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Abstract—Recent hardware accelerator designs for machine-
learning show great promise for allowing complex image recog-
nition tasks to be carried out on resource-constrained platforms.
However, the memristor crossbar arrays that many designs rely
on are not currently marketed by any commercial manufacturers
and must instead be custom-fabricated. The work in this paper
was motivated by a desire to build a small, hardware-based neu-
ral network that could provide an example for the construction
of a physical proof-of-concept device to complement simulated
test results for novel neuromorphic circuit designs in cases where
custom VLSI design and fabrication are not practicable. Designs
based on commercially-available components are proposed for an
artificial neuron and synapses, and these designs are employed in
the construction of a hardware-based multilayer perceptron that
is successfully trained to classify 100-pixel images in handwritten-
character datasets containing three different image classes.

Index Terms—Machine learning, neural network, multilayer
perceptron, hardware accelerator, image recognition.

I. INTRODUCTION

In the last 20 years, machine learning technology has made
impressive advances, and current machine learning technology
can perform sophisticated classification and optimization tasks.
However, many machine-learning models are implemented us-
ing software packages with high computational demands that
are designed to be run on centralized servers that communicate
with users’ mobile devices and small PCs. Hardware-based
acceleration for neuromorphic computing, based on emerg-
ing non-volatile memory technologies, could offer dramatic
increases in speed and energy efficiency. If realized, this
technology would allow complex machine learning tasks to
be carried out on resource-constrained edge devices. In light
of the potential benefits of hardware-based neural networks
and the recent progress in the development of the novel
technologies that are needed to produce these networks on
a large scale, it seems likely that hardware-based neural
networks will emerge as a viable technology within the next
decade. While the non-volatile variable resistance devices that
will most likely be needed in order to implement complex,
highly-versatile, hardware-based neural networks are not com-
mercially available, there are substitutes for these devices that
could be used to produce a smaller-scale prototype for a
hardware-based neural network. The Trainable Acceleration
of Classification Operations via Commonly Available Tech-
nology (TACOCAT) project was inspired by the idea that a
group of undergraduate students could implement a sophisti-
cated hardware-based neural network prototype using off-the-
shelf components, which would serve as a proof-of-concept

for hardware-based neural network designs and also provide
valuable experience in an up-and-coming field of research
and development. TACOCAT is able to employ a surprisingly
small number of artificial neurons and synaptic connections
in order to perform somewhat specialized, yet highly complex
recognition tasks, and will hopefully contribute in some way
towards the development of efficient, secure data processing
on resource-constrained devices.

II. SYSTEM OVERVIEW

TACOCAT’s multilayer perceptron architecture, depicted in
Fig. 1, consists of 100 input neurons, 3 hidden-layer neurons,
and 3 output neurons, which are fully connected via 309 hard-
ware synapses. These neuromorphic circuits are implemented
using a modular design consisting of one motherboard and
three identical daughterboards.

Each daughterboard represents the 100-synapse array be-
longing to a single hidden-layer neuron. Weight adjustment
and input signals are received from the motherboard, and the
digital potentiometer and operational amplifier components on
the daughterboard are arranged to simultaneously multiply 100
different pairs of input and weight values. The sum of these
weighted values is calculated using a two-level analog adder
tree consisting of ten-input summing amplifiers.

The motherboard is responsible for programming weight
values to digital potentiometers, applying pixel input voltages
to the daughterboard inputs, implementing neuron summing
and activation functions, and providing accurate readings of
neuron output voltages. The motherboard’s control interface is
provided by a 32-bit microcontroller that receives instructions
from a PC-based software package via an I2C data link. A
functional overview of the classification process is shown in
Fig. 1, and a detailed system diagram is shown in Fig. 2. The
hardware network runs on a dual-rail power supply, with a
Vss equal to -1.65V and Vdd equal to 1.65V.

During training, the PC-based software package calculates
ideal synaptic weights as floating-point decimal values, and
these weights are converted into byte values ranging from
0 to 255 so that they can be programmed into the digital
potentiometers in the hardware network. The software package
takes input images from the Extended-MNIST (EMNIST)
dataset [1] and converts them into 10x10-pixel black-and-
white images, which are transmitted to the motherboard. The
motherboard uses dedicated microcontroller output pins and
an array of digital buffer ICs to apply corresponding voltage
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Fig. 1. Overview of the neural network’s multilayer perceptron architecture.
Each circular node represents a neuron, and each connecting line represents
a synapse. The network as shown is trained to recognize the letters ’U’, ’C’,
and ’F’.

levels to the daughterboard input lines, with black pixels
represented by 0V and white pixels represented by 1.65V. The
microcontroller on the motherboard then takes ADC voltage
readings from all neuron outputs and transmits them to the
PC, which uses these values to calculate updated synaptic
weights, and this process is repeated until a specified minimum
accuracy rate is achieved or a pre-determined number of
training cycles has elapsed.

Prediction operations are similar to training, except weights
are not updated, and only the output-layer neurons’ voltages
need to be measured. The output-layer neuron with the highest
voltage level indicates the neural network’s predicted classifi-
cation for the input image.

III. SYSTEM COMPONENTS

This section is comprised of brief descriptions of key
components used in the construction of the TACOCAT device.

A. Microcontroller

All hardware operations of the TACOCAT motherboard and
daughterboards are controlled by an STM32H743 microcon-
troller, which contains an ARM Cortex-M7 core. This micro-
controller was chosen because of the suitability of its general
purpose input/output (GPIO) pin count, core clock speed, and
physical package type for controlling the TACOCAT network.
With up to 140 available GPIO pins, the STM32H743 has
enough pins to drive 100 pixel input lines and still have pins
available for communication and ADC functions. Its maximum
clock rate of 480 MHz is fast enough to ensure minimal
latency for training and recognition options.

B. Digital Potentiometers

In the TACOCAT network, synaptic weights are im-
plemented using digital potentiometers. The digitally-
programmable variable resistance levels provided by these
devices allow for a reliable and effective way to train the
network using control signals provided from the MCU. When
choosing an appropriate digital potentiometer, the most impor-
tant factors to consider were the communication protocol, the
number of potentiometers per chip, and the number of taps
per potentiometer.

The Analog Devices AD5204 digital potentiometer was
chosen as it provides 4 programmable potentiometers per chip
and supports daisy-chained SPI communication, which both
facilitated a simpler PCB design process. The AD5204 also has
256 taps per digital potentiometer, which met the requirements
for digital potentiometer resolution that were determined from
SPICE simulations.

C. Operational Amplifiers

Summing amplifiers with carefully-determined gain values
and intentionally non-linear responses are used to achieve
the necessary multiplication and summing operations of the
artificial neurons in the TACOCAT network, and the main
component of each summing amplifier is an operational am-
plifier stage.

The Microchip MCP6274 quad operational amplifier chip
was chosen for the implementation of both the summing/ac-
tivation amplifiers found in the neuron circuit and for the
inverting signal buffers at the beginning of each synapse
path. The MCP6274 has high input impedance, which enables
reliable differential and common mode operations, and its very
low input bias current of 1 pA helps to maintain a reliable
output signal with low offset voltages.

D. Octal Buffer

The machine-learning algorithm that is used to train the
TACOCAT network is based on ideal pixel input values of
0.0 and 1.0, and its ideal neuron outputs range from -1.0
to 1.0. These properties dictate that if an ideal value of 1.0
is represented by Vdd, and -1.0 is represented by Vss, then
an ideal value of 0.0 must be represented by a voltage that
is precisely half-way between Vdd and Vss, which equates
to 0 V in the TACOCAT hardware network. The STM32
microcontroller is operated at Vss to Vdd (-1.65V to 1.65V)
supply levels in order to simplify communication with the
digital potentiometers and maintain the ability to measure all
voltages with the onboard ADC peripherals, but this creates
the complication of producing pixel-input voltage levels that
do not correspond to either of the STM32’s digital output
levels. While the STM32H743 has multiple DAC channels,
it does not have enough analog output lines to produce 100
pixel-input voltage levels simultaneously.

We solved this problem by placing a buffer circuit between
each input driver pin on the STM32 and its corresponding
input pins on the daughterboards. By running a digital buffer
IC at 0V to 1.65V supply levels and adding a resistor between
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Fig. 2. System Block Diagram.

Fig. 3. Overhead view of the motherboard. Daughterboards are mounted on
the right-hand side of the motherboard.

the 0V supply rail and the buffer input, we can produce a 0V
buffer output level by setting the STM32 pin to Hi-Z input
mode. For a drive value of Vdd, the STM32 driver pin is
reconfigured as a digital output with a high value.

We chose the Texas Instruments AC541M octal buffer IC
for this purpose. With the AC541M’s 8 buffers per chip, 100
buffers can be obtained using a reasonable number of ICs.

Fig. 4. Three vertically-mounted daughterboards. Each daughterboard is
connected to the motherboard using 116-pin headers and sockets in a double-
row configuration.

Also, the AC541M is capable of normal operation with supply
voltage rails at 0V and 1.65V.

IV. HARDWARE DESIGN

The following subsections briefly explain the design process
for the TACOCAT neural network hardware.
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Fig. 5. Synapse circuit design.

A. Synapse Circuit Design

The synapse circuit, pictured in Fig. 5, is the first circuit
encountered when following the signal path in an individual
neuron circuit. At the beginning of the signal path, the synapse
circuit applies the input signal to an inverting buffer stage,
which feeds into an additional inverting buffer stage, creating
a buffered pair of complementary (inverted and non-inverted)
signals that are applied to the legs of the synapse’s digital
potentiometer.

The synaptic weight value, determined by the software-
based training algorithm, is applied by adjusting the po-
tentiometer’s wiper position, creating an adjustable voltage
divider between the inverted and non-inverted input voltages.
The weighted input value is represented by the voltage on the
potentiometer’s wiper pin. This configuration allows the input
signal voltage to be multiplied by any value between -1 and
1, with precision limited by the number of taps on the device.

Since the input is isolated from the neuron and synapse
hardware via a pair of inverting buffers, the input signals
are protected against excess current draw, which could cause
distorted outputs or damage hardware in adjacent network
layers and even lead to cascading failures in extreme cases.

The synapse circuit described above should provide a min-
imal component count while maintaining safeguards that pro-
tect attached circuits. A total of only four discrete components
is necessary to buffer a single input and protect components in
adjacent layers. Other implementations that were considered
as alternatives either lacked input safeguards or introduced
redundant sources of error to the network.

B. Neuron Circuit Design

In a multilayer perceptron, the artificial neuron takes the
sum of the weighted input values that are received from its
synapses and applies an activation function to that sum. In the
TACOCAT network, the artificial neuron circuit is designed to
implement weighted-input summing along with a hyperbolic
tangent activation function.

For the hidden layer of the network, the hundred weighted
input voltages are summed using a two-level tree of summing
amplifiers comprised of ten 10-input summing amplifiers that
feed into an additional 10-input summing amplifier, which
produces the weighted input sum. This approach was chosen
to avoid the challenges and potential sources of error involved
with summing one hundred inputs using a single amplifier.
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Fig. 6. Neuron circuit design.

Each summing amplifier in the tree is designed to have a gain
of -.1 with respect to each of its inputs.

As the hidden layer of the network is only fed forward
to three output neurons, this multi-stage tree approach is not
required when summing the hidden layer outputs. However,
the presence of a single inverting amplifier stage resulted
in the neuron output of the hidden layer becoming inverted.
This issue was addressed by inverting the connections to the
potentiometers on the output layer’s input synapses. Using this
approach, it is possible to produce an overall gain of 1/n for
each input to a given neuron, with n being the total number
of inputs. With all potentiometer wipers set to their maximum
values, this results in a unity-gain linear output response when.
The linear responses of the daughterboards’ 100-input adding
trees can be seen in the plot of output voltage ADC readings
vs. daughterboard input activation provided in Fig. 7.

To function properly, however, the neurons must have some
non-linearity in their activation response. In a fashion similar
to the artificial neuron design used in [2], a portion of the
feedback circuit resistance for the neuron’s amplifier stage
(pictured in Fig. 6 is shunted using two opposing groups of
series-connected diodes. Three SM4001 diodes are used in
each series-connected group to create an output response that
transitions from a linear region centered at 0V to a gradually
increasing amount of compression which leads to clipping as
the output voltage approaches either +1.2V or -1.2V. As seen
in Fig. 8, the output waveform’s characteristics are similar to
the hyperbolic tangent function. By implementing summing
and activation functions using a single amplifier stage, the
TACOCAT neuron circuit provides appropriate transfer char-
acteristics while maintaining a low discrete component count
and minimal footprint.

V. SOFTWARE DESIGN

The software/firmware suite for the TACOCAT network
is composed of three main components. A software-based
machine-learning model handles data-loading and network
training operations, and a separate firmware package controls



Fig. 7. Daughterboard summing amplifier test results.

Fig. 8. Oscilloscope measurement of neuron activation function output voltage
vs. input voltage.

the TACOCAT hardware and runs on the ARM microcon-
troller. Also, a graphical user interface module was imple-
mented for public demonstration purposed. A diagram of the
system is shown in Fig. 10.

A. Machine-learning Model

Instead of taking the very-high-level approach of using
a ready-made machine-learning framework, we decided to
compromise by writing our own customized model in Python,
which is a high-level language that offers powerful libraries
for tensor mathematics and data manipulation. At this level
of abstraction, all mathematical operations for the software
model had to be expressed in code, but the code itself is fairly
brief and easy to understand.

The machine-learning model’s software was divided into
several Python modules: a dataloader module for loading train-
ing/validation data, a SPICE extension module for simulating

Fig. 9. Two of the 10-input summing amplifiers used in the daughterboard
design.

neural network “think” operations in hardware that is inter-
changeable with a separate hardware-network communication
module, and a core module that contains the construction,
training, and validation logic for the neural network.

B. Dataloader

The dataloader module uses the Mlxtend library [3] to load
training/validation data from files that adhere to the format-
ting used in the MNIST dataset. This module also performs
interpolation operations to compress data images from the
standard size of 28x28 pixels to a square size of a smaller
specified width, and it performs a thresholding operation to
convert pixels from grayscale to black and white, as shown
in 11. It should be noted that this thresholding operation is
implementing an input-layer activation function outside of the
hardware network. This was considered as a possible area
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Fig. 11. EMNIST image downsampling example. Downsampling operations
are performed in the software dataloader module.

of concern, as one of the main objectives of this project is
to build a hardware-based neural network. However, because
the equivalent activation function for the input layer would
be a unit step function, the software operation to calculate
the function’s output is a simple comparison between the
input value and the threshold. This function could also be
implemented in hardware using a circuit as simple as a single
transistor. If high accuracy were required, comparator circuits
could also be used to implement the comparison operation in
hardware.

C. Simulation of Network Training

Prior to the construction of the TACOCAT hardware net-
work, simulations were conducted for a small-scale 4-pixel
network using LTspice, which is a SPICE simulation software
package provided free-of-charge by Analog Devices, Inc.
In order to integrate SPICE simulations with the software
simulation model, a Python module was created to generate
SPICE netlists based on the ideal weight and input values

described by the state of the software-model’s network. The
same module then runs LTspice simulations of these netlists
and parses the output from LTspice into a data structure that
can be returned to the core module. The core module then
updates the state of the software-model network based on the
simulation outputs, and the next training cycle begins.

By updating the SPICE hardware model’s netlist after each
training iteration and using the simulated output values of
the hardware neuron models based on the updated weight
values, the hardware network training is effectively emulated
in the software simulation. The SPICE connection module
was also programmed to consider parameters for digital-pot
weight resolution and digital-pot tolerance. By conducting
simulations with various digital-pot parameters, it is possible
to estimate the levels of tolerance and resolution that are
required to achieve convergence and reasonably low error
rates in the neural-network training process. Simulation results
indicated that with 7-bit pot resolution, the network training
process might fail to converge to an optimized set of weight
values. Training simulations for 8-bit potentiometers achieved
convergence with good accuracy results.

D. Core

The core module contains definitions for a NeuronLayer

class, which contains member variables that store metadata
describing the neuron layer’s number of synaptic inputs and its
neuron count along with a reference to a stored array of synap-
tic input weights. The module also contains a NeuralNetwork

class, which hold a collection of references to NeuronLayer

objects along with methods for training and validating the
neural network model and getting prediction results. This
module also maintains collections of measurement data related
to training, testing, and validation, and it includes methods that
create graphs and charts to visualize this data.

The core module was designed to separate the implemen-
tation of the network components in the NeuronLayer class
from the training and validation algorithms that belong to the
NeuralNetwork class. By encapsulating the properties of these
separate classes, the core module remains flexible enough to
work with multiple different NeuronLayer implementations.
In fact, the same training and validation algorithms are used
for software-model based simulations, SPICE hardware-model
based simulations, and the actual hardware implementation of
the neural network (connected via I2C link to the MCU).

Python offers a broad range of interfacing libraries that
also make this flexibility easy to maintain. Python’s libraries
for issuing operating-system commands and parsing text-file
based inputs and outputs simplified the implementation of the
SPICE-model connection, and Python also has a number of
libraries that allow communication using lower-level protocols
that are commonly supported by integrated circuits, such as
I2C. Python’s pickle module is used to save a serialized
version of a trained neural network so that it can be reloaded
at a later time and used for predictions or further training and
data collection.
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Fig. 12. Estimated prediction accuracy by training epoch for each dataset.

TABLE I
ACCURACY RATES FOR DIFFERENT DATASETS TRAINED USING IDENTICAL

HYPERPARAMETERS.

Character Dataset Prediction Accuracy (%)

UCF 95.17
ABC 92.78
XYZ 85.01
BIG 95.48
CAT 97.44

VI. EVALUATION OF FINISHED PROTOTYPE

A. Accuracy

The TACOCAT hardware network was trained to recognize
the main target dataset that includes the letters ’U’, ’C’, and
’F’, and it was also trained to recognize several other three-
character datasets with the goal of determining the network’s
accuracy in a more general scope. The network was trained
using mini-batches of 100 data images at a time with weight
adjustments between each mini-batch. Starting weight values
were the same for each training session, and weights were
normalized, using a linear scaling method, to fall within a
minimum/maximum range after each backpropagation adjust-
ment.

Fig. 12 shows the training history for several different
datasets that were each trained for 80 epochs using identical
starting weights and hyperparameters. After 80 epochs of
training were completed, each network was validated using a
dataset composed of all of the EMNIST test data images that
were available for each character (separate, mutually exclusive,
sets are provided for training and for testing). Final validation
results are shown in Table I.

B. User Interface

For demonstration of the hardware’s functionality, users are
able to enter handwritten letters via the touchscreen interface,
shown in Fig. 13. The demonstration program allows users
to choose from a list of synaptic weight values for any

Fig. 13. Demonstration program showing prediction result for handwritten
character from touchscreen input (left of motherboard). ADC voltage readings
are shown for each character on the graphical display, and digital voltmeter
readings taken directly from the circuit are shown on LED displays below
the motherboard. From left to right, neuron output voltages correspond to the
letters ’U’, ’C’, and ’F’.

combination of three different handwritten characters that the
system has previously been trained for. After the user selects a
pre-trained network, they can draw their character input on the
left side of the touchscreen and press the ”OK” button below
the input area, and the GUI shows both the downsampled
version of their input image and the hardware network’s
neuron output voltages for each character class on the right
hand side. The character class with the highest voltage is
highlighted to indicate the network’s prediction.

C. Conformance to Requirement Specifications

The hardware neural network’s operating characteristics
were measured and compared to requirement specifications
that were determined at the beginning of the design phase.
Average power was calculated from supply voltage and current
draw values that were measured during the network training
process. Accuracy for the ’U’, ’C’, ’F’ dataset was measured
by running the complete set of EMNIST test images available
for those classes (5,181 images in total) through the hardware
network’s recognition process. Throughput and latency were
both measured by using the timeit module in Python 3.7 to
determine the time required to complete repeated recognition
operations. These throughput and latency values are conserva-
tive estimates of the hardware network’s actual performance
that also include processing latency in the PC, I2C commu-
nication latency between the PC and microcontroller, and the
delay required for sequentially processed input-driver pin setup
and ADC measurements in the microcontroller.

The TACOCAT hardware network met or exceeded all of
these requirement specifications, as shown in Table II.

VII. CONCLUSION

In this work, artificial synapse and neuron designs were
proposed. These designs were tested using SPICE simulations
before being implemented in a hardware-based neural network



TABLE II
COMPARISON OF REQUIREMENT SPECIFICATIONS AND MEASURED

PERFORMANCE.

Parameter Unit Requirement Actual

Weight kg < 2.00 1.14
Footprint m2 < 1.00 0.13
Power Consumption W < 2.00 1.14
Latency ms < 10.00 1.14
Throughput ops/s > 100.00 836.00
Accuracy % > 75.00 95.17

using a multilayer perceptron architecture. For the primary
dataset of interest, the network achieved 95.17% prediction
accuracy after 80 training epochs.

Plans for further research include the use of the TACOCAT
network hardware to simulate the effects of varying levels of
process variation in memristor-based synaptic weight arrays.
TACOCAT could also be used to simulate memristor stuck-at
faults that might occur while the network is deployed in the
field and prevent proper weight programming.
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