoft’s API system that utilizes neural text-to-

speech to produce highly natural speech. This API allows the user to produce the audio in

real time and allows the option to save the audio files. Neural and standard versions are

available. The standard text-to-speech provides 75 voices and 45 languages.

Amazon Polly is Amazon’s API for text-to-speech that also utilizes neural text-to-speech

to deliver more natural voices. It provides a dozen voices and eight languages.

3.2.3 Processor Technologies

When starting this project, we are deciding what we would use as the brain of our unit. We

need a piece of technology that would allow the device to perform many different tasks

and that would do these tasks in a real-time, spoken conversation setting. Since we had

chosen to offload much of the spoken language translation to cloud processing, we would

need something that would allow us to interface with a Wi-Fi module. Furthermore, we

Page 36

 Group 14 Final Report

needed the technology to allow us to run a custom NMT for translating to a written form

of sign language. Finally, we needed a technology that had enough processing power and

storage space to be able to hold models and render graphics onto an interactive screen.

Once we had these requirements, we were able to look at the current technology on the

market and choose the best fit for our product.

3.2.3.1. CPU

Current central processing units (CPUs) are extremely powerful pieces of technology that

allow us to simulate most things very easily. This means that CPUs can perform several

different processes seamlessly. However, due to the high flexibility of CPUs the

performance of simulations that we run will suffer. We would receive longer run-times on

the translations and graphical processing that we need to do, which in a real-time setting is

not something we can afford.

Furthermore, CPUs are a single part of a computer system. They are designed to be

installed into motherboards, which would have to be included in the design of our system.

While this is a feasible option, we would also have to include all other parts of the computer

system, including RAM, Storage, and other I/O devices increasing both monetary and

dimensional cost. These setbacks along with CPUs having slower processing speeds make

it an unattractive option for “the brain” of the product.

While it is possible to perform machine learning on a CPU it is extremely slow and

inefficient. The CPU architecture was not built to handle these sorts of tasks as they are

designed with speed and flexibility in mind. They have fewer cores than other technologies,

however these cores are highly complex and designed for speed. Therefore, they excel in

most modern applications, but they cannot efficiently perform tasks that require an

extremely high and parallelized throughput such as graphic processing and machine

learning.

3.2.3.2. MCU

Microcontroller units (MCUs) are very similar in concept to a computer system, but all of

the necessary components are all contained in the chip. This allows for MCUs to be created

with very small profiles which would allow use a much smaller housing for our project.

Furthermore, MCUs are designed to be used in embedded and mobile, battery powered

applications. For this purpose, MCUs have extremely low power consumption. However,

because MCUs have such small form factor and use so little energy, they suffer from

extremely slow processing speeds. They are designed to be used in applications that do not

require heavy computational work.

Unfortunately, these downsides are something that we cannot afford in our product, as in

a real-time conversational setting, we need to ensure that speech strings are processed,

translated, and outputted as fast as possible. We also do not have a huge concern for battery

life, as our product will stay plugged into the wall. We chose this design feature, because

Page 37

 Group 14 Final Report

we plan to use the product in a hospital setting which are connected to grids of generators

to ensure that they will never lose power.

With the current technology used inside of MCUs, it is not feasible to use an MCU for

machine learning applications. To begin, they do not have the memory required to hold

data sets nor training sets and parameters. They also do not have the processing power to

complete an algorithm such as those used in machine learning. Other technologies bring a

larger number of simpler cores or a very complex and powerful cores to the table while

MCUs have neither. MCUs definitely have their place in the market of computing, but it is

not in the realm of machine learning.

3.2.3.3. FPGA

Field-programmable gate arrays (FPGAs), as they have started to make their way into the

market, have shown that they are a very competitive and powerful product that allows for

the user to tailor fit the chip to their needs. Customizing the chip allows the user to eliminate

a lot of the overhead associated with other technologies. This makes the FPGA chip an

extremely inviting technology to implement into our product. Furthermore, FPGA chips

are highly parallelizable as they can be programmed to have multiple blocks that perform

tasks completely independent of each other, allowing for the space on the chip to be used

efficiently and for higher data throughput to be achieved. The simulation of digital circuits

that FPGAs achieve using LUTs makes the technology useful in a variety of applications.

In terms of flexibility, FPGAs also have a useful feature for embedded programming that

allows them to connect to any I/O device needed. This would allow us to use many of the

modules that we need in our product without needing any additional hardware.

FPGAs are also highly reprogrammable because of their architecture. Typically, even after

they have been deployed, FPGAs can be reprogrammed to make better use of their logic

blocks or to avoid using damaged sections of the board. This would be beneficial to have

in our product as it would allow us to update the board layout after it has been deployed if

it were somehow damaged. When looking at various technologies used in hospitals, we

noticed that hospital equipment is designed to be as rugged as possible; they are constantly

being moved around by hospital staff and must be able to maintain dings and falls. If the

board were to sustain damage, it would be possible for us to reroute the board to avoid the

damaged parts and continue working.

As promising as FPGA technology is, it is still an extremely costly technology to

implement into a product with higher-end chips running for thousands of dollars. This

detracts from the attractiveness of the technology, as we are on a limited budget and must

try to create a low-cost system.

FPGAs also do not use conventional C or python languages to program. FPGA chips are

programmed using Verilog of VHDL, which changes the way the programmer must think.

These languages are hardware description languages which are used to model electronic

circuits. It is a register-level programming language that allows the programmer to describe

Page 38

 Group 14 Final Report

electronic systems. This presents an obstacle that must be overcome to use the technology

efficiently. Programmers must think in parallel, instead of sequentially as used in standard

programming languages such as C and Python. While this makes modeling digital circuits

simpler, this presents problems for accomplishing tasks that would normally be simple in

general purpose programming languages.

3.2.3.4. GPU

GPUs were originally created to be paired with a CPU as the graphics processing loads

became heavier and increased into 3D space. Recently, there has been a trend of using

GPUs in applications such as machine learning, bitcoin mining, and other processing tasks.

There have been several different APIs and programs developed to facilitate the use of

GPUs in these tasks. Programmers have been learning to program with GPUs to perform

tasks that would take CPUs a much longer time to complete. GPUs are able to perform

these tasks so efficiently because of their data path architecture.

GPUs are a Single Instruction, Multiple Thread (SIMT) technology that allows large sets

of data to be processed in parallel. When using a GPU to train NMT models, memory is

one of the biggest concerns. Modern GPUs do not have the memory size of other

technologies such as CPUs and must be handled efficiently. Users often must choose

between memory allocation space and speed. This is due to the special data paths that GPUs

have. While this data path allows for increased efficiency in parallel computing, some tasks

and data sets are not the perfect matches for parallel computing and creates bottlenecks in

the GPU.

As training begins, the CPU loads as the GPU with learning parameters so that the GPU

has the necessary information to begin the process. The CPU then starts the training loop,

where it gathers groups of data to send to the GPU. These groups reduce the amount of

transfers that need to be initiated between the two technologies which is integral in

reducing the overall transfer costs. The GPU will then take this data and perform the

computationally heavy algorithm that typically involve large scale matrix multiplication

between data and weights. These operations are easy to perform on the GPU as it has a

parallelized data path that is designed for these types of operations.

Shown in Figure 23 is a basic GPU architecture from NVIDIA which shows the hardware

components of the device along with its interaction of a CPU. When using a GPU for

machine learning, unless the architecture is set up to be an embedded system to work with

machine learning, the GPU is connected to a CPU system. These two components then

communicate to each other with the data path from CPU to GPU being much larger than

the opposite direction. The CPU sends the data, parameters and other necessary

information to the GPU so that it can be processed off the CPU. The GPU then sends

regular updates back to tell the system how far it has gotten and pass along other necessary

information. The interface flow between the CPU and the GPU is explained in Figure 24.

Page 39

 Group 14 Final Report

Figure 23. Example of NVIDIA GPU Architecture. (Public domain.)

Figure 24. Basic flow of Machine Learning on a GPU. (Public domain.)

3.2.3.5 GPU versus FPGA

In machine learning, GPUs are advertised as being the best on the market for these tasks,

but FPGAs are also making their way into the spotlight. FPGAs are much more energy

efficient than GPUs, making FPGAs a great way to increase the life of battery powered

machines. While we do not have to worry about the battery life of our product as it will be

plugged into the wall, we would still like to reduce the amount of energy that is being used.

Page 40

 Group 14 Final Report

Furthermore, the flexibility of the FPGA makes it extremely attractive for machine learning

applications. The structure of modern GPUs is a multitude of single instruction pipelines

that work in parallel with each other. This highly parallelized structure is both a positive

and a negative for GPUs: it allows the GPU to execute the instructions extremely fast; but

in the case of machine learning, it can only map a certain amount of the workload

efficiently. On the other hand, FPGAs allow programmers to create a customized platform

around the workload that they have. This removes the restrictions that a lot of GPUs face

around parallelization and fixed data paths. FPGAs have been shown to actually perform

better than GPUs in some applications. Table 7 shows a comparison of the all previously

discussed technologies in multiple different categories. Scores are given between 1 to 4,

with 1 being the best performing in that category.

Table 7. Comparison of Ratings for CPU, MCU, FPGA, and GPU.

 CPU MCU FPGA GPU

Power Efficiency 2 1 3 4

Flexibility 1 3 2 4

Cost 2 1 4 3

Speed 3 4 1 2

Processing Power 3 4 2 1

3.2.4 3D Graphics API Technologies

Although we are using a 3D rendering engine software to create our sign language models,

we also require 3D graphics APIs that allows us to fully manipulate the GPU to generate

smooth models. Since we are using a COM as the main processor of our device, we will

need to use 3D graphics API that do not require a lot of area overhead and that can

efficiently communicate with the hardware level GPU such that the performance of the

COM is not affected. The purpose of these graphic APIs are not for the overall display and

animation of a model but rather the implementation of such displays and animations; that

is, these APIs function independently of the rendering engine software and simply process

polygons. The following APIs are the most popular used in the market for use in low-level,

low-overhead hardware-accelerated 3D graphics and computer interface.

3.2.4.1 OpenGL

This graphics API comes in all major operating system platforms including Linux, macOS,

and Windows. The Jetson Nano comes with a Linux based operating system; therefore, the

focus is with Linux’s interaction with OpenGL. The OpenGL is implemented on the Linux

strictly through the X windows system. Therefore, in order to use OpenGL on Linux, a

GLX extension is needed to the X Server. Linux comes with a standard Application Binary

Interface that is already defined for OpenGL; this allows for compatibility of OpenGL in a

range of drivers. Furthermore, the Direct Rendering Infrastructure is the driver framework

that allows the drives to overwritten and operated in order to allow for hardware

acceleration. This DRI that is included in XFree86 4.0 and also needs a specific driver

configuration after installation. Before using OpenGL, it must be initialized, and there are

two phases to the initialization. The first phase of the initialization is creation of an OpenGL

Page 41

 Group 14 Final Report

Context. The second phase of the initialization is the loading of all necessary functions to

use OpenGL. During the use of OpenGL does not remember the information regarding an

object. Therefore, it is recommended that with OpenGL the user draws everything that

needs to be drawn first. The next step is to show the image with a platform-dependent

buffer swapping command. Figure 25 demonstrates an example of the architecture of the

OpenGL system.

Figure 25. An example of the architecture of OpenGL. (Public domain.)

3.2.4.2 Direct3D 12

This is a graphics API by Microsoft, a platform that allows for apps to fully take advantage

of the graphics and computing capabilities of the PC. This new version of the API is much

more efficient and faster than the predecessor. In order to improve this efficiency, the

platform no longer supports an immediate context associated with a device. This platform

now has the apps record and then submit the command lists. This command lists then

contain the drawing and resource management calls. The command lists are submitted by

a multitude of threads corresponding to one or more command queues. These command

queues manage the execution of the commands. This change in the platform increases the

single-threaded efficiency by allowing apps take advantage of pre-computing the rendered

works and also takes advantage of the multi-core systems. In order to program the Direct3D

12 there are a few components that are needed. The first component is a hardware platform

with a GPU that is compatible with Direct3D 12. The second component are the display

drivers that have the necessary support for the Windows Display Drive Model (WDDM)

2.0. The set-up of Direct3D 12 is complete after the installation of Windows 10 SDK

Page 42

 Group 14 Final Report

software and Visual Studio 2015. The only supported language of Direct3D 12 is C++. The

platform must also be initialized by setting up the global variables and classes. There is

also an initialize function that prepares the pipeline and assets.

3.2.4.3 Metal

This is a graphics API by Apple, that provides very close access to the GPU that is being

used to run the platform. Apple claims this allows the user to maximize the graphics and

computation potential of the IOS apps. The platform utilizes a low overhead architecture

that has a precompiled GPU shaders, fine grained control, and multithreading support. The

platform also provides support for GPU driven command creation and this simplifies

working with arrays. Some other features of the Metal include GPU-driven compute

encoding, improved ray tracing acceleration, metal for pro apps, simpler GPU families,

metal memory debugger, and metal-enabled iOS simulator.

3.2.4.4 Vulkan

This is a graphics API is the new generation of graphics by KHRONOS group, that

provides high-efficiency, cross-platform access to modern GPUs. The API focuses on

providing portability so that the features of Vulkan can be utilized at native performance

across all major platforms. In order to accomplish this Vulkan provides the development

specifications, open-source libraries and tools altogether with the introduction of

conformance tests that allows the universal performance.

3.2.5 Internet Connectivity

For proper functionality of our device, we require some form of connection to the internet.

Internet connectivity is crucial for use of online API services such as the speech-to-text

and text-to-speech.

There are both wired and wireless options available for the Jetson Nano. There is an

Ethernet port on the device for wired connections. While using an Ethernet cable for

internet connection would produce the most reliable and fastest internet connection, the

significant drawbacks to feasibility and portability render this option ineffective. In terms

of feasibility, there are not a wide availability of Ethernet ports, especially in school and

medical settings. In a school setting, classrooms are often limited to one Ethernet wall

socket for the teacher’s computer. In a medical setting, there is usually not an Ethernet wall

socket in patient rooms. In terms of portability, the connection into the wall would

immobilize our device, since internet connectivity must be established at all times during

operation.

There are two available methods for introducing wireless connectivity to the Jetson Nano.

The first method is via a USB port. The other method is via the PCIe slot located under the

heat sink. While both methods are available on the Jetson Nano, each approach has its

advantages and disadvantages.

Page 43

 Group 14 Final Report

The advantage of using a USB port is the simplicity of installing the hardware. Another

advantage is the convenience of pre-installed antennae on these adapters; other designs

allow for attachable aftermarket antennae to be attached to the adapter. One disadvantage

refers to the use of a USB port; since we will need the use of several USB peripherals, the

use of a USB Wi-Fi adapter would take up valuable real estate. Another advantage of using

this USB-type device is a perk from using USB devices in general; a USB extension cord

can be used to have the antennae placed at a distance from the Jetson Nano itself; this not

only frees up more room around the crowded USB 3.0 ports on the Jetson Nano, but this

also means that the antenna can physically be placed anywhere on our final device,

allowing the antenna to be placed at an advantageous location for optimal internet

connectivity and reception. Another perk granted through the use of USB-enabled devices

is the use of USB port hubs; while this brings up the risk of excessive power drain to the

Jetson Nano, the use of USB port hubs for low-power devices (such as a mouse-and-

keyboard setup, a common application for USB port hubs), this power drain risk is usually

nominal.

The advantage of using the PCIe slot for the Wi-Fi adapter is the added flexibility; since

this port is intended solely for installation of Wi-Fi adapters, using a PCIe Wi-Fi adapter

would free up one USB port on the Jetson Nano while still granting internet access to the

device. One disadvantage is the high cost of these parts; since USB Wi-Fi adapters are

geared for convenience, the USB version is in higher demand and thus less

expensive. Another disadvantage is the complication of installing antennae on these

devices; the only method for antenna installation is by soldering the antennae directly to

the module. There is a general risk of destroying the Wi-Fi module with the introduction

of soldering, including overheating the component.

Since this socket is located under the heat sink, there is also a size limitation for the Wi-Fi

adapter. While the adapter module itself is generally the same size and can fit underneath

the heat sink easily, the attachment of an antenna (especially for installing multiple

antennae) to these components is limited to what can fit in the available space there. Also,

taking up space beneath the heat sink also reduces the effectiveness of the heat sink, leading

to higher risk of overheating; however, this risk would be minimal and could also be

mitigated through the use of an external fan.

3.2.6 Voltage Regulation

Voltage regulation is the process of producing and maintaining a constant output AC or

DC voltage from a power source to any electronic device with various load currents. Linear

and switching are the two types of voltage regulators. The switching regulators are based

on a varying duty cycle of a pulse, and linear voltage regulators work at a constant

operation point.

3.2.6.1 Linear Voltage Regulator

The linear voltage regulator utilizes the change in the differential voltage of the operational

amplifier (op-amp) and compares the output voltage to a reference voltage. Furthermore,

Page 44

 Group 14 Final Report

the output voltage will be adjusted automatically to match the reference voltage. For the

linear regulator, the input must be greater than the output voltage. The dropout voltage,

which is the minimum difference between the input and the output, is around 2 V. The

dropout voltage may be decreased to around 100 mV by using low dropout regulators;

however, a lower dropout results in a decreased ability to reduce noise and ripple on input

supply. The linear regulator usually consists of an input, output and ground pins with

external capacitors used for filtering noise and achieving a better transient response.

Overall, the linear regulator takes advantage of the transistor and op-amp feedback loop by

acting as an automatic variable resistor. The advantages of using a linear voltage regulator

are that they are cheaper, and simple while maintaining a constant voltage output. The

switching regulator maintains the constant voltage much more efficiently in contrast to the

linear regulator, and thus the heat dissipated by the linear regulator is much greater and

needs to be taken into account.

3.2.6.2 Switching Voltage Regulator

The switching voltage regulator is based on configuring the duty cycle of the pulse to

manage a constant voltage. By using such a pulse width modulator (PWM), the average

voltage can be varied directly depending on the width/amplitude parameter of the circuit.

The pulse width modulator then controls the gate of the MOSFET, and the output voltage

is delivered back to the PWM. The increase of the output voltage causes the pulse width

modulator to decrease its width and therefore increase the off time of the MOSFET. The

energy storage of the inductor allows for the current to continue flowing even when the

MOSFET is off. Some of the topologies of the switching voltage regulator circuit include

the “buck” (step-down) switching regulators and the “boost” (step-up) switching

regulators. The buck converter steps down the higher input voltage to the lower output

voltage. Since this converter is more efficient than the linear voltage regulator, this type of

regulator is suitable for applications where the input voltage is much higher than the output.

A boost converter does the opposite of a buck converter and instead takes a lower input

voltage and boosts it to a higher output voltage. When used in combination, these two

converters are useful for battery-powered circuits since the battery will decrease over

time. Figure 27 shows an example of a common circuit diagram for a switching voltage

regulator, while the two figures in Figure 28 show the differences between a buck and a

boost converter.

3.2.6.3 Considerations for Voltage Regulators

Determining the linear or switching voltage regulator to be used depends on whether the

output voltage will need to be fixed or adjusted. If the output voltage is fixed, then the

regulator is selected to match the desired output voltage. For an adjustable output voltage,

then a two-resistor voltage divider circuit is used, and the added costs of these components

must be taken into account. The regulator selected will also have a minimum and maximum

input voltage that will need to be considered when choosing the regulator. Another

consideration is the current output, and this is usually limited by the current carrying

capabilities of the MOSFET or any other transistor used.

Page 45

 Group 14 Final Report

If the circuit is sensitive to input noise, then the output ripple must be taken into

consideration. The power supply rejection ratio (PSRR) for a linear regulator determines

how well the regulator can reject any ripple at the input, and a higher PSRR is optimal. For

the switching regulator, the ripple is based on the switching aspect of the circuit. This ripple

is attenuated through filtering. A beneficial circuit design technique is first to step down

the input voltage using a switching regulator, then using a linear regulator to remove the

ripples. For high-PSRR linear regulators, an extra pin may be available that can be used to

place a 10-nF capacitor which may help filter out some of the noise and ripple.

Another significant specification is the load regulation, which determines how well the

regulator can maintain the constant voltage when there are changes to the current load. This

is often shown in the specifications as “output voltage versus load current”. In the case of

a step-change in the output load current, then the specification of load transient is used to

determine how well the regulator would react to such a change. Taking into account

changes to the input voltage and its effect on the output voltage, the line regulation

measures the variation that change in input voltage results in output voltage. Similar to the

load transient, the line transient measures the output response to a sudden step change in

the input voltage. It is also important to note that the regulators with a high PSRR usually

have better transient performance.

As mentioned previously, the voltage drop-out identifies how much higher the input

voltage has to be compared to the output voltage for the regulator to properly function. For

cases where the input and output voltage difference must be much smaller, it is best to use

low drop-out regulators. The efficiency is also very important to keep in consideration

when deciding on the voltage regulator. The efficiency is calculated by dividing the output

power by the input power. It is typical of the linear voltage regulators to have a much lower

efficiency than the switching voltage regulators. The output capacitor that goes with the

linear and switching regulators is a very important consideration that requires careful

consideration of the recommendation given by the data sheet. Ceramic capacitors are most

commonly used since they have very low parasitic capacitance that improves the transient

response.

3.2.7. 3D Rendering Software Platforms

After the process of performing speech recognition and English-to-ASL text translation,

we intend to use 3D graphics rendering as our output for the ASL gestures. Although each

rendering software has different approaches to graphics rendering, the outcome is very

similar. In a virtual environment, the user can design the layout of the surroundings and

the objects within it. The quality and actions of each object is determined by the user

depending on its importance within the environment. In each of the platforms, the entities

are allowed to interact; that is, objects can interact with the environment or other objects.

The concepts of physics such as collision, temperature, friction, etc. are implied in each

platform, but the degree of realism can be modified to suit the user’s intent.

Page 46

 Group 14 Final Report

In each of the software platforms, the user has the option either to use pre-designed models

or create a new one. For premade models, therein lie copyrights for each model, either

expressed outright or implied through the Berne Convention. Most models are created to

be open-source and may be readily used, modified, and redistributed. In this case, mere

acknowledgement of the creator is sufficient. Some models may be limited use; for these

models, the model itself may be readily available, but its use, modification, and

redistribution can only be performed with permission from the creator. For some models,

the creator has reserved all rights to the model; in this case, such models cannot be used,

modified, or redistributed without official licensing from the original producer. Note that

in all cases, these copyrights relate to the model itself; the creation of fan-art replications

of the design are considered legal.

3.2.7.1. Unreal Engine 4

Unreal Engine is a 3D game development software by Epic Games. The original

environment was developed for the first-person shooter game Unreal in May 1998. The

Unreal Engine was released afterwards as a platform to develop other types of games. Later

editions of Unreal Engine were released for higher-resolution graphics rendering and

developer capabilities. Unreal Engine 4 was released in 2014, which included the C++

source code and the availability for Python script embedding.

Like the other platforms, the Unreal Engine IDE can be manipulated without the need for

prior coding experience. Unlike the other platforms, however, the entire C++ source code

is available to the user through GitHub, allowing for full customization of the platform

itself. Unreal Engine also has the option to port content to mobile devices. The Unreal

Engine IDE can be used on most popular OSes, including Linux, Windows, and macOS,

although the application can be made playable on many devices, including VR headsets

and gaming consoles. Both development and consumer-end gameplay require at least 8GB

RAM for proper functionality of the environment, although a more powerful RAM is

recommended.

Use of Unreal Engine 4 for commercial applications is permitted by Epic Games. Royalties

are paid at 5% gross income after the first $3,000 earned from the application; that is, there

are no royalties collected for applications earning less than $3,000.

3.2.7.2. Unity

Unity is a game-development platform created in 2004 with the mindset of readily

available, easy-to-use, royalty free game development. Unity has remained an independent

company despite potential buyers from larger companies, as Unity insists on their

contribution of “democratise[d] game development”.

The Unity Editor was developed more for developer-end simplicity. Included in the editor

are premade physics engines and AI capabilities for non-player characters (NPCs). Unlike

the other platforms, Unity has an option for 2D application development. The Unity Editor

IDE is available for use on Linux, Windows, and macOS, although the application can be

Page 47

 Group 14 Final Report

modified to be played on over 25 different platforms, including PlayStation, Nintendo

Switch, and VR platforms. Although there is no minimum hardware requirement to run the

Unity Editor or Unity applications, Unity recommends that the device running the

application has minimal graphics processing capabilities. The hardware requirement is

usually specified by the application producer, which depends on the overall graphics

intensity of the application.

Unity advertises that applications developed through their platform do not require revenue

sharing; that is, there are no royalties for Unity-based applications. However, there is a tier-

based system which disallows developers to use certain tiers based on their income. The

maximum gross income for Unity Personal users is $100,000 and $199,000 for Unity Plus;

there is no gross income ceiling for developers using Unity Pro. Content created by the

developer through the Unity platform, however, is owned completely by the developer,

with their ability to copyright their application.

3.2.7.3. MikuMikuDance

MikuMikuDance (MMD) is a 3D animation platform created in February 2008 by Yu

Higuchi under the online alias HiguchiM. The MMD platform was popularized by the

creation and sharing of vocaloid music videos rendered with MMD on YouTube. Although

HiguchiM has retired from developing MMD in 2011, graphic designer Reggie Dentmore

has continued development, with the most recent release, MMD 9.31, being released in

December 2017. Although models come preset with the MMD IDE, users have the option

of using the PMX/PMD editor software for model creation/edition. (Models are saved

as .pmx or .pmd files.) Like Unity, there is no minimal graphics card requirement, but other

users have recommended a 1GB cache and 512MB RAM due to the graphics intensity of

the program. MMD is advertised as a freeware 3D graphics application. As a freeware, the

development software can be edited and shared without much regulation. Ancillary

software such as the PMX/PMD editor software are not made by the developers of the

original MMD editor software. As such, there are no entities who can claim ownership of

the MMD software, and no royalties are collected from MMD-based application content.

3.2.7.3. Blender

Blender is an open-source, 3D graphics rendering software. There is a Python API

integration within Blender that allows developers to create game-like script elements in

their projects. The Blender IDE is available to run on Linux, Windows, and macOS. In

terms of hardware requirements, the most recent, stable release of Blender (Blender 2.80)

requires a minimum of a 32-bit, dual core, 2GHz CPU, 4GB RAM, and a 1GB cache.

Further releases will not support a 32-bit CPU.

Blender further recommends a more robust CPU setup to run Blender programs such as a

64-bit quad-core CPU, 16GB RAM, and 4GB of cache; or an optimal setup of a 64-bit

eight-core CPU, 32GB RAM, and >12GB of cache. Blender advertises that content created

through their software platform is completely royalty-free and does not require any paid

subscription. In terms of licensing, the funding for our project is intended to be less than

Page 48

 Group 14 Final Report

$1,000. Even if we were to produce our device commercially, we intend to maintain a local

presence. As such, our project can be used well with the $3,000 royalty-free ceiling for

Unreal, as well as the $100,000 ceiling for Unity. MikuMikuDance and Blender do not

have a gross income ceiling for royalty collection. All of the platforms discussed here

provide free downloads of their software, but for higher project budgets Unity requires

subscription to paid licenses. As we do not intend to exceed $100,000 for our budget, we

should qualify for the Unity Personal license, which does not require a paid subscription.

In terms of hardware compatibility, the requirements extend to its implementation on our

GPU/CPU setup, since our final project must be able to run programs based on the 3D

rendering platform. A full comparison of the hardware and licensing requirements are

discussed in Table 8 below. At this point, we are planning to use the Jetson Nano as our

ARM processor. As the Jetson Nano runs at 1.43GHz, running Blender 2.80 will not be

possible. Also, since the Jetson Nano runs Ubuntu, which is a Linux-based OS,

MikuMikuDance, which only runs on Windows, cannot run on the Jetson Nano without

compatibility compensatory programs such as WineBottler.

In terms of applicable platforms, Unity and Unreal Engine are two possibilities; however,

in terms of the recommended hardware requirements, Unity seems to require a less-robust

hardware setup. This is optimal for the Jetson Nano, which is advertised as a lower-power

GPU. As aforementioned, we are intending to use these 3D rendering platforms as the

output of our sign language translation; as such, we require some way of programming

when certain gestures will be performed. As MikuMikuDance is geared towards video

playback and not video game development, this platform has no support for dynamic

ability. Blender, Unreal Engine, and Unity all have Python API integration, which is

suitable for game development (or gesture management in our case).

3.2.7.4 Godot

Godot is an open source 2D and 3D rendering platform developed by MIT for game

development. Although the software is supported by C# and C++, the software can also be

supported by community contributions of Python, Nim, and D, among other programming

languages. There is also support for scripting via GDScript, which is a unique programming

language similar to Python. Like the other rendering platforms, there is an online asset

library with purchasable and free-to-use models and APIs. Compared with the other

platforms, Godot has the smallest file size for its editor software, comparable with that of

MikuMikuDance. Another upside of this platform is its advertisement of royalty-free

development, like that of Blender and MikuMikuDance. Although, as aforementioned, that

our group would not be developing a device that would receive more than $3,000 without

further commercial marketing and development, the lack of collected royalties from the

software provider provides a better peace of mind for the possibility of such an

advancement. Similar to other software like Unity, there is a recommended hardware setup

to run games made with their software without major buffering or overheating but using a

setup with minimum hardware capabilities would be sufficient for running small, low-

profile games.

Page 49

 Group 14 Final Report

A summary of the hardware and royalty specifications are shown in Table 8. It is significant

to note that although each platform has published their respective minimum hardware

requirements to run their editor software and/or published games using that software, the

minimum requirements to run a specific game depends on the complexity of the published

game itself. For example, a simple linear game without any environmentally interactive

elements would require a less robust hardware setup than a game with a detailed

environment with fully interactive, physics-enabled elements. This is crucial for the

application of these “games” into our device, since our COM used in our device, the Jetson

Nano, has minimal hardware capabilities suitable for portability and cost-effectiveness.

Table 8. Comparison of Hardware/Licensing between 3D Graphic-Rendering Platforms.

Total RAM GPU Cache Royalties Notes

Unreal Engine 4 8GB rec.

64GB optimal

Minimal 5% after first $3000

earned

CPU >2.5 GHz

recommended

Unity 2019.2.10 Minimal Minimal <$100k for Personal

<$199k for Plus

N/A for Pro

MikuMikuDance

9.31

512MB rec. Minimal N/A Windows OS

only

Blender 2.80 4GB minimum

16GB rec.

32GB optimal

1GB min.

4GB rec.

>12GB opt.

N/A CPU >2GHz

Godot 3.0 4GB recommended Minimal N/A

3.3. Initial Components and Part Selections
Identified in this section are the list of possible or definite key components that will be

utilized in this project.

3.3.1 Sound System Selection

This section addresses the amplifiers, speakers, and microphone. Although we have

decided to use a display monitor with built-in speakers, we have included our initial debate

on speakers and amplifiers that we considered had we used a video-only display.

3.3.1.1 Amplifier

Amplifiers are an essential component of a sound system since they are required to increase

the amplitude of the signal that is sent into it. In terms of a speaker, an amplifier is essential

for the speaker to produce a sound that is audible to the user. In terms of a microphone, an

amplifier is essential to amplify the microvolt signals obtained from a voice into millivolt

or volt-level signals that are distinguishable and meaningful to the receiving-end processor.

Page 50

 Group 14 Final Report

With amplification of the signal we also must ensure that the integrity of the signal is

maintained as it changes without distortion or other data loss. Our product requires an

amplifier to produce meaningful signals from both the speaker and the microphone. Some

microphones and speakers come pre-installed with an amplifier, but our selection of

amplifiers here are discussed for speakers we will discuss that do not include embedded

amplifiers. When we were selecting the amplifier to use in our project, we looked at

wattage, impedance, gain, communication protocol and the number of channels.

3.3.1.1.1 Max98306 Amplifier

The Max98306 is a small and powerful class D amplifier. It is able to deliver 3.7 W to 2

channels into 3Ω impedance speakers. It can run from 2.7 to 5.5 VDC and comes with

thermal and over-current protection. Inputs are fully differential with 1.0 µF capacitors and

output is a 360KHz square wave PWM.

Gain is adjustable between 6 and 18 dB. This amplifier would be a great choice for our

project as can produce a powerful signal while still being inexpensive and maintaining a

small footprint. It also would allow us to add an additional speaker if we choose to do so

as well as adjust the gain to ensure that users of the system could easily hear the outputted

speech from the machine and adjust the volume of the speakers accordingly. The

parameters of the Max98306 amplifier are summarized in Table 9.

3.3.1.1.2 Max98357A Amplifier

This miniature amplifier is perfect for smaller projects as the Max98357A is advertised for

its sufficient functionality despite its small size. It is a combination between an I2S DAC

and an amplifier. It takes in I2S digital audio and amplifies it directly into the audio output

connected to it. It is capable of delivering 3.2W into a single 4Ω impedance speaker. It is

a class D amplifier and runs at 2.7V to 5.5V DC. Input from I2S can use either 3.3V or 5V

logic data and are bridge connected.

Output is a 300KHz square wave PWM and gain can be adjusted from 3 to 15 dB. This

amplifier would be perfect for our needs in the project, as we are wanting to send audio out

from the I2S pins on the GPU/CPU/COM board that we will have chosen. This amplifier

can only support one speaker, but for the purpose of our project the use of one speaker

should be sufficient. The parameters of the Max98357A amplifier are summarized in Table

9.

3.3.1.1.3 Max9744 Amplifier

The Max9744 is a powerful amplifier that can also produce a large sound despite its small

size. It is capable of driving two channels with 20W into four 8Ω impedance speakers. It

is powered by a 5 – 12 V DC source that can be inserted into its on-board DC power jack.

This breakout board also has a 3.5-mm audio jack preinstalled for audio input. However,

it can take digital signals as well from I2C communication protocol pins. This amplifier

Page 51

 Group 14 Final Report

would be an amazing choice for our project because of how flexible it is in terms of inputs,

gain, and channels. The parameters of the Max9744 amplifier are summarized in Table 9.

Table 9. Comparison of Significant Parameters of Amplifiers.

Feature Max 98306 Max 98357A MAX9744

Wattage 3.7 W 3.2 W 20 W

Ohms 3 Ω 4 Ω 4 – 8 Ω

Channels 2 1 2

Gain 6 – 18 dB 3 – 15 dB Up to 29.5 dB

Class D D D

3.3.1.2 Speaker

Speakers are also an essential part of every sound system as these devices are required to

convert electrical signals into sound waves that are audible and meaningful to the user.

Speakers achieve this by vibrating a cone at high speeds, which results in the cones

producing sound waves. We will be using speakers for playing the text-to-speech sound

bites that are obtained post-cloud processing of text received from translating in the

translated speech mode. When looking at potential speakers for our project we looked at

price, wattage, impedance, and size.

3.3.1.2.1 Stereo-Enclosed Speaker Set

This class of speakers which consists of a dual set of speakers would be great for our project

and come in a pair to allow for stereo audio. The pair of speakers is enclosed for better

sound quality and come with speaker wire preinstalled in them with a single four-port

connector. These speakers are low-priced at $7.50, are powered at 3W, and have an

impedance of 4Ω. The parameters of this part are summarized in Table 10.

3.3.1.2.2 3" Diameter Speaker

This single speaker would also be a reasonable yet frugal choice to add sound to our project

as it is priced at $1.95. This speaker, however, does not come with wires or connectors

preinstalled. The speaker is powered at 3 W and has an impedance of 4Ω. This would pair

perfectly with the Max98306 or Max9744 as we could connect one of these to the amplifier

for a robust sound system. It is also 3” in diameter with mounting tabs 60mm apart which

we could install easily into the case of our device. The parameters of this part are

summarized in Table 10.

3.3.1.2.3 XS-GTF1027 Speaker

This speaker is much more powerful than the other aforementioned speakers, being

powered off 20 W of power with 4Ω impedance. This speaker has a wide decibel range

and also has a frequency range of 60 Hz to 24 KHz. However, with these speakers being

priced at $14.50, and with its extreme level of volume production, we believe that this

Page 52

 Group 14 Final Report

speaker is not the optimal choice to be implemented into our project. The parameters of

this part are summarized in Table 10.

Table 10. Comparison of Significant Parameters of Speakers.

Feature Stereo Speaker Set 3" Diameter

Speaker

XS-GTF1027

Wattage 3 W 3 W 20 W

Ohms 4 Ω 4 Ω 4 Ω

Speakers 2 1 1

The HDMI protocol includes both audio and video output. With this, some of the LCDs

discussed in section 3.3.4 include displays with embedded speakers. Because of the HDMI

standard, there would be no further manipulation of the speakers in order to have the

speaker and the display work together correctly. Additionally, many of these

display/speaker combinations provide a more cost-effective solution for A/V output. It is

because of this simplicity and effectiveness that we decided to use one of these

LCD/speaker combinations using an HDMI-HDMI cable which will run from the Jetson

Nano to this display (and thus the speaker).

3.3.1.3 Microphone

The use of a microphone is an essential piece of equipment for audio input, which would

be voice capture in the case of our project. In terms of microphones applicable to our

overall project design, we require either a handheld microphone that can transmit signals

from 5 to 10 feet away or a microphone located on the device itself that is able to pick up

voice signals from 5 to 10 feet away.

The advantage of having a microphone integrated into the stand is minimizing peripherals

that the user would need to handle, but the disadvantage is the requirement of a more

powerful (thus larger and more expensive) microphone. The advantage of having a

handheld microphone is the flexibility of using either a wireless microphone (utilizing

Bluetooth or other wireless protocols) or a wired microphone connected directly to the

device itself. Another advantage is the ability to choose less powerful microphones, since

the user will be less than 1 foot away from the microphone if it is handheld. The

disadvantage of a handheld microphone is the implication of several interfaces for the user;

that is, holding the microphone would be required in addition to manipulating the display

via buttons, touch screen, remote, etc.

In terms of the use of an I2C microphone versus a USB microphone, both types of serial

communication are applicable in our project. The benefit of an I2C microphone would be

the flexibility of choosing how the signal will be sent to the main processors on our device

(FPGA, COM, etc.); that is, we can choose to take the DC/AC outputs from these

microphones and send them through an operation amplifier, filter, and so on.

Another benefit of using I2C microphones is the availability of schematic-level

descriptions of each microphone; most USB microphones are marketed for ease of use, so

Page 53

 Group 14 Final Report

schematics and audio capture methods are not usually included with USB microphones.

The drawback of using I2C microphones would be the requirement of soldering the mount

header pins onto the board; with soldering in general, there is a risk of burning pins and

losing functionality of the board. Another drawback is the reliability of the connections

made, since these connections will need to be created by ourselves.

The benefit of a USB microphone is the simplicity of connecting the microphone to the

processors via a USB port. A major drawback is the occasional requirement of

downloading driver software for proper functionality of the microphone and compatibility

between the microphone and the processor.

3.3.1.3.1 Adafruit Mini USB Microphone

This low-profile microphone would be an example of a microphone that would be attached

to the device itself. The microphone is about the size of a flash drive and would be able to

plug directly into a USB port installed on our device (on the FPGA or the COM, for

example). Due to the flexibility of USB-enabled devices, the microphone can be attached

to the end of a USB-USB extension cord. The full characteristics of this board are shown

in Table 11.

Out of all the other microphones discussed here, this microphone is the least expensive in

terms of USB microphones at $5.95 USD. The major downside is the lack of

documentation and specifications on this product. There is a lack of specifications on the

frequency range and accuracy of sound capture.

3.3.1.3.2 Adafruit MEMS Microphone (SPH0645LM4H and SPW2430)

This MEMS microphone from Adafruit is very low-profile due to the utilization of MEMS

technology. There are a variety of different boards available that provide a small yet

powerful microphone such as the SPH0645LM4H and SPW2430 boards. The major

differences are the detectable frequency range of the microphone, and the power supply

requirement. The full characteristics of this board are shown in Table 11.

In terms of price, these boards are inexpensive at $6.95 USD and $4.95 USD for the

SPH0645LM4H and SPW2430 boards, respectively. Despite the difference in cost, there

is not a significant difference in the potential of these two microphones.

3.3.1.3.3 SparkFun MEMS Microphone (INMP401/ADMP401)

This microphone breakout board from SparkFun utilizes the ADMP401 (now INMP401)

MEMS microphone from Analog Devices. Unlike the boards from Adafruit, which feature

digital output, this ADMP401 board has an analog output. The full characteristics of this

board are shown in Table 11.

Page 54

 Group 14 Final Report

This board could be a viable option since an analog output would provide more flexibility

on the processing of the sound signal than the already-digitized signals produced by the

Adafruit microphones. However, due to the lack of analog input on the Jetson Nano, we

would require the inclusion of an analog-to-digital converter (ADC) before transmitting

the signal to any processor on our device. This would include our PCB for the FPGA,

where we would also require either a peripheral ADC board or an embedded ADC on the

FPGA PCB.

Table 11. Comparison of Significant Parameters of Microphones.

Feature SPH0645LM4H SPW2430 INMP401/ADMP401

Frequency Range 50 Hz - 15 kHz 100 Hz - 10 kHz 100 Hz - 15 kHz

Power Supply 1.62-3.6 V @ 60 uA 1.5-3.6 V @ 70 uA 1.5-3.3 V @ < 250 uA

SNR 65 dB 59 dB 62 dB

Price $ 6.95 $ 4.95 $ 10.95

In terms of the different parameters of the three microphones discussed in Table 11, there

is not a significant difference in the capabilities of each microphone. Although the

SPW2430 has a lack of detection in higher frequencies, the range of human voice is roughly

between 80 Hz and 260 Hz. Also, the power supply ranges would be achievable via the 3.3

V power pin commonly found on processor boards. (The Jetson Nano has both 5 V and 3.3

V power pins in addition to having powered USB ports.)

3.3.2. FPGA Selection

Our project will be using an FPGA chip to process and communicate with all I/O devices

necessary, except for the monitor visuals, which will be handled via our COM device. We

will be creating a PCB onto which the chip will be surface-mounted and then to which the

other I/O devices such as the speakers and buttons will be connected. Having a separate

board and chip to handle all the I/O allows the COM to focus solely on processing speech

and text required for proper execution of our device. We chose to use an FPGA chip to

perform this task because it allows us to connect a wide variety of devices and choose how

to use the I/O pins as needed.

When it comes to FPGA chip selection, one key element we sought was the low overall

cost of the chip. We have not yet partnered with a financial sponsor and therefore must be

frugal with our budget. Another key element we looked at was I/O pin count, since we need

to ensure that we could communicate with all the components necessary for this project.

Next was the number of gates on the FPGA board. We wanted to ensure that we would

have enough blocks for our program to fit on the board but not so many that we are wasting

time and space on the chip; optimizing the gate number of the FPGA board will also

maximize the efficiency of our funds.

Next, we looked at the package type of the chip in question. We wanted to ensure that the

chip that we chose was a QFP-style package, as this style of package allows for easier

prototyping. Furthermore, a QFP-style package reduces the number of layers required in

the PCB design as this style results in a less complex package type.

Page 55

 Group 14 Final Report

We also looked at the operating frequency of potential chips, as we would prefer the

smallest latency times achievable. The frequency, however, is not as significant as the other

elements as there are no timing-critical systems in our project. This allows us to use a

slower-frequency board without much loss in quality while reducing the cost of the final

product. Finally, we looked at the vendor of the FPGA chip in question as this would

determine the software and interfaces that we could use to program the chip. We are used

to interfacing with Xilinx chips and using the Vivado software suite, so having a suitable

vendor would be easier to begin interfacing with the chip. Furthermore, the UCF

laboratories have Basys 3 boards available for student use. These boards run the Vivado

software, and access to this software allows us to develop and test our programs more

efficiently regarding cost and time.

3.3.2.1 Altera Cyclone IV – EP4CE22E22xxx

The Cyclone IV EP4CE22E22xxx family of FPGA chips is a great choice for our device

as it meets all of the specifications required. It has a total of 22,320 logical elements on the

board and 594 Kb of embedded memory. For I/O, this family of chips has 79 user I/O pins

and 17 LVDS pins. The chip is affordable as well, depending on the speed of the chip

selected, it can range from $35 USD to $53 USD. This family of chips comes in 2 different

core voltages of 1.0 V and 1.2 V. We will not choosing a low-voltage device and therefore,

will have a core voltage of 1.2 V to power the chip itself. This would allow us to power the

device easily through a USB connection to the COM board that we choose. A downside of

this board is that it is an Altera chip, which means that we must use Altera software to

interface with the chip, which is not what we have experience with. The full characteristics

of this board are explained in Table 12.

3.3.2.2 Spartan 3E - XC3S500E-xPGx208C

The Spartan 3E XC3S500E-xPGx208C family of FPGA chips is also a great choice for our

project we are aiming to create as this family of chips also meet all the specifications

required. These chips have a total of 10,476 logic cells, 73K distributed RAM bits, and

360K Block RAM bits. For I/O, this family of chips has 158 user I/O pins and 65

differential pins. The chip fits into our budget as well, costing between $37 and $52 USD,

depending on speed grade and lead-free packaging. The Spartan 3E has a supply voltage

of 1.2 V. This would allow us to power the FPGA chip from a USB connection to the COM

board that we choose to use. On the downside of the board, this is an older chip from Xilinx

and therefore is not supported by Vivado. While we have used Xilinx ISE before, we have

more experience in Vivado and would have to learn the software to interface with the chip.

The full characteristics of this board are explained in Table 12.

3.3.2.3 Artix 7 – XC7A35T-1CPG236C

The Artix 7 – XC7A35T-1CPG236C FPGA chip is a great choice for being the brains of

the I/O board in our project. It contains 33,280 logical elements and 1,800 Kb of embedded

memory. For I/O, this family of chips has 250 user pins. It is an affordable chip as it only

Page 56

 Group 14 Final Report

costs $42.97 USD. It operates at 1.0 V, allowing for the chip to be powered from a USB

connection to the COM. Furthermore, the Artix 7 is programmable with Xilinx Vivado,

which we have experience using. This chip also comes installed in the Basys 3 boards that

are in student accessible labs on campus. This would allow for us to program and test the

chip quicker and cheaper than other options. Unfortunately, this family of chips only comes

in a BGA package type and therefore, would be more difficult to implement onto a PCB

board. Table 12 shows a comparison between all of the different FPGA chips that will be

discussed in the following sections.

Table 12. FPGA Comparison.

FEATURE CYCLONE IV SPARTAN 3E ARTIX 7

PART NUMBER EP4CE22E22xxx XC3S500E-

xPGx208C

XC7A35T-

1CPG236C

COST $35.52 – 53.28 $37.58 – 52.21 $40.03

VENDOR Altera Xilinx Xilinx

I/O COUNT 79 User I/O; 17

LVDS

158 User I/O; 65

Diff

250 User

LOGICAL

ELEMENTS

22,320 10,476 33,280

EMBEDDED

MEMORY

594 Kb 360 Kb 1,800 Kb

SPEEDS 6, 7, 8 Standard, High 1

3.3.3 Computer-on-Module (COM) Selection

In our project, we will be using the Computer-On-Module (COM) for running the screen

of the terminal and for processing and rendering the sign language graphics. We believe

that this will be rather resource-intensive, which will require the COM to contain a GPU

unit capable of handling the graphics demand. Furthermore, we will be using the COM to

run an OS that will allow us to run the tasks and programs that we need, such as the 3D

rendering software (such as Unity) and interfacing with the FPGA.

The first element we looked at when selecting a COM was the cost of the unit, which is the

most important element for our team as we lack a financial sponsor for our project and

must be frugal in the usage of our limited funds. Another element is the number of

computation cores that the GPU unit has. Next, we looked at the number of I/O pins on the

device as this is extremely important for connecting our peripherals necessary for proper

implementation of our final project.

3.3.3.1 NVIDIA Jetson Nano Developer Board

The Jetson Nano Developer Kit is of greatest interest for our project due to its relatively

low cost in relation to its performance capability. At only around $100, it is both low-cost

and high-performance. The board contains a quad-core ARM A57 which has a clock

frequency at 1.43 GHz. Furthermore, the board contains 128 Maxwell computation cores

Page 57

 Group 14 Final Report

that allow for robust performance in parallel computing, such as with our neural machine

translation (NMT) models. It comes with 4 GB of high-speed internal memory.

For storage, the Jetson Nano uses microSD cards for its memory modules. NVIDIA sets

the minimum size as 16 GB for the microSD card, but with the size of OS images and other

necessary files, a 32 GB or larger microSD card is recommended. The board is powered

through a 5V power supply, which can be delivered through the micro-USB port or the

2.1mm barrel port depending on the available power supplies. Higher power usage is

directly correlated to excess heat production, but the Jetson Nano is prepared for the heat

since it comes preinstalled with a large heat sink. This heat sink also has 4 mounting holes

for mounting a single 140mm fan that can be plugged into the 3-pin PWM fan header on

the board.

When it comes to I/O connections, it has 40 pins and includes support for I2C, SPI, and

UART communication protocols which will allow us to communicate with any the FPGA

board and any other peripherals that we choose to use. There also comes a Gigabit ethernet

port that comes pre-installed on the board. This is favorable for our application as we will

need to have our board connected to the Internet to send out our audio snippet files and

have them converted from speech to text and receive this text snippets back. If we choose

to not use the ethernet port, it also offers a M.2 E key slot for Bluetooth and Wi-Fi Module

extensibility.

Furthermore, the Jetson Nano has four USB 3.0 ports, which allow us readily to connect

our peripheral components such as a microphone, speakers, etc. as needed. Finally, the

board features two display connectors, one being display port and one being HDMI. This

will allow us to output to our chosen display which is essential for our application. These

ports allow for simultaneous use, so we can drive 2 displays from the board natively. In the

chance of further extensibility of our product, the board also features a CSI video camera

connection that will allow us to possibly implement sign language detection functionality.

A full description of the Nvidia Jetson Nano developer board and its comparison to the

Jetson TX2 development board are summarized in Table 13.

3.3.3.2 Nvidia Jetson TX2 Developer Board

The Jetson TX2 is the bigger brother of the Jetson Nano and brings a lot more power to the

table. It costs a significant amount more at $449, but it also comes with a quad-core ARM

Cortex A57 processor clocked at 2GHz as well as a dual-core NVIDIA Denver2 processor

clocked at 2 GHz. Its graphics processing unit has a 256-core PASCAL GPU built in.

Furthermore, the TX2 has 8GB of high-speed DDR4 internal memory. For storage, the

Jetson TX2 Development Board has 32 GB of eMMC flash storage. For power delivery,

the TX2 is powered off of a single 19V AC adapter that is plugged into the board with a

2.1 mm barrel jack. The TX2 comes preinstalled with a large heatsink and fan to ensure

that the unit does not overheat when operating at or near maximum operating conditions.

When it comes to I/O connectivity, the Jetson TX2 has 40 pins and includes support for

I2C, SPI, and UART communication protocols. The board also comes preinstalled with a

Page 58

 Group 14 Final Report

Gigabit ethernet port and has Wi-Fi and Bluetooth modules pre-installed. This would allow

us to connect to the Internet either way that we choose without any additional part

installation as well as have the option to Bluetooth microphones or remotes for our final

product. Furthermore, the TX2 has a single USB 3.0 Type A port and a single USB 2.0

Micro AB port.

While this isn’t much in terms of the number of USB ports, there is also a PCI-e expansion

slot to add more USB slots, or we could use a simple USB hub. There is a single HDMI

port for a single display terminal. Next there is a microSD reader built into the board for

memory expansion and am M.2 E key slot. Finally, there is a 5-Megapixel fixed focus CSI

camera which comes pre-installed on the board, which would allow us to expand our

project in the future to allow for sign language detection. A full description of the Nvidia

Jetson TX2 developer board and its comparison to the Jetson Nano development board are

summarized in Table 13.

3.3.3.3 ASUS Tinker Board

The Tinker Board by ASUS is another option as a single-board computer. At $65, this

COM would be the most economical choice. This board comes standard with a Rockchip

Quad-Core RK3288 SOC and an ARM Cortex Mali-T764 GPU with 4 pipelines clocked

to 600 MHz. This board has 2 GB of DDR3 RAM and microSD card slot for system

storage.

Much like the very popular Raspberry Pi SBCs, the Tinker board has 4 USB 2.0 connectors

and Gigabit Ethernet port. Furthermore, the board has a MIPI camera, a MIPI display

connector, and an HDMI 1.4 connector, capable of 4K at 30 frames per second. It has a 3.5

mm Stereo audio jack capable of good quality audio that uses the extra sleeve for

microphone input. The Tinker Board itself is powered by a micro-USB port at 5V and 2/2.5

A. For I/O, the tinker board has a 40-pin color coded GPIO header, which would allow for

quite a bit of connectivity for our project. Finally, the Tinker Board does come packaged

with a heatsink that can be installed onto the board to ensure the board does not bottleneck

due to heat issues or damage itself. The ASUS Tinker board does have an enhanced version

(ASUS Tinker Board S) available for purchase that includes 16 GB of eMMC storage

preinstalled, out of box Bluetooth capabilities, and various other small upgrades. However,

this upgraded version does not improve upon the SOC, GPU, or RAM that comes with the

board. Therefore, it is not attractive enough for our use to warrant the price jump from $65

USD for the standard Tinker Board to $90 USD for the S version.

3.3.3.4 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is the newest edition to the line of extremely popular

Raspberry Pi single board computers. This COM is an affordable option for a COM to use

in the project as it has a variety of features and comes with a ton of software, drivers, and

other features created by the huge community of followers that this board has accumulated.

It costs only $55 US dollars for the model with the most pre-installed RAM.

Page 59

 Group 14 Final Report

The Pi 4 Model B comes with a quad-core Cortex – A72 processor clocked at 1.5 GHz.

Furthermore, the Model B comes with 4 GB of DDR4 RAM. It has 2 USB 3.0 ports, 2

USB 2.0 ports, and 40 GPIO header pins allowing for a wide variety of connectivity to

different peripherals. The board also has 2 micro-HDMI ports, a MIPI DSI display port

and a MIPI CSI camera port, as well as stereo audio and composite video ports. The COM

can be powered with 5V DC with a minimum of 3A via a USB-C connector or by the GPIO

headers.

It comes installed with a 2.4 and 5.0 GHz wireless adapter, a Bluetooth module, and a

Gigabit Ethernet port. While this COM unit seems to be an extremely attractive option for

our project, it has a rather large downside since it lacks a dedicated graphic processing unit.

This unit comes with an integrated graphics chip on the processor which limits the amount

of graphical work that can be done on the unit.

While it might be possible to modify the board to include a PCI-e slot and connect the

board to an external GPU, this would be far out of the scope of this project and would

require us to make our own drivers for the project as well as do quite a bit of fine soldering

to modify the board.

Table 13. COM Comparison.
Feature Jetson Nano Jetson TX2 ASUS

Tinker

Board

Raspberry Pi 4

Model B

Cost $99 $449 $65 $55

GPU 128-core NVIDIA

Maxwell™ GPU

256-core NVIDIA

Pascal™ GPU

ARM Cortex

Mali-T764

Integrated

Graphics

I/O Pins 40 GPIO pins 40 GPIO pins 40 GPIO pins 40 GPIO pins

Communication

Protocols

I2C, SPI, UART I2C, SPI, UART I2C, SPI,

UART

I2C, SPI, UART

Memory 4GB 64-bit

LPDDR4 Memory

1600MHz - 25.6

GB/s

8GB 128-bit LPDDR4

Memory

1866MHz - 59.7 GB/s

2GB DDR3

memory

4GB LPDDR4

memory

Power 5 – 10 W 7.5 – 15 W 10 – 12.5 W 15 W

Storage microSD card slot

for storage

32GB eMMC 5.1 microSD

card slot for

storage

microSD card

slot for storage

CPU Quad-Core

ARM® Cortex®-

A57 MPCore

Dual-Core NVIDIA

Denver 2 64-Bit CPU

and Quad-Core ARM®

Cortex®-A57 MPCore

Rockchip

Quad-Core

RK3288

Cortex – A72

processor

clocked @ 1.5

GHz

Wi-Fi Enabled No Yes Yes Yes

OS Ubuntu Ubuntu TinkerOS -

Debian

Raspbian OS,

Ubuntu, Etc.

3.3.4 Display Selection

The display is an integral component of the final product as the display will be the medium

upon which the GUI will be interfaceable. The LCD will be able to display the ASL

animation so deaf users can read the sign language as well as the input and translated text.

Page 60

 Group 14 Final Report

The display will also tell users in which mode they are currently using, when they are

recording, and what the device read as their dialogue (this last part will be included to allow

for debugging on our end and troubleshooting on the consumer end as needed). The most

integral factor is choosing a display is the price, since LCDs are expensive. We have yet to

partner with a financial sponsor and must use our limited funds in the most efficient manner

possible. The next factor is the size of the display. Users should be able to see the models

on the screen easily and be able to read text from a reasonable distance without having to

strain their eyes. Another factor we considered was touch-compatible displays to have a

device that is sleeker and more portable; that is, the device can be handheld.

3.3.4.1 10.1" Display & Audio IPS Panel

At 10.1 inches, this 1280-by-800 in-plane switching (IPS) display is one option for a

terminal in our product. It is an all-in-one option that includes the screen, HDMI driver,

and the ability to connect audio output peripherals. Furthermore, it has a button keyboard

to open a monitor menu with options such as brightness and contrast. It has inputs for video

of HDMI and VGA and a 3.5 mm audio jack for audio input. However, at $154.95, it is

rather expensive for a small screen size in comparison to other options on the market.

3.3.4.2 Sceptre E205W-16003S LED Monitor

This 20” monitor would be great for our project as its large size is still suitable for our

device design. It would make the user viewing experience much better, as the resolution

for this monitor is 1600x900. This display is also $59 which fits our budget well. The

monitor has inputs for HDMI and VGA and has built in speakers. With a refresh rate of 75

Hz, models being displayed on the screen would be able to keep up with the output of the

graphics processor of our device and would allow the user to view non-choppy animations.

3.3.4.3. UPERFECT 12.3” Touch Monitor

The UPERFECT monitor would allow the user to touch the screen directly to control the

terminal. This is an attractive option as it would increase the ease of use for users by being

more intuitive and would allow for a sleeker and more portable final design. The monitor

is 12.3” which is about the size of a tablet computer, which is an optimal size for our

project. It has a high resolution of 1600x1200 and has built-in speakers. For input options,

it has HDMI, DVI, and VGA. It uses a microUSB cable to achieve the touchscreen

capabilities and is designed to be used with a huge variety of devices including COMs. It

is priced at $149 US Dollars which is rather expensive for a 12.3” monitor but would add

touch capability to our terminal.

3.3.5 Controller Selection

When it comes to the user interaction with our device, we had several different options for

how the user could do so. The device needs to be able to perform the actions of mode

selection and voice recording with input from the user. For voice recording, we wanted the

user to press a button to begin the voice recording process and press the button again to

Page 61

 Group 14 Final Report

stop the recording process and have a sound file ready for processing. For mode selection,

the user would be able to press a button to switch between the speech-to-speech translation

mode and the speech-to-ASL mode. This would require the use of at least two buttons, one

of which would be for voice recording and the other for the mode selection.

3.3.5.1 IR Remote

One option for the user to notify the device about their input is for the device to have an IR

communication method. IR remotes are common devices seen mostly to help users interact

with devices such as TVs and DVD players. These remotes work by sending data in the

form of pulses of modulated infrared light. Each button on the remote sends a code that is

unique to that button that is then demodulated and decoded by an IR sensor in the receiver.

This implementation for indicating when to record the user’s voice would be a great choice

as it is extremely inexpensive to implement, at $6.95 USD. Furthermore, this

implementation would be easy to program as it is as simple as decoding the code that is

received from the IR sensor and telling the controller what to do when certain codes are

received. However, this implementation would be subject to interference in the form of

sunlight and other light sources, such as light bulbs. While most modern-day LED light

bulbs emit less IR light than older incandescent light bulbs, this still imposes a risk that a

signal would be impeded by other IR signal noise and the user would have to press the

button multiple times for the system to pick up the signal. Furthermore, IR sensors are very

sensitive to the position of the transmitter and they must have line-of-sight to send and

receive signals properly; that is, without the use of IR relays or amplifiers, the user must

point the remote directly to the receiver for the signal to be transmitted and received

successfully. This could lead to the same problems as interference and lead to a suboptimal

user experience.

3.3.5.2 RF Remote

Another option would be to use an RF remote and receiver. RF remotes are common

devices seen in everyday devices such as car keys, garage door openers, and radio-

controlled toys. They work by sending out radio frequency waves that represent the binary

code for the respective button that was pressed on the remote. The receiver takes in the

signal and then decodes the signal back into a usable binary code.

This implementation would be a great choice for our project as it is inexpensive to

implement, costing around $12 USD for an RF remote and receiver. It is also extremely

easy to implement as the receiver and remote that we have chosen are a pair that know how

to communicate with each other already. There are five output pins on the receiver that

correspond to an interrupt pin and four pins corresponding to four unique buttons. When

any button is pressed, the interrupt pin goes high and the respective pin for that button also

goes high. When it the button is released, all pins go low.

A benefit of this approach is that the remote is invariant to line of sight with the receiver

and typically has a much larger range than an IR approach. Furthermore, the remote

Page 62

 Group 14 Final Report

transmits at a specific frequency, 315 MHz, that is not used by many devices and is

therefore less subject to interference and will not interfere with any other devices that are

not within this range. Issues might arise from there being no error checking built into these

remotes, as the remote has no way of knowing if the signal was received correctly or at all.

Furthermore, these devices have no way of addressing the signals, and therefore, all devices

that operate at 315 MHz will receive the signals from the remote.

3.3.5.3 Push Button

By far the simplest approach for the user to interact with the console, another option would

be to install a momentary push button on the console for the user to press whenever they

want their voice to be recorded. If the button is pressed, the microphone will be activated

and recording. This implementation would be cost effective and easy to implement and it

would only require a single button to be added to the PCB board and would require no

extra programming or fiddling. It would also decrease the complexity of user interaction

by only having a couple of buttons housed in the console itself that users could easily

access. We would not have to worry about users dropping, breaking, or losing the remote.

Furthermore, we would not have to worry about a remote losing power or running into

interference as it transmits. However, this would make users have to sit right next to the

console and remain at the console to use it; otherwise, a long cable would need to extend

directly from the device to the user, which would result in a cumbersome and non-user-

friendly setup.

3.3.6 Wi-Fi Module Selection

To determine the proper Wi-Fi module suitable for our device, the adapter must be able to

provide sufficient speeds and reliability while also maintaining a small overhead and

profile. The types of connectivity available to the Jetson Nano include PCIe and USB. For

PCIe-enabled Wi-Fi modules, we have the option of soldering external antennae to the

adapter to increase its range. The USB-enabled Wi-Fi adapters are usually designed as a

single package; rarely do these USB devices give the user the option of installing one or

more antennae. Below we discuss briefly one available PCIe Wi-Fi module and one

available USB Wi-Fi module.

3.3.6.1 Intel Dual Band Wireless-AC 8265

The Intel Dual Band Wireless-AC 8265 is a PCIe-enabled Wi-Fi adapter that provides both

Bluetooth and Wi-Fi support with speeds up to 867 Mbps and offers extended battery life

in comparison to the legacy 11ac devices. The PCIe connection provides a reliable channel

for sending and receiving data. This card can also provide connectivity through 2.4 and 5

GHz channels. The module weighs around 2.6 grams and can operate in the temperature

range of 0°C to 80°C. These specifications would work with the current project design

since the design does not have portability constraints. With this module an additional

antenna may be needed to extend the range and reception of the adapter. The antenna that

is available for this card is the RP-SMA Dual Band that provides the additional

functionality needed. One disadvantage of this card is the excessive price at $140.92 USD.

Page 63

 Group 14 Final Report

3.3.6.2 Ultra USB Wi-Fi Adapter

The Ultra USB Wi-Fi Adapter provides up to 600 Mbps and has access to both the 5 GHz

and 2.4 GHz channels. It also provides an external high gain long-range 2 dBi omni-

directional antenna. The integration of the antenna in one package provides more simplicity

to the Wi-Fi connectivity aspect of the project, while also maintaining the required

specifications. The Ultra USB Wi-Fi adapter is the route of choice because of the one in

all design and the portability of the product is not a top priority.

The adapter we would be using for our design was donated by one of our team members.

However, comparable USB Wi-Fi modules with an integrated antenna range in price from

$20 to $50 USD. Although the PCIe module we listed was out of our price range, there are

other PCIe Wi-Fi modules that are also around the $20 to $50 range. Also, the wireless

connectivity is also comparable between the USB and PCIe protocols. Therefore, the

selection of the Wi-Fi module for our project merely depends on availability and feasibility;

since we already own USB-enabled Wi-Fi modules, we have chosen to proceed with this

method of internet connection. Should we need a faster or more reliable connection, we

may consider purchasing a PCIe card or upgrading to a more robust USB module.

3.3.7 Voltage Regulator Selection

For the selection of the voltage regulator, there are several considerations to consider when

choosing the component that it has the best performance while also being low-cost. Several

of these considerations include the required output voltage, input voltage, current output,

output ripple, load regulation, load transient, line regulation, line transient, voltage drop-

out, and efficiency. The purpose of the voltage regulator in our project is in the

development of our power supply unit, where the voltage supplies to the Jetson Nano and

the Altera Cyclone IV require specific voltages to be available for extended periods of time

to maintain proper functionality of both devices.

3.3.7.1 LP5900

For maintaining a constant voltage output of 2.5V, we chose a linear voltage regulator since

the input voltage would need to be 5 V. Therefore, since the difference between the input

voltage and output voltage is around 2.5V, this linear voltage regulator is the preferred

choice. The linear voltage regulator is a more energy-efficient and cost-efficient option,

since the voltage difference does not amount excessive energy loss. The input voltage range

of the LP5900 is 2.5V to 5.5V and the output voltage range is 1.5V to 4.5V which matches

the specification needs of the project with an additional margin of error for the input and

output voltages. Since it is a low-drop linear voltage regulator (80mV), a noise bypass

capacitor is not required and thus simplifies our circuit layout. The maximum output

current possible with this regulator is 150mA which is sufficient for the purposes of this

project.

Page 64

 Group 14 Final Report

3.3.7.2 LP38500-ADJ

For maintaining a constant voltage output of 3.3V and 1.2V a linear voltage regulator was

chosen since the input voltage would only be around 5V. Therefore, the difference between

the input voltage and output voltage is around 1.7-3.8V a linear voltage regulator is the

preferred choice. As mentioned above, the linear voltage regulator is much simpler and

cheaper option, and since the voltage difference isn’t too much the amount of energy lost,

as a result of the efficiency of linear regulators, is acceptable.

The input voltage range of the LP38500-ADJ is 2.7V to 5.5V and the output voltage range

is 0.6V to 5V which matches the specification needs of the project with additional margin.

A 10uF capacitor is needed at the input and output for stability of the circuit. The maximum

output current possible with this regulator is 1.5 A which is enough for the purposes of this

project. The general wiring diagram for the LP38500-ADJ is explained in Figure 30.

3.3.7.3 LM7805

The electrical characteristics of the LM7805 demonstrate that the output of the voltage

regulator is fixed at either 5V, 12V, and 15V options depending on the input. Therefore,

this regulator was not considered for the possibility of being used to regulate the voltage

within the circuit design. In terms of the LM7805, although the output voltage is 5V, which

we could definitely use for our design, the input voltage required for this voltage regulator

is at least 7 V up to 25 V, which is out of range for our power supply unit. This also applies

to the LM340, LM340A and LM7805 classes of voltage regulators.

3.3.8 Initial Summary of Selected Parts

This section describes the decisions on specific parts that were to be implemented in the

original design. Note that although these components had been chosen for the initial design,

many parts were omitted or replaced in the final design after component and device testing.

3.3.8.1 Speaker

When looking into different speaker systems for our project, we had investigated having a

separate sound system to play our audio through. After doing some research into this, we

found that we would need to have 3 parts to make up our sound system: a digital-analog

converter (DAC), an amplifier, and the speaker itself. The DAC would convert our I2S

digital sound signal to analog signals, an amplifier would increase the amplitude of the

outputted sound signal, and then the speakers would take input analog signal and output

audible sound waves. However, when looking into displays for our project, we found that

many of the displays came with a connection for audio output or built in speakers. Since

we are outputting video through an HDMI cable which carries audio with the video, it

would be easier and more cost effective to use a display that has included speakers.

Page 65

 Group 14 Final Report

3.3.8.2 Microphone

For our project, we have decided to use the I2S MEMS microphone – SPH0645LM4H. We

chose this microphone because of the many benefits of the I2S standard. Not only would

this microphone be simple to implement into our project, the output signal is also purely

digital. This eliminates the need to use an ADC in the design and would allow us to quickly

send our audio signal to the COM module and sent to the cloud transcription service.

3.3.8.3 FPGA

For the brains of the I/O board, we have selected the Altera Cyclone IV –

EP4CE22E22C8N. This FPGA has a large number of logical elements to ensure that we

can implement our design. Furthermore, the Cyclone has many I/O pins which would be

perfect for its implementation in our project. We can run all the necessary peripherals in

and out of it as needed with many more unused pins to be used as needed. The Cyclone

also comes with 594 Kb of embedded memory, which will easily allow us to implement

FIFOs for communication to the COM unit. The chip is also rather affordable, costing only

$35 USD. The only downside that we could see for this chip was that it is from Altera,

which is a vendor that we are not used to working with, meaning we will have to learn how

to use the Quartus II software to work with the chip. However, even with this downside,

the Cyclone IV – EP4CE22E22C8N was the best choice for the application that we have.

3.3.8.4 COM

For the COM unit in our design, we have selected the budget-friendly Jetson Nano from

NVIDIA. We decided to purchase the Jetson Nano as it is a powerhouse of a COM for the

price of around $100 USD. It has a quad-core ARM processor and 128 GPU computational

cores which allow this COM to deliver a lot of power despite its small form factor.

Furthermore, the Jetson has an unmatched selection of I/O possibilities that make it simple

to interface with some of the peripherals necessary for our device. It has 40 GPIO pins that

we can use to communicate with the I/O board that we plan to design, as well as having 4

USB 3.0 pins that can help interface with peripherals as needed.

Our design will also require quite a bit of storage space, for the NMT model and well as

the sign language models that we will be creating. Because of this, the expandable SD card

storage is perfect for our application as it will ensure that we have adequate storage for

everything that we need. Additionally, we can add external hard drives via the USB 3.0

ports as needed. Finally, the Jetson Nano has HDMI connectors that will allow us to

natively pass the video of the sign language models and translated text. Since HDMI

protocol includes both audio and visual data transfer, we are also able to transfer the

machine-generated text-to-speech to the speakers on our display.

3.3.8.5 Display

For the display of our project, we chose the Sceptre E205W-16003S LED Monitor. We

chose this display because of the many features that it brings to the table for such a low

Page 66

 Group 14 Final Report

price. It is a 20-inch display with a resolution of 1600x900 and a refresh rate of 75 Hz,

which is perfect for our application. It will provide clear video output for users to see the

sign language models and translated text. Furthermore, this monitor has built in speakers

that will allow us to output the audio that we receive from passing our translated text

through a text to speech service. This display is perfect for our application and our budget,

costing only $59 USD.

3.3.8.6 Controller

For users to control our project, we have chosen to go with a remote style control. This will

consist of two parts: the first part is the transmitter, the Adafruit 1391. This is a two-button

RF remote that will transmit a signal at 315 MHz. The second part is the Adafruit 1097, a

four-pin toggle type receiver attached to the I/O board that will capture the signals from a

remote at 315 MHz and turn on and off the respective pins. We will have the first button

control whether the microphone is recording, and the second button will control the mode

in which the device would be currently operating. We will also have buttons on the device

itself that will allow for the device to be reset and turned on/off. Table 14 shows a full

summary of all of the parts that we have chosen for our project and their cost.

3.4 Final Summary of Selected Parts

The system is composed of many different components that connect and interface together

to form the final product. This section provides technical details for each one of these

components. Given the time frame, implementation of the GPU-FPGA based ASLBoT was

not feasible. Also, the I2S microphone was not able to be implemented in the final product

since the MCU was incompatible with the I2S serial protocol.

3.4.1 Final Microcontroller

The brain of the printed circuit board is a TI MSP430FR6922IG56R. The MSP430 family

was chosen for its universal serial communication (USC) port, high capacity memory, and

large number of general-purpose input and output pins. The chip runs at 16 MHz allowing

for multiple operations to be done in quick succession, which is a vital quality for our

system. The Universal Serial Communication port supports I2C, SPI, and UART serial

communication. The integrated development environment, Code Composer Studio, along

with an MSP-EXP430FR6989 programmer, was used to develop, debug, and program the

chip.

3.4.2 Final Single Board Computer

The powerhouse of the system is the UDOO x86 II Advanced Plus, which is a single board

computer. This board was chosen for its x86_64 architecture which was required to run

Unity-based applications such as ASLBoT, the application used in this project. The board

features an Intel Celeron quad-core processor, 4G of RAM, an Intel HD Graphics card, and

an Arduino Leonardo MCU that is connected to the processor by an internal USB

Page 67

 Group 14 Final Report

connection. In addition, the board supports serial communications through the pins with

protocols such as I2C, UART and SPI. The UDOO x86 II has 32 GB of internal storage

with a microSD card slot to expand the memory, if desired. Furthermore, the board features

several interfacing options such as USB 3.0, HDMI, and Arduino pinouts. The integrated

Arduino unit allows for easy communication between the microcontroller unit and the

Unity application running on the UDOO board.

3.4.3 Final Microphone

The Blue Snowball microphone is used to record audio snippets to be processed and

translated. This microphone was chosen because of its easy-to-use digital interface and

seamless integration into the system. Its wide frequency range of 40 Hz to 18 KHz ensures

that the user’s voice could be picked up. It also features different audio detection patterns

that allow for this microphone to be used in a variety of situations. The Snowball is

connected and powered via USB and is plugged directly into the UDOO. The microphone

does not require drivers to use, making setup effortless.

3.4.4 Final LCD Display

The LCD display for this project is a 2-line, 16-character display with blue backlighting. It

takes a 5-V power supply and is used in 4-bit mode. Built into the module is a HD44780

controller, which allows for the microcontroller unit to program it. The display is used to

indicate the status of the microphone to the user.

3.4.5 Final IR Sensor

The IR sensor for this project is a TSOP38238. This sensor can be powered at any voltage

between 3 and 5 V and is tuned to 38 KHz making it perfect for the product. Also featured

is improved ambient light and noise immunity, improving the final product’s use in

classroom settings. Furthermore, the IR codes are automatically demodulated as they arrive

at an IR diode, allowing the signals to be much easier for the microcontroller unit to decode.

Table 14. Total Cost of Final Device.

Component Part Selected Cost

SBC UDOO x86 II Advanced Plus $ 176.00

Power Supply 12V 3A Banana Plug AC Adapter $ 8.90

MCU MSP430FR6922 $ 5.33

Microphone Blue Snowball $ 49.99

IR Remote Adafruit Mini Remote Control $ 4.95

IR Receiver TSOP38238 $ 1.95

Total Cost

$ 247.12

Page 68

 Group 14 Final Report

4. Related Standards and Design Constraints

In this section, we will discuss standards and design constraints that may pertain to our

project. The first part of this section will cover a wide range of standards from wireless

communication standards to serial communication standards. The second part will cover

the design constraints from aspects such as economic impact to sustainability. We will start

describing the standards that can be featured on our device for wireless connectivity,

programming languages, power supply, and serial communication protocols. Then we will

proceed to discuss the different constraints that the device will face based on the chosen

hospital setting such as environmental, economic, and health constraints.

4.1 Related Standards

This section gives an overview of the many standards related to the creation of our device.

These standards must be considered such that our device is compliant with other similar

devices on the market and do not interfere with them. Also, some of these standards are

related to data handling, from which how the final device manages and stores data is

paramount in terms of data privacy.

4.1.1 Wireless Communication Standards

Wireless communications empower any electrical device with the ability to communicate

between different devices and/or access to different variety of products such as a

smartphone trying to access Facebook over the Internet using Wi-Fi connectivity. As stated

before, our device requires some form of wireless connectivity to execute certain

functionalities. This can enhance the user experience plus gives more utility to the device

as it may access a wide range of external functionalities that pertain to language

translations.

4.1.1.1. Wi-Fi Standards

Wireless fidelity, or commonly known as Wi-Fi, is considered a family of radio

technologies that are commonly used in wireless local area networking (WLAN). Wi-Fi

was introduced in 1998 with its base foundation on the IEEE 802.11 family of standard

LAN protocols which cover both the medium access control (MAC) and physical (PHY)

layers. The wireless communication technology allows a user to navigate through the

Internet at broadband speeds with the use of a wireless access point. Wi-Fi is always being

regulated and thoroughly tested by the non-profit organization called the Wi-Fi Alliance

which overviews electrical devices that are “Wi-Fi certified” by passing a series of testing

standards.

This regulation ensures that the user can interconnect between Wi-Fi certified electrical

devices. Due to its ease of use and the extensive use of the Internet, Wi-Fi has become one

of the biggest wireless communication technologies in the market having approximately

580 Wi-Fi integrated circuits chips ship annually. Furthermore, Wi-Fi can be found in a

Page 69

 Group 14 Final Report

wide range of devices from Personal Computers (PC) to smartphones. Finally, there are a

wide range of versions of Wi-Fi that are dictated by the IEEE 802.11 standard, specifically

the Physical Layer and MAC, which will further explore in this section.

IEEE 802.11 Physical Layer, based on the Open Systems Interconnection (OSI) model of

the computer networking as seen on Figure 31, is the lowest layer. Composed of direct

hardware transmissions, the physical layer defines the overall means of transmitting raw

bits. The physical layer provides an interface in which the transmission medium can

transmit bitstreams grouped into code words and converted to a physical signal. The

requirement specifications of frequencies, the line code and electrical connectors are

defined in this layer. Its overall purpose, on the OSI model, is to provide a means of

translation from logical communications requests, provided by the data link layer, to

hardware-specific operations to allow transmission or reception of signals.

IEEE 802.11 MAC, based on the OSI model, is one of the sublayers that belong to the data

link layer, the other one being logical link control (LLC) sublayer. The MAC provides flow

control and multiplexing for the transmission medium that the physical layer employs

which allows for a smooth transition between high-level frames from the LLC sublayer to

the physical layer. Its overall purpose on the OSI model is to translate higher-level frames

into frames that are appropriate for the transmission medium. In addition, it adds control

abstraction so that the upper layers are unaware of the complexities of the physical link

control. However, when it comes to the Ethernet and Wi-Fi, MAC additionally is required

to provide both full and half duplex communications with the addition of error frame

protection.

Figure 26. Organization of the OSI Model. (Public domain.)

Page 70

 Group 14 Final Report

4.1.1.2. Consumer Infrared Standards

Consumer Infrared (CIR) is a category of electrical devices that can wireless communicate

using the infrared section of the electromagnetic spectrum. It can be found in most common

electrical devices such as remote controls, laptops and PCs. The functionality, performance

and utility of CIR varies from the protocol being employed since they are not standardized.

This gives the CIR a lot of freedom in functionality as it can serve as a type of command

to the television by remote controls or can be used to navigate through the web by PCs.

CIR devices can bring a plethora of issues due to lack of standardization such as:

● Universal remotes that do not adequately control the target device

● Inability to control more than one device of the same type unit

● The need to own multiple distinct remotes

4.1.1.3 Bluetooth Standard

Developed as a “short-link” radio technology, Bluetooth was created by a group of

engineers from Ericsson Mobile in Lund, Sweden. Another wireless technology that uses

the 2.4GHz to 2.485 GHz ISM bands, Bluetooth is known for data exchange between

electrical devices in a personal area network (PANs) using UHF radio waves. Bluetooth is

one of the most popular wireless technology devices on the market as approximately 920

million units are sold as Bluetooth IC chips annually. It used to be regulated under the

IEEE 802.15.1 Standard, but management move to the Bluetooth Special Interest Group

(SIG) whose main interests is to oversee the development, management of Bluetooth

profiles while protecting their trademarks.

Used primarily for low power consumption, Bluetooth employs a certain profile that

compatible devices are able to interpret for management of the communication and

parameters between the devices. This allows for ease of re-connectivity and wide range of

different applications for devices. This feature allows Bluetooth to be applied to a wide

range of different devices such as wireless headsets, wireless control of electrical devices

such as smartphones, and portable wireless speakers, and wireless streaming of data

between devices between other numerous applications.

4.1.1.4 Zigbee

Zigbee is a low-cost, low-power, low-bit rate communication wireless mesh networks

(WMNs). Developed by the Zigbee Alliance, The Alliance also is in charge of maintaining

and publishing the Zigbee Standard. As seen in Figure 32, its architectural stack is based

on the IEEE 802.15.4 short-range communication standard for low-rate wireless personal

networks (WPANs). While the IEEE 802.15.4 standard provides the physical layer and the

MAC sublayer, Zigbee provides coverage to the upper layers of the stack. Due to its

intended functionality as a low-throughput, low-power, low-cost applications, Zigbee is

much simpler than other wireless protocols such as Bluetooth and Wi-Fi. This simplicity

allows for Zigbee to be used in sensor networks, cyber-physical systems, home automation

and smart buildings.

Page 71

 Group 14 Final Report

There are three different types of Zigbee devices which are the Coordinator, the Router,

and the End Devices that are present in every Zigbee network. The Coordinator is the main

device in which its purpose is to create the network and allow other Zigbee devices to join

in. Other tasks are to gather all the data that is being transmitted and assign short addresses

to newly joined devices. The Router works as intermediate devices in which join already

existing networks and relay packets. Finally, the End Devices which only acquire data and

usually enter sleep mode to save energy. The Zigbee Standard three different network

topologies which are star, mesh and tree topologies which allows different setups for data

transmission between devices.

Figure 27. Zigbee Stack Architecture. (Public domain.)

4.1.2. Unicode 5.0 Standard

Unicode 5.0 is a universal character encoding standard for characters that can be used on

any computer and transferred internationally. Each character is assigned a specific

numerical value; this value can be compressed into hexadecimal (or octal) bases for ease

of use. There are three encoding forms for ASCII: UTF-32, UTF-16, and UTF-8. The

number associated with each encoding form corresponds to its bit size. Most computers are

preset with UTF-8, which can utilize up to 28 (256) characters, but the extended bit sizes

are required for international use, as certain characters cannot be displayed using UTF-8

alone.

The Basic Multilingual Plane (BMP) comprises the entirety of the UTF-16 encoding form,

which contains the majority of Unicode code points used internationally. The current

standard, Unicode 5.0, contains 99,024 unique characters, with 70,229 characters coming

from East Asian languages alone. The Unicode library is constantly expanding with the

inclusion of many ancient and experimental languages.

To save space, code points are given to diacritics alone, from which multiple diacritics and

a single alphabetic character can be combined into one glyph, for example “a ̈̃ ̣”

individually with hex codes [0061 0308 0303 0323] can be combined into the glyph “ã̈”̣.

Page 72

 Group 14 Final Report

However, many common characters with diacritics are given their own unique code point.

Although Unicode is a mapping of unique characters, the displayed character may differ

between computers.

This is due to the use of different fonts and typesets: although the same character may have

the same code point, the letter ‘a’ in Times New Roman, for example, will show up

differently in Wingdings (‘ ’) or MS Mincho (‘a’), but its Unicode code point remains

the same. Likewise, the same code point can be represented in different font sizes: the

character ‘a’ in 12-pt font would have the same code point as a character in 5-pt. (‘a’) and

17-pt. (‘a’) font sizes. Also, within the BMP, over 6,000 unassigned points may be used

for special characters not already in the Unicode library. Another 131,000 unassigned

points within the UTF-32 may also be used. These unused points are often used for logos

or privately used characters commonly used on a specific computer/network [86].

Unicode 5.0 conforms to a variety of standards, including ISO/IEC 6937, 8859, and 8879.

International standards are also covered for Unicode for that country’s respective

contribution to the Unicode library.

4.1.2.1. American Standard Code for Information Interchange (ASCII)

ASCII is a specific substandard of Unicode 5.0 that deals primarily with characters used in

the English language. ASCII was introduced in the Unicode 1.0 and has not changed much

since its implementation. ASCII utilizes the UTF-8 encoding protocol, which enables the

computer to read each character byte-wise. From this, a computer will read a text file saved

as UTF-8 byte-wise. However, when characters not found in the standard ASCII library

are used in a text file, the file will need to be saved in UTF-16 or UTF-32 encodings. The

computer will read these files two or three bytes at a time, respectively. Converting files

from one encoding type to another will display a text file that may seem corrupted but is

actually mis-encoded. ASCII complies with the ISO/IEC 8859 standard.

4.1.3 Python Programming Language Standards

Python is a programming language that is optimized for exploratory code; that is, Python

is useful for benchmarking code and analyzing the state of the GPU, CPU, etc. Although

most operating systems have Python pre-installed, this version of Python is insufficient for

development. Installation of Python and its third-party extensions (such as Pip and

PyTorch) are all implemented through Command Prompt.

Python, like other programming languages such as C and Java, has its own libraries and

syntax. Code written in Python is saved with the “.py” extension and is executed through

Command Prompt with its respective arguments.

Page 73

 Group 14 Final Report

4.1.4 Compute Unified Device Architecture (CUDA)

CUDA is a computing platform developed by NVIDIA that allows users to execute

complex and resource-intensive programs on their GPU instead of their CPU. The

utilization of the GPU for these resource-heavy programs instead of the CPU is due to the

contrasting architecture between the two; the GPU is specialized for graphics rendering

with its high allocation of transistors solely for arithmetic logic units (ALUs) and having a

much smaller cache and control in return.

However, the use of the GPU instead of a CPU via CUDA can only be achieved if the GPU

is a CUDA-enabled device; that is, AMD GPUs and some NVIDIA GPUs do not contain

CUDA cores and will not allow CUDA to run software via those GPUs. The most common

CUDA-enabled GPUs contain either the Kepler, Fermi, or Tesla Architectures.

The CUDA software comes preset with C compatibility for interaction with CUDA,

although there is support for other high-level programming languages such as C++,

Fortran, Java, Python, and directives such as OpenACC.

4.1.5 Hardware Description Language - Verilog Standards

This section addresses the standards set by Verilog in terms of how hardware descriptive

languages are utilized, especially in the realm of FPGA programming and design.

4.1.5.1 HDL

Hardware Description Languages (HDLs) are a type of programming language that allows

us to describe digital systems. Considered to be a Computer Aided Design (CAD) tool, it

allows for designers to create and synthesize modern day digital system. These types of

programming languages are easily read by both humans and machine making code writing

easier on developers and allows for faster execution and translation times. HDLs make up

a huge portion of the tools used to create modern day integrated circuits as they allow

engineers to describe the ever increasingly complex digital circuits being created.

Furthermore, HDL programs are easily debugged with test benches and simulations. These

test modules can be created from the code allowing for developers to save cost and time

when it comes to testing. When the code is ready to be downloaded onto and used in actual

hardware, it is synthesized and then implemented onto the hardware. Synthesizing is the

process in which the code of the HDL program is translated into the logical gates and flip-

flops of the digital circuit it describes.

4.1.5.2 Verilog

Verilog is a widely accepted and used HDL and became an IEEE standard in 2005. Verilog

contains many built-in features for IC development such as logic gates. Furthermore,

Verilog introduces a concept not seen in many programming languages called nets. These

Page 74

 Group 14 Final Report

nets allow values to continuously be assigned to them instead of having to call an

assignment for a new variable. Along with nets, Verilog also features classic variables that

software designers are used to.

Designs created in Verilog are made up of modules, much like Object Oriented Programs

are made up of classes. Modules can be instantiated inside of other modules to make use

of the logic inside of them. Furthermore, designs have a set of inputs and outputs that allow

interfacing between other designs connected to them. Verilog brings three different types

of abstraction levels that allow for developers to focus at the Gate level, Behavioral level

and Register-Transfer level.

The Gate level is characterized as a system described by logical links and timing properties.

In this type of level, we only witness logical values and usable predefined logic primitives

such as AND, OR, XOR gates. The Behavioral level is characterized as a system described

by usage of algorithms. These algorithms are sequential in nature which are a set of

instructions that are executed one after the other. Finally, there is the RTL which is

characterized as a system as a circuit design using data transfers between registers. RTL

design is strictly more focused on exact timing bounds which means certain operations can

be only executed at certain times.

4.1.5.3 System Verilog

System Verilog is another standard based off of the original Verilog standard as well as

several other extensions that were created for Verilog. This extension of the original

standard was created to support the ever increasingly complex designs for digital circuits

as well as making verification much easier. Originally, Verilog did not support verification

and therefore, engineers had to switch between Verilog and a verification language for their

verification process. It was made into IEEE standard 1800 in 2008.

Like Verilog, it is a hardware description language that is used to create, test, and aid in

the implementation of digital circuit designs. System Verilog also allows for use of test

benches that let designers quickly verify their design. Furthermore, System Verilog is

extensible with APIs allowing designers to use the language in a way that works for them.

In Figure 28, we show a standard testing environment of System Verilog Hardware

Description Language. It can be noted in the figure that the testing is done on an expected

scoreboard versus the testing scoreboard for accuracy and performance.

Figure 28. Standard Testing Environment for System Verilog. (Public domain.)

Page 75

 Group 14 Final Report

4.1.6 Machine Translation Benchmarking Models

There are several algorithms that are used to evaluate the performance of a certain trained

machine translator. Although these metrics are not standardized, the overall algorithm used

in the production of these scores are widely accepted in the computer science community.

In the benchmarking algorithms discussed here, the scores are given between 0 and 1

which, when used as the power of 10, gives the overall percent accuracy of the machine

translation model.

Some scores utilize negative scores (such as in the range from -1 to 1); here, the negative

sign is used solely to identify a high dissimilarity between the predicted sentence and the

actual sentence. The negative sign is removed to calculate the numerical percent

(in)accuracy. Although each of these metrics are universally applied to any form of

machine translation (gene sequencing, for example), these scores can also be readily

applied to neural machine translation for language processing.

4.1.6.1. Bi-Lingual Evaluation Study (BLEU) Score

The BLEU score is a predictive score that is primarily used in machine translation models

for language processing. The calculation of this score is the simplest of the models

described here. The metric for this model differs with regard to how many words are

considered as one parameter: one-word metrics are called unigram, etc. In this model, there

are two general methods of determining the score. For a unigram metric, there is the

standard precision; here, the words that are provided in a candidate sentence are matched

to reference sentences. If one word in the candidate sentence is matched to a word in the

reference sentence in the same position in their sentences, it is considered a match. This

can be extended to bigrams and trigrams, in which a pair or trio of words, respectively, are

used as the matching parameter between a candidate sentence and a reference sentence.

The overall standard unigram precision score is calculated as the number of matches

divided by the total number of words in the candidate sentence. However, with these

parameters, the candidate sentence “the the the the the the the” and the reference sentence

“the cat is on the mat” would produce a 7/7 (100%) match. To avoid this false-positive

score generated from a “high-precision” but low-accuracy sentence, a modified unigram

precision is created; here, if one word is matched between the candidate and reference

sentences, that specific word in the reference sentence cannot be used again. In this case,

the two previous sentences would result in a modified unigram precision of 2/7 (28.57%).

4.1.6.2. Prediction Performance (PRED) Score

PRED is a collection of different performance metrics, but the overall score is a log

likelihood of the produced translation being the correct translation through a specific

machine translator. Within the PRED score are the regression factor (R2), normalized root-

mean-square error (NRMSE), and the Matthews correlation coefficient (MCC). For the

OpenNMT model, there are three different PRED scores produced; the PRED SCORE is

the overall log predictive score of the generated sentence. The PRED AVG SCORE is the

Page 76

 Group 14 Final Report

average log predictive score of each word in the sentence; here, the number of words in the

sentence influence this score. The PRED PPL is the perplexity of the sentence. Here, the

perplexity is defined as the exponential of the negative PRED AVG SCORE.

R2 is a measurement of the prediction accuracy of the MT model with one word in the

sentence altered. Because of this dependence on word count within a sentence, this metric

is biased toward word count; using the R2 metric in higher word-count sentences will

ultimately result in a lower PRED score. There is an alternative R2 method, called “adjusted

R2”, which uses the word count as a parameter in calculating the overall PRED score; here,

the PRED score can be calculated without a word-count bias. This value ranges between 0

and 1, which correlates to a log score of 0 to 100. The calculation of the R2 value is shown

in Figure 29A. The calculation of the adjusted R2 value is shown in Figure 29B. In this

figure, n refers to the number of words being evaluated, and p refers to the number of

parameters having been evaluated.

Figure 29A. Calculation of the Regression Factor. (Public domain.)

Figure 29B. Calculation of the Adjusted Regression Factor. (Public domain.)

NRMSE is another parameter which takes the root-mean-square of the differences between

the observed and simulated values. The simulated and observed values are compared for

each word (or lack of a word), and these values are summated; the summation is then

modified with the root-mean-square process to produce the value between 0 and 1.

The general calculation for the NRMSE is shown in Figure 30. Here, N refers to the number

of terms being compared (word count in a sentence); S and O correspond to the simulated

and observed values, respectively; nval refers to a normalized value; this value can

correspond either to the range (Omax - Omin) or the standard deviation of the observed values.

Figure 30. Calculation of the Normalized Root-Means-Squared Error. (Public domain.)

MCC is related to the Χ2 (chi-squared) calculation in its production of positive similarity

and negative similarity (dissimilarity). Dissimilarity is indicated using a negative sign as

explained earlier. Since this metric weighs each entry as a positive or negative correlation,

the detection of false positive and false negative results is possible. The calculation of the

MCC in general is shown below in Figure 31. In this case, Χ2 is the chi-squared value of

the data set, and n is the number of observations.

Figure 31. Calculation of the Matthews Correlation Coefficient. (Public domain.)

Page 77

 Group 14 Final Report

4.1.6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Score

ROUGE is another metric system that is primarily used for the evaluation of language

processing machine translation models. Within this package are five different metrics. The

first metric, ROUGE-N, is a replica of the BLEU system; here, the ‘N’ stands for the

number of grams being evaluated in the system, so ROUGE-1 refers to unigram

measurements and ROUGE-2 refers to digram measurements, and so on.

ROUGE-L awards the highest score to the longest (here, ‘L’ stands for “longest”) sequence

of matched words between the candidate and reference sentences. ROUGE-L differs from

ROGUE-N in that the longest matching sequence can be found in any position of the

sentence. ROUGE-L also only seeks the sequence in which the words appear; that is, this

sequence can be separated throughout the sentence yet still be considered a sequence.

ROUGE-W is an extension of ROUGE-L. In the comparison between two sentences, the

sentence with the sequence of words consecutively is awarded a higher weight (here, the

‘W’ stands for “weight”) than another sequence of words that is dispersed throughout the

sentence.

ROUGE-S is the measurement of skip-bigram co-occurrences. A skip-bigram is a pair of

words in a sentence; the second word is always after the first word in this bigram, but these

two words need not be consecutive in the sentence. For example, in the sentence “I have

two dogs,” the skip-bigrams would be “I-have,” “I-two,” “I-dogs,” “have-two,” “have-

dogs,” and “two-dogs.” Using this as a reference sentence, ROUGE-S would award the

highest score to the candidate sentence with the highest amount of these skip-bigrams co-

occurring between it and the reference sentence.

ROUGE-SU is an extension of ROUGE-S with the addition of a unigram-weight. This

avoids the false-negative awarding of a reference and candidate sentence where one

sentence is the reverse-word-order of the other. This unigram weight is different than the

ROUGE-1 or the BLEU-1 scores in that the matched words need not have the same position

in the sentence. Since “I have a dog” and “dog a have I” would receive nothing in the

ROUGE-S score, for example, this pair would still receive a 1 (100%) for the unigram

score, since all the words in the reference appear in the candidate.

In our benchmarking of our OpenNMT model, we plan to use a combination of each of

these metric systems to evaluate the accuracy of our model. Note that since these metrics

are language- and algorithm-independent, we can apply these metrics not only to our

English-to-Spanish translation model but also to our English-to-English Gloss translation

model.

4.1.7 Privacy and Data Storage Standards

For the transmission and processing of data in a medical setting, there are national

standards in place to maintain the confidentiality and protection of patients’ rights.

Page 78

 Group 14 Final Report

Although different countries may have laws under different names, each country’s data

privacy laws follow the same principle of regulating the transmission and sharing of

confidential patient data.

4.1.7.1 Health Insurance Portability and Accountability Act (HIPAA)

The HIPAA standard is the US standard for maintaining confidentiality in medical settings.

This standard is separated into two clauses. One clause called the “HIPAA Security Rule”

regulates the susceptibility of unauthorized individuals to obtain private health information

and the measures taken by the original data holder to prevent such a breach. In conforming

to the HIPAA Security Rule, those with original possession of such private health

information are obligated to evaluate potential data breach risks in the information that they

choose to transmit or store. For long-term protection of this data, personnel are hired by

organizations to perform regular data assessments. Staff who produce or come in contact

with this private health information are informed and trained on proper data storage and

transmission protocols to prevent or minimize data loss.

The other clause called the “HIPAA Privacy Rule,” however, addresses the balance

between meaningful use of private health information and how and when this private health

information is acquired. Explained in this clause indicates that any form of information that

could identify the following are not permitted to be shared: mental or physical state of a

patient, whether past, present, or future (prognosis); schedule or access to health care; and

payment methods toward health care (insurance).

These potentially identifying parameters include full name and birthdate, social security

number, street address, and sex/race/ethnicity. Note that within these parameters, giving

sex/race/ethnicity, birthdate, or parts of a name are individually not considered identifiable

parameters; it is, however, the combination of two or more of these parameters that can

potentially identify an individual.

For the compliance of our design with the HIPAA standards, we intend not to store any

conversations. During the training of our NMT model, the data that we use as training may

include examples of private conversations. This data will be scrutinized to ensure that no

potentially identifiable information is contained within these data sets.

4.1.8 Serial Communication Standards

Serial communication is the means of transferring data between different components in a

system. In some instances, the data can consist of one line such as power on/power off or

can consist of a bus (such as file transfers). Serial communication is typically

communication via hardwiring; communication via electromagnetic waves is considered

“wireless” communication, explained elsewhere.

Page 79

 Group 14 Final Report

4.1.8.1 Inter-Integrated Circuit (I2C) Standard

The I2C bus specification is registered under the UM10204 standard. This method of serial

communication was developed by NXP Semiconductors for bidirectional 2-wire bus

communication between integrated circuits. The two wires consist of a serial data line

(SDA) and a serial clock line (SCL). There are five different modes within the I2C

standard. The summary of the transfer speeds and the directionality of each mode is

visualized in Table 15.

Table 15. Summary of the Various I2C Standard Data Transfer Speeds.

Data Transfer Mode Maximum Transmission Speed Directionality

Standard Mode 100 Kbps Bidirectional

Fast Mode 400 Kbps Bidirectional

Fast Mode Plus 1 Mbps Bidirectional

High Speed Mode 3.4 Mbps Bidirectional

Ultra Fast Mode 5 Mbps Unidirectional

Additionally, The I2C has a bus topology which provides flexibility by allowing the

addition of extra peripherals to a single bus. In order for the topology to work, every device

that uses an I2C unique 7-bit address so there are differences between each device. The

I2C bus can be seen in Figure 32A.

I2C follows a master-slave operation in which the master device starts the transmissions

that allows the master to read from and write to other devices. Moreover, the master device

is also in charge of driving the clock signal which is necessary for timing the start and stop

signal. The signals are transmitted during intervals that transmissions of data bits do not

occur such that the signals will not get mixed. The I2C master-slave communication is

shown in Figure 32B with the provided example.

Notice that ACK is the shorthand for “acknowledgement” which is an indication pin the

signal was received successfully. This notation is used by both master and slave devices.

The master will start by sending a signal to signify reading or writing to the target device

using the unique I2C address stored inside the target device. An ACK signal will be sent

back to the master if the device was able to receive the signal successfully. Afterwards, the

data is transmitted or received, and the communication is stopped once the master sends

the “stop” signal.

Figure 32A. The I2C Bus. (Public domain.)

Page 80

 Group 14 Final Report

Figure 32B. Master-Slave I2C Communication. (Public domain.)

4.1.8.2 Serial Peripheral Interface (SPI)

The serial peripheral interface is a four-wire serial communication method. There is no

formal standard for this type of bus; this method was developed by Motorola in the 1980s

and became widely used in the digital communication area. Since there is no formal

standard for this type of communication, there have been several different implementations

and designs utilizing this communication protocol, such as JTAG, UEXT, and Secure

Digital. This communication protocol employs a simple Master-Slave scheme in which the

master communicates with one or more devices just like I2C.

Since there are two wires (one for receiving and the other for transmitting), the protocol is

considered to be a full duplex. The signal schemed by the protocol is synchronous in nature,

since the master generates the clock signal and transmits it to the external devices. In order

to synchronously communicate with a single device at a time and not allow

miscommunication between devices, the master uses a fourth wire called the chip select

(CS) signal. If the CS signal is high, the master establishes a communication path with a

device. When the CS is low, a high impedance is placed by the external device to disable

communication. This mechanism is also used to ensure that the Master is only

communicating with a single external device at a time. In total SPI communication protocol

offers four wires: Serial Data Out, Serial Data In, Serial Clock and Chip Select.

However, this may not be the case if there is a master connected with a single device. In

this case, a 3-pin SPI can be implemented instead. Figure 33 shows a normal configuration

of master and external device using SPI communication. Noticed that, as previously stated,

since SPI does not have a formal standard the Serial Data Out and Serial Data In pins have

different names. In this case the names are MOSI and MISO, which means Master Output

Slave Input and Master Input Slave Output, respectively.

Figure 33. SPI Communication Setup. (Public domain.)

The communication scheme works as follows: the SPI uses two shift registers (SRs), one

provided by the master and the other by the target external device. Depending on the

number of bits by the two shift registers (usually 8-bit), the master’s SR will exchange its

contents with the target external device’s SR bit by bit an n-bit number of times. To

Page 81

 Group 14 Final Report

maintain stability, a D flip-flop is employed to latch the current MSB bit. This mechanism

is known as latch/shift actions since we latch the bit being transmitted and then shift the bit

between the SRs. Four modes of operation are defined by the SPI, which are 0/0, 0/1, 1/0,

1/1. These modes detail the usage of clock signal (clock polarity) and trigger event for

latching and shifting (clock phase). The format used is polarity/phase and is explain in

detail in Figure 34.

Figure 34. SPI Modes of Operations. (Public domain.)

4.1.8.3 Universal Asynchronous Receiver/Transmitter (UART)

Standard

The UART is an asynchronous serial communication standard in the sense that the

transmitter and the receiver each has its own clock signal. This communication protocol is

considered full-duplex in that data can be sent and received simultaneously through the use

of a UART-enabled communication using two wires to allow bidirectional simultaneous

transmission. The protocol also allows half-duplex by using one wire to transmit data in

one direction. Through the use of a FIFO and sending and receiving simultaneously, the

UART is analogous to a bidirectional roadway, where the flow of one set of traffic does

not impede the flow of traffic moving in the opposite direction.

The UART communication protocol has a transmission pattern that is shown in Figure 35.

The scheme, unlike the other serial communication protocol, is simple but effective. It uses

a signal line that represents different modes of the protocol. When the signal is high, it

means the transmission is idle. When the signal, after being idle for a while, drops low, this

is called the Start Bit in which the UART transmission starts to communicate. After that,

each bit transmitted will be considered to be data bits that are sent from the LSB first to the

MSB last. Then, once the signal is switched to high again for a long time, called the Stop

Bit, this signals the transmission to stop.

Figure 35. UART Communication Scheme. (Public domain.)

This protocol also behaves in a FIFO or queue data structure; that is, the first set of data to

be sent through the UART is also the first set of data to be sent out. FIFO is analogous to

a drain or a funnel, where the first amount of liquid inserted is the first to be removed

through the orifice at the bottom. The FIFO structure differs from the stack architecture,

which is LIFO (last-in, first-out).

4.1.8.4 Inter-Integrated Circuit Sound (I2S) Standard

Page 82

 Group 14 Final Report

The I2S bus standard is an extension of the I2C bus standard mentioned previously. This

I2S bus consists of three lines: a continuous serial clock (SCK), a word-select line (WS),

and a serial data line (SD). There are three different configurations regarding I2S. Either

the transmitter, the receiver, or a controller is the master; in any case, there is only one

master, with the other components being the slave. In each case, the transmitter sends data

to the receiver, but the determination of the WS and SCK lines is determined by the master.

The simplified block diagram for each case is shown in Figure 36. The word select line has

a high and low level; the high level indicates transfer via one channel, while the low level

indicates transfer via the other channel. The SCK frequency is determined by the master

component and transfers this frequency to the slave component.

Figure 36. Different Configurations for the I2S Protocol.

4.1.8.5 Universal Serial Bus (USB) Standards

The universal serial bus standards define a serial communication protocol that enables

interconnect between various devices, communication between them, and power supply

from one device to another. This specification is attributed to a number of companies,

including the Hewlett-Packard Company, Intel Corp., Microsoft Corp., Renesas Corp, ST-

Ericsson, and Texas Instruments. The various revisions of the USB standard define a series

of different connectors and connection speeds, with each revision providing a more well-

designed, faster connector. The various USB speeds and their date of documentation are

explained in Table 16. The implementation of the USB as a standard for interconnection

between devices is meant for a simple yet universal communication protocol. The use of

USB in the personal computer realm was intended for the “ease-of-use for PC peripheral

expansion,” low-cost implementation, and universal availability for both device

manufacturers and consumers.

Table 16. Summary of Major USB Revisions.

Year Implemented Data Transfer Speed

USB 1.1 Sept. 1998 12 Mbps

USB 2.0 April 2000 480 Mbps

USB 3.0 Nov. 2008 5 Gbps

USB 3.1 July 2013 10 Gbps

USB4 Aug. 2019 40 Gbps

Page 83

 Group 14 Final Report

Out of the USB hardware models, the project will use USB 3.0. One of the main reasons

is because the Jetson Nano already provides USB 3.0 ports that can transmit data and

charge the FPGA. USB 3.0 provides differential pairs which provide a full-duplex

communication between the COM and the FPGA. Additionally, we will use the type-A

connectors as we need to deliver both power to the FPGA and data transmissions between

devices.

4.1.9 Audio/Video Connection Protocols

The process of sending a display from one device to another is achieved through some form

of a cable. There are a wide variety of these cables: some of these cables are developed to

be proprietary to a specific company, while most are developed for universal connectivity,

similar to USB. In fact, while USB acts as a serial communication protocol, some displays

can actually communicate using this protocol.

4.1.9.1 High Definition Multimedia Interface (HDMI)

High Definition Multimedia Interface, or popularly known as HDMI, is currently the most

widely accepted and most versatile form of display communication. This cable type was

introduced in 2002 and was developed by several major electronics companies, including

Sony and Toshiba. As most displays are moving towards integrated visual displays with

audio, the popularity of HDMI can be attributed to this ability to transfer both video and

audio simultaneously. Since both the audio and video can be transmitted through the HDMI

cable at the same time, many audiovisual events can be timed to occur at the same time,

allowing users to watch videos with sound or follow along with a MIDI player on the

screen.

The initial version of HDMI, HDMI 1.0, was introduced in 2002 as an uncompressed, fully

digital audio and video connector. At its inception, the HDMI 1.0 could achieve bitrates of

up to 4.9 Gbps. The first update of the HDMI was the 1.1 version in 2004, which added

support for DVD audio. The 1.2 and 1.2a updates in 2005 provided support for computers,

which greatly contributed to the popularity of this protocol. The 1.3 version in 2006

increased the bandwidth to 10.2 Gbps and allowed for the use of “Deep Color” 16-bit

channels. This version was also able to develop reliable synchronization between audio

and video, greatly reducing the instances of video lag. The later updates continued to

expand upon the resolution and audio capabilities, especially in keeping up with the major

technologies; for example, the current HDMI version supports 4K x 2K displays and has a

bandwidth of 18 Gbps.

4.1.9.2 Digital Video Interface (DVI)

Digital Video Interface (DVI) is another form of digital display connection that was

introduced in 1999. However, unlike HDMI, which is able to transmit both audio and

video, DVI is a video-only transmission protocol. This connector was neglected due to the

introduction of the HDMI cable shortly after the inception of the DVI.

Page 84

 Group 14 Final Report

4.1.9.3 Video Graphics Array (VGA)

Video Graphics Array (VGA) is an analog interface that was introduced in 1987. Although

there were other digital connectors before this such as CGA and EGA, VGA provided a

much higher resolution of 640 x 480 and was able to show up to 256 colors. Although this

form of connector has been quickly replaced by digital connectors that can provide much

faster bandwidths and resolutions (see HDMI), many computers still include VGA output

as a “standard definition” connection, as opposed to a “high definition” connection like

DVI or HDMI.

4.2 Design Constraints

This section describes the constraints that will bound our project into being realistic in

design and implementation. These design constraints are formulated based on the

requirement specifications of this project, on the client’s need, and outside constraints that

we may face as we implement the device. Having the use of realistic constraints provides

us having a direct and throughout understanding of exactly what to focus on. These

constraints aim to improve society and the quality of life by applying constraint factors

such as:

• Economic

• Time

• Manufacturability

• Sustainability

• Health

• Social

• Political

• Moral

• Ethical

4.2.1 Economic and Time Constraints

Our project’s estimated budget is around $1100. Since no financial sponsorship was obtain

from an outside source, all the members had to five an equal amount of $275. The goal

overall was to aim for a COM that was not greater than $500 and an FPGA that was not

greater than $200 but with the mindset of having fast performance and accuracy of

delivering translations. This allows to still pick average quality external peripheral

components such as microphones, speakers, buttons and the LCD. An advantage that we

possessed was the availability of the HDMI port provided by the COM which enabled us

to use an LCD Monitor that had a high refresh rate. This allows for a smooth transition

between ASL models. Even with the budget constraint, we are facing, if this product is

implemented successfully, places that require human translations would spend less money

on translations since human translator require a lot of high upkeep to keep the services.

Our device comes with support of 128 different languages plus ASL translations that would

be easy to assemble and deploy.

Page 85

 Group 14 Final Report

Additionally, the court cases against poor services provided, by establishments against the

deaf people, could potentially decrease since our device can produce real-time accurate

translations and display accurate ASL models. This can potentially save a lot of money for

the establishments as court cases against poor services, for the deaf people, have reached

around $70,000. Moreover, its ease of use could make it more marketable to other settings

outside of schools and hospitals. Finally, most of the components can be bought in easy to

reach websites that allows for assembly of such device with ease by following our user’s

manual.

Time is a big constraint that our project currently faces and will keep facing. The time

schedule for project completion is divided into two sections; Senior Design 1 and Senior

Design 2. Senior Design 1 focuses more on the development, design and documentation of

our project whereas Senior Design 2 focuses on the implementation of the device.

The time span of our project is from August 2019 to April 2020, which is basically 8

months. This short amount of time damages the performance of our machine translation,

as we are training an NMT to translate from speech to ASL. This training requires a lot of

dedication and time as good machine translations usually take large amounts of data sets.

To meet the requirements set in this document a milestone table has been set and can be

found in section 8 of this document.

4.2.2 Manufacturability and Sustainability Constraints

Manufacturability, the art of design devices for ease-of-construction and mass-production,

restricts the selection of the components being used in the device. Manufacturing

constraints affect us in the sense of the limited services that are provided to us. Since we

are a self-funded project, most components will not be of the highest quality which shortens

the range of services that we can potentially use.

Designers should always consider certain functions of manufacturing when developing a

device such as assembly, fabrication, testing, acquisition, shipping and repair of the

components being used. Sustainability is the art of durability and maintenance of the

device. This type of constraints narrows down the component selection even further since

cheap components are not as durable as the high-quality components. Ironically, high-

quality component may last longer but their maintenance is more expensive than cheap

components. Our project heavily benefits from having high quality components that are

manufacturable, since high manufacturability brings high sustainability in the maintenance

area.

One of the main goals was to deliver real-time accurate machine translations for languages

and ASL and since we needed to deliver high quality translations, we based our component

selection with high quality components that were manufacturable and preferably cheap to

buy. Following the requirement specifications found in this document, we required high

quality microphone components since we need the speech translation to acquire the audio

accurately. Additionally, we needed to ensure that, if the microphone ever malfunctioned,

it could be easily replaceable. The same mindset for selecting the speaker and display was

Page 86

 Group 14 Final Report

used. A more detailed selection process was discussed in section 3 in which

manufacturability and sustainability were in mind when selecting these components.

However, when selecting the COM and the FPGA we faced manufacturability constraints

since they were expensive even the midrange-quality components. To ensure the

sustainability of these expensive devices, we decided that an electrical safe environment

had to be used to minimize potential electrical damage that can be done to the boards. This

can lead to the malfunction of the device and a new one would have to be bought which

would cause the expenses of the project to expand. Furthermore, we bought most of the

components from third-party vendors that possess fast shipping and large quantities of the

components used.

4.2.3 Moral and Ethical Constraints

Our project involves the automation of the occupation of human-performed language

interpretation. In this society of the constant evolution of technology and the requirement

of automation for the purposes of streamlining, improving, and cost-reducing, there is

always the question of whether the implication of this automated technology is truly

beneficial to society; for while a new technology may improve the lives of those using the

technology and those developing it, this new technology may also negatively affect others.

4.2.3.1 Automation Displacing Human Labor

One aspect of ethicality our group discussed was the potential destruction of others’ current

occupations. Since we are developing an automated language translation machine, one

could assert that we are effectively removing the demand for organic language

interpretation done by humans. We counter this with the point that natural language

translation is still in its developmental stages due to the complexity not only of individual

languages alone but also the complexity of attempting to describe a sentence in one

language in the language of another. We also counter this claim with the notion that because

this concept of natural language translation is still being developed, the demand for

language interpreters has not diminished but rather shifted.

This shift is marked by language interpreters translating in their field, e.g. during press

conferences, broadcasting, etc. to collaborating with scientists and engineers for the

continued research and application of machine translation and natural language

processing.

This concept of the balance of human versus machine labor is described by Pramod

Khargonekar and Meera Sampath in four tiers. These tiers start at level 0 as the most

unethical level and progress to level 3 as the most ethical tier.

In level 0, called the “cost-focused automation,” ethics are completely ignored, and human

labor is completely replaced by automation for the sole purpose of “economic gain.” This

approach to automation is considered not only unethical but also potentially fatal to the

Page 87

 Group 14 Final Report

economy, since this displacement of labor would lead to a rise in unemployment and the

decrease in demand for goods and services.

In level 1, called the “performance-driven automation,” human labor is not completely

forfeited for robotic automation. Tasks that would be too labor-intensive, time-consuming,

or monotonous would be given to robots, while tasks too complicated or dynamic for

robotic programming would be sustained by human labor. While this level of automation

still maintains a certain level of human labor, this approach to automation is desired for the

expedition and streamlining of labor without enhancing human labor in any way.

In level 2, called “worker-centered automation,” human labor is left completely alone for

a period of time. Since this labor is performed by humans, the humanistic concepts of

finding more efficient (or lazier) methods to achieve the same results to the same quality

can still be done. Conversely, in levels 0 and 1, since the labor is immediately given to

robots without consideration on how the process could be streamlined, this concept of

pathfinding would be delegated to the ones working on the machines alone. Since robots

are usually programmed to perform a specific set of tasks without room for improvement

or intelligence, these robots would never consider improving their current job.

However, for level 2, once this task has been considered to be well-developed and

streamlined, the task is then given to a robot that would perform the same task in the same

way as the streamlined human method. Since human labor is left to flourish for a longer

period of time than the lower levels, this approach to automation is considered more ethical;

but since the job is still immediately taken away from humans and given to machines, the

result is still as unethical as the lower levels.

In level 3, called “socially responsible automation,” automation is created for the sole

purpose of streamlining work done through human labor. This form of automation can also

be thought of as making machinery that is operated by humans and teaching them how to

use it effectively. This level is considered the most ethical since the creation of automation

not only streamlines the production of labor but also sustains the demand for human labor

concurrently.

This tier system proposed by Khargonekar and Sampath can be ambiguous depending on

the perspective on whose labor is being defined. This tier system only observes the final

result of automation but does not consider the development, implementation, improvement,

and evaluation of the automation system. Our device would be considered at level 0 or 1

from the perspective of the human language translator but level 3 from the perspective of

the potential users of our device. Note that despite the eventual elimination of human

language interpretation, those who used to be language interpreters would continue to work

alongside engineers in the further development and refinement of our language translation

machine.

If we take the example of a clinic visit that requires a translator, the language translator

would be replaced by our device entirely, and the demand for language interpreters for

clinic visits would cease. In this case, our device would be considered level 0 or level 1.

Page 88

 Group 14 Final Report

However, medical providers and staff would now have a new tool that would help them in

their provision of medical care. This new staff would need to be trained on how to use the

system, but their jobs would not be replaced entirely by our device; thus, our device could

be considered level 3.

4.2.4 Environmental, Health and Safety Constraints

When designing new electrical devices, there is a lot of environmental, health and safety

concerns when operating such devices. Since it can damage either the environment or even

the user. To avoid this, we need to follow the constraints that ensures the device will not

be harmful to anything. Our device will market to hospitals and schools, in such

establishments a wide range of ages will be exposed to our device. We have to ensure that

device, even if it malfunctions, does not damage the surrounding in any way.

Additionally, even if it works as intended, another functionality that we have to ensure is

that the display does not hurt the eyes of the viewer. In this section, we will discuss the

RoHS complaint parts, and the potential harmful effects of the backup battery, and the

display.

Restriction of Hazardous Substances, or RoHS for short, was developed by the European

Union and restrictions specific materials that are hazardous to the environment and that can

be found in electrical and electronic products. The substances currently banned are lead,

mercury, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated

diphenyl ethers. These substances are harmful to the environment and pollute landfills.

They are also dangerous due to occupational exposure during manufacturing and disposal.

We had to select electrical components that were RoHS compliant. However, the providers

that we purchased from were kind enough to label which components were RoHS

complaint before the purchase of said component. This made the selection process easier.

The use of Lithium-Polymer batteries has been the cause of a lot recent commotion, since

a brand line of smartphones developed by Samsung were imploding on the pocket of users.

To avoid this, we need to thoroughly follow and apply the benchmarks imposed by the

power standards on battery.

Additionally, we will need to safeguard against current leakages that can cause

malfunctioning of the system to avoid any unforeseeable happenings with the device. Most

providers document a way to safely guard against the leakages. Finally, the monitor cannot

hurt the eyes of the viewer since the idea is for the audience to see the ASL translation. A

normal brightness rate with a high refresh rate ensures that the viewer will have no

problems in viewing the video.

4.2.5 Social and Political Constraints

The project has a lot of implications in the Social and Political constraints aspects. An

obstacle that we need to answer is how our device will stand out from the rest while also

using cloud services provided by the competition. As started early in the document, no

Page 89

 Group 14 Final Report

machine translator has done ASL translations using image processing techniques or

anything at all. Many establishments hiring human translators have become the norm for

too long and the implementation of our device can bring the end of a job that is highly used

in society overall. Another question that is imposed by these constraints is the process of

delivery fast accurate translations without facing latency issues.

The main purpose of our system is to deliver accurate and quality service to the deaf people.

Competitors such as Google Translate and Amazon Translate do not provide translation

services for the deaf people. Human translators are still being employed to do this type of

task. However, a high upkeep is required to maintain the human translator and most of

them work online in which a limited wireless coverage or low internet speed (since

streaming of a video is required) can lead to mistranslations between two people. In

hospitals and schools, this can bring a lot of issues.

In order to promote and market our device, we use high-quality cost-effective components

which allows the overall cost of the device to be lower than the upkeep required by the

human translators. Additionally, since we are also offering normal language translations

plus the ASL translation for deaf people, establishments will find our product more

affordable and attractive to purchase.

Finally, we need to consider the ease of use that the device will require. This is required

because we want the establishments such as schools and hospitals to familiarize fast with

the device so that usage can be quickly for real time events such as emergencies. Therefore,

the installation and GUI of the device with its modes and functionalities should be easy to

explain and user-friendly. This additional feature can make our product become more

attractive.

Political constraints can apply to our device in the area of human replacement. Since we

are marketing the device as a way to obtain an affordable translator that requires a one-

time buy instead of a steady maintenance, the device will be compared in terms of

performance to a human translator. This means that we need the device to translate in real-

time and accurate.

Additionally, the flow of displaying the ASL models must match, if any, the way human

ASL translators do sign language. Machine translations can be deployed for diplomatic use

which would require for the device to support a wide range of languages for translations.

For this reason, our device can use cloud services to obtain a fast-accurate translation.

Moreover, using machines for translations can benefit the government and even the

military with concerns over biasness.

Page 90

 Group 14 Final Report

5. Initial Project Hardware Design

This section addresses the hardware design plan from Senior Design I. Note that many of

these sections, including the hardware diagrams and schematics, may have been outdated,

replaced, or modified in the final hardware design, which was explained in a later section.

5.1 Initial Project Design and Component Diagrams

When we first started to design our project, we were overly optimistic with the capabilities

of the technology we were using and with our programming skills. Our first idea was to

use a GPU as the main brain of the system and have all the components connected to it. It

would run both the trained NMT model and the graphical rendering for the product.

Furthermore, we expected it to take the inputs from a microphone, remotes, and output the

animations and speech.

After taking a harder look at the problem that we were trying to accomplish and the

technology we were trying to use, we decided that we would need more than just a single

GPU. Not only would a GPU not be able to handle everything that we were throwing at it,

but programming everything in CUDA would be a steep learning curve. Therefore, we

decided to change the design of the project to use both an FPGA and a GPU to complete

this task. The FPGA would oversee running the NMT model and outputting the results on

to the display, while the GPU would focus on the peripherals and creating the sign language

graphics. Figure 37 shows the initial hardware block diagram. In this diagram, we also

included which personnel of our group will work on which aspect of the project. Gustavo

will work on the GPU. Jared will work on the FPGA. Michael will be working on the

Stokoe notation and graphics rendering. Luis will be working on the PSU and the NMT.

Any other aspect of the project will be work upon by all members of the group.

Figure 37. Hardware Block Diagram of the Second Initial Project Design.

Page 91

 Group 14 Final Report

This design was always extremely optimistic for our knowledge levels in the technology

we chose to work with, mostly because we were going to try to deploy an NMT model to

an FPGA board. Deploying python code into FPGA boards is something that is just now

starting to emerge in the world of research and implementing an OpenNMT model created

in python has never been attempted before.

Therefore, we would be completely on our own in the process of deploying our model to

our system. Furthermore, we would still have to learn how to learn in CUDA to be able to

use the GPU as the hub of the design and learn to make a GPU take inputs from a

microphone and other peripherals. Finally, The GPU would also have to be running an

operating system that could run some sort of game engine, like unity, to be able to generate

and display the sign language graphical models. Despite doing research, we were unable

to find instances of this type of deployment being done and therefore were forced to

abandon the idea in the pursuit of a more feasible design.

After we had given it more though, we settled on the design of having a COM unit as the

brain of the project and an FPGA I/O board to handle the audio recording and button

management.

With this design, we had originally planned on using a mobile battery to power the system

so that we could place the system on a mobile cart. However, we ran into two issues that

prevented us from using a rechargeable battery system. The first was that the Jetson would

occasionally go into sleep mode with the user telling the system to shut off. We found that

this was caused by the lack of a consistent voltage and amperage from the battery pack.

While this issue could have possibly been avoided by purchasing a higher quality battery

pack, it would have stretched the budget thin. Furthermore, this problem would make the

system extremely difficult to use, as the user would then have to stop their conversation

and restore power to the system.

The second issue that we encountered while trying to use a battery pack was finding a

method of powering the display that we had chosen for the system. We had chosen to

purchase a 20-inch computer monitor that came preinstalled with speakers. This was cost

effective as it limited the number of components that we were required to buy and also

provided the users with a large, high quality image.

However, since we had chosen a full-size monitor, it has to be powered with 100 - 240 V

AC, with a maximum power consumption of 30W. This type of power draw is only

sustainable through an outlet plug and so we were resigned to power the system via a PSU

that plugged into a wall socket.

5.2 Power Supply Design

In this section, we will talk about the different power supply requirements along with the

final power supply of the system. The data gathered in this section is mostly based on the

datasheets of each major component of the system plus the selected power supply system.

Page 92

 Group 14 Final Report

Table 17 shows the overall power requirements for the major components in our design.

On the DE0-Nano development board for the Altera Cyclone IV FPGA, all of the voltage

inputs required for proper functionality of the FPGA are supplied entirely from a single

USB 3.0 power input. Given that the DE0-Nano board uses a USB 3.0 protocol, a 5V

input voltage is required at up to 900 mA through this pin. From this 5V, 900 mA input,

six different voltages will need to be created to accommodate the various voltage

requirements for the FPGA, including a power supply for the I/O pins and the phased-

locked loop. For the VCCINT and VCCD_PLL input voltages, the input voltage can vary

between 1.0 V and 1.2 V.

Table 17. Overall Power Requirements.

Device Name Input Voltage Current Power

NVIDIA Jetson

Nano

USB Micro/ Barrel

Jack/ Power Pin

5 V > 4 A > 20 W

Altera Cyclone IV -

EP4CE22E22C8N

VCCINT 1.0-1.2 V 1.5 A 1.8 W

VCCA 2.5 V 150 mA 375 mW

VCCD_PLL 1.0-1.2 V 1.5 A 1.8 W

VCCIO 1.2, 1.5, 1.8,

2.5, 3.0, 3.3 V

150 mA

or 1.5 A

375 mW, 1.8

W, or 4.95

W

Digital MEMS

Microphone -

SPH0645LM4H

3V Pin 3.3 V 600 μA 1.08 mW

RF T4 Receiver -

Adafruit 1097

5V Pin 5 V 0.1 μA 0.5 μW

The overall configuration of this schematic is realized in Figure 38. The schematic will

require the use of linear voltage regulators (LP38500SD-ADJ and LP5900SD-2.5) to

produce the required voltages and corresponding currents while also maintaining that

specific voltage for the I/O peripheral device.

Included with the voltage regulators are the corresponding components such as capacitors

and resistors for proper functionality of the voltage regulator. Also included in the circuit

are Schottky diodes (PMEG2010AEB) to rectify current and prevent current backflow. For

each voltage produced by this circuit, an indicator LED will be used to show that each

voltage is available. There will be four different LEDs shown because we are operating

Page 93

 Group 14 Final Report

with the following voltages: 1.2V, 2.5V, 3.3V and 5V. Figure A shows the full power

supply unit schematic.

The power supply for our project consists of an input voltage provided by the power pins

of a USB 3.0 port, denoted as VCC_USB. A typical USB 3.0 port supplies 5 V at up to 900

mA. As the USB is to provide input power and should not leak power the other way, two

Schottky diodes (denoted as CR1 and CR2 in Figure 41) are used. The voltage at this node

at the other end of these diodes is the 5V node, denoted as VCC_SYS.

From the 5 V power supplies, we will use zero-ohm resistors to safeguard against possible

high currents that might affect the power supply unit. To output 3.3V and 1.2V, we are

using the LP38500 (U2 and U3) from Texas Instrument as selected in the parts selection

section of the report in two different sets of configurations. The 3.3V output voltage is

assigned to the VCC3P3 label whereas the 1.2V output voltage will be assigned to the

VCC1P2. Additionally, we use the LP5900 (U1) from Texas Instrument to generate an

output voltage of 2.5V. Both voltage regulators’ configurations were based on the

documentation provided by the Altera Cyclone IV FPGA Chip and the DE0-Nano

development board.

The VCC_SYS will provide power to the main system which is the Jetson Nano and the

RF T4 receiver. The VCC3P3 will be used to power on the MEMS microphone along with

the I/O Banks that are configurable in the Cyclone IV (This case the I/O Banks 1, 3, 6 and

8), the banks are necessary for the configurations of GPIOs.

The VCCA voltage will be used to power the Phase-Locked Loop (PLL) analog power

supply, which allows use to control the frequency of the clock of the Cyclone IV. Finally,

VCC1P2 will power the digital power supply of the PLL and the core chip of the Cyclone

IV. A Bill of Materials (BOM) of the PSU Schematic is provided in Table 18 with the

components used in the schematic.

Figure 38. Power Supply Circuit Schematic.

Page 94

 Group 14 Final Report

Table 18: Power Supply BOM.

Label Quantity Package Manufacturer Description

C1, C2 2 C0603 TDK Capacitor, 10 µF

C3, C6, C9 3 C0603 AVX Capacitor, 0.1 µF

C4, C5, C7,

C8 4 C0603 KEMET Capacitor, 0.47 µF

CR1, CR2 2 SOD523 NEXPERIA Rectifier Diode

LED1,

LED2,

LED3,

LED4 4 0603 DIALIGHT RED LED

R1, R4, R6 3 R0603 VISHAY Chip Resistor, 0 Ω

R2 1 R0603 VISHAY Chip Resistor, 5.36 kΩ

R3 1 R0603 NIC COMPONENTS Chip Resistor, 1.2 kΩ

R5 1 R0603 VISHAY Chip Resistor, 10 kΩ

R7, R8 2 R0603 VISHAY Chip Resistor, 4.99 kΩ

R9, R10,

R11, R12 4 R0603 YAGEO Chip Resistor, 120Ω

U1 1 SDB06A

TEXAS

INSTRUMENTS

Voltage Regulator,

2.5V

U2, U3 2 SDA08C

TEXAS

INSTRUMENTS

Voltage Regulator,

3.3V, 1.2V

5.3 Hybrid COM with FPGA

This section entails the hardware functionality of the device by implementing a hybrid

COM with FPGA architecture. We will discuss the I/O board first and then proceed to

describe the different modules using FNMs.

5.3.1 I/O Board Description

Our I/O board will perform the functions of taking inputs from users and processing the

data before sending it to the Jetson Nano unit, our COM. The I/O board will perform 3

distinct functions: the first function will be to keep track of its current operating mode and

change the mode in which the device operates when the mode button from the RF remote

is pressed. Secondly, it will oversee capturing the user’s voice whenever they press the

record button on the remote. Finally, it will track of the status of the unit, by having a status

LED, a recording LED, and buttons for both resetting the unit and for turning the unit on

and off. Figure 39 shows the software block diagram of the Verilog code.

Page 95

 Group 14 Final Report

Figure 39. Block Diagram of I/O Board.

5.3.1.1 Mode Selection Module

This module of the board will be implemented using a state machine that has two states;

each state representing a functional mode. The program will stay in the current mode until

the mode button on the RF remote is pressed. When the mode button is pressed, it will

toggle the state of the pin on the RF receiver, which will be read on the positive edge of

every clock cycle. If the voltage level of the pin has changed, it will change to the respective

state in the state machine and it will pass this information to the Jetson Nano over an I2C

connection. Figure 40 shows the state machine of the mode selection.

Figure 40. State Machine for Mode Selection.

Page 96

 Group 14 Final Report

5.3.1.2 Voice Recording Module

This module of the board will be implemented using a state machine that has 4 states. The

state machine will stay idle in state 0 while the recording pin (pin d0) on the RF receiver

is low. When the record button on the RF remote is pressed, the recording pin will go high

and the state machine will move to state 1, the start state. This will allow initialization of

any necessary processes to start, such as communication with the COM unit and setting

addresses to the block RAM FIFO. Figure 41 shows the state machine for the voice

recording module.

After one clock cycle, the state machine will move to state 2 and start recording, in which

the state machine will remain until the record key on the remote is pressed again, setting

this recording pin to low. Once this recording pin is low, the state machine will move to

state 3, the stop state, which will tell other processes that the machine has stopped

transmitting audio signals. After 1 clock cycle the state machine will move back to state 0.

Figure 41. State Machine for Voice Recording.

5.3.1.3 Status Module

This module will not contain any state machines and will be just check for certain

conditions to be met on the board. If the board is turned on, then the power LED

will be on. Furthermore, if the device is currently recording, the recording LED

will be on and will turn off when the recording is finished. The board will also

contain a reset and power button that will send signals to the Jetson Nano when

pressed to reset the device or to power off, respectively.

5.3.2 General Layout of the I/O Board
Figure 42 shows the general board layout of the PCB we intend to create. This figure is a

simplified overview of the major components of the I/O PCB of the initial project design.

Page 97

 Group 14 Final Report

Figure 42. General Board Layout.

5.3.3 Communication for Hybrid System

The connection between the FPGA I/O board and the Jetson Nano was a 6-pin connection.

3 pins will be used for I2S audio transmission and the last 3 pins will be used to connect

the recording status, power on button, and mode pins. We chose to connect the board in

this fashion to avoid using more complicated and finicky interfaces over PCI-e and USB.

5.3.3.1 Audio Transmission

The microphone we have selected requires no configuration or drivers and therefore can

be directly connected to the board. It will be connected to the PCB board with 5 pins;

Voltage, Ground, LRCLK, BCLK, and DATA. The board will be running an I2S controller

IP block that will handle the audio with two 64 x 32-bit FIFOs and is capable for both

transmitting and receiving audio. Figure 43 shows the block diagram of the I2S controller

IP block from Intel.

Figure 43. Block Diagram of I2S Controller IP.

Page 98

 Group 14 Final Report

It will then send this audio to the Jetson Nano through the 3 pins connecting the boards;

LRCLK, BCLK, and DATA. On the Jetson Nano, we will be using the ALSA command

line interface to mix and record the audio being received from the I2S input into an audio

file that we can send off for transcription.

5.3.3.2 Status Transmission

The other two pins that will connect the FPGA PCB board to the Jetson Nano will be to

transmit the status of translator to the Jetson. When the user presses the record button, the

respective pin from the RF receiver will go high and this will be transmitted to the Jetson

through the recording status wire. This will tell the Jetson to start the process of mixing

and recording audio through the command line interface.

When the user presses the mode button, the respective pin coming from the RF receiver

will go high and this will be reflected on the wire leading to the Jetson. When the wire is

low the system will be in mode 0 and when it is high the system will be in mode 1.

Furthermore, we will have a power on button attached to the I/O board that will turn on

and off the Jetson Nano. This is done by shorting pins 7 and 8 with a jumper and then

momentarily shorting pins 1 and 2. Shorting pins 7 and 8 will disable the auto power on

sequence that is on by default, while shorting pins 1 and 2 will restore power to the system.

We will use the FPGA chip to create a reset button style signal from a button press.

5.4 LCD Interface

For our project, we are intending to use a Spectre 20” monitor. This monitor utilizes the

HDMI protocol, which allows us to connect the Jetson Nano to this monitor directly using

a male to male HDMI cable. This monitor runs at 75 Hz and at a 1600x900 resolution

which is easily handled by HDMI protocol. The Jetson Nano natively interacts with an

HDMI output; therefore, we do not have to implement any drivers or code modules to

obtain an image output. Furthermore, because the monitor comes installed with speakers,

we will be taking advantage of how the HDMI protocol natively carries audio over the

same cable as video. This will allow us to transmit both audio and video with one cable

natively without the need of additional hardware.

5.5 Initial Hardware Design

This section shows the diagrams and schematics for the initial hardware design of the

device. Although many of these sections have either been modified or removed from the

final design, these diagrams were kept in this report to show the original thought process.

Given more time and more resources, however, implementation of the FPGA and the Jetson

Nano SBC unit could have been possibly implemented.

5.5.1 Initial Hardware Block Diagram
Figure 44 shows the initial hardware block diagram for the overall device design.

Page 99

 Group 14 Final Report

Figure 44. Initial Hardware Block Diagram.

The FPGA PCB board will be responsible for taking the inputs from our system’s

peripherals. It will send this received data to the Jetson Nano COM unit to be processed.

The audio received from the I2S microphone will be sent via Wi-Fi to a cloud-based

transcription service and then sent back to the Jetson for input into a trained English to

Gloss NMT model.

We will then map this translated Gloss text to our Extended Stokoe Notation and map it to

a sign language motion animation. This animation will then be displayed on the display

and the translated text will be converted to speech and played through the speakers.

The RF remote will signal to the device for it to start recording and to change modes and

the power on button will restore power to the system after it has been turned off.

Furthermore, the PSU will provide power primarily to the COM unit and to the display.

The COM unit will provide power to the I/O board through one of its USB connections.

The final block diagram is shown in Figure 51.

Note that this section included components that were modified or removed completely in

the final project design. This section is explained in Section 7.2.

Page 100

 Group 14 Final Report

5.5.2 Initial Hardware Schematics

This section will cover the wiring and the interfacing between the different components in

our device. Each major component that contains several I/O lines will be given its own

schematic. The peripherals will not be given their own schematic, but rather will be

included as necessary as the input/output to the other major components. Additionally,

power supply systems will be provided as schematics in this section.

5.5.2.1 FPGA Diagram

To create the I/O Board schematic, we first had to take into consideration the pin

connections necessary to communicate with the Jetson Nano and the peripherals. We

decided to use one of the USB ports of the Nano to communicate any non-audio data from

the FPGA to the Nano and vice versa. When it came to audio-related data, we use the I2S-

enabled pins on the Jetson Nano to receive such data. This audio transmission required

three pins from the Jetson Nano and the Cyclone IV chip.

Additionally, the Cyclone IV used two more pins for mode selection to the Jetson Nano,

these pins were record mode and translation mode. The final pin for the transmission

between the Nano and the Cyclone IV was a power on button feature which turns off the

system by pressing a button. Six GPIO pins were used and connected to a 6-pin header to

the Jetson Nano and it can be seen in Figure 51.

For the RF receiver, we only required to use four pins which were the VDD, GND, D0 and

D1. The VDD which is used to power the system was supplied power from the PSU. We

only required D0 and D1 since we are using a two button RF transmitter to control when

are we recording and when are we translating. The recording mode will toggle between

start and stop whereas the translating mode will toggle between ASL translation and

language translation. The D0 and D1 pins will connect to GPIO pins in the Cyclone IV

chip so that the Cyclone IV can drive the Jetson Nano to the aforementioned modes.

The Cyclone IV chip also communicates with an external I2S module. This module

provides a clean transmission of data between the selected MEMS microphone and the I/O

Board. As part of the datasheet and documentation of the module, we only require three

more I/O pins. Finally, the Cyclone IV chip needs to be driven with a 50MHz oscillator as

required by the datasheet and documentation.

The schematic of the oscillator is included in Figure 51. The overall Hardware design will

possess LEDs that display the current mode of operation, the system is in. We will use two

LEDs to signify ASL and Language translation, and one LED for recording mode

operation. The BOM of this initial hardware design is shown in Table 18.

The RF remote has been wired directly to IO_1 and IO_2. Although the direct wiring of

the RF remote to the FPGA seems counterintuitive, this has been done to show the eventual

transmission of the RF remote input. The sole reason for using only two IO pins was

because the remote controller intended for the usage of the RF transmitter only possesses

Page 101

 Group 14 Final Report

two buttons. One for ASL translation and the other for normal translation. Eventually, this

schematic will include the RF receiver, to which the RF transmitter will provide a wireless

signal.

Table 18. I/O Board BOM.

Label Quantity Package Manufacturer Description

C1 1 0603 AVX

Multilayer Ceramic

Capacitor, 0.1uf

FPGA 1

QFP 144

pin ALTERA

FPGA, CYCLONE

IV, EP4CE22E22C8N

JETSONNANO,

I2SMODULE
2 1x6 SAMTEC

Board-To-Board

Connector, 6 Contacts,

Header, 1 Rows

RECORD,

MODE0, MODE1 3 0603 ROHM RED LED

R1, R2 2 0603

MULTICOMP

PRO

Chip Resistor, Thick

Film, 100k

RF TOGGLE

TRANSMITTER 1 2x8 SAMTEC

Board-To-Board

Connector,

8 Contacts, Header, 2

Rows

S1, S2 2 12 mm OMRON

SWITCH 12MM x

12MM

Y1 1

3.2 x 2.5

x 1.2 mm ABRACON

Oscillator, 50 MHz,

3.3 V

The microphone has also been wired correspondingly. The digital out (DOUT) pin is wired

to IO_5. The 3V pin, although it has not been wired yet, will be wired to the VCC3P3

signal. The microphone can operate from voltage between 1.5 V and 3.6 V, so the 3.3 V

power from the FPGA will be sufficient to power the microphone.

The LEDs have been wired to I/O banks 6, 8, 9, and 10. These LEDs will be used as

indicators for the various statuses of the overall device. One indication will be whether

power is being given to the FPGA, COM, etc. Another indication will be whether the device

is currently recording audio. This indicator light will illuminate when the user presses the

button on the RF remote and the device is actively listening for an audio signal.

Another indication will be whether the device is successfully connected to the Internet.

Connection to the Internet is crucial for all of the cloud-based services and APIs that our

device will be using, including the speech-to-text and text-to-speech services. The absence

of this light being illuminated will indicate to the user that cloud-based services (and thus

the overall functionality of the translator) is not available.

Although there will be many different clocks that will be operating simultaneously

throughout the FPGA, only one clock has been indicated on our schematic so far, the

Page 102

 Group 14 Final Report

50MCLK. This clock is attached to CLK11. Additionally, S3 and S4 are buttons that will

direct the FPGA into changing to different modes that allow certain functionalities. One of

the buttons will be the ON/OFF button for the overall device whereas the other button will

be a Reset button that cleans the data being processed by the FPGA. The ON/OFF button

will shut down or powerup the system completely and the reset button will be used

whenever the data being processed to the FPGA is erroneous in nature (early stop of audio

acquisition) or if the FPGA stops processing data as intended.

5.6 Initial Hardware Design & Bill of Materials (BOM)

This section describes the overall hardware usage and total cost for our project based on

the assembly and parts selected for the device based on the shown electrical schematic

designs, as shown in Table 19. The Jetson Nano from NVIDIA and the Cyclone IV FPGA

from Altera will both serve as our main processor units. The Jetson Nano will control

anything related to the NMT model, language translations, the 3D graphics rendering, and

displaying the model on the monitor screen. The Cyclone IV will control the data

transmissions from the microphone using an I2S module, the RF T4 receiver, the LED

power status board and the LED current operation status board.

Our remote controller will interact with the RF receiver using two functionalities. The first

functionality is to switch between ASL translations and normal language translations

whereas the second functionality will focus on the audio capturing by using a start and stop

recording. A MEMS microphone will be used to acquire speech data and we will use an

I2S module to transmit the data correctly into the Cyclone IV. Afterwards, the Cyclone IV

will send the data to the Jetson Nano through USB connection.

Our PCB vendor is going to be JLCPCB due to its cheap cost and well-known reputation

for delivering quality PCBs. The contents of the PCB will consist of the power supply

circuitry required to power both of these processors and the I/O board, driven by an FPGA,

functionality that will handle the data transmissions between the peripherals and the hybrid

processor. For proper user-end functionality of our product, we included a 20” monitor,

microphone, and RF receiver/transmitter set. Note that for speakers, the monitor we chose

from Spectre also has built-in speakers and can receive audio input via an HDMI-HDMI

cable from the Jetson Nano.

In terms of connectivity, we included an HDMI-HDMI cable to connect the Jetson Nano

to the 20” display to show the graphics rendering software. For proper functionality of the

Jetson Nano, a microSD card containing the operating system and room for general storage

is required; for this reason, we included a SanDisk 32GB microSD card. Table 19 possesses

the overall components used in the system.

Page 103

 Group 14 Final Report

Table 19. Initial BOM.

Page 104

 Group 14 Final Report

6. Project Software Design

Our project has a high emphasis on software and programming. The software for our

project requires six different functions in sequence that it must complete for proper

translation. This section will deal primarily with the English to ASL-Gloss translation;

other translation pairs, however, will be achieved through online cloud services. The six

steps in the software design are as follows: speech capture, speech-to-text translation,

neural machine translation of English text to ASL-Gloss, mapping the ASL-Gloss to ELS

notation, and rendering ASL graphics and displaying them on the final display. The overall

software flow chart is summarized in Figure 48.

6.1 Initial Software Functionality

Our software will have two different modes that users can choose between: speech-to-

speech translation mode or speech-to-ASL mode. These modes will perform essentially the

same steps with the speech-to-ASL mode requiring an alternate process to the speech-to-

speech translation mode as the speech-to-ASL mode has a greater emphasis on our project.

At the start of the program, the user will be prompted to choose between the two available

modes using an IR remote. Once the user has chosen a mode, the main loop of that chosen

mode will begin.

6.1.1 User Options

Originally, the user was to be given two options. The first option was the speech-to-speech

translation mode, which allowed the user to speak in one language, and the device would

output speech in a specified language. The second option was the speech-to-ASL

translation mode, which allowed the user to speak in English, and the device would show

a display of the corresponding ASL gestures. Although the first option has since been

deprecated in the final design, the second option has been modified.

6.1.1.1 Option A: Speech-to-Speech Translation Mode

When this loop begins, the user will be prompted to input the source and target languages

for their translations. Once the users have chosen the source and target languages the

system will wait until a recording button is pressed. Once the button has been pressed, the

software will take in the input soundwaves of speech from the microphone and pass these

snippets to an online speech-to-text service. Once this typographic text has been received

from the online speech recognition service, the program will pass this through another

online service to translate it from the source language to the destination language. Once the

system has received the translated text the program will output this text onto the screen.

Additionally, the program will also send the translated text to another cloud service that

will perform text-to-speech of the translated text. This sound file will be passed to the

speaker so that users can both read and hear the translated communication.

Page 105

 Group 14 Final Report

6.1.1.2 Option B: Speech-to-Sign Mode

When the loop begins, the program will wait for the recording button to be pressed. Once

the button has been pressed the software will begin taking in the input sound waves of

speech from the microphone, pass them through an online speech-to-text service, and then

take the received English text and translate it into English Gloss. Once the text is translated

to Gloss, the text will be converted into our proposed Extended Linear Stokoe (ELS)

notation that will tell our graphic rendering software how to perform the specific American

Sign Language gesture. These motions will then be sent onto the terminal monitor along

with a log of the text received from the speech-to-text conversion.

6.1.2 Software Procedure

The initial software design procedure consists of several steps which are necessary for

conversion of spoken language to a text file containing a different language. This procedure

has been sustained for the most part, with the final design specifying which APIs are used

and how the software is realized; however, the final step of conversion via ELS has been

removed since the ELS notation itself has been deprecated in the final design.

6.1.2.1 Step 1: Speech Capture

This first step in the software process will capture speech from the person speaking into

the microphone on the device. The microphone will only capture speech once a button has

been pressed; we have not yet decided whether this button will be available on the device

itself or if the button will be available on a remote and transmitted via IR.

Once the signal from the button has been received, the microphone will capture the sound

waves of the person speaking and convert this signal into a corresponding digital signal.

The microphone we have chosen for the project will output a digital signal instead of analog

to mitigate the need for an analog-to-digital converter (ADC) system.

6.1.2.2 Step 2: Speech-To-Text Conversion

The function of this second step is to send the digital voice signals to the cloud-based

transcription service and to receive the transcribed text. Once the button has been released

and we have a digital signal for the input, we can send this signal from the board to the

cloud-based transcription service. This will handle the conversion from speech to text and

we will receive a stream of text back from service.

Once we have received this stream of text, we will parse through the text and replace any

of the pronouns that are present in the sentences with our filler pronoun word. The NMT

model does not understand the distinction between pronouns and will weight every

unknown pronoun differently. We would have to train the NMT model with every proper

noun for the field this product was being deployed in for it accurately be able to pass proper

nouns through the model.

Page 106

 Group 14 Final Report

We can avoid having weights on the proper nouns by keeping track of all the pronouns in

the original sentences and simply replacing them once they have been passed through the

NMT model. We can make this substitution since in ASL, most proper nouns are spelled

out with individual letters so passing it through the model would yield the same word.

6.1.2.3 Step 3: Neural Machine Text-to-Text Translation

The function of this third step is to translate the text received from the cloud-based

transcription service to ASL-Gloss. This will be accomplished by feeding sentences of the

transcribed text into a pretrained OpenNMT model that will make predictions on the best

match for the English text in ASL-Gloss, along with removing words that are not

necessarily used in ASL (such as auxiliary verbs, etc.).

6.1.2.4 Step 4: Mapping ASL-Gloss to Custom ELS Notation

The function of this task is to map the ASL-Gloss text received from the model translation

verbatim to our ELS notation. We will parse through the sentences of Gloss, removing any

of the empty words along the way. Furthermore, as we parse the sentences, any pronoun

fillers found will be replaced with its respective pronoun from the original sentence. We

will have a database of all the words that we have trained in the NMT model that have been

pre-translated into our ELS notation, from which we can translate the ASL-Gloss

word/phrase into the ELS equivalent. The use of the ELS notation is to allow a structured

form of rendering the graphics in the next step. We will also translate the proper nouns into

the ELS Notation by changing it to individual letters or its gesture equivalent in ASL.

6.1.2.5 Step 5: Rendering ASL Gestures in 3D Graphics Platform

The function of this task is to create ASL graphics for the translated text that can be

displayed on the screen for the deaf user to understand what the original English speaker

had said. We will be creating models using a 3D rendering software such as Unity and

using the ELS notation that we have created as a set of instructions on how to animate the

virtual avatar. Figure 45 shows the breakdown of how our rendering software will interpret

our ELS.

Figure 45. Breakdown of Conversion of ELS Notation into 3D Graphics Rendering.

Page 107

 Group 14 Final Report

Each character in the ELS notation will tell the program what the location of the hands will

be, the location and handshape of the hands, hand movements, and other elements that are

essential in the delivery of a sentence in ASL. This will allow for natural-looking ASL

motions that are created in real-time.

After the sequence of gestures have been produced, the final step is to output the ASL

graphics created by the software onto the terminal display. These motions will play in the

sequence determined by the ELS input so that the sentence can be created by stringing

these motion bits together. Figure 46 shows the overall software flow of our device.

Figure 46. Initial Software Flow Chart.

Page 108

 Group 14 Final Report

Once they have finished playing, the users will have the option to restart the animation and

replay the translation, start recording another sentence to be translated, or exit the current

mode and switch to the other for speech-to-speech translation.

The engine will use a preset of already defined “frame layers”. These layers will possess a

unique characteristic based on the symbols provided which will be divided into space, left

hand, right hand. Within each major layer, there will be sub layers that will have unique

characteristics such as location, handshape and modifier. After all the layers have been

selected based on the provided symbol, we will extract the unique characteristics of each

sub layer and add them to the pertaining major layers.

Moreover, the major layers, once done, will mesh into the orientation layer. Finally, the

layers pertaining to the movements of the hand or any other additional layer will be

provided. The extractions explained here can be already done on most game engines. The

reason is because modern games such as Telltale Games make non-playable characters or

surroundings to change depending on the user’s decisions. We can use this feature and

translate it into different “movements” based on the input symbols that we receive.

6.2 Changes to Software Functionality in Final Design

Between the original design and this finalized design of the software aspect of this project,

there have been several changes to accommodate the requirement specifications but also

address realizability issues along the implementation phase of designing the final product.

A summary of these changes is addressed in this section.

6.2.1 Obsoletion of ELS Notation

Originally, the proposed solution for parsing sign language gestures was through our

Extended Linear Stokoe (ELS) notation, first described in Section 3.2.1: American Sign

Language Typography. This notation was intended to have been used to create a universal

and general approach from which any sign language gesture could be created. The purpose

of ELS in the scope of this project was to create layered animations such that an animated

gesture would be broken down into several categories, including initial/final hand positions

and hand movements, for example.

This project contained 100 different animations, of which 80 words mapped to a specific

sign language gesture; 26 animations were mapped for alphabetic fingerspelling, and a few

animations were reserved for ancillary gestures such as the idle and thinking animations.

Given the limited vocabulary of our OpenNMT language corpus, using a generalized

approach for an animation was considered too time-consuming for the results produced.

Instead, animations were created individually without concern for similarities between

animations in the final Unity game design.

If this project were to be scaled up, approaching animations using this ELS notation would

be optimal. The entire ASL “lexicon” per se contains thousands of gestures, from which

Page 109

 Group 14 Final Report

gestures can be combined and modified as needed to create context and emphasis from a

given root gesture. Section 3 of this paper compared the ASL typographic system to

pictographic languages such as Chinese. The reason the ASL typographic system could be

comparable to a pictographic language is because ASL itself is inherently pictographic;

that is, a gesture in ASL can be considered as a composition of several smaller sub-gestures

(a handshape, a hand movement, a facial expression, and so on). In fact, ASL can be

considered a three-dimensional version of two-dimensional pictographic writing systems

such as Chinese. Due to this complexity, simply mapping individual gestures would not be

feasible when attempting to scale up the animation map of this project to thousands of

gestures.

6.2.2 Revision of User Options

Our final approach of the user interface has remained the same from the initial design first

described in Section 6.1.1: User Options, but a few major changes were enacted during the

design phase. Originally, the user would have had the option to select between two options

upon starting the game. The first option was to enter traditional language translation mode,

where the user would speak in one language, and the device would output text-to-speech

in a target language of the sentence that the user had spoken into the device. The second

option was to enter English-to-ASL mode, where the user would speak a sentence in

English and the device would show on the screen the corresponding sequence of gestures

in sign language. Due to the time constraints and complexity of the English-to-ASL mode

alone, the first option of traditional language translation was not implemented in the final

product.

6.2.3 Revision of Software Procedure

The approach for the user interface has remained the same as the original design mentioned

in Section 6.1.2: Software Procedure, with the major differences being the removal of the

option for translation between two spoken languages and the obsoletion of the ELS

notation. The user interface created for this project was created such that the user is given

a few simple options but can interface with the device completely. Upon starting the game,

the user is shown the avatar in the foreground and a text-displaying canvas in the

background. The avatar maintains an idle animation state until the user decides to interact

with the device. Once the user presses the “Start” button on the PCB, the canvas will

display “Recording…” which indicates the user to start speaking into the microphone.

Once the user is finished recording, the user presses the “Stop” button on the PCB, at which

point the avatar transitions to a thinking animation state. This thinking animation state is

used as a facade while the game processes the audio file to create a string array containing

the ASL-equivalent sentence. Once this sentence has been created, two lines are displayed

on the background canvas. The first sentence on top is the transcription that was generated

from the Watson Speech-to-Text API service. The second sentence on the bottom is the

translation that was generated from the OpenNMT translation software. While these

sentences are being displayed, the avatar begins making the gestures in the same order as

the translated sentence. Once the gestures have been completed, the canvas is refreshed to

remove the sentences, and the avatar calmly returns to the idle state. At this point, the user

Page 110

 Group 14 Final Report

has the option to pass another spoken sentence into the device or end the game. If the user

presses the Escape key on a keyboard (which was intended to be mapped to the “Reset”

button on the PCB), the game begins a shutdown sequence. This sequence begins with

displaying “Goodbye!” on the canvas and the avatar gesturing a “Hello” animation. (The

“Hello” animation was recycled as a substitute to the “Goodbye” animation due to their

similarity in ASL.) Once both of these events have finished, the game then completely

shuts down.

While the user is interacting with the program, there are two warning messages that appear

if the user attempts to interact with the program that could potentially break the game. The

first warning message appears if the user presses the “Stop” button if the Start button had

not been pressed beforehand. Proper functionality of the game requires the user to press

the “Start” button and begin recording on the microphone before pressing the stop button.

If this out-of-order button pressing is attempted, a pop-up message in the top-left corner

appears stating “Microphone is not recording…”, and the program will not attempt to stop

recording from the microphone. The other warning message appears if the user tries to quit

the game while animations are currently playing. This message was implemented since

there is no GUI for menu options to quit the game. If the player were able to quit the game

during animations, the game would terminate without displaying the shutdown sequence.

Originally proposed was a method for replacing pronouns and proper nouns that were given

in the sentence to provide a more generalized translation. This approach was considered

due to the limitations on translating proper nouns and pronouns in the OpenNMT training

algorithm. However, due to modifications to our approach in training the OpenNMT

model, this process of pronoun/proper noun replacement has been removed from the final

product.

Also, due to the obsoletion of the ELS notation, Section 6.1.2.5 regarding rendering ASL

gestures based on this ELS notation has subsequently been considered obsolete in the final

design. This process of rendering has been replaced with direct animation mapping.

The process of fingerspelling, however, was kept in the final product. This was mainly

done due to the presence of a few words that required fingerspelling, such as “campus” and

“ASL”, which are finger-spelled by default.

6.2.4 Unity Engine Script Functionality

The Unity Engine game consists of three main aspects. The first aspect are the game objects

whose purposes are for showing the resulting graphics renderings. These game objects

possess their actual rendered graphics in the game environment; for example, the avatar

game object contains meshes and textures necessary for viewing the avatar in the game.

The objects also have child objects that are attached to the main object; these objects serve

auxiliary purposes but do not necessarily have a corresponding texture/mesh that is visible

in the game environment. An example of child objects is the animator controller which is

attached to the avatar object, and the bone/joint map which are attached to different body

parts of the avatar object. The animator controller object controls the bone/joint map to

Page 111

 Group 14 Final Report

articulate specific joints in a particular way under certain conditions that are set in the game

environment.

The second main aspect of the game is the animator controller which was implemented to

handle all the animation clips and transitions between such clips. Contained within the

animator controller are a set of animations that had been prepared individually. There are

default states within this controller which are either references to external events or meta

references. One of these states is the “Entry” state, which is triggered when the game starts

up; after being triggered, the controller immediately transitions to another animation to

which the “Entry” state is connected in the animation map. Another state is the “Any State”

state, which allows for dynamicity of the animation map; if any transition from this state

is made available, then the controller will transition to that state. The transitions from “Any

State” are all blocked using a trigger variable. A trigger variable is a variable unique to the

Unity Engine: it is similar to a Boolean variable in that a trigger can only be in two states,

“on” and “off”; however, it differs from a Boolean in that once a trigger is set to “on” in

the animation map, it is referenced then reset to “off”. If multiple triggers are set at once,

the animator controller references each trigger in a FIFO stack process. A trigger variable

is attached to each transition from “Any State”, with the variable name matching the name

of the corresponding animation clip name to which transition this trigger is attached; the

purpose of this is due to the trigger setting method implemented in the C# script, explained

later.

The third aspect are the C# script files which handle timing of all events and routines. Each

C# script is attached to a game object depending on the purpose that script serves. There

are three main scripts and one auxiliary script that are used for the Unity program. The

main scripts were made to inherit the MonoBehavior interface, from which a Start(),

Update(), and OnGUI() method can be inherited. The Start() method is called only once

before the game environment is loaded. The Update() method is called once every frame

once the game environment has been loaded. The OnGUI() method is called once every

frame but only handles GUI events.

The first script, named update_anim.cs, is attached to the avatar object and is the de facto

main script for this program. In its Start() method, a hash table is created which maps

specific strings to a corresponding animation clip in the animator controller. Also, in this

method is an object reference to the animator controller object which is a child of the avatar

object; this is necessary for the script to understand which animator controller is being

referenced. This method also includes an initialization of a Microphone object, which is a

built-in Unity class for handling in-game audio clips.

In the Update() method of the update_anim.cs script, there are three main conditions, and

each condition is mapped to a specific key press. Each button on the PCB has been mapped

to be registered as keyboard presses in the Unity game. Pressing the “Start” button on the

PCB is used as a conditional to start recording. Pressing the “Stop” button on the PCB is

used as a conditional to stop recording, then start a method named Translate(). Although

not having been implemented in the final design, there is a conditional to stop the game if

the Escape key was pressed; whether this button were to be mapped to the “Reset” button

Page 112

 Group 14 Final Report

on the PCB button or not was debated and left unresolved by the implementation of the

final design.

The Translate() method in the update_anim.cs script contains all of the data processing

required to modify an audio file containing English speech into a text file containing the

ASL-Gloss sentence necessary to display the corresponding animations. After the user

presses the “Stop” button, the Unity program saves an AudioClip object which contains

the speech audio clip. Conversion of this AudioClip object to a usable WAV file was

through the auxiliary script named SavWav.cs written by GitHub user darktable [139]

which converts AudioClip objects into WAV files. Once this audio file was made available,

it was used as an input parameter to the Watson Speech-to-Text (STT) API call using the

curl command in a command prompt. Communication with a command prompt local to

the Unity program was made possible using the Process class. The output of calling the

Watson STT API was a JSON file containing various information parameters, including

transcription confidence and the transcripted sentence itself. The JSON file was parsed to

extract only the transcription, and this transcription string was written to a text file named

translate.txt. This text file along with the OpenNMT model produced beforehand was used

as the input parameter to the OpenNMT translate call using the onmt_translate command

in the command prompt. The output of this command resulted in another text file named

pred.txt which contained the ASL-Gloss equivalent of the transcribed English text. This

text file was then parsed into a string array which was used as the input parameter for the

next method, AnimHandler().

The purpose of the AnimHandler() method in the update_anim.cs script is to process the

string array produced in the Translate() method to display the proper animations available

in the animator controller. Each string in the array is potentially matched to the entries in

the hash table. If the hash table returns a match, then the corresponding trigger for that

animation is set, and the avatar will begin making the specified gesture; however, if there

is no match in the hash table, the string is further split in to a character array, and each letter

is passed to the animator controller consecutively but separately such that the avatar begin

gesturing the corresponding fingerspelling animations. Once every word has been

addressed in the string array, then the method is finished, and the game returns to the initial

idle state to await the user’s next input.

The other main C# scripts were named update_canvas.cs and update_camera.cs. These

scripts are considered secondary scripts to the update_anim.cs script and serve as object

reference scripts. The update_canvas.cs script is attached to the background canvas object,

and the purpose of this script is to reference the TextMeshPro object such that manipulation

of the canvas text is possible. The update_camera.cs script is attached to the main camera

object (the lens through which the user views the game environment), and the purpose of

this script is to hold an AudioSource child object. AudioSource objects are used to hold

audio clips within the game, and this specific object was used to hold the produced audio

clip from the Microphone class until the audio clip can be converted to a WAV file. This

AudioSource object was attached to the main camera object such that the user need not

speak loudly into the microphone for the game to register voice.

Page 113

 Group 14 Final Report

The final built Unity game consists of the default Unity files which include the Unity

executable file and the ancillary files that are compiled alongside the Unity game to help

with runtime processes. Included with these Unity files is a file folder named “ASL” which

consists of two files which are crucial for proper functionality of the game and are included

externally from the built game. The first file is the OpenNMT model, which is required to

translate the English transcript text file translate.txt into the ASL-Gloss translation text file

pred.txt. The second file is the dictionary text file, vocab.txt, which contains a list of words

that are also available in the OpenNMT model dictionary and require a unique animation

to be played. This file is necessary for the game to initialize the hash table while the game

is starting up. The final software diagram is shown in figure 47A. An insight on the

animation parsing specifically is shown in figure 47B.

Figure 47A. Final Software Diagram.

Page 114

 Group 14 Final Report

Figure 47B. Final Animation Flow Diagram.

Page 115

 Group 14 Final Report

7. Project Testing and Prototyping

This section addresses the aspects of the PCB design procedure as well as the neural

machine translation training done through the OpenNMT platform.

7.1 Initial OpenNMT Model Testing

This section is a collection of the various attempts in modifying the training and validation

sets used in creating a translation model using OpenNMT. Our first step is the creation of

the pair of training and validation files. One file is typed in English while the other is typed

in ASL-Gloss. The contents of these files will provide the basis for the creation of our NMT

model. After running the steps of preprocessing and training, we made another test file

containing sample sentences.

The output of these sentences is shown through the Command Prompt window (or the

Terminal window on macOS). Included with the predicted sentence are various statistics

represented by their PRED score. (The PRED score can be converted to the approximated

percent accuracy by raising 10 to this number.)

Note that each training set consists of four different files: a training source corpus, a

training target corpus, a validation source corpus, and a validation target corpus. In each

training run, the OpenNMT algorithm pairs each line between the two training corpora and

uses the validation corpora to confirm that its training model was successful. For each

attempt, we included examples of the contents of each corpus, but the full list for each

corpus for each attempt can be found in Appendix C.

Attempt 1 — October 18, 2019

We began training our model for the English-to-ASL Gloss neural machine translation by

creating a data set of two text files from which we could benchmark the effectiveness of

the NMT model. In each of the text files, we chose a handful of common medical checkup

terms and phrases. Included in this dataset are introductory phrases such as “Hello”, “How

are you?”, “How old are you?”

In OpenNMT, the translator is trained by having a source file for the start language and a

source file for the destination language that must match in length of phrases for proper

translation. The entire test and validation corpora are shown in Figures 48 and 49,

respectively.

Page 116

 Group 14 Final Report

English Training Corpus Gloss Training Corpus

Figure 48. Test English and Gloss Corpora used in Attempt 1.

Furthermore, the training algorithm needs to have a validation file for languages used in

the translation, which are English and Gloss in our case. These validation files use the same

words that are in the original training corpora but contain different combinations of the

words that are not found in the original training corpora but the NMT should be able to

translate effectively. This process of cross-validation ensures that the weights of the words

and sentences will be adjusted properly in the NMT and will translate accurately when

someone inputs a sentence that is not verbatim found in either the training or the validation

corpora.

English Validation Corpus Gloss Validation Corpus

Figure 49. Validation English and Gloss Corpora for Attempt 1.

After training with this data set, we input some test sentences through the NMT using the

model created. The results were not as expected and did not produce accurate predictions,

even when tested with sentences that were located both in the training and validation files.

A few examples of the output test results are shown in Figure 50.

Page 117

 Group 14 Final Report

Figure 50. Example Results of Attempt 1 Post-Training.

Note that despite the inaccurate sentences produced, the level of confidence in this model

is quite high, as exemplified in the top-left box which shows a PRED score of -0.0873,

which corresponds to an 81.79% accuracy.

Page 118

 Group 14 Final Report

Attempt 2 — October 25, 2019

We experimented further by making several changes to the training files. We made both

the training and verification files the same on both sides so that we could see the effect of

this. Furthermore, because of how Gloss is structured to represent sign language, its

sentence structure is Object Verb Subject (OVS). On the other hand, the sentence structure

in English is Subject Verb Object (SVO). We were concerned that this was affecting the

training outcomes, so we restructured the Gloss files to follow SVO.

At this point we were more worried about the accuracy of the translation rather than the

structure of the translation, so this is something we could sacrifice for the time being.

Furthermore, if time had permitted, we could create an algorithm that would convert

sentences from SVO to OVS. These training and validation corpora can be seen in Figures

51 and 52, respectively.

Finally, we changed the training files so that all the sentences on both sides of the

translation were of the same word length. We have some concerns that the algorithm is

attempting to do one-to-one mapping on the sentences in the corpus and so when they are

of different length, it might have been leading to the mistranslations. Therefore, we made

them the same length throughout the files.

Because Gloss removed many unneeded or unrepresented words out of sentences being

translated to Gloss from English, we implemented an “empty word” filler which is simply

the underscore character ‘_’. Our reasoning for this approach is that these unnecessary

words will be mapped to the empty word, so when we perform our Gloss to ELS

transcription after the translation, we can simply ignore these empty words.

English Training Corpus Gloss Training Corpus

Figure 51. Test English and Gloss Corpora used in Attempt 2.

Page 119

 Group 14 Final Report

English Validation Corpus Gloss Validation Corpus

Figure 52. Validation English and Gloss Corpora for Attempt 2.

After training with these modifications, we saw improvements to the results and were able

to get much better predictions from sentences that were outside of our training set even

with the small training set that we had. We were even able to correctly translate a six-word

sentence, as shown in Figure 53.

Figure 53. Example Results of Attempt 1 Post-Training, Part 1.

However, even with these improvements, we are still facing problems with the NMT model

not understanding the weight of certain words or what exactly proper nouns are. An

example of a mistranslated sentence that adds excessive weight to a proper noun is shown

in Figure 54.

Proper nouns are used in sentences to talk about subjects. If we would like accurate

predictions when using proper nouns, we would have to teach the NMT every single proper

noun that we believe would be implemented with the system and have several different

combinations of said pronoun inside of sentences.

Figure 54. Example Results of Attempt 1 Post-Training, Part 2.

Page 120

 Group 14 Final Report

For the scope of this project, it is not feasible to create a dataset like this, so we would have

to derive a potential workaround to this problem. Our proposed solution is to filter proper

nouns out and replace them with a “filler word”. This filler word would replace any actual

proper nouns that are in the transcribed text that we receive from the cloud transcribing

service. If we were to use both the filler word and the empty word that we used in this

attempt, we would need to distinguish between both words.

When the proper noun is filtered out, we would need to keep track of the position of that

pronoun so that we can replace the filler word with the original word after it has passed

through the model. Inside the training set for the NMT, we will use this filler pronoun, just

like we would a regular pronoun so that the NMT can learn how to use it and weight it

properly. We believe this will help us work around the problem our NMT is facing with

translating pronouns.

In both attempt 1 and 2 we had not realized that the contents of the training and validation

files must be different in some way to produce an accurate NMT model. Not only do the

training and validation files need to have different content, the content of the validation

model should contain words that are available in the training corpus but should include

different orders and combinations of words into phrases that were not originally in the

training corpus but should be understood by the NMT.

Attempt 3 — November 6, 2019

Following the success of attempt 2, we decided to maintain this type of training style and

to implement the changes that we discussed in attempt 2. We added a “filler” name

(CHARLES) that would be used to replace all other names, allowing for easier and more

accurate translations from our model. Furthermore, we decided to change the setting of our

model and train the model to be used in a school setting instead of a hospital setting. We

made this decision because we wanted to reduce the number of proper nouns that we would

have to filter as well as make the scope of the project closer to where it will be used.

To discover how to train the NMT model further in an efficient manner, we started to add

more variation to the validation files so that we could ensure more accurate translations

when non-exact matches were encountered. We took the words from the training sentences

and created more sentences combinations to ensure that words are being weighted

correctly. The approach of these training sets is similar to the approach in attempt 2 with

the use of the empty-word “_” and the word-by-word mapping of words between the

English corpora and the ASL-gloss corpora. Like previously aforementioned, with this

word-by-word mapping, we lose the grammatical aspects of ASL, but we intend to write

another back-end algorithm which will ensure that the output ASL gestures are performed

in accordance with correct ASL grammar. Figures 55 and 56 show the test and validation

files, respectively, for attempt 3.

Page 121

 Group 14 Final Report

English Training Corpus Gloss Training Corpus

Figure 55. Sample of Test English and Gloss Corpora used in Attempt 3.

English Validation Corpus Gloss Validation Corpus

Figure 56. Sample of Validation English and Gloss Corpora for Attempt 3.

After training the NMT using these corpora, we realized that the NMT may be case

sensitive; that is, the weighting for the word “What” is not the same as the weighting for

the word “what.” This presented us with an inaccurate model. Because of this, we decided

to keep the entirety of each English corpus in lowercase characters except for those that are

inherently capitalized (such as proper nouns like “Charles” and the pronoun “I”). Figures

57, 58, and 59 show the results of attempt 3 post-training.

Page 122

 Group 14 Final Report

Figure 57. Example Results of Attempt 3 Post-Training, Part 1.

Figure 58. Example Results of Attempt 3 Post-Training, Part 2.

Figure 59. Example Results of Attempt 3 Post-Training, Part 3.

 Attempt 4 — November 6, 2019

After realizing the shortcomings of the data set that we had tested, we fixed the issues with

capitalization and trained a new model shortly after our third attempt. Figures 60 and 61

show the results of attempt 4 after fixing issues from attempt 3.

Figure 60. Example Results of Attempt 4 Post-Training, Part 1.

Figure 61. Example Results of Attempt 4 Post-Training, Part 2.

Page 123

 Group 14 Final Report

While, this model performed slightly better than attempt 3, on closer examination of the

data set we realized that we had made several mistakes not only with capitalization but also

with words being linked to different translated words in the target files. Furthermore, in

this data set, we had tried to replace some words such as ‘did’ with ‘before’ to indicate past

tense. However, in doing this, we accidentally would take out the subject of the sentence,

such as ‘you’ or ‘me’ and replace them with an empty character. These two issues would

affect the weights of those words and skew the predictions of the model greatly. This would

have to be fixed in the next data set before trying to train again.

Attempt 5 — November 6, 2019

Attempt 5 takes a detour away from our typical testing at the request of our advisor Dr.

Chan. While in our weekly meeting with Dr. Chan, he wanted to see the results of using

corpora for training and validation files which consist of single-word entries alone.

Therefore, we created a small corpus and validation file to his specifications and trained

the model. The goal was to see if the model could be trained to create sentences when being

trained with single words. When the model was finished training, we were to see the results

of trying to create 2 sentences from this data set: “Where is the classroom?” and “Where is

my classroom?”. Figure 62 shows the entirety of the corpus for attempt 5. Figure 63 shows

the result of this training set.

the

my

where

is

classroom

?

_

MY

WHERE

_

CLASSROOM

?

English Training Corpus Gloss Training Corpus

Figure 62. Sample of Test English and Gloss Corpora used in Attempt 5.

Figure 63. Example Results of Attempt 5 Post-Training.

As we can see, the use of single words as entries within the corpora seems to have a

negative impact on the success of training the NMT model. While this set was very small,

we trained it with the intent of translating these two sentences error-free, but it failed.

Furthermore, the scores for these predictions show that the model was fairly confident in

Page 124

 Group 14 Final Report

its prediction, suggesting that attempting to train a model using single-word entries is not

the correct approach.

Using the results from attempts 3, 4, and 5, we decided we should consider using complete

sentences with each word in the source corpora mapped only to one translated word in the

target corpora.

7.2 Changes to OpenNMT Training Approach

After deciding to use an NMT as the default machine translation approach for this project,

which NMT system would be most viable for the purposes of this project needed to be

decided. NMT systems were offered from the larger tech companies; however, these

systems remain strictly proprietary which would not prevent modifications the system and

train a suitable model to meet the specifications for this project. Open-source NMT systems

were also available, and this style of an NMT was the main focus when deciding on which

system to choose. After considering various open-source systems, OpenNMT was chosen

due to its necessary provided support that other software lacked. Other software that were

mainly used for research code did not provide substantial support. OpenNMT also provided

support for the PyTorch and TensorFlow frameworks, which provide the ability to train

and validate the NMT model from a high-level programming interface. Due to the arbitrary

choice between the PyTorch and TensorFlow backbones in the scope of this project, the

PyTorch framework was chosen for this project. This OpenNMT software was also based

on the aforementioned seq2seq models.

The NMT presented the challenge of finding a GPU capable of training the model in a short

amount of time. Training with a CPU would exceed 24 hours for each session and therefore

would not be replicable when several models would need to be tweaked and re-trained.

Google Research’s Colaboratory (abbreviated “Colab”) was used to overcome the issue of

lacking a capable GPU to train the model. Using Colab allowed code to be written to and

executed on Google’s cloud servers and also use their available GPUs at no cost. Colab

also provides a Python environment and therefore allows for simple integration of the

PyTorch framework. Training the NMT model with Google’s GPU took about 40 minutes

per session.

Training the OpenNMT model requires four different text files. Two of the text files

correspond to the English source corpus, and the other two correspond to the ASL-Gloss

target corpus. Both the source and target corpora contained 516 entries within each corpus,

whereas most training sets for other research teams contain up to hundreds of thousands of

entries. A smaller set of corpora was used for the validation files in both English and ASL-

Gloss. The validation files had 38 entries for each corpus, and the model used these files

to evaluate the convergence of its training.

As aforementioned, NMTs require large training corpora in order to achieve a respectable

translation. The unobtainability of large multilingual corpora for English to ASL-Gloss

translations resulted in the 516-entry corpora. To overcome the lack of such a large training

Page 125

 Group 14 Final Report

corpus, a two-step approach was utilized. The two-step approach included keeping the

training corpora to a specific domain and employing redundancy among the sentences.

For the first step, the corpora were limited to contain sentences that were related to the

school domain. Therefore, this restricted the number of words available throughout both

corpora. Choosing the school setting as the primary domain also allowed for the use of a

simpler vocabulary set and more commonly used sentences. After implementing the first

approach, there showed improvements in the translations; however, the ASL-Gloss

translations were still not acceptable for the purposes of this project. Two translation

examples English to ASL-Gloss are shown in Figure 64. These two examples demonstrate

that some words such as “Me” and “Need” are correctly translated but not the rest of the

sentence.

Figure 64. Example of breaking down a sentence from the corpus into smaller phrases

for redundancy.

The second step was to add to the training corpora redundancy. This was accomplished by

splitting up sentences already in the corpora into smaller phrases as shown in Figure 3.

Sentences similar to existing sentences were also introduced to the corpora. This

introduction of redundancy greatly improved the performance of the resulting NMT model.

This amelioration can be attributed to the neural network needing to force itself to adjust

its weights and focus more on the limited and repeated words within the corpora. An

example of the vast improvement after implementation of the second approach can be seen

from Figure 65. Figure 66A is the previous example still using the first approach and Figure

66B is the same example using the second approach. Between these two figures, the

addition of approach two to the training corpora providing a much more accurate and more

acceptable translation can be shown. A similar improvement can similarly be seen between

Figures 66C and 66D.

Figure 65. Two translation examples from English to Gloss using the first training

corpora modification approach. Neither of the attempts were satisfactory translations.

Figure 66A is translated using a corpora that only has aproach one, and Figure 66B was

translated with the addition of approach two. Similarly, Figure 66C is translated using a

Page 126

 Group 14 Final Report

corpora with approach one and Figure 66D was translated with the addition of approach

two.

Figure 66. Here the first and second approach compared for two translation examples of

English to Gloss.

Evaluation of the performance of the model could have been done through several available

machine translation scoring techniques. The BLEU score was used to calculate a score for

the English to ASL-Gloss translation model. The BLEU score is known to be solution that

is simple to implement to retrieve a score; however, this scoring method also include its

draw backs [140]. The main objective of the BLEU score is to compare the n-grams of both

the human-translated reference sentence and the machine-translated reference sentence

[141]. The term “n-gram” refers to a consecutive string of words within a sentence; for

example, a unigram is one word, a bigram is a set of two consecutive words, etc. within a

sentence. The problem with using the BLEU score arises from the fact that the overall

BLEU score for one sentence is calculated as the geometric mean of the all the n-grams

calculated for this, where n∈[1,4] for this project’s scoring method. Therefore, for shorter

sentences whose word count are less than the highest n-gram (in this case 4-gram), the

resulting geometric mean is zero.

Evaluating the BLEU score more accurately was done by utilizing an open-source script,

SacreBLEU. The script provides additional smoothing techniques that mitigate the issue

when a higher n-gram precision resulted in zero [142]. For the calculation of the bleu score,

a human-translation reference corpus and a machine-translated corpus were needed. For

this project, 40 entries were used from the available corpora. The overall BLEU score and

the subsequent scores for each n-gram match are shown in Table I, where BLEU-1 refers

to the unigram-based score, BLEU-2 for digram scores, etc. The BLEU scores shown were

multiplied by 100 from their original scores, since the original scores were given between

0 to 1. A score of 100 implies that the entire set of corpora completely match each other.

Table I shows that the scores for BLEU-1 and BLEU-2 are much higher than the scores for

BLEU-3 and BLEU-4. Since the ASL-Gloss translation is a truncation of English, and

shorter English sentences were used to simplify the training, the resulting ASL-Gloss

corpus was composed of several sentences containing less than 4 words. Therefore,

evaluating the 4-gram BLEU score resulted in a very small number (nonzero as a result of

the smoothing provided by SacreBLEU). There is a higher general probability for a

unigram match than a digram match, or a digram match compared to a trigram match, and

so on; this is why the n-gram BLEU scores show a marked decrease as the n-gram

increases. Based on how English to ASL-Gloss translations function for the purposes of

Page 127

 Group 14 Final Report

these training sets, the BLEU-1, BLEU-2, and BLEU-3 scores provide a more significant

overall score than when combined with the calculated BLEU-4 score.

Table 20. ASLBoT OpenNMT Set of BLEU Scores.

Bleu Score – Corpora of 40 Entries

Bleu

Total
Bleu-1 Bleu-2 Bleu-3 Bleu-4

13.81 62.0 30.2 14.1 1.6

Table 21. Full OpenNMT Training Corpus, Part 1.

English Source Corpus ASL-GLOSS Target Corpus

I know sign language ME KNOW SIGN

know sign language KNOW SIGN

sign language SIGN

please sign slowly SIGN SLOW PLEASE

sign slowly SIGN SLOWLY

please sign SIGN PLEASE

I need help making these signs ME NEED HELP MAKE SIGN

need help making these signs NEED HELP MAKE SIGN

need help making NEED HELP MAKE

these signs SIGN

making these signs MAKE SIGN

help making these signs HELP MAKE SIGN

help making signs HELP MAKE SIGN

making signs MAKE SIGN

I want to learn to sign ME WANT LEARN SIGN

want to learn sign WANT TO LEARN SIGN

want to learn to sign WANT TO LEARN SIGN

I want to learn sign ME WANT LEARN SIGN

want to learn WANT LEARN

I want to learn ME WANT LEARN

I want to learn sign language ME WANT LEARN SIGN

want to learn sign language WANT LEARN SIGN

want learn sign language WANT LEARN SIGN

learn sign language LEARN SIGN

please sign again slowly SIGN AGAIN SLOW PLEASE

sign slowly again SIGN AGAIN SLOW

sign slowly SIGN SLOW

sign again SIGN AGAIN

please sign again SIGN AGAIN PLEASE

Page 128

 Group 14 Final Report

Table 22. Full OpenNMT Training Corpus, Part 2.

sorry I don’t understand please

sign again slowly

SORRY ME NOT UNDERSTAND SIGN

AGAIN SLOW PLEASE

I don't understand sign again

slowly

ME NOT UNDERSTAND SIGN AGAIN

SLOW

don't understand sign again slowly NOT UNDERSTAND SIGN AGAIN SLOW

I don’t understand sign slowly ME NOT UNDERSTAND SIGN SLOW

don’t understand sign slowly NOT UNDERSTAND SIGN SLOW

sorry don't understand sign slowly SORRY NOT UNDERSTAND SIGN SLOW

I don't understand please sign

again slowly

ME NOT UNDERSTAND SIGN AGAIN

SLOW PLEASE

don't understand please sign again

slowly

NOT UNDERSTAND SIGN AGAIN SLOW

PLEASE

I don’t understand please sign

slowly

ME NOT UNDERSTAND SIGN SLOW

PLEASE

don’t understand please sign

slowly NOT UNDERSTAND SIGN SLOW PLEASE

sorry don't understand please sign

again slowly

SORRY NOT UNDERSTAND SIGN AGAIN

SLOW PLEASE

sorry don't understand please sign

slowly

SORRY NOT UNDERSTAND SIGN SLOW

PLEASE

do not understand sign again

slowly NOT UNDERSTAND SIGN AGAIN SLOW

I do not understand sign slowly ME NOT UNDERSTAND SIGN SLOW

do not understand sign slowly NOT UNDERSTAND SIGN SLOW

sorry do not understand sign again

slowly

SORRY NOT UNDERSTAND SIGN AGAIN

SLOW

sorry do not understand sign

slowly SORRY NOT UNDERSTAND SIGN SLOW

I do not understand please sign

again slowly

ME NOT UNDERSTAND SIGN AGAIN

SLOW PLEASE

do not understand please sign

again slowly

NOT UNDERSTAND SIGN AGAIN SLOW

PLEASE

I do not understand please sign

slowly

ME NOT UNDERSTAND SIGN SLOW

PLEASE

do not understand please sign

slowly NOT UNDERSTAND SIGN SLOW PLEASE

sorry do not understand please sign

again slowly

SORRY NOT UNDERSTAND SIGN AGAIN

SLOW PLEASE

sorry do not understand please sign

slowly

SORRY NOT UNDERSTAND SIGN SLOW

PLEASE

sorry do not understand SORRY NOT UNDERSTAND

Page 129

 Group 14 Final Report

Table 23. Full OpenNMT Training Corpus, Part 3.

sorry I do not understand SORRY ME NOT UNDERSTAND

sorry I don't understand SORRY ME NOT UNDERSTAND

sorry don't understand SORRY NOT UNDERSTAND

please sign again slowly SIGN AGAIN SLOW PLEASE

please sign again SIGN AGAIN PLEASE

please sign SIGN PLEASE

please sign slowly SIGN SLOW PLEASE

do you want to learn a sign language YOU WANT LEARN SIGN

you want to learn a sign language YOU WANT LEARN SIGN

do you want to learn sign language YOU WANT LEARN SIGN

do you want to learn sign YOU WANT LEARN SIGN

you want to learn sign language YOU WANT LEARN SIGN

you want to learn sign YOU WANT LEARN SIGN

I understand ME UNDERSTAND

I want to understand ME WANT UNDERSTAND

want to understand WANT UNDERSTAND

I want to ME WANT

I do not understand ME NOT UNDERSTAND

don't understand NOT UNDERSTAND

I do understand ME UNDERSTAND

do understand UNDERSTAND

do not understand NOT UNDERSTAND

not understand NOT UNDERSTAND

I don't understand ME NOT UNDERSTAND

I do not want to understand ME NOT WANT UNDERSTAND

I don’t want to understand ME NOT WANT UNDERSTAND

do not want to understand NOT WANT UNDERSTAND

don't want to understand NOT WANT UNDERSTAND

not want to understand NOT WANT UNDERSTAND

why don't I understand how to do this

homework

WHY ME NOT UNDERSTAND HOW DO

HOMEWORK

why don't understand how to do this

homework

WHY NOT UNDERSTAND HOW DO

HOMEWORK

why not understand how to do this

homework

WHY NOT UNDERSTAND HOW DO

HOMEWORK

do not understand how to do this

homework

NOT UNDERSTAND HOW TO DO

HOMEWORK

Page 130

 Group 14 Final Report

Table 24. Full OpenNMT Training Corpus, Part 4.

I do not understand how to do this

homework

ME NOT UNDERSTAND HOW TO DO

HOMEWORK

I don't understand how to do this

homework

ME NOT UNDERSTAND HOW TO DO

HOMEWORK

why don't understand how to do

homework

WHY NOT UNDERSTAND HOW DO

HOMEWORK

why not understand how to do

homework

WHY NOT UNDERSTAND HOW DO

HOMEWORK

do not understand how to do

homework

NOT UNDERSTAND HOW TO DO

HOMEWORK

don't understand how to do

homework

NOT UNDERSTAND HOW TO DO

HOMEWORK

I do not understand how to do

homework

ME NOT UNDERSTAND HOW TO DO

HOMEWORK

I don't understand how to do

homework

ME NOT UNDERSTAND HOW TO DO

HOMEWORK

to do homework TO DO HOMEWORK

how to do homework HOW TO DO HOMEWORK

how to do this homework HOW TO DO HOMEWORK

to do this homework TO DO HOMEWORK

I am going to college COLLEGE ME GO

going to college GO COLLEGE

am going to college COLLEGE ME GO

I go to college COLLEGE ME GO

go to college COLLEGE GO

I am going to college this semester NOW SEMESTER ME GO COLLEGE

am going to college this semester NOW SEMESTER ME GO COLLEGE

going to college this semester NOW SEMESTER GO COLLEGE

will go to college this semester NOW SEMESTER GO COLLEGE

this semester I am going to college NOW SEMESTER ME GO COLLEGE

I am making new friends in college AT COLLEGE ME MAKE NEW FRIEND

making new friends in college AT COLLEGE MAKE NEW FRIEND

I am making friends in college AT COLLEGE ME MAKE FRIEND

making friends in college AT COLLEGE MAKE FRIEND

I wanted to make a friend in college ME WANT MAKE FRIEND AT COLLEGE

wanted to make a friend in college WANT MAKE FRIEND AT COLLEGE

wanted to make friend in college WANT MAKE FRIEND AT COLLEGE

Page 131

 Group 14 Final Report

Table 25. Full OpenNMT Training Corpus, Part 5.

wanted to make friends in college WANT MAKE FRIEND AT COLLEGE

I want to make a friend in college

ME WANT MAKE FRIEND AT

COLLEGE

want to make a friend in college WANT MAKE FRIEND AT COLLEGE

want to make friend in college WANT MAKE FRIEND AT COLLEGE

I want to make friends in college

ME WANT MAKE FRIEND AT

COLLEGE

want to make friends in college WANT MAKE FRIEND AT COLLEGE

want to make WANT MAKE

I want to make ME WANT MAKE

I want ME WANT

make friends MAKE FRIEND

make friend MAKE FRIEND

why can't I make friends in college

WHY ME CANNOT MAKE FRIEND AT

COLLEGE

why can't make friends in college

WHY CANNOT MAKE FRIEND AT

COLLEGE

I can't make friends in college

ME CANNOT MAKE FRIEND AT

COLLEGE

make friends in college MAKE FRIEND AT COLLEGE

why make friends in college WHY MAKE FRIEND AT COLLEGE

I make friends in college ME MAKE FRIEND AT COLLEGE

I make friends ME MAKE FRIEND

I can make friends in college ME CAN MAKE FRIEND AT COLLEGE

can make friends in college CAN MAKE FRIEND AT COLLEGE

I can make friends ME CAN MAKE FRIEND

weren't I supposed to find friends in

college this year

THIS YEAR ME SHOULD FIND FRIEND

AT COLLEGE

I was supposed to find friends in

college this year

THIS YEAR ME SHOULD FIND FRIEND

AT COLLEGE

was supposed to find friends this year THIS YEAR SHOULD FIND FRIEND

was supposed to find friends SHOULD FIND FRIEND

I was supposed to find friends this year THIS YEAR ME SHOULD FIND FRIEND

I was supposed to find friends ME SHOULD FIND FRIEND

supposed to find friends SHOULD FIND FRIEND

weren't I supposed to find a friend in

college this year

THIS YEAR ME SHOULD FIND FRIEND

AT COLLEGE

I was supposed to find a friend in

college this year

THIS YEAR ME SHOULD FIND FRIEND

AT COLLEGE

was supposed to find a friend in college

this year

THIS YEAR SHOULD FIND FRIEND AT

COLLEGE

was supposed to find a friend this year THIS YEAR SHOULD FIND FRIEND

Page 132

 Group 14 Final Report

Table 26. Full OpenNMT Training Corpus, Part 6.

was supposed to find a friend SHOULD FIND FRIEND

I was supposed to find a friend this

year THIS YEAR ME SHOULD FIND FRIEND

I was supposed to find a friend ME SHOULD FIND FRIEND

supposed to find a friend SHOULD FIND FRIEND

when does this class meet WHEN CLASS MEET

when does class meet WHEN CLASS MEET

when will class meet WHEN CLASS MEET

how are your engineering classes HOW YOU ENGINEERING CLASS

how is engineering class HOW ENGINEERING CLASS

how are engineering classes HOW ENGINEERING CLASS

how is your engineering class HOW YOU ENGINEERING CLASS

engineering class ENGINEERING CLASS

how are you HOW YOU

you should be going to class now YOU SHOULD GO CLASS NOW

should be going to class now SHOULD GO CLASS NOW

should be going now SHOULD GO NOW

should be going SHOULD GO

going to class now GO CLASS NOW

class now CLASS NOW

going to class GO CLASS

you should be going now YOU SHOULD GO NOW

you should be going YOU SHOULD GO

you should YOU SHOULD

what classes are you taking WHAT CLASS YOU TAKE

what class are you taking WHAT CLASS YOU TAKE

what class WHAT CLASS

are you taking YOU TAKE

I took that class last semester

PAST SEMESTER THAT CLASS ME

TAKE

I took that class THAT CLASS ME TAKE

took that class THAT CLASS TAKE

that class THAT CLASS

I was absent from class yesterday YESTERDAY ME ABSENT FROM CLASS

I was absent yesterday YESTERDAY ME ABSENT

was absent from class yesterday YESTERDAY ABSENT FROM CLASS

last year my classes weren't so difficult LAST YEAR MY CLASS NOT DIFFICULT

last year LAST YEAR

my classes weren't so difficult MY CLASS NOT DIFFICULT

classes weren't so difficult CLASS NOT DIFFICULT

Page 133

 Group 14 Final Report

Table 27. Full OpenNMT Training Corpus, Part 7.

class was difficult CLASS DIFFICULT

last year class was difficult LAST YEAR CLASS DIFFICULT

last year my class was difficult

LAST YEAR MY CLASS

DIFFICULT

I want to go to class now ME WANT GO CLASS NOW

want to go to class now WANT GO CLASS NOW

want to go to class WANT GO CLASS

I want to go to class ME WANT GO CLASS

I want to ME WANT

I want to go ME WANT GO

want to go WANT GO

class now CLASS NOW

I made a friend yesterday YESTERDAY ME MAKE FRIEND

made a friend yesterday YESTERDAY MAKE FRIEND

I made a friend ME MAKE FRIEND

made a friend MAKE FRIEND

I made ME MAKE

Do you want to be friends YOU WANT FRIEND

want to be friends WANT FRIEND

you want to be friends YOU WANT FRIEND

I am learning ASL ME LEARN ASL

learning ASL LEARN ASL

learn ASL LEARN ASL

I will learn ASL ME LEARN ASL

will learn ASL LEARN ASL

I did not finish my homework HOMEWORK ME NOT FINISH

I did not ME NOT

I did not finish ME NOT FINISH

did not finish my homework HOMEWORK NOT FINISH

I did not finish the homework HOMEWORK ME NOT FINISH

finish the homework HOMEWORK FINISH

was the homework supposed to be done

individually

HOMEWORK SHOULD DO

INDIVIDUAL

is the homework done HOMEWORK DONE

homework done HOMEWORK DONE

the homework was done individually HOMEWORK DO INDIVIDUAL

when did you finish your homework WHEN YOU FINISH HOMEWORK

when did you finish WHEN YOU FINISH

did you finish your homework YOU FINISH HOMEWORK

Page 134

 Group 14 Final Report

Table 28. Full OpenNMT Training Corpus, Part 8.

finish your homework YOU FINISH HOMEWORK

where can I find a quiet building to do

my homework

WHERE ME CAN FIND QUIET BUILDING

DO HOMEWORK

where can I find a quiet building WHERE ME CAN FIND QUIET BUILDING

where to find a quiet building WHERE FIND QUIET BUILDING

find a quiet building to do homework FIND QUIET BUILDING DO HOMEWORK

I want to find a quiet building for

homework

ME WANT FIND QUIET BUILDING DO

HOMEWORK

where to find a quiet building for

homework

WHERE FIND QUIET BUILDING DO

HOMEWORK

where to find a quiet building to do

my homework

WHERE FIND QUIET BUILDING DO

HOMEWORK

to do homework DO HOMEWORK

I want to find a quiet place on campus

because I need to finish my

homework

ME WANT FIND QUIET PLACE AT

CAMPUS BECAUSE NEED FINISH

HOMEWORK

I want to find a quiet place on campus

ME WANT FIND QUIET PLACE AT

CAMPUS

I need to finish my homework NEED FINISH HOMEWORK

I want to find a quiet place ME WANT FIND QUIET PLACE

on campus AT CAMPUS

want to find a quiet place on campus

for homework

WANT FIND QUIET PLACE AT CAMPUS

DO HOMEWORK

I want to find a quiet place on campus

for homework

ME WANT FIND QUIET PLACE AT

CAMPUS DO HOMEWORK

I want a quiet place on campus

because I need to finish my

homework

ME WANT FIND QUIET PLACE AT

CAMPUS BECAUSE NEED FINISH

HOMEWORK

I want a quiet place on campus for

homework

ME WANT FIND QUIET BUILDING DO

HOMEWORK

why don't I understand how to do this

homework

WHY ME NOT UNDERSTAND HOW DO

HOMEWORK

why don't I understand WHY ME NOT UNDERSTAND

how to do this homework HOW DO HOMEWORK

why don't I understand how WHY ME NOT UNDERSTAND HOW

don’t understand how to do this

homework

NOT UNDERSTAND HOW DO

HOMEWORK

I don't understand how to do this

homework

ME NOT UNDERSTAND HOW DO

HOMEWORK

why don't I understand the homework

WHY ME NOT UNDERSTAND

HOMEWORK

Page 135

 Group 14 Final Report

Table 29. Full OpenNMT Training Corpus, Part 9.

how to do HOW DO

how to do the homework HOW DO HOMEWORK

I understand the homework ME UNDERSTAND HOMEWORK

I understand how to do this

homework ME UNDERSTAND HOW DO HOMEWORK

understand how to do homework UNDERSTAND HOW DO HOMEWORK

where did you find the classroom WHERE YOU FIND CLASSROOM

where did you find this classroom WHERE YOU FIND CLASSROOM

where did you find WHERE YOU FIND

what did you find WHAT YOU FIND

did you find this classroom YOU FIND CLASSROOM

did you find the classroom YOU FIND CLASSROOM

where do you find WHERE YOU FIND

you find the classroom YOU FIND CLASSROOM

find the classroom FIND CLASSROOM

the classroom CLASSROOM

I need help because I can not find

this classroom

ME NEED HELP BECAUSE CANNOT FIND

CLASSROOM

I need help ME NEED HELP

need help NEED HELP

I need help to find the classroom FIND CLASSROOM ME NEED HELP

need help because I can not find this

classroom

NEED HELP BECAUSE ME CANNOT FIND

CLASSROOM

need help because can not find this

classroom

NEED HELP BECAUSE CANNOT FIND

CLASSROOM

I need help because I can not find

the classroom

ME NEED HELP BECAUSE CANNOT FIND

CLASSROOM

I can not find this classroom ME CANNOT FIND CLASSROOM

I can't find this classroom ME CANNOT FIND CLASSROOM

I can not find the classroom ME CANNOT FIND CLASSROOM

can't find this classroom CANNOT FIND CLASSROOM

can not find this classroom CANNOT FIND CLASSROOM

can't find the classroom CANNOT FIND CLASSROOM

can not find the classroom CANNOT FIND CLASSROOM

find this classroom FIND CLASSROOM

find the classroom FIND CLASSROOM

the engineering building is big ENGINEERING BUILDING BIG

the engineering building ENGINEERING BUILDING

engineering building ENGINEERING BUILDING

building is big BUILDING BIG

Page 136

 Group 14 Final Report

Table 30. Full OpenNMT Training Corpus, Part 10.

engineering building is big ENGINEERING BUILDING BIG

do you want to go with me to the

engineering building

YOU WANT GO WITH ME

ENGINEERING BUILDING

do you want to go with me YOU WANT GO WITH ME

do you want to go YOU WANT GO

want to go WANT GO

you want to go YOU WANT GO

want to go with me to the engineering

building

WANT GO WITH ME ENGINEERING

BUILDING

want to go with me WANT GO WITH ME

you want to go with me YOU WANT GO WITH ME

did you go to the engineering building

with me yesterday

YESTERDAY YOU GO ENGINEERING

BUILDING WITH ME

did you go to the engineering building YOU GO ENGINEERING BUILDING

did you go YOU GO

go with me GO WITH ME

did you go to the engineering building

yesterday

YESTERDAY YOU GO ENGINEERING

BUILDING

go to the engineering building GO ENGINEERING BUILDING

I wanted to research in the engineering

building

ME WANT RESEARCH AT

ENGINEERING BUILDING

I wanted to research in the building ME WANT RESEARCH AT BUILDING

I wanted to do research ME WANT DO RESEARCH

I want to do research ME WANT DO RESEARCH

research in the engineering building

RESEARCH AT ENGINEERING

BUILDING

research is done at the engineering

building

RESEARCH DONE AT ENGINEERING

BUILDING

wanted to do research in the

engineering building

WANT RESEARCH AT ENGINEERING

BUILDING

I wanted to do research at the

engineering building

ME WANT DO RESEARCH AT

ENGINEERING BUILDING

I want to do research at the

engineering building

ME WANT DO RESEARCH AT

ENGINEERING BUILDING

in the engineering building AT ENGINEERING BUILDING

at the engineering building AT ENGINEERING BUILDING

there are a few ways to get to that

building FEW WAY GO THAT BUILDING

few ways to get to that building FEW WAY GO THAT BUILDING

get to that building GO THAT BUILDING

Page 137

 Group 14 Final Report

Table 31. Full OpenNMT Training Corpus, Part 11.

ways to get to that building WAY GO THAT BUILDING

there are few ways FEW WAY

that building THAT BUILDING

that is how to get to that building THAT HOW GO THAT BUILDING

that is how THAT HOW

to get to that building GO THAT BUILDING

how many buildings are there on campus BUILDING ON CAMPUS HOW MUCH

how many buildings BUILDING HOW MUCH

how many buildings are on campus BUILDING ON CAMPUS HOW MUCH

what buildings are on campus WHAT BUILDING ON CAMPUS

are on campus ON CAMPUS

what buildings are there on campus WHAT BUILDING ON CAMPUS

are there on campus ON CAMPUS

how many buildings are there BUILDING HOW MUCH

how many HOW MUCH

where is the science building WHERE SCIENCE BUILDING

the science building SCIENCE BUILDING

can you help me find this building CAN HELP ME FIND BUILDING

can you help me CAN HELP ME

can you help CAN HELP

help me HELP ME

find the building FIND BUILDING

I need to go to the science building now

ME NEED GO SCIENCE BUILDING

NOW

I need to go ME NEED GO

the science building SCIENCE BUILDING

I need to go now ME NEED GO NOW

I need to go to the science building ME NEED GO SCIENCE BUILDING

need to go to the science building NEED GO SCIENCE BUILDING

need to go to the science building now NEED GO SCIENCE BUILDING NOW

go to the science building GO SCIENCE BUILDING

they made so many buildings on this

campus

AT CAMPUS MAKE MUCH

BUILDING

they made so many buildings MAKE MUCH BUILDINGS

on this campus AT CAMPUS

Page 138

 Group 14 Final Report

Table 32. Full OpenNMT Training Corpus, Part 12.

they made so many MAKE MUCH

where can I find a quiet building to do

my homework

WHERE ME CAN FIND QUIET BUILDING

DO HOMEWORK

where can I find a quiet building WHERE ME CAN FIND QUIET BUILDING

where can I find WHERE ME CAN FIND

quiet building to do my homework QUIET BUILDING DO HOMEWORK

building to do my homework BUILDING DO HOMEWORK

building to do homework BUILDING DO HOMEWORK

on campus AT CAMPUS

why is the campus large WHY CAMPUS BIG

the campus is large CAMPUS BIG

where is a quiet place on campus WHERE QUIET PLACE AT CAMPUS

where is a quiet place WHERE QUIET PLACE

a quiet place on campus QUIET PLACE AT CAMPUS

where is the quiet place on campus WHERE QUIET PLACE AT CAMPUS

where can I do research on campus

WHERE CAN ME DO RESEARCH AT

CAMPUS

where can I do research WHERE CAN ME DO RESEARCH

research on campus RESEARCH AT CAMPUS

I want to find a quiet place on campus

because I need to finish my

homework

ME WANT FIND QUIET PLACE AT

CAMPUS BECAUSE NEED FINISH

HOMEWORK

I want to find a quiet place on campus

ME WANT FIND QUIET PLACE AT

CAMPUS

I want to find a quiet place ME WANT FIND QUIET PLACE

find a quiet place FIND QUIET PLACE

because I need to finish my

homework

BECAUSE ME NEED FINISH

HOMEWORK

I need to finish my homework ME NEED FINISH HOMEWORK

finish my homework ME FINISH HOMEWORK

I want to start doing research this

semester

SEMESTER ME WANT START

RESEARCH

I want to start doing research ME WANT START RESEARCH

start doing research this semester SEMESTER START RESEARCH

want start doing research this semester SEMESTER WANT START RESEARCH

why can't I find a place to do research

WHY ME CANNOT FIND PLACE DO

RESEARCH

why can't I find a place WHY ME CANNOT FIND PLACE

Page 139

 Group 14 Final Report

Table 33. Full OpenNMT Training Corpus, Part 13.

find a place to do research FIND PLACE DO RESEARCH

find a place FIND PLACE

why can't I find WHY ME CANNOT FIND PLACE

where can I do research on campus WHERE CAN DO RESEARCH AT CAMPUS

where can I do research WHERE CAN DO RESEARCH

research on campus RESEARCH AT CAMPUS

don't you want to study with me

later LATER NOT WANT STUDY WITH ME

don't you want to study NOT WANT STUDY

don’t you want to study with me NOT WANT STUDY WITH ME

study with me later LATER STUDY WITH ME

want to study with me later LATER WANT STUDY WITH ME

tomorrow I want to find somewhere

to study

TOMORROW ME WANT FIND

SOMEWHERE STUDY

I want to find somewhere to study ME WANT FIND SOMEWHERE STUDY

somewhere to study SOMEWHERE STUDY

I want to find ME WANT FIND

study STUDY

to <unk>

I ME

understand UNDERSTAND

do <unk>

sign SIGN

homework HOMEWORK

building BUILDING

want WANT

the <unk>

not NOT

you YOU

this <unk>

slowly SLOW

find FIND

how HOW

engineering ENGINEERING

college COLLEGE

don't NOT

go GO

again AGAIN

a <unk>

Page 140

 Group 14 Final Report

Table 34. Full OpenNMT Training Corpus, Part 14.

in <unk>

friends FRIEND

sorry SORRY

need NEED

class CLASS

please PLEASE

is <unk>

classroom CLASSROOM

can CAN

campus CAMPUS

quiet QUIET

me ME

learn LEARN

help HELP

wanted WANT

research RESEARCH

my MY

on AT

why WHY

make MAKE

language LANGUAGE

with WITH

where WHERE

going GO

place PLACE

many MUCH

did DO

classes CLASS

your YOUR

semester SEMESTER

finish FINISH

can't CANNOT

buildings BUILDING

because BECAUSE

are <unk>

now NOW

yesterday YESTERDAY

few FEW

there THERE

Page 141

 Group 14 Final Report

Table 35. Full OpenNMT Training Corpus, Part 15.

so large BIG

should SHOULD

science SCIENCE

name NAME

making MAKE

for <unk>

be <unk>

ways WAY

that THAT

supposed <unk>

big BIG

asl ASL

when WHEN

take TAKE

made MAKE

learning LEARN

get GO

year YEAR

what WHAT

weren't NOT

study STUDY

new NEW

meet MEET

large BIG

individually INDIVIDUAL

friend FRIEND

done DONE

was <unk>

they <unk>

taking TAKE

signs SIGN

last LAST

know KNOW

five FIVE

does <unk>

will <unk>

what's WHAT

took TAKE

tomorrow TOMORROW

Page 142

 Group 14 Final Report

Table 36. Full OpenNMT Training Corpus, Part 16.

these <unk>

start START

somewhere SOMEWHERE

later LATER

from FROM

doing <unk>

difficult DIFFICULT

absent ABSENT

my name is MY NAME

what is your name YOU NAME WHAT

my name MY NAME

what's your name YOU NAME WHAT

what your name YOU NAME WHAT

your name YOU NAME WHAT

charles <unk>

bob <unk>

miami <unk>

florida <unk>

gustavo <unk>

luis <unk>

jared <unk>

michael <unk>

where is the science building WHERE SCIENCE BUILDING

science building SCIENCE BUILDING

I want to go to the science building ME WANT GO SCIENCE BUILDING

how many science buildings are there SCIENCE BUILDING HOW MUCH

where are the science buildings on

campus

WHERE SCIENCE BUILDING ON

CAMPUS

Page 143

 Group 14 Final Report

Table 37. English to ASL-Gloss Validation Corpus, Part 1.

English Validation ASL-GLOSS Validation

I want to know sign language ME WANT KNOW SIGN LANGUAGE

can you please sign slowly YOU SIGN SLOWLY PLEASE

I want help for making these signs ME WANT HELP MAKE SIGN

I need to learn sign ME NEED LEARN SIGN

Do you need to learn a sign language YOU NEED LEARN SIGN

I need to understand how to do this

homework

ME NEED UNDERSTAND HOW DO

HOMEWORK

I will be going to college this semester NOW SEMESTER ME GO COLLEGE

I need to make new friends in college

AT COLLEGE ME NEED MAKE NEW

FRIEND

I am supposed to make new friends in

college ME SHOULD FIND FRIEND AT COLLEGE

when does the class meet WHEN CLASS MEET

how are your engineering classes this

semester

NOW SEMESTER HOW YOU

ENGINEERING CLASS

you need to go to class now YOU NEED GO CLASS NOW

I need to take that class this semester

NOW SEMESTER ME NEED TAKE

CLASS

this semester I was absent from class

NOW SEMESTER ME ABSENT FROM

CLASS

this semester my classes are not

difficult

NOW SEMESTER MY CLASS NOT

DIFFICULT

I will go to class now ME GO CLASS NOW

I made a friend in college ME MAKE FRIEND AT COLLEGE

do you want to be friends in college YOU WANT FRIEND AT COLLEGE

I need to learn ASL ME NEED LEARN ASL

This semester the homework was

difficult

NOW SEMESTER HOMEWORK

DIFFICULT

sorry don't understand sign again

slowly

SORRY NOT UNDERSTAND SIGN

AGAIN SLOW

don't understand how to do this

homework

NOT UNDERSTAND HOW TO DO

HOMEWORK

I wanted to make friends in college ME WANT MAKE FRIEND AT COLLEGE

was supposed to find friends in

college this year

THIS YEAR SHOULD FIND FRIEND AT

COLLEGE

Page 144

 Group 14 Final Report

Table 38. English to ASL-Gloss Validation Corpus, Part 2.

understand how to do the homework UNDERSTAND HOW DO HOMEWORK

need help because cannot find the

classroom

NEED HELP BECAUSE CANNOT FIND

CLASSROOM

where to find a quiet building to do

homework

WHERE FIND QUIET BUILDING DO

HOMEWORK

I want to do research in the

engineering building

ME WANT DO RESEARCH AT

ENGINEERING BUILDING

I can't find the classroom ME CANNOT FIND CLASSROOM

I wanted to do research in the

engineering building

ME WANT DO RESEARCH AT

ENGINEERING BUILDING

want to do research in the

engineering building

WANT RESEARCH AT ENGINEERING

BUILDING

can't make friends in college CANNOT MAKE FRIEND AT COLLEGE

I do not understand sign again slowly

ME NOT UNDERSTAND SIGN AGAIN

SLOW

find a quiet building for homework FIND QUIET BUILDING DO HOMEWORK

did not finish the homework HOMEWORK NOT FINISH

find this building FIND BUILDING

can you help me find the building CAN HELP ME FIND BUILDING

there are a few ways FEW WAY

7.3 Changes to PCB Design and Hardware

Functionality

This section addresses the major changes between the original PCB and hardware design

from Senior Design I to the final PCB and hardware design ultimately used in the final

product.

7.3.1 Hardware Prototyping

In the initial design for the prototype of the print circuit board for the device, an FPGA was

originally chosen as the brains of the board. However, while investigating creating a

custom design PCB, the time it would take to design this PCB was decided not to be

feasible given the time constraint of the senior design class. FPGAs tend to require multiple

different voltage rails to power different parts of its computer. Furthermore, there are

multiple I/O banks with clocks to be fed in from an oscillator. Given the complexity and

time requirements of the FPGA, using a microcontroller unit was considered to be more

feasible instead. The microcontroller used was the MSP430FR6989 Launchpad board as

this MCU is part of a widely used and highly documented family of microcontrollers with

low power consumption and many pertaining features for our project. Furthermore, our

team has had experience working with this family of microcontrollers, so there would be

no learning curve for creating embedded code.

Page 145

 Group 14 Final Report

Since the board featured status LEDs, seven different LEDs were placed onto a solderless

breadboard and were connected to the digital I/O pins on the development board. Seven

LEDs were selected to represent power, recording mode, idle mode, transmission indicator,

receiving indicator, “translation-in-progress” status, and “animation-being-displayed”

status. Different values of dropping resistors were considered that would give us the

optimal illumination level. The final set of resistors chosen was rated for 1 kΩ, as these

using the LEDs with these resistors provided an output on the LEDs that were bright

enough to see easily in multiple lighting conditions. The connections for the prototyped

LEDs can be seen in figure 67.

Figure 67. Prototyping with LEDs and MSP430FR6989.

Furthermore, experimentation continued with the connecting push buttons on the

launchpad board to control our product. Three push buttons were connected to the

solderless breadboard and wired to the board. Two of the buttons were connected to digital

I/O pins to receive input from the user on whether to start or stop recording and send control

signals to the single board computer. Experimentation with these push buttons showed that

these buttons required to be connected to pull-up resistors for the microcontroller to read

the inputs from the button properly. Interrupts were also required to interface with the

buttons so that the microcontroller could be kept in a low-power mode. The third button

was connected to the reset pin of the launchpad board as this button would act as a reset

button for our PCB in the case the board locked up while running its software and needed

to be hard reset by the user.

Page 146

 Group 14 Final Report

During the prototyping stage, an I2S microphone was once component that we had

purchased. I2S is a serial bus interface standard used to connect digital audio devices

without the need for convertors. This was extremely desirable for our product as we would

be able to capture the audio from the microphone on the microcontroller and send it to the

single board computer.

However, when investigating the support for this microphone, the I2S protocol was found

not to be supported in full by the MSP430 family. While TI provided documentation on

interfacing I2S devices with their board’s Universal Serial Communication interfaces, this

interface requires extra hardware to implement such an interface correctly and completely.

This interface uses the USCI SPI port running the SPI communication protocol and

connects a 4-bit counter and D flip-flop to create an ‘I2S-like Left-Justified SPI’

implementation. This implementation seems to be device dependent because the resulting

interface is not the official I2S protocol, and certain devices will not be able to correctly

interface. Unfortunately, this was the case for the microphone that we had purchased as it

did not have enough documentation available to get a working communication line.

To circumvent this another digital device interface, Universal Serial Bus, was implemented

to connect a microphone to our system. A USB-enabled Blue Snowball microphone was

already owned by one of the group members, and this microphone fit the requirements for

the microphone specifications, and the group elected to use this device. The Blue Snowball

was connected directly to the UDOO as this single board computer fully supported USB

interface and would cut down on the latency of capturing and passing the audio information

from the PCB board.

7.3.2 PCB Design

When designing the printed circuit board for the final product there were a handful of

features that were to be implemented. The status LEDs were required such that the user

could see them and instantly know what the system was executing. Along this same line,

the current status of the microphone was also to be represented by having an LCD display

that would show if the microphone was recording. Next, buttons were implemented so that

the user could control the system easily and have a connection to the single board computer

that we are using to run the graphics software. Finally, the user is able to wake the system

from sleep by using an IR remote and receiver that was connected to the board. The

schematic for our PCB board can be seen in figure 68 and 69.

Page 147

 Group 14 Final Report

Figure 68. Final Schematic - MSP430FR6922 connections.

Figure 69. Final Schematic - Component Connections.

Page 148

 Group 14 Final Report

These goals were accomplished by using a MSP430FR6922 microcontroller unit as the

brain of the printed circuit board. This MCU provided us with the I/O pins required to

connect everything to the board and included a small, 56-pin TSSOP package. This

package type made the MCU easier to solder to the PCB without much previous soldering

experience. Furthermore, due to this group’s experience with working on TI’s line of MSP

MCUs and their embedded development environment, the development process was much

smoother. Finally, this microcontroller chip was low cost, running only $5.33.

Even though the development platform was the MSP430FR6989, when we investigated

prototyping a PCB with this unit, we found that the chip only came in large pin packages.

The smallest number of pins offered was 80 and came in a LQFP package, which would

make soldering the unit to the board manually extremely difficult. Therefore, we chose to

purchase the MSP430FR6922 because this MCU offered all the same features but came in

a more developer-friendly package. Since these chips were in the same family, there were

only few noticeable differences between the development of code between these chips.

Program the PCB’s microcontroller unit was done by including a 5-pin header that would

connect to the eZ-FET emulator located on the development board. This is provided by TI

to program their chips through the 2-wire serialized JTAG programming interface, Spy-

Bi-Wire. The header featured 3 pins connected to the 5-volt, 3-volt, and ground pins on the

emulator to tie the boards to a common plane and 2 pins that connected to the SBW reset

and test pins. These two pins are the data and clock pins for the programming interface.

This header is also used to power the board by connecting the 5-volt and ground pins to

the Arduino pinouts located on our UDOO x86 single board computer.

Next, a 2-pin header was also included that was connected to the UDOO board. This header

would allow the PCB to communicate with the UDOO through the I2C 2-wire serial

communication protocol. As shown in figure 70, we can see that the header featured 3 more

pins. These pins were originally slated to be used to transmit the audio data from the

microcontroller unit to the UDOO board, but after failing to implement the I2S

microphone, these pins were left unused. This was also the case for the ‘MIC1’ header

located in the lower left corner of the board layout. The MIC1 was to be where the I2S

microphone connected the printed circuit board.

The next header included on the board was the 16-pin LCD display header. This header

allowed for connection of the 16x2 LCD display to display the status of the microphone to

the user. This header features 5-volt power connections for the display and the backlight,

a variable voltage pin to control the contrast of the display, and 11 control pins. 8 of these

controls are the data pins used to pass the bits of commands and data to the display. The

display was operated in 4-bit mode; i.e. only 4 data pins would need to be used to send

commands and text to the display. The 3 other control pins are used for the enable, register

select, and Read/Write pin. The variable voltage pin was connected to a 10 kΩ trimmer

resistor. This allowed us to control the voltage seen by the pin changing the contrast of the

screen so that viewing the characters on the screen could be optimized.

The final header on the board was a 3-pin header that was used to connect the IR receiver

to the PCB. It featured a 5-volt power pin, a ground pin, and a data pin. During the assembly

Page 149

 Group 14 Final Report

of the board however, the I/O pin connected to the header was damaged or incorrectly

connected which prevented receiving data from the IR receiver. To fix this problem, the

data pin of the IR receiver was connected to one of the unused data pins on the LCD display

header, which allowed the receiver to work properly.

Also located on the board was a USB header that was originally to be used for powering

the board through a USB port on the single board computer. However, the surface mounted

USB port that we ordered was of low quality and had extremely small legs that would not

allow us to properly solder the device to the board. Due to the COVID-19 virus, shipping

from most suppliers was massively delayed by the time we encountered this, and we were

unable to order new USB ports. Instead, to overcome this challenge, we used the Spy-Bi-

Wire header’s 5-volt and ground pins to power the board.

The power for the MCU was handled by placing an AMS-1117 voltage regulator on the

board that took the 5-volt supply and stepped it down to 3.3-volts. This was within the

operating voltage range for the MSP430FR6922. The IR sensor and LCD display were

directly powered off the 5-volt power line coming from the UDOO board. The board also

featured the 7 status LEDs and 3 push buttons mentioned earlier.

Figure 70: Final printed circuit board layout.

Page 150

 Group 14 Final Report

7.2.3 Final Hardware Block Diagram

Figure 71 shows the overall block diagram of our system. The power source is a 12-V, 3-

A DC power adapter that plugs into the UDOO x86 II Advanced Plus board. Then, from

the single board computer 5 V are delivered to the PCB. This 5-volt line directly powers

both the LCD display and the IR sensor. Furthermore, the 5-volt power was run into a 3.3-

volt AMS 1117 regulator that provides the MCU unit located on the PCB with 3.3 volts

power.

In terms of peripherals on the PCB side, we have a 16x2 LCD, status LEDs, buttons, and

an IR receiver connected to the I/O of the PCB. Connected to the UDOO board are the

display and the microphone. The display also houses the speakers for the system, allowing

for easy connection of both video and audio via an HDMI cable.

Finally, the PCB and the single board computer are connected via a 2-wire I2C connection

that allows easy transfer of control signals between the 2 boards.

Figure 71: Final Hardware Block Diagram.

Page 151

 Group 14 Final Report

7.2.4 Final Bill of Materials

This section includes the final bill of materials for the final design of this project, including

unit cost and the total costs for the device.

The UDOO x86 II Advanced Plus serves as our main processor unit, while the PCB/MCU

will function as auxiliary processors for user input and alert outputs to the user. The UDOO

board will be the sole storage unit and will contain the ASLBoT Unity software as well as

the program files necessary for executing the calls for the OpenNMT and Watson Speech-

to-Text API. The UDOO will also handle A/V output to the display via HDMI.

The PCB which contains the microcontroller will act as a control board for the user from

which the user may interact with the ASLBoT software. The power supply for the UDOO

is a standard 12V 3A AC adapter which was purchased directly from the UDOO vendor

website.

The PCB vendor for the final PCB was decided to be JLCPCB due to their reasonable costs

per board and high-quality PCBs. Despite the current epidemic, these boards were able to

be delivered in time such that the board could be implemented in the project. The minor

components such as resistors and capacitors are not listed in the table but were factored

into the overall cost of the PCB.

Table 39. Final Bill of Materials.

Part Supplier Unit Cost Quantity Cost

UDOO x86 II Advanced Plus UDOO $176.00 1 $176.00

Power Supply UDOO $8.90 1 $8.90

PCB/MCU JLCPCB $19.07 1 $19.07

IR Receiver Adafruit $1.95 1 $1.95

Display Amazon $59.99 1 ---

Snowball Microphone Blue Designs $49.99 1 ---

LCD Amazon $5.99 1 ---

IR Remote Adafruit $4.95 1 --

Total $326.84 $205.42

Page 152

 Group 14 Final Report

8. Operator’s Manual
User’s Manual for ASLBoT Version 1.01

This device is intended for translation of spoken English into American Sign Language.

This device is intended to be a concept for an out-of-the-box solution for automated sign

language interpretation.

Note: This device cannot be used for translation from languages other than English and

cannot be used to translate into sign languages other than American Sign Language.

Overview of User Interface:

• Amane Kisora-chan (© SapphiArt Co., Ltd.) has been included as the translation

model for this device. While using the program, Amane will act as your sign

language interpreter.

• Located on the circuit board are three buttons labeled “START”, “STOP”, and

“RESET”.

o The “START” button is used to begin recording your voice while using the

ASLBoT software.

o The “STOP” button is used to indicate to the software that you have finished

speaking and are ready to have your voice translated.

o The “RESET” button is used to reset the circuit board and the LCD if any

issues arise.

o LEDs are located on this board to indicate if the game is currently recording.

• An IR remote has been included with this device. You can wake up the device by

pressing any button on the IR remote. Pressing this button will automatically wake

up the device and sign you in.

• An LCD has also been included with this device. When you press the START

button on the circuit board, the LCD will display “Recording…”

Contents:

1x UDOO x86 II Advanced Plus single-board computer with pre-installed ASLBoT

software

1x Barrel Jack AC-DC Power Adapter (12V, 3A)

1x circuit board with LEDs and buttons

1x IR Remote with 1x CR2025 battery (included)

1x LCD

1x HDMI cable

1x USB-enabled microphone

1x plastic enclosure (sold separately)

Notes about these contents:

• While a microphone has been included with this device, any USB-enabled

microphone that can pick up human speech can be used with this device.

• Likewise, with the HDMI cable and power adapter, any working HDMI cable and

power adapter may be used with this device. Note, however, that the power adapter

must be rated for 12V at 3A.

Page 153

 Group 14 Final Report

Operating the Device:

This device is pre-installed with a copy of Windows 10 and a copy of the ASLBoT

software.

Turning on the device:

• Insert the power adapter into any 120 VAC wall socket, then insert the barrel jack

connector into the power socket of the UDOO.

Note: plugging in the power supply to the UDOO should automatically turn on the

device.

• Insert one end of the HDMI cable into the UDOO, then insert the other end of the

cable into any HDMI-enabled display (not included).

• Insert any USB-enabled mouse and keyboard (not included) using the USB 3.0

ports located on the UDOO.

Note: the UDOO is not Bluetooth-enabled and will not work with adapter-less

Bluetooth devices.

• Insert the USB-enabled microphone into one of the remaining USB 3.0 ports

located on the UDOO.

Running the ASLBoT software:

• Log into the default account ASLBoT. By default, the password is blank.

• Find the ASLBoT v1.01 software folder located on the Desktop. Double-click to

open the folder.

• Check that all necessary files have been installed:

o Open the ASL folder.

o Check that the files nmt_model.pt and vocab.txt are in this folder.

• Run the executable file ASLBoT.exe. This will start the ASLBoT software.

Using the ASLBoT software:

• While the program is running, press the START button on the circuit board.

• Once the screen says “Recording…”, you may begin speaking into the microphone.

• Once you have finished speaking, press the STOP button on the circuit board.

• If an audio file has been created successfully, Amane will show you that she is

thinking about how to translate that sentence.

• Once she is done thinking, the sentence you said, along with Amane’s predicted

sign language translation, will be shown on the display. Amane will also sign her

predicted translation.

• The program will also automatically replay the sound file that it has recorded.

Please mute your external display if you would like to disable this feature.

• Once Amane is finished with her interpreting, the display will clear and Amane will

start waiting again.

• At this point, you have the option of pressing the START button again to begin

recording another sentence.

• Otherwise, if you would like to quit the game, press the Escape button on the

keyboard. Amane will wave goodbye, and the display will show “Goodbye!

Shutting down…”, and the game will automatically quit itself.

Page 154

 Group 14 Final Report

Warning messages when using the ASLBoT software:

• Warnings are shown in the top-left corner of the screen while the game is running.

• If you attempt to quit the game while Amane is still interpreting, a warning message

will be shown stating “Animations are in progress…”

• If you press the STOP button but have not pressed the START button and began

recording, a warning message will be shown stating “Microphone is not on…”

Troubleshooting:

The device is not turning on:

• Check that all the parts have been connected properly. If not, unplug the power

supply and try again.

• Check that the correct power supply is being used. Note that using a power supply

that is not rated for the UDOO may damage the device.

The device is overheating while the program is running:

• After prolonged use of the ASLBoT software, this is normal. However, if this is a

common occurrence, you may need to install a fan on the UDOO. The

recommended fan to use on the UDOO is the one from the manufacturer, found

here:

https://shop.udoo.org/cpu-fan-for-udoo-x86-heatsink.html

The IR remote is not waking up the computer properly:

• If pressing the remote results in waking up the device but not signing in, you may

have set a password on the device. Remove the password to allow the IR remote to

work again.

• If pressing the remote does not wake the device at all, you may need to change the

batteries on the remote.

When using the game, Amane is spelling everything letter-by-letter:

• You may not have the vocab.txt file, or it may have been placed in the wrong

location. Check that there is a valid text file named vocab.txt in the ASL folder.

When speaking into the microphone, nothing is being shown:

• Check that the “Start” button has been pressed and the word “Recording…” is

shown on the screen.

• Check that a valid USB-enabled microphone has been plugged into a USB port.

Warnings:

Do NOT attempt to install another operating system onto the UDOO computer, as this may

result in loss of the ASLBoT software.

Do NOT attempt to modify the Unity game files, as this may result in malfunction of the

ASLBoT software.

Do NOT attempt to use the UDOO x86 II Advanced Plus computer other than for running

the ASLBoT software; doing so may result in malfunction of the ASLBoT software.

Do NOT attempt to install, move, or remove any files except where specified, as this may

harm the device.

Do NOT attempt to connect any external USB devices other than a mouse, keyboard, or

microphone. Doing so may harm the device.

Do NOT attempt to create a password for signing into the device. Doing so will prevent

the IR remote from waking up the device properly.

https://shop.udoo.org/cpu-fan-for-udoo-x86-heatsink.html

Page 155

 Group 14 Final Report

Disclaimers:

This device has been produced as a proof-of-concept model and has not been approved for

use in legal, medical, or emergency situations. As such, use of this device is not

recommended for use in legal, medical, or emergency situations. The provision of this

device and its software is “as-is” and does not include any guarantee including suitability

for a specific purpose of use and non-infringement of the rights of a third party.

SDF19S20 Group 14 is not responsible for injury or loss resulting from misuse of this

device, including alterations to any files in the ASLBoT software folder.

As this device is conceptual, the validity and/or accuracy of translations produced while

using default settings of this device cannot be guaranteed.

OpenNMT is an open-source neural machine translation software and is licensed under the

MIT license. Your use of this device implies consent with their terms of use. SDF19S20

Group 14 is in no way sponsored or affiliated with the producers of the OpenNMT

software.

SDF19S20 Group 14 is in no way sponsored or affiliated with SECO SPA, producers of

the UDOO family of single-board computers.

Inclusion of the Amane Kisora-chan Unity model in this device is in compliance with the

license set forth by SapphiArt Co., Ltd., and your use of this device implies consent with

their Terms of Use.

Contact:

Senior Design Fall 2019-Spring 2020, Group 14 (SDF19S20 Group 14)

Affiliated with the University of Central Florida

4000 Central Florida Boulevard

Orlando, FL 32816

Contact the ASLBoT Manufacturers:

For general questions regarding ASLBoT:

• Gustavo Camero: gcamero@knights.ucf.edu

For questions regarding OpenNMT:

• Luis Hurtado: luis.hurtado@knights.ucf.edu

For questions regarding the Unity Engine software:

• Michael Loyd: michael.loyd@knights.ucf.edu

For questions regarding hardware:

• Jared Spinks: spinks.jared@knights.ucf.edu

Page 156

 Group 14 Final Report

9. Administrative Content

In this section, we will show the time management and budget constraints that the team

had to overcome during the trajectory of Senior Design I and II. In addition, a milestone

section will be discussed for both Senior Design I and II. The deadlines and deliverables

will be explained in a projected manner. The budget and finance of the team will also be

discussed in a projected manner.

9.1 Budget and Finance

In this section, we will discuss the initial budget cost after completing Senior Design I and

the final budget cost after completing Senior Design II. The changes made on Senior

Design II will be reflected on the final budget cost. Finally, throughout this section, we

want to stress that we were self-financed and received no support from a sponsor.

9.1.1 Initial Budget Cost

Our project so far possesses no external sponsorship. The component selection with its

pertaining price range is based on the extensive research done in Senior Design I so far.

The price ranges are rough estimates from what we have encountered online. The

component with their pricing range as shown in Table 39. We are planning to have a budget

of $1000.

Table 40. Original Business Budget Approximations for each Component.

Part Supplier Unit Cost Quantity Cost

NVIDIA JETSON NVIDIA $95.96 1 $95.96

Altera Cyclone IV Xilinx $8.90 1 $8.90

MSP430FR6989 Mouser $7.86 1 $7.86

MEMS Microphone SPH0645LM4H Adafruit $6.95 1 $6.95

IR Receiver TSOP38238 Adafruit $1.95 1 $1.95

WiFi Module Amazon $15.00 1 $15.00

Display Monitor Amazon $59.99 1 $59.99

PCB JLCPCB $50 1 $50

Miscellaneous -- -- -- $200

Total Supplier $246.61 $446.61

Page 157

 Group 14 Final Report

9.1.2 Final Budget Cost

Our final budget cost is based on the changes made throughout Senior Design II. We

noticed that the original design could not be met given the timeframe of Senior Design II.

Therefore, we changed our system from an GPU-FPGA based system to the SBC-MCU

based system that we were able to develop during Senior Design II. This heavily raised the

cost of the overall product. In the end, we could not get a sponsor for our project, so we

ended up being self-funded. Table 40 shows our overall self-funding for this project.

Table 41. Final Budget Cost of the ASLBoT system.

Part Supplier Unit Cost Quantity Cost

UDOO x86 Advanced Plus UDOO $176.00 1 $176.00

Power Supply UDOO $8.90 1 $8.90

PCB/MCU JLCPCB $19.07 1 $19.07

IR Receiver Adafruit $1.95 1 $1.95

Display Amazon $59.99 1 ---

Snowball Microphone Blue Designs $49.99 1 ---

LCD Amazon $5.99 1 ---

IR Remote Adafruit $4.95 1 --

Miscellaneous --- --- --- $132.93

Total $326.84 $338.35

9.2 Project Milestones

In this section, we demonstrate the milestones requirement had to meet in order to complete

the project. We broke down the milestones into two sections. One for Senior Design I in

which selection of the project, researching and testing was done. The other for Senior

Design II in which the integration will be carried out. For Table 21, we assigned the

duration of tasks based on the Important Deadline section. For Table 22, we are just giving

a rough estimate and projection on how the team will perform at integrating the project

together. In addition, we are also taking into consideration the feasibility of running into

roadblocks in the integration phase of the project for Senior Design II. We took this

consideration also in Senior Design I. It can be noted that a lot of Senior Design I was spent

in training the neural machine translation model since we needed to use an accurate model

Page 158

 Group 14 Final Report

for Senior Design II. Moreover, we have to train the NMT with a robust data set such that

it would understand the ASL-Gloss translation we want to implement.

Table 42. Senior Design I – Milestones.

Process Description Duration Dates

Brainstorming & Project Selection 2 weeks Aug. 30 -

Sept. 14

Initial Research / Divide & Conquer 1 week Sept. 14 -

Sept. 20

Continuation of Research 3 weeks Sept. 20 -

Oct. 12

Possible Hardware & Software Selection, Purchase Demos

for Preliminary Testing

3 weeks Sept. 20 -

Oct. 12

Cover page/Executive Summary/Technical

Contents/Training Neural Machine Translation Model

4 weeks Oct. 12 -

Oct. Nov. 1

Administrative Content/Project

Summary/Conclusion/Appendices/ Finalize Training

2 weeks Nov. 1 -

Nov. 15

Final Document Revision + Initial Prototyping 2 - 3

weeks

Nov. 15 -

Dec 2

Table 43. Senior Design II – Milestones.

Process Description Duration Dates

Complete Prototype/CDR

Preparation

4 weeks Jan. - Feb.

Prototype Testing and

Debugging/Mid-Term Demo

Preparation/ Work on Final Report

4 weeks Feb. - March

Product Finalization/ Final

Presentation Preparation/ Final

Report Revision

4 weeks March - April

Page 159

 Group 14 Final Report

9.2.1 Important Deadlines

Here are import deadlines that we are required to meet during Senior Design I and Senior

Design II shown in Table 23 and Table 24, respectively.

Table 44: Senior Design I Deadlines.

Document Deadline

Initial Divide & Conquer September 20th

Updated Divide & Conquer October 4th

60-page Draft Senior Design I November 1st

100-page Senior Design I November 15th

Final Senior Design I Report December 2nd

Table 45: Senior Design II Deadlines.

Document Deadline

Critical Design Review Presentation February 4th

Mid-Term Demo March 19th

Committee Form April 3rd

Final Presentation Video April 14th

Final Demo Video April 14th

Conference Paper April 14th

Final Senior Design II Report April 21st

9.3 Work Distribution

Here are the roles of each member of Group 14 shown in Table 25. Everyone in the group

had primary and secondary roles. Primary roles were in charge on researching on topics

pertaining their role and implementation. Secondary roles were in charge of helping the

primary role.

Table 46: Final Work Distribution.

 Member Embedded Machine

Translation

Graphics

Rendering

Integration

Gustavo

Camero

Secondary Secondary Secondary Primary

Luis Hurtado Secondary Primary Secondary

Michael Loyd Secondary Primary Secondary

Jared Spinks Primary Secondary

Page 160

 Group 14 Final Report

Appendix A: Copyright Permissions

We have been granted from SapphiArt Co., Ltd. for our usage of their Amane Kisora model

in our Unity-based program. This model has been used in this project under a fair-use

license. The link to the download for the Unity model is given below, and the link to the

developer’s website is http://www.sapphiart.co.jp/.

https://assetstore.unity.com/packages/3d/characters/amane-kisora-chan-free-ver-70581

We have also asked for permission from the Harvard NLP group and SYSTRAN for our

usage and manipulation of their open-source OpenNMT program. The OpenNMT

information website can be found at http://opennmt.net/, and the open-source files can be

found on their GitHub here: https://github.com/OpenNMT.

We have been granted permission from the Watson IBM group to use their Speech-to-Text

API. This permission has been granted in the form of a limited-use license. The description

of their speech-to-text service can be found in the link below:

https://www.ibm.com/cloud/watson-speech-to-text

http://www.sapphiart.co.jp/
https://assetstore.unity.com/packages/3d/characters/amane-kisora-chan-free-ver-70581
http://opennmt.net/
https://github.com/OpenNMT
https://www.ibm.com/cloud/watson-speech-to-text

Page 161

 Group 14 Final Report

Appendix B: NMT Training Corpora

English Training Corpus, 11/8/19

Page 162

 Group 14 Final Report

ASL-Gloss Training Corpus, 11/8/19

Page 163

 Group 14 Final Report

English Validation Corpus, 11/8/19

Page 164

 Group 14 Final Report

ASL-Gloss Training Corpus, 11/8/19

Page 165

 Group 14 Final Report

Appendix C: Acknowledgements

We would like to give credit to Jolanta Lapiak and her online ASL database Handspeak

(handspeak.com). She has taught us not only how the signs are done, but she has also

included sample sentences and their ASL-Gloss equivalents.

We would also like to give credit to Dr. William Vicars with his Lifeprint.com website and

the European Sign Language Center with their Spread the Sign

(https://www.spreadthesign.com/) ASL databases. Without their help, we would not have

been able to produce many of the ASL-gloss sentences necessary for our NMT corpora.

We would like to thank our advising professor, Dr. Chung-Yong Chan, and our senior

design coordinator, Dr. Samuel Richie, for their assistance and guidance throughout this

project.

https://www.spreadthesign.com/

Page 166

 Group 14 Final Report

Appendix D: Works Cited

[1] “6 Big Industries that can benefit from language translation services.” Pangeanic.

Boston, MA. Feb. 24, 2015. Accessed Sept. 18, 2019.

https://www.pangeanic.com/knowledge_center/6-big-industries-can-benefit-

language-translation-services/#

[2] Leila Miller. “‘I was panicked”: Deaf patients struggle to get interpreters in medical

emergencies.” STAT. Boston, MA. May 22, 2017. Accessed Sept. 18, 2019.

https://www.statnews.com/2017/05/22/deaf-patients-interpreters/

[3] U.S. Department of Justice. “Communicating with People Who Are Deaf or Hard of

Hearing in Hospital Settings.” Civil Rights Division: Disability Rights Section.

Washington, DC. August 11, 2005. Accessed Sept. 18, 2019.

https://www.ada.gov/hospcombr.htm

[8] “Compare Translate Features for Each Language - Google Translate,” Google. N.d.

[Online]. [Accessed Oct. 11, 2019].

https://translate.google.com/intl/en/about/languages/

[9] M. Schuster, M. Johnson, and N. Thorat, “Zero-Shot Translation with Google’s

Multilingual Neural Machine Translation System,” Google AI Blog, Nov. 22,

2016. [Online]. [Accessed Oct. 11, 2019].

https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html

[10] N. McGuire, “How Accurate is Google Translate in 2018?,” Glenview, IL: Argo

Translation, July 26, 2018. [Online]. [Accessed Oct. 11, 2019].

https://www.argotrans.com/blog/accurate-google-translate-2018/

[11] “Amazon Translate - Neural Machine Translation - AWS,” Amazon Web Service,

Inc, 2019. [Online]. [Accessed Oct. 11, 2019]. https://aws.amazon.com/translate/

[12] “Amazon Translate - Developer Guide,” Amazon Web Services, Inc, 2019.

[Online]. [Accessed Oct. 11, 2019].

https://docs.aws.amazon.com/translate/latest/dg/translate-dg.pdf

[13] A. Mlievski, “Amazon Tops Overall Quarterly Survey by One Hour Translation of

Neural Machine Translation Engines,” Washington, D.C: PR Newswire

Association LLC, Sept. 26, 2018. [Online]. [Accessed Oct. 18, 2019].

https://www.prnewswire.com/news-releases/amazon-tops-overall-quarterly-

survey-by-one-hour-translation-of-neural-machine-translation-engines-

300719593.html

[14] “Video Remote Interpreting (VRI),” Stratus Video, 2018. [Online]. [Accessed Oct.

18, 2019]. https://www.stratusvideo.com/stratus-video/

[15] Kwamikagami, “Brief Comparison of ASL Writing Systems,” Wikimedia

Commons: Feb. 17, 2014. [Online]. [Accessed Oct. 9,

2019].https://commons.wikimedia.org/wiki/File:Brief_Comparison_of_ASL_Wri

ting_Systems.jpg

[16] aslfont, “Symbol Font for ASL.” aslfont GitHub Repository. March 29, 2013.

[Online]. [Accessed Sept. 28, 2019.] https://aslfont.github.io/Symbol-Font-For-

ASL/ways-to-write.html

[17] Slevinski, “SignWriting-render,” Wikimedia Commons: Apr. 25, 2017. [Online].

[Accessed Oct. 9, 2019]. https://commons.wikimedia.org/wiki/File:SignWriting-

render.svg

https://www.pangeanic.com/knowledge_center/6-big-industries-can-benefit-language-translation-services/
https://www.pangeanic.com/knowledge_center/6-big-industries-can-benefit-language-translation-services/
https://www.statnews.com/2017/05/22/deaf-patients-interpreters/
https://www.ada.gov/hospcombr.htm
https://translate.google.com/intl/en/about/languages/
https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://www.argotrans.com/blog/accurate-google-translate-2018/
https://aws.amazon.com/translate/
https://docs.aws.amazon.com/translate/latest/dg/translate-dg.pdf
https://www.prnewswire.com/news-releases/amazon-tops-overall-quarterly-survey-by-one-hour-translation-of-neural-machine-translation-engines-300719593.html
https://www.prnewswire.com/news-releases/amazon-tops-overall-quarterly-survey-by-one-hour-translation-of-neural-machine-translation-engines-300719593.html
https://www.prnewswire.com/news-releases/amazon-tops-overall-quarterly-survey-by-one-hour-translation-of-neural-machine-translation-engines-300719593.html
https://www.stratusvideo.com/stratus-video/
https://commons.wikimedia.org/wiki/File:Brief_Comparison_of_ASL_Writing_Systems.jpg
https://commons.wikimedia.org/wiki/File:Brief_Comparison_of_ASL_Writing_Systems.jpg
https://commons.wikimedia.org/wiki/File:Brief_Comparison_of_ASL_Writing_Systems.jpg
https://aslfont.github.io/Symbol-Font-For-ASL/ways-to-write.html
https://aslfont.github.io/Symbol-Font-For-ASL/ways-to-write.html
https://commons.wikimedia.org/wiki/File:SignWriting-render.svg
https://commons.wikimedia.org/wiki/File:SignWriting-render.svg

Page 167

 Group 14 Final Report

[18] J.A. Hochgesang, “Introduction to Stokoe Notation,” Gallaudet University

Linguistics Dept. Fall 2007. [Online]. [Accessed Sept. 23, 2019].

https://lingdept.files.wordpress.com/2015/08/quickguidestokoenotation-pages.pdf

[19] W. Vicars. “Gloss.” American Sign Language University. [Online]. [Accessed Oct.

5, 2019.] https://lifeprint.com/asl101/topics/gloss.htm

[20] M. Gales and S. Young, “The Application of Hidden Markov Models in Speech

Recognition,” J. Foundations and Trends in Signal Processing, vol. 1, no. 3, Jan.

2008. pp. 195-304. [Online]. [Accessed Oct. 11, 2019].

https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf

[21] L.R. Rabiner and B.H. Juang, “Hidden Markov Models for Speech Recognition –

Strengths and Limitations,” in Speech, Recognition, and Understanding: Recent

Advances, Trends, and Applications, Berlin, Germany: Springer Heidelberg,

1992. pp. 3-29. [Online]. [Accessed Oct. 11, 2019].

https://link.springer.com/chapter/10.1007/978-3-642-76626-8_1

[22] R. Rivera, “Strengths and weaknesses of hidden Markov models,” UCSC

Bioinformatics, Univ. California Santa Cruz, Aug. 22, 1996. [Online]. [Accessed

Oct. 11, 2019]. https://compbio.soe.ucsc.edu/html_format_papers/tr-94-

24/node11.html

[23] C.B. Kare and V.S. Navale. “Speech recognition by Dynamic Time Warping,” IOSR

J. Electronics and Comm. Engineering, NCIEST, pp. 12-16. [Online]. [Accessed

Oct. 11, 2019]. http://www.iosrjournals.org/iosr-

jece/papers/NCIEST/Volume%202/3.%2012-16.pdf

[24] S. Xihao and Y. Miyanaga, “Dynamic time warping for speech recognition with

training part to reduce the computation,” in International Symposium on Signals,

Circuits and Systems, ISSCS 2013, Iasi, Romania, July 11-12, 2013. IEEE Xplore,

Dec. 2, 2018. [Online]. [Accessed Oct. 11,

2019]. https://ieeexplore.ieee.org/document/6651269

[25] A.B. Nassif et al., “Speech Recognition Using Deep Neural Networks: A

Systematic Review,” Access IEEE, vol. 7, pp. 26777-26787. IEEE Xplore, Feb. 1,

2019. [Online]. [Accessed Oct. 31, 2019].

https://ieeexplore.ieee.org/document/8632885/

[26] D. Wang, X. Wang, and S. Lv, “An Overview of End-to-End Automatic Speech

Recognition,” Symmetry, vol. 10. MDPI, August 7, 2019. [Online]. [Accessed

Oct. 31, 2019]. https://www.mdpi.com/2073-8994/11/8/1018

[27] “CMUSphinx Open Source Speech Recognition,” GitHub, 2019. [Online].

[Accessed Oct. 31, 2019]. https://cmusphinx.github.io/

[28] “Julius: Open-Source Large Vocabulary Continuous Speech Recognition Engine,”

GitHub, 2019. [Online]. [Accessed Oct. 31, 2019]. https://github.com/julius-

speech/julius

[29] D. Povey et al, “The Kaldi Speech Recognition Toolkit,” in IEEE 2011 Workshop

on Automatic Speech Recognition and Understanding, ASRU 2011, Big Island,

HI, December 11-15, 2011. [Online]. [Accessed Oct. 31, 2019].

https://publications.idiap.ch/downloads/papers/2012/Povey_ASRU2011_2011.pdf

[30] “DeepSpeech - TensorFlow implementation of Baidu’s DeepSpeech architecture,”

GitHub, Oct. 2019. [Online]. [Accessed Oct. 31, 2019].

https://github.com/mozilla/DeepSpeech

https://lingdept.files.wordpress.com/2015/08/quickguidestokoenotation-pages.pdf
https://lifeprint.com/asl101/topics/gloss.htm
https://mi.eng.cam.ac.uk/~mjfg/mjfg_NOW.pdf
https://link.springer.com/chapter/10.1007/978-3-642-76626-8_1
https://compbio.soe.ucsc.edu/html_format_papers/tr-94-24/node11.html
https://compbio.soe.ucsc.edu/html_format_papers/tr-94-24/node11.html
http://www.iosrjournals.org/iosr-jece/papers/NCIEST/Volume%202/3.%2012-16.pdf
http://www.iosrjournals.org/iosr-jece/papers/NCIEST/Volume%202/3.%2012-16.pdf
https://ieeexplore.ieee.org/document/6651269
https://ieeexplore.ieee.org/document/8632885/
https://www.mdpi.com/2073-8994/11/8/1018
https://cmusphinx.github.io/
https://github.com/julius-speech/julius
https://github.com/julius-speech/julius
https://publications.idiap.ch/downloads/papers/2012/Povey_ASRU2011_2011.pdf
https://github.com/mozilla/DeepSpeech

Page 168

 Group 14 Final Report

[31] “Wav2Letter++: A Fast Open-source Speech Recognition System,” in 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP

2019, Brighton, United Kingdom, May 12-17 2019. IEEE Xplore, April 17, 2019.

[Online]. [Accessed Oct. 31, 2019]. https://ieeexplore.ieee.org/document/8683535

[32] “Wav2letter++, the fastest open-source speech system,” Facebook Engineering,

December 21, 2018. [Online]. [Accessed Oct. 31, 2019].

[33] “DeepSpeech2 - OpenSeq2Seq 0.2 Documentation,” Nvidia GitHub, 2018.

[Online]. [Accessed Oct. 31, 2019].

https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html

[34] “HTK Speech Recognition Toolkit,” HTK, June 2016. [Online]. [Accessed Oct. 31,

2019]. http://htk.eng.cam.ac.uk

[35] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske, S. Wiesler,

R. Schlüter, and H. Ney: "RASR - The RWTH Aachen University Open Source

Speech Recognition Toolkit,” in IEEE Automatic Speech Recognition and

Understanding Workshop, ASRU 2011, Big Island, Hawaii, December 11-15,

2011. [Online]. [Accessed Oct. 31, 2019]. https://www-i6.informatik.rwth-

aachen.de/rwth-asr/

[36] “Dialogflow,” Google, 2019. [Online]. [Accessed Oct. 31, 2019].

https://dialogflow.com/

[37] “Dragon Speech Recognition - Get More Done By Voice | Nuance,” Nuance

Communications Inc, 2019. [Online]. [Accessed Oct. 31, 2019].

https://www.nuance.com/dragon.html

[38] “Cloud Speech-to-Text,” Google Cloud, 2019. [Online]. [Accessed Oct. 31, 2019].

https://cloud.google.com/speech-to-text/

[39] “What is speech-to-text?,” Microsoft Azure, July 4, 2019. [Online]. [Accessed Oct.

31, 2019]. https://docs.microsoft.com/en-us/azure/cognitive-services/speech-

service/speech-to-text

[40] “Amazon Transcribe - Automatic Speech Recognition,” Amazon Web Services,

2019. [Online]. [Accessed Oct. 31, 2019]. https://aws.amazon.com/transcribe/

https://engineering.fb.com/ai-research/wav2letter/

[41] S. Sreelekha, “Statistical Vs Rule Based Machine Translation: A Case Study on

Indian Language Perspective,” Dept. Comp. Sci. & Eng., Indian Institute of

Technology, Bombay, India, Aug. 12, 2017. [Online]. [Accessed Oct. 11,

2019]. https://arxiv.org/abs/1708.04559

[42] “What is Machine Translation? Rule Based Machine Translation vs. Statistical

Machine Translation,” SYSTRAN, 2016. [Online]. [Accessed Oct. 11, 2019].

http://www.systransoft.com/systran/translation-technology/what-is-machine-

translation/

[43] “What is Rules Based Machine Translation (RBMT)?,” Omniscien Technologies,

Asia Online Pte Ltd, n.d. [Online]. [Accessed Oct. 11, 2019].

https://omniscien.com/rules-based-machine-translation/

[44] C. Dove, O. Loskutova, and R. de la Fuente, “What’s Your Pick: RbMT, SMT, or

Hybrid?,” in Proceedings of the 11th Conference of the Association for Machine

Translation in the Americas, AMTA 2012, San Diego, CA, Oct. 28-Nov. 1, 2012.

Machine Translation Archive, Nov. 7, 2012. [Online]. [Accessed Oct. 11, 2019].

http://www.mt-archive.info/AMTA-2012-Dove.pdf

https://ieeexplore.ieee.org/document/8683535
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html
http://htk.eng.cam.ac.uk/
https://www-i6.informatik.rwth-aachen.de/rwth-asr/
https://www-i6.informatik.rwth-aachen.de/rwth-asr/
https://dialogflow.com/
https://www.nuance.com/dragon.html
https://cloud.google.com/speech-to-text/
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text
https://aws.amazon.com/transcribe/
https://engineering.fb.com/ai-research/wav2letter/
https://arxiv.org/abs/1708.04559
http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/
http://www.systransoft.com/systran/translation-technology/what-is-machine-translation/
https://omniscien.com/rules-based-machine-translation/
http://www.mt-archive.info/AMTA-2012-Dove.pdf

Page 169

 Group 14 Final Report

[45] “What is Statistical Machine Translation (SMT),” Omniscien Technologies, Asia

Online Pte Ltd, n.d. [Online]. [Accessed Oct. 11,

2019]. https://omniscien.com/?faqs=what-is-statistical-machine-translation-smt

[46] <removed>

[47] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT: Open-Source

Toolkit for Neural Machine Translation.” Proc. ACL, 2017. [Online]. [Accessed

Sept. 22, 2019.] https://arxiv.org/pdf/1701.02810.pdf

[48] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” in 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. arXiv, Sept. 1,

2014. [Online]. [Accessed Sept. 30, 2019]. https://arxiv.org/abs/1409.0473

[49] “Neural Machine Translation,” San Francisco, CA: Deep AI, Inc, May 17, 2019.

[Online]. [Accessed Oct. 11, 2019]. https://deepai.org/machine-learning-glossary-

and-terms/neural-machine-translation

[50] M.L. Forcada et al., “Apertium: a free/open-source platform for rule-based machine

translation,” J. Machine Translation, vol. 25, no. 2, June 2011. pp. 127-144.

Dordrecht, Netherlands: Springer Netherlands. [Online]. [Accessed Oct. 11,

2019].

https://www.jstor.org/stable/41487458?seq=1#metadata_info_tab_contents

[51] P. Koehn et al., “Moses: Open Source Toolkit for Statistical Machine Translation,”

in Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,

ACL 2007, Prague, Czech Republic, June 25-27, 2007. ACL Anthology, 2007.

pp. 177-180. [Online]. [Accessed Oct. 11,

2019]. https://www.aclweb.org/anthology/P07-2045/

[52] D. Takamori, “Apache Joshua Home,” Atlassian: Confluence, Mar. 22, 2019.

[Online]. [Accessed Oct. 11, 2019].

https://cwiki.apache.org/confluence/display/JOSHUA/

[53] J. González and F. Casacuberta, “GREAT: open source software for statistical

machine translation,” J. Machine Translation, vol. 25, no. 2, June 2011.

Dordrecht, Netherlands: Springer Netherlands, Aug. 28, 2011.

https://link.springer.com/article/10.1007/s10590-011-9097-6

[54] C.H. Lee, “Speech Recognition and Production by Machines,” International

Encyclopedia of the Social & Behavioral Sciences, ed. 2. pp. 259-263. [Online].

Elsevier: Science Direct, 2015. [Online]. [Accessed Oct. 31, 2019].

https://www.sciencedirect.com/science/article/pii/B9780080970868520236

[55] P. Birkholz, “About Articulatory Speech Synthesis,” VocalTractLab, 2017.

[Online]. [Accessed Oct. 31, 2019].

http://www.vocaltractlab.de/index.php?page=background-articulatory-synthesis

[56] J.O. Smith III, “Formant Synthesis Models,” Physical Audio Signal Processing.

Stanford Univ.: Center for Computer Research in Music and Acoustics, July 30,

2019. [Online]. [Accessed Oct. 31, 2019].

https://ccrma.stanford.edu/~jos/pasp/Formant_Synthesis_Models.html

[57] J. Yamagishi, “An Introduction to HMM-Based Speech Synthesis,” Univ. of

Edinburgh,

https://omniscien.com/?faqs=what-is-statistical-machine-translation-smt
https://arxiv.org/pdf/1701.02810.pdf
https://arxiv.org/abs/1409.0473
https://deepai.org/machine-learning-glossary-and-terms/neural-machine-translation
https://deepai.org/machine-learning-glossary-and-terms/neural-machine-translation
https://www.jstor.org/stable/41487458?seq=1#metadata_info_tab_contents
https://www.aclweb.org/anthology/P07-2045/
https://cwiki.apache.org/confluence/display/JOSHUA/
https://link.springer.com/article/10.1007/s10590-011-9097-6
https://www.sciencedirect.com/science/article/pii/B9780080970868520236
http://www.vocaltractlab.de/index.php?page=background-articulatory-synthesis
https://ccrma.stanford.edu/~jos/pasp/Formant_Synthesis_Models.html

Page 170

 Group 14 Final Report

Oct. 2006. [Online]. [Accessed Oct. 31, 2019].

https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/TrajectoryModelling/HTS-

Introduction.pdf

[58] R.E. Remez, “Sine-wave speech,” Scholarpedia, 2008. [Online]. [Accessed Oct. 31,

2019].

http://www.scholarpedia.org/article/Sine-wave_speech

[59] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.

Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative Model

for Raw Audio,” Cornell University: arXiv, September 12, 2016. [Online].

[Accessed Oct. 31, 2019]. https://arxiv.org/abs/1609.03499

[60] U. Saxena, “Speech Synthesis Techniques using Deep Neural Networks,” Medium,

October 21, 2017. [Online]. [Accessed Oct. 31, 2019].

https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-

networks-38699e943861

[61] I. Steiner et al. “Mary Text-to-Speech,” Saarland Univ.: Language Technology Lab

and Institute of Phonetics, 2018. [Online]. [Accessed Oct. 31, 2019].

http://mary.dfki.de/documentation/overview.html

[62] “eSpeak: Speech Synthesizer,” SourceForge, 2017. [Online]. [Accessed Oct. 31,

2019]. http://espeak.sourceforge.net

[63] P.A. Taylor, A. Black, and R. Caley, “The architecture of the festival speech

synthesis system,” in the Third ESCA Workshop in Speech Synthesis, SSW3 1998,

Blue Mountains, Australia, November 26-29, 1998. pp. 147-151. [Online].

[Accessed Oct. 31, 2019]. http://www.cstr.ed.ac.uk/projects/festival/

[64] “Cloud Text-to-Speech,” Google Cloud, 2019. [Online]. [Accessed Oct. 31, 2019].

https://cloud.google.com/text-to-speech/

[65] “Text to Speech API,” Microsoft Azure, 2019. [Online]. [Accessed Oct. 31, 2019].

https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/

[66] “Amazon Polly - Turn text into lifelike speech using deep learning,” Amazon Web

Services, 2019. [Online]. [Accessed Oct. 31, 2019].

https://aws.amazon.com/polly/

[67] “Speech to Text Conversion,” Vocapia Research, 2019. [Online]. [Accessed Nov.

15, 2019]. https://www.vocapia.com/speech-to-text.html

[68] Z. Feng and H. Nian, “NiuTrans: A Statistical Machine Translation System,”

NiuTrans, April 16, 2014. [Online]. [Accessed Nov. 15, 2019].

http://www.niutrans.com/niutrans/NiuTrans.html

[69] “Watson Language Translator,” IBM, 2019. [Online]. [Accessed Nov. 15, 2019].

https://www.ibm.com/watson/services/language-translator/

[70] B. Scott and A. Barreiro, “OpenLogos MT and the SAL Representation

Language,” Repositorio Institucional de la Universidad de Alicante, Nov. 2009.

[Online]. [Accessed Nov. 15, 2019] http://hdl.handle.net/10045/12023

[71] “Translation API Documentation,” Google Cloud, 2019. [Online]. [Accessed Nov.

15, 2019]. https://cloud.google.com/translate/docs/

[72] “Microsoft Translator Text API,” Microsoft, 2019. [Online]. [Accessed Nov. 15,

2019]. https://www.microsoft.com/en-us/translator/business/translator-api/

[73] “Machine Translation,” Yandex LLC, 2019. [Online]. [Accessed Nov. 15, 2019].

https://yandex.com/company/technologies/translation/

https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/TrajectoryModelling/HTS-Introduction.pdf
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/TrajectoryModelling/HTS-Introduction.pdf
http://www.scholarpedia.org/article/Sine-wave_speech
https://arxiv.org/abs/1609.03499
https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861
https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861
http://mary.dfki.de/documentation/overview.html
http://espeak.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival/
https://cloud.google.com/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://aws.amazon.com/polly/
https://www.vocapia.com/speech-to-text.html
http://www.niutrans.com/niutrans/NiuTrans.html
https://www.ibm.com/watson/services/language-translator/
http://hdl.handle.net/10045/12023
https://cloud.google.com/translate/docs/
https://www.microsoft.com/en-us/translator/business/translator-api/
https://yandex.com/company/technologies/translation/

Page 171

 Group 14 Final Report

[74] “Welcome to SYSTRAN.io,” SYSTRAN, 2015. [Online]. [Accessed Nov. 15,

2019]. https://platform.systran.net/index

[75] “GramTrans,” GrammarSoft ApS, 2019. https://gramtrans.com

[76] “PROMT Neural Translation Server 19 is a multi - functional translation system,”

PROMT LLC, 2019. [Online]. [Accessed Nov. 15, 2019].

https://www.promt.com/translation_software/corporate/promt-translation-server-

neural/

[77] “Babylon Translation Software and Dictionary Tool,” Babylon Software Ltd.

[Online]. [Accessed Nov. 15, 2019]. https://www.babylon-

software.com/translation_software

[78] “IdiomaX Review,” business.com, May 20, 2019. [Online]. [Accessed Nov. 15,

2019]. https://www.business.com/reviews/idiomax/

[79] F. Shaikh, “Why are GPUs necessary for training Deep Learning models?,”

Analytics Vidhya, May 28, 2017. [Online]. [Accessed Oct. 10, 2019].

https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-

learning/

[80] F. Fallahlalehzari, “FPGA vs GPU for Machine Learning Applications: Which one

is better?,” Aldec Inc. [Online]. [Accessed Sept. 30, 2019].

https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-

learning-applications-which-one-is-better

[81] S. Deoras, “GPU vs. FPGA: The Battle For AI Hardware Rages On,” Analytics

India Magazine, Dec. 31, 2018. [Online]. [Accessed Sept. 30, 2019].

https://analyticsindiamag.com/gpu-vs-fpga-the-battle-for-ai-hardware-rages-

on/amp/

[82] D. Steinkraus, I. Buck, and P.Y. Simard, “Using GPUs for Machine Learning

Algorithms,” in Proceedings of the 2005 Eighth International Conference on

Document Analysis and Recognition, ICDAR 2005, Seoul, South Korea, Aug. 31-

Sept. 1. pp. 1115-1120. IEEE Xplore, Jan. 16, 2006. [Online]. [Accessed Oct. 10,

2019]. https://ieeexplore.ieee.org/document/1575717

[83] “Understanding How a Voltage Regulator Works,” Analog Devices, 2019.

[Online]. [Accessed Dec. 4, 2019]. https://www.analog.com/en/technical-

articles/how-voltage-regulator-works.html

[84] “Linear and Switching Voltage Regulators – An Introduction,” Predictable

Designs, 2019. [Online]. [Accessed Dec. 3, 2019].

https://predictabledesigns.com/linear-and-switching-voltage-regulators-

introduction/

[85] EEE4309 Lab Manual.

[86] “What is Unreal Engine 4,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/

[87] “Unreal Engine | Features,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/features

[88] “Unreal Engine | EULA,” Epic Games, Inc, 2019. [Online]. [Accessed Oct. 28,

2019]. https://www.unrealengine.com/en-US/eula

[89] D. Takahashi, “Unity Technologies CTO declares the company isn’t up for sale,”

VentureBeat, Oct 16, 2014. [Online]. [Accessed Oct. 29, 2019].

https://platform.systran.net/index
https://gramtrans.com/
https://www.promt.com/translation_software/corporate/promt-translation-server-neural/
https://www.promt.com/translation_software/corporate/promt-translation-server-neural/
https://www.babylon-software.com/translation_software
https://www.babylon-software.com/translation_software
https://www.business.com/reviews/idiomax/
https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-learning-applications-which-one-is-better
https://www.aldec.com/en/company/blog/167--fpgas-vs-gpus-for-machine-learning-applications-which-one-is-better
https://analyticsindiamag.com/gpu-vs-fpga-the-battle-for-ai-hardware-rages-on/amp/
https://analyticsindiamag.com/gpu-vs-fpga-the-battle-for-ai-hardware-rages-on/amp/
https://ieeexplore.ieee.org/document/1575717
https://www.analog.com/en/technical-articles/how-voltage-regulator-works.html
https://www.analog.com/en/technical-articles/how-voltage-regulator-works.html
https://predictabledesigns.com/linear-and-switching-voltage-regulators-introduction/
https://predictabledesigns.com/linear-and-switching-voltage-regulators-introduction/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/features
https://www.unrealengine.com/en-US/eula

Page 172

 Group 14 Final Report

https://venturebeat.com/2014/10/16/unity-cto-declares-the-company-isnt-up-for-

sale/

[90] “Unity 2019: Performance by default, high-fidelity real-time graphics, and artist

tools,” Unity Technologies, 2019. [Online]. [Accessed Oct. 28, 2019].

https://unity3d.com/unity?_ga=2.189971691.1333607966.1572374500-

54223329.1572153467#editor

[91] “Unity Software Additional Terms - Unity,” Unity Technologies, 2019. [Online].

[Accessed Oct. 29, 2019]. https://unity3d.com/legal/terms-of-service/software

[92] “FAQ New Subscription - Unity,” Unity Technologies, 2019. [Online]. [Accessed

Oct. 28, 2019]. https://unity3d.com/unity/faq

[93] Daniru17, “HiguchiM,” MikuMikuDance Wiki, June 23, 2011. [Online]. [Accessed

Oct. 28, 2019]. https://mikumikudance.fandom.com/wiki/HiguchiM

[94] “Learn MikuMikuDance - The MMD Instructions you always wanted!,”

LearnMMD.com. [Online]. [Accessed Oct. 29, 2019]. https://learnmmd.com/

[95] “About - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].

https://www.blender.org/about/

[96] “Requirements - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].

https://www.blender.org/download/requirements/

[97] “License - blender.org,” Blender, 2019. [Online]. [Accessed Oct. 31, 2019].

https://www.blender.org/about/license

[98] “Godot Engine - Free and open source 2D and 3D game engine,” Godot, 2019.

[Online]. [Accessed Nov. 14, 2019]. https://godotengine.org/

[99] “What specs are good for a computer that you are planning to use godot with?,”

Godot Engine Q&A, Feb. 4, 2018. [Online]. [Accessed Nov. 14, 2019].

https://godotengine.org/qa/23206/what-specs-are-good-for-computer-that-

planning-use-godot-with

[100] Adafruit Industries, “Mini USB Microphone” 3367 datasheet, Feb. 2017. [Online].

[Accessed Nov. 13, 2019].

https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/3367_Web.pdf

[101] Adafruit Industries, “I2S Output Digital Microphone,” SPH0645LM4H-B

datasheet, 2015. [Online]. [Accessed Nov. 13, 2019]. https://cdn-

shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF

[102] Knowles, “Top Port SiSonic Microphone,” SPW2430HR5H-B datasheet, Feb.

2014. [Online]. [Accessed Nov. 14, 2019].

https://www.knowles.com/docs/default-source/model-downloads/spw2430hr5h-

b.pdf

[103] Analog Devices, “Omnidirectional Microphone with Bottom Port and Analog

Output,” ADMP401 datasheet, 2012. [Online]. [Accessed Nov. 14, 2019].

https://www.analog.com/media/en/technical-documentation/obsolete-data-

sheets/ADMP401.pdf

[104] I.R. Titze, “Principles of Voice Production,” Prentice Hall, Mar. 1994.

[105] “Buy the Latest Jetson Products | NVIDIA Developer,” NVIDIA Corporation,

2019. [Online]. [Accessed Nov. 8, 2019]. https://www.nvidia.com/en-

us/autonomous-machines/jetson-store/

[106] “10.1" Display & Audio 1280x800 IPS - HDMI/VGA/NTSC/PAL,” Adafruit,

2019. [Online]. [Accessed Oct. 31, 2019]. https://www.adafruit.com/product/1694

https://venturebeat.com/2014/10/16/unity-cto-declares-the-company-isnt-up-for-sale/
https://venturebeat.com/2014/10/16/unity-cto-declares-the-company-isnt-up-for-sale/
https://unity3d.com/unity?_ga=2.189971691.1333607966.1572374500-54223329.157215
https://unity3d.com/unity?_ga=2.189971691.1333607966.1572374500-54223329.157215
https://unity3d.com/unity?_ga=2.189971691.1333607966.1572374500-54223329.1572153467#editor
https://unity3d.com/legal/terms-of-service/software
https://unity3d.com/unity/faq
https://mikumikudance.fandom.com/wiki/HiguchiM
https://learnmmd.com/
https://www.blender.org/about/
https://www.blender.org/download/requirements/
https://www.blender.org/about/license/
https://godotengine.org/
https://godotengine.org/qa/23206/what-specs-are-good-for-computer-that-planning-use-godot-with
https://godotengine.org/qa/23206/what-specs-are-good-for-computer-that-planning-use-godot-with
https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/3367_Web.pdf
https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
https://www.knowles.com/docs/default-source/model-downloads/spw2430hr5h-b.pdf
https://www.knowles.com/docs/default-source/model-downloads/spw2430hr5h-b.pdf
https://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP401.pdf
https://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP401.pdf
https://www.nvidia.com/en-us/autonomous-machines/jetson-store/
https://www.nvidia.com/en-us/autonomous-machines/jetson-store/
https://www.adafruit.com/product/1694

Page 173

 Group 14 Final Report

[107] “Sceptre 20” 75Hz LED Monitor HDMI VGA Build-in Speakers, Brushed Black

2019 (E205-16003S),” Amazon.com, Jan. 2019. [Online]. [Accessed Oct. 31,

2019]. https://www.amazon.com/Sceptre-Monitor-Speakers-Brushed-E205W-

16003S/dp/B07MLGGHTP/

[108] “UPERFECT 12.3-inch Touch Display Portable Monitor 10 Point Capacitive

Touchscreen 1600×1200 Resolution PC Display 4:3 60HZ Speakers VESA for

Security Camera Laptop Phone Mac Raspberry Pi PS4 Nintendo,” Amazon.com,

Jan. 2019. [Online]. [Accessed Oct. 31, 2019].

https://www.amazon.com/UPERFECT-12-3-inch-

Touchscreen1600%C3%971200-Resolution/dp/B07N4LB7FT

[109] “Simple RF T4 Receiver - 315MHz Toggle Type,” Adafruit, 2019. [Online].

[Accessed Nov. 14, 2019]. https://www.adafruit.com/product/1097

[110] “Keyfob 2-button RF Remote Control - 315MHz,” Adafruit, 2019. [Online].

[Accessed Nov. 14, 2019]. https://www.adafruit.com/product/1391

[111] “Intel Dual Band Wireless-AC 8265 Product Brief,” Intel Corporation, 2016.

[Online]. [Accessed Dec. 4, 2019].

https://www.intel.com/content/dam/www/public/us/en/documents/product-

briefs/dual-band-wireless-ac-8265-brief.pdf

[112] K. Shaw, “The OSI model explained: How to understand (and remember) the 7

layer network model,” Network World, Oct. 22, 2018. [Online]. [Accessed Nov.

1, 2019]. https://www.networkworld.com/article/3239677/the-osi-model-

explained-how-to-understand-and-remember-the-7-layer-network-model.html

[113] G. Phillips, “The Most Common Wi-Fi Standards and Types Explained,”

MakeUseOf, Mar. 13, 2019. [Online]. [Accessed Nov. 1, 2019].

https://www.makeuseof.com/tag/understanding-common-wifi-standards-

technology-explained/

[114] J.D. Allen, Ed., The Unicode Standard: The Unicode Consortium. Boston, MA:

Pearson Education Inc, 2007.

[115] “CUDA C Programming Guide,” NVIDIA, Oct. 2012. [Online]. [Accessed Nov.

15, 2019]. https://www3.nd.edu/~zxu2/acms60212-

40212/CUDA_C_Programming_Guide.pdf

[116] N. Botros, “HDL With Digital Design: VHDL and Verilog,” Dulles, VA: Mercury

Learning and Information, 2015.

[117] IEEE Standard for Verilog Hardware Description Language, IEEE Standard 1364,

2005.

[118] System Verilog for Quality of Results (QoR), IEEE Standard 1800, 2008.

[119] IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language, IEEE Standard 1800, 2017.

[120] K. Papineni, S. Roukos, T. Ward, and W.J. Zhu, “BLEU: a Method for Automatic

Evaluation of Machine Translation,” in Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics, ACL 2002, Philadelphia, PA,

July 2002. pp. 311-318. ACL Anthology. [Online]. [Accessed Oct. 18, 2019].

https://www.aclweb.org/anthology/P02-1040/

[121] “R/pred.score.R,” predictionnet, May 6, 2019. [Online]. [Accessed Oct. 18, 2019].

https://rdrr.io/bioc/predictionet/src/R/pred.score.R

[122] V. Nguyen, G. Klein, and SeisQ, “Metrics (Bleu, ppl, gold ppl, pred ….),”

https://www.amazon.com/Sceptre-Monitor-Speakers-Brushed-E205W-16003S/dp/B07M
https://www.amazon.com/Sceptre-Monitor-Speakers-Brushed-E205W-16003S/dp/B07M
https://www.amazon.com/Sceptre-Monitor-Speakers-Brushed-E205W-16003S/dp/B07MLGGHTP/
https://www.amazon.com/UPERFECT-12-3-inch-Touchscreen1600%C3%971200-Resolution/dp/B07N4LB7FT
https://www.amazon.com/UPERFECT-12-3-inch-Touchscreen1600%C3%971200-Resolution/dp/B07N4LB7FT
https://www.adafruit.com/product/1097
https://www.adafruit.com/product/1391
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/dual-band-wireless-ac-8265-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/dual-band-wireless-ac-8265-brief.pdf
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-how-to-understand-and-remember-the-7-layer-network-model.html
https://www.makeuseof.com/tag/understanding-common-wifi-standards-technology-explained/
https://www.makeuseof.com/tag/understanding-common-wifi-standards-technology-explained/
https://www3.nd.edu/~zxu2/acms60212-40212/CUDA_C_Programming_Guide.pdf
https://www3.nd.edu/~zxu2/acms60212-40212/CUDA_C_Programming_Guide.pdf
https://www.aclweb.org/anthology/P02-1040/
https://rdrr.io/bioc/predictionet/src/R/pred.score.R

Page 174

 Group 14 Final Report

OpenNMT Forum, March 2017. [Online]. [Accessed Oct. 18, 2019].

http://forum.opennmt.net/t/metrics-bleu-ppl-gold-ppl-pred/249

[123] AntoViral, “Predictive R-squared according to Tom Hopper,” RPubs, Aug. 16,

2015. [Online]. [Accessed Oct. 18, 2019]. https://rpubs.com/RatherBit/102428

[124] M. Zambrano-Bigiarini, “nrmse function,” RDocumentation, Aug. 8, 2017.

[Online]. [Accessed Oct. 18, 2019].

https://www.rdocumentation.org/packages/hydroGOF/versions/0.3-

10/topics/nrmse

[125] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced

data using Matthews Correlation Coefficient metric,” San Francisco, CA: PLOS

ONE, June 2, 2017. [Online]. [Accessed Oct. 19, 2019].

https://doi.org/10.1371/journal.pone.0177678

[126] C.Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in

Proceedings of the ACL-04 Workshop, W04-10 2004, Barcelona, Spain, July 25-

26, 2004. pp. 74-81. ACL Anthology, June 15, 2004. [Online]. [Accessed Oct. 18,

2019]. https://www.aclweb.org/anthology/W04-1013/

[127] “Summary of the HIPAA Security Rule,” Washington, D.C.: U.S. Dept. of Health

and Human Services, Office for Civil Rights, July 26, 2013. [Online]. [Accessed

Oct. 18, 2019]. https://www.hhs.gov/hipaa/for-professionals/security/laws-

regulations/index.html

[128] “Summary of the HIPAA Privacy Rule,” Washington, D.C.: U.S. Dept. of Health

and Human Services, Office for Civil Rights, July 26, 2013. [Online]. [Accessed

Oct. 18, 2019]. https://www.hhs.gov/hipaa/for-professionals/privacy/laws-

regulations/index.html

[129] I2C-Bus Specification and User Manual, NXP Semiconductors, standard

UM10204, 1986. Rev. 06, Apr. 4, 2014.

[130] I2S-Bus Specification, NXP Semiconductors, 1986. Revised June 5, 1996.

[131] Universal Serial Bus Specification, Compaq, Intel, Microsoft, NEC. Rev. 1.1, Sept.

23, 1998.

[132] Universal Serial Bus Specification, Compaq, Hewlett-Packard, Intel, Lucent,

Microsoft, NEC, Philips. Rev. 2.0, April 27, 2000.

[133] Universal Serial Bus 3.0 Specification, Hewlett-Packard Company, Intel

Corporation, Microsoft Corporation, NEC Corporation, ST-NXP Wireless, Texas

Instruments. Rev. 1.0, Nov. 12, 2008.

[134] Universal Serial Bus 3.1 Specification, Hewlett-Packard Company, Intel

Corporation, Microsoft Corporation, Renesas Corporation, ST-Ericsson, Texas

Instruments. Rev. 1.0, July 26, 2013.

[135] Universal Serial Bus 4 (USB4™) Specification, Apple Inc., Hewlett-Packard Inc.,

Intel Corporation, Microsoft Corporation, Renesas Corporation,

STMicroelectronics, Texas Instruments. Rev. 1.0, August 2019.

[136] T. Fisher, “USB: Everything You Need to Know,” Lifewire, Nov. 13, 2019.

[Online]. [Accessed Nov. 15, 2019]. https://www.lifewire.com/universal-serial-

bus-usb-2626039

[137] T. Mayor, “Ethics and automation: What to do when workers are displaced,” MIT

http://forum.opennmt.net/t/metrics-bleu-ppl-gold-ppl-pred/249
https://rpubs.com/RatherBit/102428
https://www.rdocumentation.org/packages/hydroGOF/versions/0.3-10/topics/nrmse
https://www.rdocumentation.org/packages/hydroGOF/versions/0.3-10/topics/nrmse
https://doi.org/10.1371/journal.pone.0177678
https://www.aclweb.org/anthology/W04-1013/
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.lifewire.com/universal-serial-bus-usb-2626039
https://www.lifewire.com/universal-serial-bus-usb-2626039

Page 175

 Group 14 Final Report

Management, Sloan School, July 8, 2019. [Online]. [Accessed Nov. 14, 2019].

https://mitsloan.mit.edu/ideas-made-to-matter/ethics-and-automation-what-to-do-

when-workers-are-displaced

[138] P. Khargonekar and M. Sampath, “Socially Responsible Automation: A

Framework for Shaping the Future,” EmTech Next, June 12, 2019. [Online

Video]. [Accessed Nov. 14, 2019].

https://events.technologyreview.com/video/watch/pramod-khargonekar-meera-

sampath-socially-responsible-automation/

[139] Rien, Calvin, “SavWav.cs: Unity3D script to save an AudioClip as a .wav file,”

GitHub Gist, 7 April 2012. [Online]. [Accessed 4 April 2020].

[140] Brownlee, Jason. “A Gentle Introduction to Calculating the BLEU Score for Text

in Python.” Machine Learning Mastery, 18 Dec. 2019,

machinelearningmastery.com/calculate-bleu-score-for-text-python/

[141] Papineni, Kishore, et al. “Bleu.” Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics - ACL '02, 2001,

doi:10.3115/1073083.1073135.

[142] Chen, Boxing, and Colin Cherry. “A Systematic Comparison of Smoothing

Techniques for Sentence-Level BLEU.” Proceedings of the Ninth Workshop on

Statistical Machine Translation, 2014, doi:10.3115/v1/w14-3346.

https://mitsloan.mit.edu/ideas-made-to-matter/ethics-and-automation-what-to-do-when-workers-are-displaced
https://mitsloan.mit.edu/ideas-made-to-matter/ethics-and-automation-what-to-do-when-workers-are-displaced
https://events.technologyreview.com/video/watch/pramod-khargonekar-meera-sampath-socially-responsible-automation/
https://events.technologyreview.com/video/watch/pramod-khargonekar-meera-sampath-socially-responsible-automation/

	1. Executive Summary 
	2. Project Description 
	2.1 Project Background 
	2.2 Motivation 
	2.2.2 GPU Based ASLBoT
	2.2.3 GPU-FPGA Based ASLBoT
	2.2.4 SBC-MCU Based ASLBoT

	2.3 Goals and Objectives
	2.4 Requirement Specifications
	2.5 Marketing Requirements.

	3. Research Related to the Project
	3.1. Existing Projects and Products 
	3.1.1. Google Translate 
	3.1.2. Amazon Translate 
	3.1.3. Stratus Video 

	3.2 Relevant Technologies
	3.2.1. American Sign Language Typography
	3.2.1.1. SignWriting
	3.2.1.2 Si5s
	3.2.1.3 SignFont
	3.2.1.4 Stokoe Notation
	3.2.1.5 Gloss Notation
	3.2.1.6 Extended Linear Stokoe (ELS) Notation

	3.2.2 Machine Learning
	3.2.2.1. Speech to Text
	3.2.2.1.1. Hidden Markov Models (HMMs)
	3.2.2.1.2. Dynamic Time Warping (DTW)
	3.2.2.1.3. Deep Neural Networks (DNNs)
	3.2.2.1.4 End-to-End Automatic
	3.2.2.1.5 Open-Source Speech-to-Text Algorithms
	3.2.2.1.6 Proprietary Speech-to-Text Algorithms

	3.2.2.2 Text to Text Translation
	3.2.2.2.1. Rule-Based Machine Translation (RBMT)
	3.2.2.2.2. Statistical Machine Translation
	3.2.2.2.3. Neural Machine Translation (NMT)
	3.2.2.3.1 Open-Source Text-to-Text Translation Algorithms
	3.2.2.3.2 Proprietary Algorithms

	3.2.2.3 Text-to-Speech
	3.2.2.3.1 Open Source Text-to-Speech Algorithms
	3.2.2.3.2 Proprietary Text-to-Speech Algorithms

	3.2.3 Processor Technologies
	3.2.3.1. CPU
	3.2.3.2. MCU
	3.2.3.3. FPGA
	3.2.3.4. GPU
	3.2.3.5 GPU versus FPGA

	3.2.4 3D Graphics API Technologies
	3.2.4.1 OpenGL
	3.2.4.2 Direct3D 12
	3.2.4.3 Metal
	3.2.4.4 Vulkan

	3.2.5 Internet Connectivity
	3.2.6 Voltage Regulation
	3.2.6.1 Linear Voltage Regulator
	3.2.6.2 Switching Voltage Regulator
	3.2.6.3 Considerations for Voltage Regulators

	3.2.7. 3D Rendering Software Platforms
	3.2.7.1. Unreal Engine 4
	3.2.7.2. Unity
	3.2.7.3. MikuMikuDance
	3.2.7.3. Blender
	3.2.7.4 Godot

	3.3. Initial Components and Part Selections
	3.3.1 Sound System Selection
	3.3.1.1 Amplifier
	3.3.1.1.1 Max98306 Amplifier
	3.3.1.1.2 Max98357A Amplifier
	3.3.1.1.3 Max9744 Amplifier

	3.3.1.2 Speaker
	3.3.1.2.1 Stereo-Enclosed Speaker Set
	3.3.1.2.2 3" Diameter Speaker
	3.3.1.2.3 XS-GTF1027 Speaker

	3.3.1.3 Microphone

	3.3.2. FPGA Selection
	3.3.2.1 Altera Cyclone IV – EP4CE22E22xxx
	3.3.2.2 Spartan 3E - XC3S500E-xPGx208C
	3.3.2.3 Artix 7 – XC7A35T-1CPG236C

	3.3.3 Computer-on-Module (COM) Selection
	3.3.3.1 NVIDIA Jetson Nano Developer Board
	3.3.3.2 Nvidia Jetson TX2 Developer Board
	3.3.3.3 ASUS Tinker Board
	3.3.3.4 Raspberry Pi 4 Model B

	3.3.4 Display Selection
	3.3.4.1 10.1" Display & Audio IPS Panel
	3.3.4.2 Sceptre E205W-16003S LED Monitor
	3.3.4.3. UPERFECT 12.3” Touch Monitor

	3.3.5 Controller Selection
	3.3.5.1 IR Remote
	3.3.5.2 RF Remote
	3.3.5.3 Push Button

	3.3.6 Wi-Fi Module Selection
	3.3.6.1 Intel Dual Band Wireless-AC 8265
	3.3.6.2 Ultra USB Wi-Fi Adapter

	3.3.7 Voltage Regulator Selection
	3.3.7.1 LP5900
	3.3.7.2 LP38500-ADJ
	3.3.7.3 LM7805

	3.3.8 Initial Summary of Selected Parts
	3.3.8.1 Speaker
	3.3.8.2 Microphone
	3.3.8.3 FPGA
	3.3.8.4 COM
	3.3.8.5 Display
	3.3.8.6 Controller

	3.4 Final Summary of Selected Parts
	3.4.1 Final Microcontroller
	3.4.2 Final Single Board Computer
	3.4.3 Final Microphone
	3.4.4 Final LCD Display
	3.4.5 Final IR Sensor

	4. Related Standards and Design Constraints
	4.1 Related Standards
	4.1.1 Wireless Communication Standards
	4.1.1.1. Wi-Fi Standards
	4.1.1.2. Consumer Infrared Standards
	4.1.1.3 Bluetooth Standard
	4.1.1.4 Zigbee

	4.1.2. Unicode 5.0 Standard
	4.1.2.1. American Standard Code for Information Interchange (ASCII)

	4.1.3 Python Programming Language Standards
	4.1.4 Compute Unified Device Architecture (CUDA)
	4.1.5 Hardware Description Language - Verilog Standards
	4.1.5.1 HDL
	4.1.5.2 Verilog
	4.1.5.3 System Verilog

	4.1.6 Machine Translation Benchmarking Models
	4.1.6.1. Bi-Lingual Evaluation Study (BLEU) Score
	4.1.6.2. Prediction Performance (PRED) Score
	4.1.6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) Score

	4.1.7 Privacy and Data Storage Standards
	4.1.7.1 Health Insurance Portability and Accountability Act (HIPAA)

	4.1.8 Serial Communication Standards
	4.1.8.1 Inter-Integrated Circuit (I2C) Standard
	4.1.8.2 Serial Peripheral Interface (SPI)
	4.1.8.3 Universal Asynchronous Receiver/Transmitter (UART) Standard
	4.1.8.4 Inter-Integrated Circuit Sound (I2S) Standard
	4.1.8.5 Universal Serial Bus (USB) Standards

	4.1.9 Audio/Video Connection Protocols
	4.1.9.1 High Definition Multimedia Interface (HDMI)
	4.1.9.2 Digital Video Interface (DVI)
	4.1.9.3 Video Graphics Array (VGA)

	4.2 Design Constraints
	4.2.1 Economic and Time Constraints
	4.2.2 Manufacturability and Sustainability Constraints
	4.2.3 Moral and Ethical Constraints
	4.2.3.1 Automation Displacing Human Labor

	4.2.4 Environmental, Health and Safety Constraints
	4.2.5 Social and Political Constraints

	5. Initial Project Hardware Design
	5.1 Initial Project Design and Component Diagrams
	5.2 Power Supply Design
	5.3 Hybrid COM with FPGA
	5.3.1 I/O Board Description
	5.3.1.1 Mode Selection Module
	5.3.1.2 Voice Recording Module
	5.3.1.3 Status Module

	5.3.2 General Layout of the I/O Board
	5.3.3 Communication for Hybrid System
	5.3.3.1 Audio Transmission
	5.3.3.2 Status Transmission

	5.4 LCD Interface
	5.5 Initial Hardware Design
	5.5.1 Initial Hardware Block Diagram
	5.5.2 Initial Hardware Schematics
	5.5.2.1 FPGA Diagram

	5.6 Initial Hardware Design & Bill of Materials (BOM)

	6. Project Software Design
	6.1 Initial Software Functionality
	6.1.1 User Options
	6.1.1.1 Option A: Speech-to-Speech Translation Mode
	6.1.1.2 Option B: Speech-to-Sign Mode

	6.1.2 Software Procedure
	6.1.2.1 Step 1: Speech Capture
	6.1.2.2 Step 2: Speech-To-Text Conversion
	6.1.2.3 Step 3: Neural Machine Text-to-Text Translation
	6.1.2.4 Step 4: Mapping ASL-Gloss to Custom ELS Notation
	6.1.2.5 Step 5: Rendering ASL Gestures in 3D Graphics Platform

	6.2 Changes to Software Functionality in Final Design
	6.2.1 Obsoletion of ELS Notation
	6.2.2 Revision of User Options
	6.2.3 Revision of Software Procedure
	6.2.4 Unity Engine Script Functionality

	7. Project Testing and Prototyping
	7.1 Initial OpenNMT Model Testing
	7.2 Changes to OpenNMT Training Approach
	7.3 Changes to PCB Design and Hardware Functionality
	7.3.1 Hardware Prototyping
	7.3.2 PCB Design
	7.2.3 Final Hardware Block Diagram
	7.2.4 Final Bill of Materials

	8. Operator’s Manual
	9. Administrative Content
	9.1 Budget and Finance
	9.1.1 Initial Budget Cost
	9.1.2 Final Budget Cost

	9.2 Project Milestones
	9.2.1 Important Deadlines

	9.3 Work Distribution

	Appendix A: Copyright Permissions
	Appendix B: NMT Training Corpora
	Appendix C: Acknowledgements
	Appendix D: Works Cited

