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1    Executive Summary 
Over the past decade, major advances have been made in machine learning technology. 
However, the most common implementations of machine learning algorithms are currently 
software-based systems that perform a large number of mathematical operations digitally, 
and due to the computational expense of these operations, tasks such as voice-to-text 
transcription cannot be performed on inexpensive mobile devices but must instead be sent 
out to central servers for processing. Hardware neural network implementations, capable 
of massively parallel analog computations, may soon offer an inexpensive way to 
accelerate these operations on mobile platforms and other resource-constrained devices.  

The main objective of the Trainable Acceleration of Classification Operations via CMOS 
Analog Technology (TACOCAT) project is to create a hardware-based implementation of 
a neural network that can be used for machine learning and classification/recognition tasks. 
While the emerging devices required to build a very large-scale neural network may not be 
ready for production until several years from now, we believe that we can gain valuable 
experience in neuromorphic hardware design by building a small-scale, yet highly capable, 
neural network circuit using commercially available parts. 

Our discussion of the design process begins with the background and motivations that led 
our team to begin working on TACOCAT. We then describe the project objectives for 
TACOCAT and the requirement specifications that it will be expected to adhere to. 

In the following sections of this document, we provide a review the research that our group 
conducted prior to beginning design work on TACOCAT. Different technologies that are 
relevant to the design and fabrication of hardware-based neural networks are investigated, 
some of which are being applied to actively marketed products, while others are mainly 
described in academic research literature. We also discuss the design process for a small-
scale prototype that was designed and constructed as a proof of concept prior to the creation 
of the full-scale TACOCAT design. This small-scale prototype is a necessary milestone to 
reach before going on to fully construct our final network. 

Later, we explain the design processes for the full-scale version of the neural network, 
focusing on device and circuit-level design of the neuromorphic hardware. This includes 
descriptions of the synapse circuit, the neuron’s summing amplifier stage, the non-linear 
activation-function circuit, activation-function output buffers, and the comparator circuits 
that are used to display the result of the circuit’s classification output. We also describe the 
design of all of the project’s firmware and software components in detail. This includes all 
microcontrollers, integrated circuits, power distribution and computing that will be used. 

Following those descriptions, we discuss the fabrication and testing processes that will be 
employed to build the full-scale TACOCAT prototype. We also describe administrative 
details of the project, such as budgeting, management, project personnel, and major 
milestones along the development timeline. These are all crucial details to be monitored 
closely as a timeline will be constructed to make sure things are on track. 

In the final section of the document, we provide a summary of the project and some 
concluding remarks about the design process for TACOCAT. 
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2 Project Description 
The following sections describe the background and motivation for the TACOCAT project, 
the project’s objectives and requirement specifications, and a high-level overview of the 
project’s design process including a summary of the different project tasks that were 
assigned to each team member. 

2.1 Project Background and Motivation 
In the beginning part of the 21st century, the roles that machine learning technology plays 
in our everyday lives have increased substantially. Machine learning-based systems are 
used for human speech recognition, handwriting transcription, facial recognition, real-time 
control of complex electrical and mechanical systems, autonomous vehicle navigation, and 
many other applications. We interact with some of these technologies directly, such as the 
facial recognition systems that mobile device owners might use to unlock their phones or 
tablets. Other machine learning systems, such as those that control fuel injection trim 
parameters in some automotive engines, go unnoticed by most users. 

We have also begun to see that these technologies can be used in ways that might be 
harmful to society. Whereas facial recognition technology offers convenience to mobile 
device users, it also could offer a convenient pathway towards intrusive and omnipresent 
surveillance by authoritarian governments who would wish to constantly track and record 
the whereabouts of its citizens. Similarly, whereas autonomous vehicles could one day 
offer increased safety, accessibility, and efficiency in personal transportation applications, 
this same technology could be used in military applications to create automated attack 
vehicles. While weaponized autonomous vehicles might be used benevolently in defensive 
roles, the potential for malicious use is also very real. We are almost certain to face many 
challenges in the remainder of this century as we decide how to best apply these powerful 
new technologies. 

Currently, most machine learning-related processing tasks have high computational 
overheads. Especially for optimization and recognition-based tasks, the training of neural 
networks and processing of data through those same networks requires a very large amount 
of multiplication and addition operations. Artificial neural networks very often have 
millions of artificial synaptic connections, and each one of these connections requires a 
multiplication operation to be performed between the synapse’s weight value and its input 
value in order to carry out calculations using the network. Additionally, at each artificial 
neuron node (where groups of synapse connections terminate), all of the incoming synaptic 
input-value/weight products must be summed. For mobile devices and typical consumer-
grade PC equipment, these operations can be very time consuming. To address this 
problem, cloud infrastructure is often employed so that these edge devices can transmit 
their input data to centralized servers that are able to quickly process the data using high-
speed, highly-parallelized vector computations, and the results are then sent back to the 
edge device. 

While this cloud-computing approach is a practical solution, it comes with some 
drawbacks. One important caveat is that edge-device users must have a high-speed data 
connection in order to communicate with cloud servers and receive their results with an 
acceptable amount of latency. Additionally, communication operations require energy and 
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bandwidth that are often limited in the short-term for mobile users by constraints such as 
battery capacity and monthly data transmission limits. Finally, the need for central 
processing to perform recognition tasks, particularly for image and speech data, presents 
significant concerns regarding privacy. Even if assurances are given that any data 
processed via cloud services will be confidential, users have virtually no way to ensure that 
these guarantees will be honored. On a larger scale, the fact that users must have access to 
centralized resources in order to have their data processed can create leverage for corporate 
or government entities to restrict access to these computing resources, possibly shifting the 
balance of power away from individuals and towards centralized corporations and state-
run organizations. 

However, new technologies may soon offer a solution to these problems. While traditional 
CMOS-based computer architectures require large amount of processing and memory 
resources to perform machine learning operations in a reasonable amount of time, 
specialized hardware architectures that incorporate emerging non-volatile memory devices 
are showing promising results in performing the same calculations using much less energy 
and much smaller physical footprints while still delivering very low computational latency. 

While most publicly-disclosed instances of these hardware-based neural networks are 
found in academic research works, the fundamental emerging technology that will be 
required to produce this next generation of neuromorphic circuits, namely very-large-scale 
integrated non-volatile resistive memory devices, are already being brought to market in 
niche memory products. In a joint venture, Intel and Micron have commercialized a 
resistive memory technology known as 3D XPoint. Adesto Technologies is currently 
marketing a Conductive Bridging RAM (CBRAM) technology that also implements 
integrated non-volatile variable-resistance devices. Other examples of firms that are 
actively marketing non-volatile resistive memory products include Fujitsu, Panasonic, and 
Crossbar Technologies. Although these RAM-oriented products do not offer an interface 
that would allow the resistive devices within to be accessed in a way that they could be 
used directly in artificial neural networks, their commercial availability is a positive 
indicator for the state of practical non-volatile memory device fabrication processes. 

In light of the potential benefits of hardware-based neural networks and the recent progress 
in the development of the novel technologies that are needed to produce these networks on 
a large scale, it seems likely that hardware-based neural networks will emerge as a viable 
technology within the next decade. 

While the non-volatile variable resistance devices that will most likely be needed in order 
to implement complex, highly-versatile, hardware-based neural networks are not 
commercially available, there are substitutes for these devices that could be used to produce 
a smaller-scale prototype for a hardware-based neural network. The TACOCAT project 
was inspired by the idea that a group of undergraduate students in Electrical and Computer 
Engineering could implement a sophisticated hardware-based neural network prototype, 
using off-the-shelf components, which would serve as a proof-of-concept for hardware-
based neural network design patterns and also provide valuable experience in an up-and-
coming field of research and development. 

We believe that TACOCAT will be able to employ a surprisingly small number of artificial 
neurons and synaptic connections in order to perform somewhat specialized, yet highly 
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complex recognition tasks, and we hope that it will contribute in some way towards a 
technology that could add convenience, privacy, liberty, and efficiency to the everyday 
lives of people around the world. 

2.2 Project Objectives 
We plan to design the neural network as a Multi-Layer Perceptron (MLP), which uses 
several layers of artificial “neurons” each with multiple “synapse” inputs. A scalar numeric 
weight value is assigned to each synaptic input, and the neuron’s output is determined by 
multiplying each synapse’s input value by its weight value, taking the sum of those 
products, and applying that sum value to some non-linear activation function. Common 
activation functions include the sigmoid function, hyperbolic tangent, and rectified linear 
unit.  

A fully-connected network of these neurons and synapses can be “trained” using a set of 
input data samples that are paired with labels indicating the network’s expected output. 
Inputs are applied to the synapses of the first neuron layer, and outputs are sampled from 
the neurons in the final layer. We plan to use an algorithm known as gradient descent 
optimization to implement training by backpropagation, where each layer’s outputs, 
starting with the final layer and moving backward, are compared to the expected output 
values, and that layer’s synaptic weights can then be adjusted based on the activation 
function’s derivative in an attempt to minimize the output error percentage. This process is 
repeated for the entire network over multiple “training epochs” until some minimum level 
of error is attained.  

In most neuromorphic circuits, synaptic weights are represented by variable resistances. 
Emerging non-volatile memory technologies such as memristors/resistive RAM, phase 
change memory, and magnetic tunnel junctions may soon offer nanometer-scale, low-cost 
devices that can store these synaptic weights, but most current research works on 
neuromorphic hardware are based on custom-fabricated VLSI devices that are not available 
to the general public.  

Instead of using novel devices, one of our design objectives is to use common digital 
potentiometers (with onboard memory) to implement non-volatile synaptic weight values 
in our circuit. While these devices may be too large and expensive to use in a circuit with 
millions of synapses, they should be useable in a circuit on the scale of several hundred 
synapses. We plan to implement the neurons’ summing and non-linear activation functions 
using operational amplifiers. 

The main functional objective for the TACOCAT project relates to its ability to recognize 
input data and identify one of the discrete classes that each data sample belongs to. For a 
data set of different line patterns, these classes could be Vertical, Horizontal, and Diagonal. 
They could also be Straight and Curved. The classes that are used to describe the data are 
determined prior to training this type of neural network. 

While we plan to build a small-scale prototype network that is capable of classifying 
different line orientations, as mentioned in the example above, the goal for the full-scale 
TACOCAT network is to recognize a limited set of handwritten characters. The data 
samples of handwritten character images are available in datasets provided by the U.S. 
National Institute of Standards and Technology (NIST). TACOCAT will not have a 
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sufficient number of synapses and neurons to accurately recognize a large number of 
different character classes, but the project will instead be focused on the objective of 
recognizing a small subset of character classes with reasonably high accuracy. We plan to 
use the characters ‘U’, ‘C’, and ‘F’ as the classes for our sample data. 

Given a sufficiently large number of data samples, the probability of randomly guessing 
the classification for any given input sample would be roughly 33.3%. Our goal for 
TACOCAT is to reach at a level of at least 50.0% for our prediction accuracy, and 
optimistically, we hope that we can attain levels of accuracy higher than 75.0%. 

We also have an educational objective for this project, which is to become familiar with 
the design process for both neuromorphic hardware and machine-learning software 
models. We expect that we will achieve the hardware aspects of this goal through the 
processes of researching, designing, and testing the elemental circuits involved in 
hardware-based neural networks. For the software aspects of our educational objective, we 
expect to gain an understanding of the fundamentals of machine-learning models by 
designing, writing, and testing our own code for the implementation of a multi-layer 
perceptron. By avoiding the use of existing high-level machine learning frameworks and 
instead producing all of the core software model code from scratch, we should gain a 
command of the fundamental aspects of designing and implementing a neural network 
model in software. 

2.3 Requirement Specifications 
In Table 2.1 and Table 2.2, sets of absolute maximum and absolute minimum requirement 
specifications for the TACOCAT project are listed. The absolute maximum specifications 
serve as hard limits on certain aspects of the final design, including physical and electrical 
characteristics. Alternatively, the absolute minimum specifications describe the minimum 
levels of performance and system capacity that will be considered satisfactory for the 
design.  

 Absolute Maximum Specifications 
Because the physical characteristics are being specified at a very early stage in the design 
process, we have tried to assume very pessimistic values for the absolute maximum 
specifications regarding physical size and weight. We arrived at these figures by 
approximately doubling our expected measurements for these characteristics, while 
making sure that these cautiously pessimistic estimates would still describe a prototype that 
would be practical to build and safe to operate. 

 

Weight 5 kg 
Footprint area 1 m x 1 m 
Supply Voltage 18 Volts rail-to-rail 
Power Consumption 10 Watts 
External Temperature 50° C 

Table 2.1: Absolute maximum physical and electrical characteristics 
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 Absolute Minimum Specifications 
For the absolute minimum specifications, we were able to look at the results of software-
based simulations to see what characteristics would be required in order to implement some 
appreciable level of handwritten character recognition capability. Simulations indicated 
that the neuron counts listed in Table 2.2 should be adequate to allow a small network to 
distinguish between two different handwritten letters, although it should be mentioned that 
at this size, while the network will most likely have decent prediction accuracy with easily 
distinguishable sets of input letters, such as ‘X’ and ‘O’, it would most likely struggle to 
classify letters with similar features, such as ‘E’ and ‘F’. Estimates for throughput and 
latency are very pessimistic, but even as worst-case estimates, these results would be 
acceptable for testing and demonstration purposes. 

Number of input neurons 25 
Number of output neurons 2 
Input data resolution 1 bit 
Output latency 500 ms 
Throughput 1 recognition operation per second 
Accuracy 50% 

Table 2.2: Absolute minimum operational and performance characteristics 

 House of Quality 
The House of Quality diagram shown in Table 2.3 describes the trade-offs that are involved 
between different aspects of the project design.  

One of the key points illustrated in these diagrams is that a larger number of neurons (and 
consequentially many more synapses) are often required in order to attain higher levels of 
prediction accuracy and flexibility/generality. While this principle holds true in software-
based neural networks, it is less likely to be a major cost-driver in that domain. On the other 
hand, because hardware-based neural networks can conduct large numbers of mathematical 
operations in parallel, increased neuron counts are less likely to have a noticeable effect on 
output latency times. 

 Additional Specifications 
The following specifications are also included in the TACOCAT design specifications: 

 All voltage supply rails should be isolated from the mains supply voltages 
 All ground rails should be tied to earth ground 
 All printed circuit boards should be securely mounted to a panel or chassis using 

bolts or screws 
 Prediction outputs should be displayed to the user via dedicated visual indicator 

devices such as LEDs that are activated by the neural network’s output neuron 
voltages, without any additional software processing 

 The user interface hardware should be mounted in a manner such that the user will 
not be exposed to any sharp edges, exposed electrical wiring, or components with 
high surface temperatures 

 The user interface should be accessible for users who are color-blind 
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Table 2.3: House of Quality 

2.4 Design Overview and Assignment of Responsibilities 
The neural network block diagram shown in Figure 2.1 represents the main hardware 
components of the TACOCAT project. The 3 block types that it is comprised of (labeled 
“A”, “B”, and “C”) represent the 3 functional hardware component groups that are used to 
construct the TACOCAT neural network. These components must be able to multiply, 
accumulate, and introduce non-linearity inside the network so that the network weights can 
be trained properly using machine learning algorithms. The blocks of this network diagram 
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will be made up of digital and analog circuitry that will execute these functions while being 
trained to correctly recognize user input in the form of handwritten-character image 
samples.  

The first block, A, is made up of a line driver circuit. This circuit will provide buffered and 
inverted source voltages to the next block in the sequence. The voltages that this circuit 
provides will be fed to block B, which is the circuit that will supply the synaptic weights 
that the input source voltages will be multiplied by. These synaptic weights will be 
adjusted, at the system level, by an on-board MCU that controls the training process.  

Finally, block C of the diagram contains the summation and nonlinear activation-function 
circuits used in the neural network. The first component of this block must add all of the 
outputs of the B blocks-from the previous stage of the diagram, thus completing the 
accumulation portion of the multiply-and-accumulate requirement of the network. This 
will be achieved using an inverting summing amplifier circuit. Afterwards, these 
accumulated weighted inputs will be subjected to a non-linear activation function using 
another analog circuit to implement the activation function requirement for the TACOCAT 
network. This non-linear activation function will be implemented using another operational 
amplifier circuit with an external rectifier-based clipping circuit. A brief summary of the 
blocks and components utilized in the intermediate neural network design can be seen in 
Table 2.4. 

Note that this neural network layout consists of a 4-pixel recognition circuit representing 
an intermediate network with a 2-by-2-pixel square input image pattern. Our goal for this 
smaller scale network is to configure it using a standard training algorithm to distinguish 
classes of input patterns between horizontal, diagonal, or vertical lines in 4-pixel user 
inputs. Once this network is fully implemented and tested, we will look to expand the size 
of the network to a 5x5, 25-pixel network that will be able to recognize the difference 
between handwritten user input characters. This should be achievable, as we expect the 
only major difference to be a larger number of components and circuit boards necessary to 
construct the network. It is expected that by increasing the size of the neural network, 
especially by increasing the size of the network’s input layer, that the range and efficacy 
of the network classification abilities should improve.  

The current design of the 4-pixel network’s input layer receives all of the input signals of 
the sensed image as parallel inputs to the line driver circuits of the synapse in the input 
layer. We would expect this design pattern to become much more difficult to implement as 
the size of the input layer increases proportionately to the squared width of the input image, 
so a different method to process these inputs will most likely become necessary once a 
larger number of sensed pixels are considered. A detailed re-design of the input layer for 
the final neural network architecture is explored in section 5.6 of this document. 

There are a number of other parts that will be required to produce the final demonstration 
version of this hardware-implemented neural network design. This project seeks to take a 
digitally processed array of image pixel data as the input to the neural network. After being 
trained, the demonstration of the efficacy and accuracy of the trained neural network that 
has been designed, will be a test of character recognition.  
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Figure 2.1: Intermediate Neural Network Block Diagram   

Block Name Function Neural Network 
Component 

A Line Driver Synapse 
B Adjustable Weight Synaptic Weight 
C Multiply and Accumulate Neuron 

Table 2.4: Intermediate Neural Network Block Diagram Summary 

The distribution of labor and responsibilities for completing the tasks and components of 
the final demonstration necessary to achieve the task described above, can be seen in Table 
2.6, which also coincides with the block diagram of TACOCAT’s system. 

Our finalized project will be comprised of six main components as illustrated by the block 
diagram in Figure 2.2. A commercial power supply will be utilized to provide power to all 
electrical components. This should be appropriate since we will meet the project’s 
hardware expectations with what has been explained in the paragraph above.  

The MCU we choose will be responsible for the low-level aspects of the training and 
adjustment of our network’s circuit. Data sets will be provided to the MCU such that the 
network can be trained to recognize the user input that the network receives. User input 
will be provided by a touchscreen interface with which the user can write an alphabetical 
character, draw a vertical, horizontal, or diagonal line, or create whatever other input 
images might be relevant to a particular network configuration. This input will be 
processed and transmitted to our neural network as digital pixel data through the MCU.  
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Role Person(s) Responsible 

Commercial Power Supply Deven, German 

Network Deven, German 

MCU Justin, Luke 

Touchscreen Input Justin, Luke 

Status LED Array Deven, German, Luke 

Training Data Set Justin 

Table 2.5: Responsibilities of Team Members 

 

 

Figure 2.2: System Block Diagram 
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Once this pattern recognition or handwritten character recognition (depending on the scale 
of the network) is completed within the neural network hardware, the result will be 
displayed in an LED status array, where the user will be able to see the network’s prediction 
for either the orientation of the line they have drawn or the handwritten character that they 
have entered. 

Because a significant share of the hardware components of the network are heavily 
entangled with numerous other portions of the hardware, it is difficult to modularize the 
project. Since changing a single component can, in many cases, result in changes to almost 
every other module given above, the role assignments are predominantly administrative, 
not technical, since adjustments to a broad spectrum of features must often be made by a 
single person. 
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3 Research 
Research is a crucial part in the development of any high level project. A logical starting 
point for TACOCAT project research is to survey existing software and hardware 
implementations of neural networks. Innovation sets new designs apart from existing 
works, but research is necessary to understand how the network will be implemented. It is 
important that we understand the software and hardware that is behind building an analog 
neural network. 

3.1 Relevant Technologies 
Each neuron in the network sums its inputs and produces the output dictated by its 
activation function. However, as this is not a binary network, meaningful computation 
cannot be achieved with unweighted inputs, as the only possible input and output values 
would be -1, 0, and 1, assuming ideal circuitry. This can be remedied by weighting the 
input of each neuron, which allows the input to be multiplied by an arbitrary value within 
a certain range. By weighting the network’s inputs, each signal can be amplified, reduced, 
inverted, or nullified as desired. While a software-based neural network brute forces the 
signal weighting on each synapse, a simple algorithm can be used to read the voltages at 
each node of a physical network and adjust the weighting accordingly. As this network’s 
signaling is based on voltage level, this weighting can be accomplished via voltage 
division. While voltage division is a straightforward enough concept, there are numerous 
ways to accomplish this goal which must be considered. The most obvious candidates are 
memristors, analog potentiometers, digital potentiometers, digital rheostats, and digital-to-
analog (DAC) arrays. 

 Memristors 
Memristors are solid-state variable resistance devices which do not have any digital 
component or moving parts. The most common way of implementing memristor 
technology is through use of titanium dioxide films with different levels of oxygen 
depletion; the oxygen vacancies can be shifted around by electric current, adjusting the 
resistance of the device. This can be achieved by “programming” the device with a higher 
voltage the device would otherwise operate at, as the lower operating voltages will not push 
the device out of its hysteresis and disturb the resistance setpoint. A diagram of the typical 
construction of a titanium dioxide memristor is shown below in Figure 3.1. Consequently, 
the memristors are entirely analog and do not require any direct digital control to program. 
Additionally, due to their potentially small size – implementable at a nanometer level – it 
is possible to achieve extremely high junction densities for use in integrated circuits. 
However, due to the infancy of the technology and inherent variability in manufacturing, 
memristors currently exhibit very high failure rates. While reliability is fairly good for 
functioning junctions, many remain stuck “open” or “closed” upon fabrication and cannot 
be adjusted, while many more are only partially usable and cannot operate across the 
expected range. Additionally, it is a fairly complicated endeavor to implement hardware to 
allow each individual memristors to be repeatedly and precisely reprogrammed, as the high 
voltage must be supplied without damaging hardware which is otherwise designed to 



EEL 4914  Senior Design I
 

 
13 

operate at lower voltages. Consequently, memristors are not suitable for this design, though 
they would be the only option if an integrated circuit implementation was desired. 

 

Figure 3.1: Titanium-dioxide Memristor Diagram 

Titanium dioxide memristors may be common, but there are several types of memristors 
to be considered. There are two main different types of memristors, molecular and ionic 
thin film memristors, and spin and magnetic resistors. The molecular and ionic thin film 
memristors rely on unique properties of each type of material. The four types of memristors 
of the molecular and ionic thin film family are titanium dioxide memristors, 
polymeric/ionic memristors, resonant tunneling diode memristors, and manganite 
memristors. The titanium dioxide memristor shown in Figure 3.1 is usually used for 
modeling. The image used in figure 3.1 has reproduction permission requested in the image 
reproduction section of this document. Polymeric/ionic memristors use active doping of 
di-electric materials to create solid-state ionic charge carriers. Resonant tunneling diode 
memristors use specifically doped diode junctions as the breakdown layers between drain 
and source of CMOS components. While a manganite memristor consists of a bi-layer 
oxide film substrate that is dependent on manganite contrary to using titanium dioxide.  

Magnetic Tunnel Junctions (MTJs) use the interaction between magnetic fields and 
electrons with different spin states to create junctions with high and low states of resistance. 
Because resistance in an MTJ depends on the polar orientation of a variable magnet, these 
resistance states are persistent even when the device is powered down. This can provide 
significant energy savings in a system that requires non-volatile storage. There are a 
number of different styles in which MTJs can be fabricated, including Spin Orbital Torque 
MTJs, Spin Hall Effect MTJs, and even application-specific designs such as the 
stochastically-activated P-Bit MTJ. The main drawback for MTJ use in synaptic weighting 
systems is that the ratio of an MTJ’s highest resistance value to its lowest resistance value 
is much lower than other resistive memory technologies. Current MTJ technology is 
limited to resistance ratios in the 0-10 range of magnitudes. This order of magnitude allows 
for reliable storage of binary data values using typical sensing circuits to read the stored 
values, but it does not provide enough margin to store a wide range of analog values. 

 Analog Potentiometers 
Potentiometers are, at present, the most obvious and widespread way to implement variable 
resistance for most applications. Analog potentiometers are one of the oldest types of 
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variable resistors and can be found in a wide range of contexts. Generally speaking, analog 
potentiometers have three terminals: the two ends of the potentiometer and the wiper. The 
wiper can be moved along the resistor between the two ends of the potentiometer, allowing 
an effective resistance anywhere between the relatively minimal resistance of the wiper 
and the full resistance of the potentiometer to be chosen. While the details of the 
implementation may vary, such as the precision with which the device can be adjusted and 
the mechanism of the wiper, the behavior is the same. In the case of this project, analog 
potentiometers are useful for basic prototyping and experimentation. However, they are 
not useful for actual network implementation due to the lack of usability in training. 
Because training often takes hundreds of epochs and requires precise adjustment of the 
weighting of each synapse, it could take days or weeks of manual adjustment of each 
potentiometer to arrive at a properly calibrated device, even for a very small test network. 
Additionally, because it is difficult to precisely adjust the potentiometers by hand, it is 
difficult to ever arrive at an accurately calibrated value, as even a few poorly calibrated 
synapses can result in both erroneous adjustment data from the training algorithm and 
incorrect network outputs. Consequently, analog potentiometers are unsuitable for this 
project beyond early prototyping and experimentation. 

 Digital Potentiometers 
Digital potentiometers are, perhaps obviously, digital implementations of analog 
potentiometers. Unlike analog potentiometers, which can ideally be adjusted to infinitely 
precise values, digital potentiometers are implemented with discrete resistance ladders. 
Due to the use of discrete resistance components instead of a true analog potentiometer 
mechanism, there are a finite number of possible configurations – corresponding to the 
device’s number of potentiometer taps – that the device can produce. This value is typically 
represented in binary using 7 or 8 bits. Given a value, the device automatically adjusts the 
switches on the resistor network to produce the appropriate total resistance. While some 
precision is lost, especially when using devices with lower tap counts, the overall accuracy 
of each device is far higher in a network application, as the resistance at each tap in each 
device does not change appreciably between adjustments. Additionally, the relatively low 
cost and small footprint of digital potentiometer chips, along with the widespread 
availability of devices with EEPROM and serial communication protocol functionality 
makes them an excellent choice for smaller-scale neural networks. 

 Digital Rheostats 
Digital rheostats are very similar to digital potentiometers and are often sold in the same 
packaging and series of chips as regular digital potentiometers. The key difference between 
rheostats and potentiometers is that while potentiometers use three terminals, the rheostat 
only has two terminals, corresponding to a simple variable resistance instead of a 
potentiometer. While rheostats can be useful for high-power applications and for simple 
resistance trim adjustments, these advantages are not particularly applicable to this project. 
However, the key disadvantage of rheostats in this context is the devices’ lack of a third 
terminal. Because the synapse weights of this network functions by using the wiper to 
choose between a positive reference voltage and a negative reference voltage according to 
the principle of resistive voltage division, two rheostats would be needed for each synaptic 
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weight. Rheostat devices also might not offer the same accuracy as true potentiometers due 
to the lack of the inherent proportionality exhibited by the wiper mechanism in 
potentiometer devices. Thus, rheostats are less suitable for this project in comparison to 
three-terminal potentiometers. 

 Digital-to-Analog Converters 
Digital-to-analog (DAC) converters operate very similarly to digital potentiometers, using 
a discrete resistor array of one form or another to allow the desired resistance to be selected. 
The primary difference between digital potentiometers and DAC arrays is the presence of 
an op amp on the output of the DAC array. This output op-amp buffers the output voltage 
of the device, providing extremely precise output voltages and preventing the output 
voltage from acting as a function of the output current, as may occur with digital 
potentiometers. However, DACs suffer from a major handicap related to their basic 
function. DACs divide their provided reference value into a predetermined number of steps 
(256, 1024, 4096, etc.), but do so relative to the voltage connected to the ground of the 
device. Because the voltage output of the previous neuron can potentially be negative, the 
DAC may either be exposed to a reference voltage lower than its ground voltage or 
incorrectly divide a positive voltage relative to the wrong ground level. While DACs would 
be useful in this case for adjusting the initial inputs to the network, the only possible way 
to implement DACs in an entire network would be to employ ADC conversion at each 
neuron’s output and then use the DAC to select an output voltage on each synapse, 
defeating the purpose of an analog network. Thus, while DACs are extremely useful in 
certain applications, their utility is limited in this project. 

3.1.6  Hardware vs. Software Neural Network 
Artificial neural networks can be implemented using a software approach or a hardware 
approach. Using software to implement the network is generally a simpler approach, while 
hardware design tends to be a longer, more difficult process. Software neural networks can 
be modeled in many different programming languages, including Python, C, C++, and Java 
as common examples. Software packages for constructing neural networks and running 
simulations are also widely available. Examples of these programs include Neural 
Designer, GMDH Shell, Neuroph, Darknet, DeepLearningKit, and many more. It is much 
simpler to design and implement a neural network using software due to the ease of code 
revision in comparison to physical circuit modification, but creating a neural network 
implemented with hardware has key benefits.  

Artificial neural networks implemented by hardware on a large scale may soon be faster 
and more conveniently manufactured than software-based networks. Typical hardware-
based approaches to implementing a neural network consist of digital or analog circuitry 
that realizes the main functions of a neuron and synapse. The synapse needs to sense the 
inputs to the neuron by using some sort of input-sensing interface. Next, this input data 
needs a way to be weighted. Some examples of weight-applying hardware include 
memristor devices that change their resistance states based on the voltage applied to them, 
digital potentiometers that change their wiper position based on digital signals, and phase-
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change memory devices that change resistance based on the physical state of a resistive 
material.  

The output of the input-weighting-device is fed into a hardware artificial neuron. This 
hardware neuron must be capable of accumulating all weighted synaptic inputs by some 
sort of summing amplifier, digital adder, or similar accumulation device. Additionally, in 
order to solve a wide range of problems using typical neural-network architectures, the 
hardware neuron must be able to apply non-linearity, which is available through a wide 
range of analog non-linear devices.  

Smaller arbitrary hardware-based implementations already consume much less power and 
develop results quicker while maintaining higher accuracy. Impressive results have been 
achieved with existing hardware neural networks, but even better results are expected in 
the future, particularly as ongoing development non-volatile memory devices allows more 
efficient implementations of synaptic weighting and input-summing processes. In this 
regard, the design of new hardware-based artificial neural networks is an exciting frontier 
in the field of machine-learning research and development. 

3.2 Neural Network Architecture  
Neural networks are one of the primary tools that are used to achieve machine learning and 
deep learning in all sorts of engineering applications. As their name would suggest, 
“neural” networks seek to replicate the way that human brains learn and recognize patterns 
through interpreting and adapting to sensory data. Artificial Neural Networks (ANNs), 
however, are currently being designed and implemented with a specific application in 
mind, such as object or pattern recognition and data classification. 

An ANN consists of multiple artificial neurons, which are configured to be grouped into 
“layers”. These layers have interconnection between nodes in other layers which include 
synaptic weights that can be adjusted for the network’s adaptation to a specific application 
through the process of backpropagation. At each artificial-neuron node in a given layer, the 
combination of input from the data with a set of synaptic-weights coefficients, that either 
attenuate or amplify that input, serve to assign a significance with respect to the machine 
learning algorithm used to program it. These weighted inputs are then accumulated by 
summing them and passed through the node’s assigned “activation function”, which is a 
pre-defined relation between neuron inputs and neuron output that is used to determine if 
the input signal should be represented in the neuron’s output in order for it to be processed 
further down the network and affect the network’s final-layer output. This relationship 
between inputs and outputs in an artificial neuron can be seen in Figure 3.2. 
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Figure 3.2 Artificial Neuron Layout. Permission requested from 
https://towardsdatascience.com 

Using this basic artificial neuron structure, several neural network architectures can be 
constructed to achieve the applications desired. The suitability of a network for performing 
particular tasks depends heavily on the activation functions used in the neurons, the 
interconnections between neurons and layers, and the machine-learning algorithms used to 
train the network.  

Interconnections in a neural network are the pathways that allow a network’s processing 
elements, artificial neurons, to connect to one another. In their simplest form, these 
interconnections form at least two of the layers previously mentioned, one being the input 
layer and one being the output layer. A hidden layer is a third kind of layer, which may not 
be included in all types of neural networks, that act as a “black box”, inaccessible by the 
users interfacing with the overall system. 

 Multi-layer Perceptron  
The Multi-Layer Perceptron (MLP) is a class of artificial neural network with several 
unique characteristics and requirements. First, the network consists of at least 3 layers of 
neurons. These neurons are made up of the inputs and weights, as well as a non-linear 
activation function. A sigmoid function, such as the hyperbolic tangent or the logistic 
function (shown in Figure 3.3), has traditionally been used for neuron activation in MLPs. 
Both of the typical sigmoid functions are easily differentiable, which eases the process of 
backpropagation with gradient descent when training the network. The activation function 
and its derivative used in the training algorithms are included in (3.1).  
 

(3.1) 

𝑠𝑖𝑔(𝑥) =  =   ;
( )

( )
= 𝑠𝑖𝑔(𝑥)(1 − 𝑠𝑖𝑔(𝑥))                                       
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Figure 3.3 Plot of Logistic Sigmoid Transfer Function 

The MLP must be made up of a minumum of 3 layers of neurons, comprising one input 
layer, one output layer, and at least one hidden layer in order to solve non-linear, complex 
problems (Figure 3.4). 

  

Figure 3.4 Proposed MLP 4-Pixel Input Network Architecture 
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 Convolutional Neural Network 
Convolutional neural networks (CNNs) are often utilized for processing input data sets 
consisting of photographic images. Typically, the CNN consists of the traditional input and 
output layers found in other neural network architectures, however, since its primary goal 
is to assign significance to various aspects and objects of an input image and differentiate 
one of these from another, it must consist of more than the usual number of hidden layers 
when compared to a regular MLP.  

The hidden layers of a CNN primarily consist of their namesake “convolutional” layers. 
These layers apply filters (also called kernels) that convolve the width, height, and input 
volume of the previous layer’s output and compute the dot product between the 
characteristic weights of the layer and the input to produce a 2D map of that filter. These 
produce a feedforward process responsible for subsampling the input image to facilitate 
the process of key feature mapping and object recognition of the CNN. Input images to the 
CNN are in the format of length, width, and channel dimensions before feeding forward 
into pooling and kernel layers of the fully connected network (Figure 3.5).  

 

Figure 3.5 Example of CNN Sequence for Recognizing Handwritten Digits. Reproduction 
permission requested from https://towardsdatascience.com 

Combining design principles from both the CNN and MLP network architectures could 
help realize the final form of the neural network architecture in this project. For the 
objective of producing a network with 25 or more inputs that is capable of classifying 
handwritten character image inputs, the image-processing abilities of convolutional layers 
is certainly desirable, but the complexity of implementing convolutional architectures in 
hardware may be too great, given the real-world constraints on the amount of time allowed 
for project development. 
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 Spiking Neural Network 
An emerging trend in artificial neural network architecture is the development of Spiking 
Neural Networks, which are composed of artificial neurons that are designed to emulate 
biological neurons by performing computations based on incoming binary spike 
information. These neural networks differ most significantly from other types of artificial 
neural networks used for machine learning in the fact that they depend on what’s known 
as “spikes”, or discrete triggering events, to spike and reset the potential of a single neuron 
in the network. The activation method for neuron in these networks often follows a leaky 
integrate-and-fire model, which dictates the creation of an output spike upon the 
accumulation of a certain number of input spikes within a time period. Spiking neural 
network architectures are naturally well-suited to implementations that use purely analog 
circuitry. Although these systems can be based on analog hardware, they are expected to 
be able to encode digital communications and not lose signal fidelity, with the networks 
functionality being dependent on receiving the “spiking” input that surpasses a certain 
threshold and fires the consequent neuron layers. An example 3-layer input-spike to hidden 
layer to output-spike SNN architecture can be seen in Figure 3.6.  

 

Figure 3.6 Diagram of Multilayer SNN. Reproduction permission requested from 
https://towardsdatascience.com 

Some advantages that spiking network offer compared to other neural network 
architectures include lower energy usage and increased parallelizability due to neuron spike 
interactions being localized to the system that they are integrated within.  

Spiking Neural Networks (SNNs) are best suited for time-space dependent and event-based 
information obtained from neuromorphic sensors, thus, a SNN-based design may not be 
the best suited architecture for the goals we wish to achieve with this project. Machine 
learning programming and training protocols for our implemented neural network will need 
to be manually programmed before the network can perform freely. Its computations and 
overall performance will mostly depend on how well the training algorithm adjusted the 
weights according to the task required. Given the project’s goal of creating a network that 
can differentiate between hand-written characters, the input data set is composed of 
bitmapped images. Without potentially large amounts of additional research and 
development effort, it could be very difficult to translate image-based input data into the 
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spike timing-based input data that a SNN would require, which limits the suitability of an 
SNN architecture for this project. 

3.3 Existing Hardware-based MLP Designs 
Several other Hardware-based Multi-Layer Perceptron designs exist in academia research. 
Some of these designs offer an alternative to fully software simulated implementations of 
artificial neural networks, which have the possible downside of not providing a real-time 
response and learning for neural networks made up of many neurons and synapses. This 
means that a hardware implemented neural network with parallelizable processing and 
close-to-real-time response capabilities offer a cheaper and faster alternative for more 
commercial devices’ applications, i.e. facial recognition, speech recognition, etc.  

Our project aims to prove this concept by implementing the core components of an MLP 
Neural Network using analog circuitry. First, the synapses are implemented using 
operational amplifier circuits to buffer and invert the inputs to the neuron. Since weights 
to the input to the neuron need to be adjusted by the training algorithm, digital 
potentiometers are used for this purpose, by having both the inverted and buffered input to 
each end of the potentiometer. The position of the wiper along the entire “resistor” 
determines the weighted input into the next summing amplifier, which will accumulate all 
the weighted inputs to the neuron. Once this is done, the last operational amplifier circuit 
of the neuron will be used to implement the activation function of the neural network 
(Sigmoid function), by rectifying the summing amplifier’s output using a diode rectifier 
bridge configuration on the feedback of the operational amplifier.  

Key differences between our design and others found in academia research can be found 
by looking at the analog circuitry used to implement each of the significant parts of the 
network (Neuron, Synapse, and Activation Function). 

 Memristor MLP Based Designs 
Memristor-based designs have been used in many research experiments when having their 
analog voltage-dependent-resistance be the weight that will be applied to the inputs of each 
neuron (Mikhailov et. al.) was desired.  

Many benefits of using Memristor-based designs exist when implementing them as the 
adjustable weights applied to the inputs in the synapse of a neuron inside our neural 
network architecture. The physical characteristics of Memristors allow for the resistance 
to be adjusted depending on the “Set” and “Reset” voltages that cause the memristor to 
change states and alter the resistance perceived by the current passing through the device. 
The range of pulse voltages and state-change Voltage-Current plot for memristor devices 
similar to those used by Mikhailov et. al. can be seen in Figure 3.7. 

Artificial neurons in this paper’s designed experiment utilized complementary 
memristors paired with a multiplexing chip ADF436 to provide analog multiplexed 
inverted and buffered input voltages to the neurons, provided from the Atmel AVR-
Microcontroller that was used to program and train the network. This weighted input 
from the memristor devices are fed into a 4-stage operational amplifier circuit. The first 2 
operational amplifier circuits are current amplifiers that provide constant rail voltage to 
the cascaded layers of the network, as well as summing the input layer inputs. The next 
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two operational amplifier circuit topologies serve as the non-linear activation function of 
the network by taking the accumulated inputs to the neuron and applying a rectifying 
diode bridge to clip the maximum and minimum peaks. The very last operation amplifier 
stage is a simple amplified version of the Sigmoid activation stage operational amplifier. 
A block diagram of the circuit schematic used in this experiment is provided in Figure 
3.8. 

 

 

 

Figure 3.7: Memristor Characteristics Based on Voltage and Current Pulses at several 
frequencies. Reproduction permission requested from https://royalsocietypublishing.org/ 

 

Figure 3.8: Block Diagram of Circuit Schematic used for Memristor based MLP Circuit 
Design 
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From the prospective neural network design described in Section 3.4, it can be seen that 
this circuit design shares many common characteristics of their respective circuit 
topologies. Our network’s synapse shares the use of inverted and buffered inputs to the 
first operational amplifier stage of our neuron; however, we are replacing the memristor 
devices with digital potentiometers to adjust the weights of the inputs.  

Similar neuron designs are also shared. Although, we don’t have an addition current 
amplifier operational amplifier circuit to provide the voltage line as seen in the circuit 
diagram of Fig 3.7. In comparison, the rail voltages of the prototype 4:4:4 network are 
provided from the LM317 and LM337 linear voltage regulator pairs and supplied to the 
VSS and VDD rails of the potentiometers and the Teensy 3.5. Finally, both neurons share the 
same rectified feedback operational amplifier to apply the non-linear activation function of 
the Sigmoid.  

 FPGA Hardware-Based Designs 
Another common hardware implementation of MLP include Field Programmable Gate 
Array (FPGA) designs of the artificial neural network. One of the implementations of these 
designs is a digital architecture for the realization of multiple layer feedforward networks 
using digital logic blocks, in software like VHDL and Xilinx, to achieve this as a 
configurable system implementable for specific functions (Tisan et al. 2006).  

Fully customizable control logic blocks are configured and designed to control the neurons 
of each layer of the network. Control blocks are distinguished from one another as the 
design of each layer calls for an adjusted logic block flow. The input layer logic block 
composition will differ from the logic blocks in the hidden layers and differ from those in 
the output layer of the network. This digital hardware implementation of a MLP has the 
ability of learning-on-chip as all the hardware necessary to adjust weights for training the 
network and reconfiguration of interconnections between neurons in previous or 
subsequent layers are found directly on the FPGA. It has very high reconfigurability and 
has the benefit of being able to operate under real-time constraints, making it possible to 
implement spiking neural network MLP architectures  

The entire digital architecture of this type of implementation is split up into certain groups 
of digital logic blocks that are essential to realizing this design on an FPGA. These groups 
include the following: 

 Control logic block 
 Processing block 
 Error check block 
 Calculus block of hidden layer weights 
 Calculus block of output layer weights  

The first type of block, the control logic block, is designed to control the neurons of the 
neural network, giving signals to multiply and accumulate the weight adjusted inputs to the 
network, as well as finally telling the memory blocks to compute the total accumulated 
sum of the neuron’s inputs. The control logic block also serves to control memory and act 
as a data buffer for sensory input data to the neuron. 
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Next, the processing block is designed as the main component of the digital hardware 
neural network design. It is created to incorporate the artificial neuron functions of 
summing inputs and applying non-linearity, as well as housing the learning algorithm on-
chip.  

Neurons are modeled using a block made up of logic blocks that provide memory, one for 
data sampling, one that multiplies and accumulates, and finally a unit that applies the 
activation function. All these individual units achieve the main neuron designed compared 
to this project’s design that purely consists of analog circuitry with additional digital 
circuitry to implement these functions.  

Lastly, the calculus blocks for both the hidden layers and the calculus layers use digital 
logic blocks that calculate the weights applied to the inputs of the neurons in these layers. 
Their parameters to calculate the weights are modifiable through programming the FPGA 
when training the network or programming the desired training algorithm for the neural 
network.  

All these separate digital circuit blocks that are used to realize this FPGA artificial neural 
network implementation with one hidden layer as seen in Figure 3.9. 

 

 

Figure 3.9: FPGA Digital Circuit Blocks utilized for single layer MLP Neural Network 
Architecture. 

There are considerable benefits to implementing these neural networks in Field 
Programmable Gate Arrays. Their highly parallel architecture, customizability, and very 
high-power efficiency and low consumption are desirable traits. However, due to the time 
constraints and high difficulty in programming the entire network on FPGA, the final 
design architecture will be an analog circuitry MLP neural network architecture.  
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3.4 Component Selection 
Needless to say, component selection is an important aspect of any project. It can be the 
difference between success and failure. After designing a schematic to perform a certain 
way in testing software, the actual physical hardware needs to be chosen based on the 
electrical tendencies of the circuit. Each component must be carefully and intentionally 
chosen to avoid failure of the neuron circuits. This is one of the most important parts of the 
entire creative, and design process.  

The next step in the design process is to choose the physical components for each stage of 
the circuit mentioned in the previous section. The TL084 operational amplifier was 
temporarily chosen to carry out all of the amplification stages, as they are easy to obtain 
with low cost. They have generally low noise output, and a high slew rate while working 
well with low currents. These operational amplifiers are used in each amplification stage 
of the entire system. They are seen in the buffer stage, the inverting amplifier stage, the 
sigmoid response amplifier stage and neuron output stage. The next components that need 
to be chosen are the digital potentiometers. The digital potentiometers that are currently 
being used are the MCP42010-E/P integrated circuits. These digital potentiometers have 
256 taps which provide a digital wiper value range from 0 to 255 as they are 8-bit devices 
that can sweep up to 10kΩ of resistance. These chips have several different resistance 
values offered, including 50kΩ and100kΩ. We temporarily decided on the 10kΩ digital 
potentiometers because it suits the power consumption of the network. The pin out for the 
digital potentiometers we chose can be found in the appendix in Figure X.X. These 
MCP42010-E/P chips have two separate wiper outputs letting us utilize two potentiometers 
per chip. The digital potentiometer chips can use different types of communication as well, 
as SPI communication will be implemented. Communication between the Teensy 3.6 
Development Board and the MCP42010-E/P digital potentiometer chips is what will 
control the wiper positions of the digital potentiometers as they will be adjusting the weight 
of each individual synapse input. 

The last component decided on are which diodes to go with for the output clipping of the 
sigmoid amplifier stage. The 1n4001 diodes are being used in prototyping because they 
provide a desired turn on voltage for the required output clipping of the activation stage. 
The rest of the components throughout this circuit are all just typical resistors and jumper 
wires that many distributors provide. There was no need to go with any bulky power rated 
resistors as we are working with low enough current (50uA to 250mA) throughout the 
entire circuit. In the subsections below, there lies a further analysis of all components 
considered which shows some insight to how decisions were made when finalizing 
component selection. The subsections below will give an in depth analysis on how our 
decisions on component selection were made. 

 Operational Amplifier Considerations 
Amplifier selection is one of the most crucial processes for this design, as everything from 
input buffering to activation functions is handled by the network’s amplifiers. Because the 
amplifiers in this project are used in a number of ways, the selected amplifiers must be able 
to function adequately in all of these roles with minimal supporting hardware or 
concessions. The operational amplifiers chosen to construct the network must meet certain 
parameters that will be discussed below. 
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One of the most obvious considerations is the chosen amplifier’s output range. The signals 
being handled in this project run between -1.65 V and 1.65 V, so it is a requirement that 
the chosen amplifier be able to output across a range of at least 3.3 V. While most 
amplifiers’ power supplies run at a minimum of 3.3 V, a significant portion of them are not 
rail-to-rail, and many more perform poorly at the upper and lower ends of their operating 
range, exhibiting behavior such as “latching” their outputs to the corresponding voltage 
rail, effectively freezing the output in place even if the input’s magnitude drops. There are 
two methods of addressing this problem: find a suitable rail-to-rail amplifier which does 
not exhibit undesirable behavior when outputting at or near the rail voltages, or use an 
amplifier with a much larger range than the necessary 3.3 V. 

Each method has its benefits and drawbacks. The benefits of a 3.3 V rail-to-rail amplifier 
are dramatic simplification of the voltage rails for the network, as the digital hardware in 
the network runs at ±1.65 V, similar to the network signals. However, it can be a fairly 
expensive endeavor to fully employ such amplifiers, as such precision and functionality is 
not without matching cost. Given a reasonably priced and suitably functional candidate, 
however, it is well worth the cost and effort to eliminate excess voltage levels from the 
network. However, using an amplifier at higher voltage levels, such as Texas Instruments’ 
TL084, is a valid approach; the TL084 is very cheap, at around $.15 per amplifier on the 
quad-amplifier chips, and is able to function in all of the applications required for this 
project, such as input buffering and rapid settling due to its high slew rate. As implied, 
though, the TL084 is neither rail-to-rail nor 3.3 V; the minimum operating voltages are ±5 
V, or 10 V rail-to-rail, with the maximum output at roughly ±3 V under these conditions. 
However, this is approximately twice the necessary range, which allows undesirable 
behavior near the maximum and minimum output voltages to be ignored. 
 
As mentioned, another device characteristic to consider is the versatility and offset 
characteristics of the amplifier. Since the chosen amplifier must be able to function as a 
unity gain buffer, inverting amplifier, summing amplifier, and activation function neuron, 
it is crucial that it be able to function well in each of these contexts. Because some 
amplifiers are not fully stable in unity-gain buffer applications, care must be given to avoid 
such parts. Similarly, the input bias and voltage offset characteristics must be paid attention 
to. In smaller networks, such as the 4-pixel test network for this project, only four inputs 
are summed by the summing amplifier stage of each neuron. With the 10 kΩ feed-in 
resistors used for the summing amplifier stage of each neuron, the current through each 
resistor should typically be in the microamp range, and 135 μA at most. When dealing with 
small signals, these currents may be only a few μA; an amplifier with an input bias current 
of 1 μA, for example, would cause substantial signal distortion and ruin the neuron’s 
output. As such, JFET amplifiers are effectively mandatory for this project, as typical BJT 
amplifiers draw too much current to be worth the risk. 
 
Another factor to pay adequate attention to is the number of amplifiers per chip. Since a 
minimum of two amplifiers are needed per input to each layer for buffering in addition to 
two amplifiers per neuron for the summing and activation stages, it is highly preferable to 
use amplifier chips with at least two amplifiers. A reasonable upper limit must be observed, 
however; cross-talk between signals, while negligible for many applications, must be 
considered for this project. Additionally, while routing can be greatly simplified by 
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reducing the number of amplifier chips, it becomes more complicated once more if the 
number of chips drops too low, as significant numbers of resistors must be placed in close 
proximity to and connected to each amplifier. The ideal number seems, by estimation, to 
be around 2 to 4 amplifiers per chip, though this is dependent on the device package and 
the dimensions of the network. 
 
An additional consideration is the slew rate of the amplifier. While the slew rate is not 
particularly meaningful during standard operation of a trained network, as the signals will 
overwhelmingly be DC, it is a limiting factor when training the network. Because training 
is effectively constrained by how fast the digital devices on the network can update, 
amplifiers must have an adequate slew rate to allow sufficient time for signals to update 
and settle. Because there are potentially up to a dozen or even more amplifiers feeding into 
each other sequentially, this problem is significantly more apparent than in other 
applications. If training at 10,000 samples per second was desired, for instance, a slew rate 
of .01 V/μs would not be acceptable, as the signal would not even have time to rise or fall 
if it were over 1 V, let alone produce a stable value for the entirety of the ADC collection 
period. Because multiple ADC readings must be made after the network is given sufficient 
time to stabilize, a safe estimate is that the slew rate be at least 100 times faster than 
required for the signal to rise. For 10,000 training samples per second, a slew rate of around 
1.5 V/μs or higher would be adequate. 
 
Finally, the current driving ability of the amplifier must be carefully considered. As 
mentioned previously, the maximum current under ideal conditions through each feed-in 
resistor of the neurons’ summing stages is 135 μA; to supply 10 neurons in the following 
layer, each amplifier must be able to supply at least 1.5 mA once the current draw of the 
corresponding buffer or activation stage is considered. In reality, the current supplied by 
each amplifier should be significantly higher than this value, as voltage drops and 
overheating may occur when devices are pushed near their limits. 
 

 Operational Amplifier Selection 
For each amplification stage throughout the neural network circuit, we need an operational 
amplifier. There are many operational amplifiers available to choose from, but we need to 
choose the component with intention. An ideal operational amplifier for constructing the 
artificial neural network has a high slew rate, low power consumption and low noise. The 
operational amplifiers to be considered for selection are the TL084 operational amplifier, 
the MCP6274 operational amplifier, the TL974IN operational amplifier and the 
MCP6294IPWR operational amplifier. 

The TL084 operational amplifier is a standard and commonly used integrated circuit. It has 
a high slew rate at about 13-V/µs which will give us a quick response in our output based 
on our change in the input voltage. This device is also designed to maintain low input and 
feedback currents, and it requires a minimum of plus and minus 5 V DC rail to rail voltage 
to operate. This will work for constructing the network, but we will need to come up with 
a solution for power distribution since the rail to rail voltage is greater than that of its 
neighboring components, the digital potentiometers and microcontroller in charge of 
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controlling said components. It would be more convenient to find an operational amplifier 
with rail to rail voltage requirements that are equivalent to the other integrated circuits 
being implemented. 

The MCP6274 operational amplifier is to be considered as well. When looking at the 
datasheet it seems like a good choice for our project as well. It has a significantly lower 
slew rate than the TL084 operational amplifier, but may still work well in the circuit. The 
slew rate is 0.9-V/µs compared to the TL084’s 13-V/µs. Tests will need to be done 
comparing the quickness in output response based on our change in synapse input voltage 
to see if this is an ideal choice. The main benefit of using this integrated circuit opposed to 
the TL084 operational amplifier is that it requires less voltage to power the device. The rail 
to rail voltage required to operate this device is a minimum of plus and minus 1 V DC to a 
maximum of plus and minus 6 V DC. This will let us run the power for all of the integrated 
circuits, digital potentiometers and microcontrollers, off of the same voltage bus. This 
would ridden the problem of having to use a voltage regulator to maintain proper power 
distribution throughout the network. This would also give a more simple approach to 
designing the printable circuit board since there would be only two voltage layers besides 
the ground layer. The main benefit of using the MCP6274 operational amplifier compared 
to the TL084 operational amplifier is that it requires much less current and voltage to power 
on the device in to its operational state. 

The TL974IN operational amplifier is the third operational amplifier that is being 
considered to implement in the neural network circuits. After reviewing the datasheet, it is 
plain to see that its operating voltage requirements fit within our required specifications. 
The TL974IN operational amplifier has an operating range of plus and minus 1.35 V DC 
to plus and minus 6 V DC. This is a great range of voltages because within this range are 
convenient voltage levels for powering the other integrated circuits on board. The most 
valuable quality of implementing these operational amplifiers opposed to the others 
mentioned is that it still maintains a relatively high slew rate with an extremely low noise 
level on the output. The slew rate is typically 5-V/µs which is relatively high, not as high 
as the TL084 operational amplifiers slew rate, but should be enough to get the job done 
correctly. The noise level is typically only 4 nV/√Hz, which should provide us with precise 
and accurate output responses. This operational amplifier meets all the conditions to be 
chosen for, and implemented in to the neural network circuits.  

The MCP6294IPWR operational amplifier is the last device to be considered for our 
amplification stages throughout the neural network circuit. The MCP6294IPWR 
operational amplifier has a typical slew rate of 6.5-V/µs. This slew rate should also be 
within the bounds needed for the circuit to operate properly. This integrated circuit 
maintains a low noise output level as well, sitting at 8.7 nV/√Hz, which is a relatively low 
noise level. The rail to rail operating voltage levels for the MCP629IPWR are plus and 
minus 1.2 V DC to plus and minus 2.75 V DC. The low input bias current of 1 pA is also 
to be considered since it is thirty times less than that of the TL084 operational amplifier. 
These parameters provide a very low power consumption device compared to the TL084 



EEL 4914  Senior Design I
 

 
29 

operational amplifier, but needs about the same as the MCP6274 and TL974IN operational 
amplifier’s required operation voltage.  

All four of these operational amplifiers will be compared during the testing of each. It is 
not difficult to choose the best component when just considering the information offered 
on the datasheets, but testing each device is important. There are always issues that can 
appear when testing actuality against theory. The price comparison of each component is 
another factor to be considered, and can be seen clearly in table x.x, which shows the 
distributor, and price of each component mentioned. The TL974IN operational amplifier 
seems to be the best choice for the circuit at hand since it has a relatively high slew rate 
and low enough power consumption to fit in with our other integrated circuit components.  

Table 3.1: Operational Amplifier Price Comparison 

Device Distributor Price 
TL084 Texas Instruments $1.10 

MCP6274 Microchip $1.01 
TL974I Texas Instruments $0.89 

MCP6294IPWR Texas Instruments $0.78 
  

Price is not a huge concern for selection of this component, as the difference between the 
lowest and highest price is 32 cents. This will add up to about a $60 total difference in cost 
between the cheapest and most expensive operational amplifiers when considering the 
quantity needed to construct the final neural network. Conveniently, the cost per 
component is within a relatively low cost margin and there will be no issue funding these 
components. 

 Potentiometer Considerations 
A number of factors were considered during potentiometer selection, including the 
communication protocol used, number of potentiometers per chip, number of taps per 
potentiometer, and total resistance value of the potentiometers. As mentioned previously, 
the SPI communication protocol is fairly non-negotiable when selecting chips due to the 
impracticality of using any other commonly available protocol. Results to date have 
indicated that 256-tap potentiometers are necessary, as significant difficulty has been 
encountered when attempting to obtain convergence in networks simulated with 128-tap 
potentiometers. The number of potentiometers per chip should be as high as possible, as 
this dramatically reduces both the programming time of the network and the number of 
components, traces, and vias required on the final PCB. However, cost becomes somewhat 
prohibitive as the potentiometer count increases, and it is often difficult to find 4 or more 
potentiometers on a chip without sacrificing some other characteristic, such as affordability 
or tap count. Finally, the total resistance of the potentiometer should be minimized to a 
reasonable degree to avoid signal distortion. Because each potentiometer is functioning as 
a voltage divider between a positive and negative voltage on each end of the device with 
the wiper selecting the dividing point, it is easily possible for the buffering, inverting, and 
summing amplifier hardware to pull a non-negligible amount of current from either the 
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positive or negative end of the potentiometer, introducing significant aliasing in the actual 
output voltage of the potentiometer and causing a breakdown of the ideally linear behavior 
of voltage as a function of wiper position. However, it is possible to use larger values for 
the potentiometers by buffering and inverting the output of each potentiometer with op 
amps with very low input bias currents, minimizing the current draw from the 
potentiometers and ensuing voltage skew, though this is a fairly hardware-intensive 
solution. 

 Potentiometer Selection 
Since SPI communication and a high tap count are effectively mandatory, there is not a 
significant amount of room left for potentiometer selection. While elimination of the 
EEPROM (or equivalent) requirement would broaden the range, it is more of a last resort 
decision than a mere tradeoff. Despite these constraints, a few viable candidates were found 
which fall within the desired boundaries given for the network’s potentiometers. 

 
The first candidate observed was Microchip’s MCP44XX series. For early prototyping and 
testing, the MCP4441 variant of this device series was used. The MCP4441 is a 10 kΩ, 
quad-potentiometer I2C chip with 129 taps and onboard EEPROM; a variant with 257 taps, 
the MCP4461, is also available in this series. The operating range of the EEPROM variants 
is 2.7 to 5.5 V, with limited operation down to 1.8 V possible. The devices are available in 
20-pin TSSOP and 4x4 QFN packages at a reasonable price of about $1.90, or around $.48 
per potentiometer, for the MCP4461. The relative ease of placement of the TSSOP package 
allows for easy PCB integration, but the lack of a through-hole variant necessitates the use 
of breakout boards to perform breadboard testing. The device’s use in this project is 
severely handicapped by its use of the I2C protocol, since the parallel nature of I2C devices 
is not practical for even small networks. Consequently, its use was limited to use in 
transitioning the early neuron prototypes from analog to digital potentiometers, and was 
not used beyond this point. 

 
The SPI equivalent series of these devices is the MCP43XX series. Due to the satisfactory 
behavior observed during early testing with the MCP4441 and the similarity of the two 
series, the MCP43XX series was examined as a candidate for surface-mount PCB 
implementations. At an identical price to the MCP4461, the MCP4361 sports a price of 
around $.48 per 256-tap potentiometer, even better than the price of many 128-tap 
potentiometers available for purchase. Additionally, the fact that the device is a quad-
potentiometer chip instead of a dual-potentiometer chip like most of the other candidates 
is advantageous when dealing with PCB routing and device layout, as it halves the number 
of chips required for the network’s synapses. While the MCP4361 is only produced in 20-
pin TSSOP and 4x4 QFN packages, precluding easy breadboard testing, the availability of 
the TSSOP package makes it a very attractive choice for later surface mount PCB design. 
However, a critical shortcoming of the MCP43XX series is that it does not support daisy 
chaining. Since the ability to daisy chain potentiometers dramatically simplifies the board 
routing and device layout, it is a fairly serious endeavor to control dozens or hundreds of 
devices without the ability to operate them serially. 
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The next potentiometer candidate is Texas Instruments’ TPL0202. The TPL0202 is a 10 
kΩ dual-potentiometer SPI chip with 256 taps and onboard EEPROM. The device has an 
operating range of 2.7 to 5.5 V and is produced in a 4x4 QFN package. Aside from the sole 
availability in a QFN package, which is difficult to solder, this device meets the technical 
requirements of this project. One of the primary non-technical drawbacks to this device is 
that, due to its sole availability in a dual-potentiometer package, the cost per potentiometer 
is relatively high at around $.92, almost double that of the MCP4461. The 4x4 QFN 
package also complicates routing and soldering, and the doubled number of chips 
significantly increases the overall footprint and design complexity of the network. 
Additionally, since QFN packages are difficult to solder without a screen, it is difficult to 
even attach the device to a breakout board for breadboard performance testing. Finally, as 
with the MCP43XX series, daisy chaining is not supported by the TPL0202, greatly 
limiting its usefulness. As a result, the TPL0202 was not chosen for this project. 

 
Another candidate is the MCP42010, a 10 kΩ dual-potentiometer device produced by 
Microchip. The MCP42010 is a 256 tap SPI chip produced in 14-pin PDIP, SOIC, and 
TSSOP packages. A significant difference between the MCP42010 and the other 
candidates is the lack of EEPROM on the device; while this is not a disqualifying factor, it 
is a significant complication as it would force the network to be reprogrammed after each 
power cycle. Additionally, the relatively high price of around $1.00 per potentiometer is 
one of the highest prices of the potential candidates, which is a significant hurdle 
considering hundreds of potentiometers would be required for even a relatively small 
network. However, the availability of the device in a PDIP package makes it an attractive 
choice for breadboard testing and for early through-hole PCB design, as in the 4-4-3 test 
network. Importantly, the MCP42XXX series supports SPI daisy chaining, greatly 
simplifying the routing and external hardware and logic required to operate the network. 
Consequently, the MCP42010’s PDIP variant was chosen for use in the through-hole PCBs 
of the 4-4-3 test network, and the TSSOP variant is a good choice for later surface mount 
implementations. 
 
Finally, Analog Devices’ AD5204 was considered. The AD5204 is a 256 tap quad-
potentiometer SPI chip which is available in 10 kΩ, 50 kΩ, and 100 kΩ varieties. The 
device is produced in SOIC, TSSOP, and LFCSP packages, complicating breadboard 
testing, though the TSSOP is an ideal choice for surface mount layouts. While the 
resistance tolerances are 30% versus the standard 20% for most digital potentiometers, this 
can be minimized as discussed in the “Potentiometer Considerations” subsection. Because 
the AD5204 contains 4 potentiometers per chip instead of 2 and supports daisy chaining, 
it requires half of the overall footprint of the MCP42010 at approximately the same cost 
per potentiometer. Because this simplifies routing and reduces the overall size of the 
network, the AD5204 is a likely choice for the final network’s potentiometers. 
 
Because there is a significant amount of overlap among the potentiometer candidates and 
a fairly wide range of factors to consider, it is helpful to summarize both the technical and 
logistical considerations of the parts to simplify the decision process and make 
comparisons easier. These summaries are provided in Table 3.2 and Table 3.3. 
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Device/series Manufacturer Resistances Tolerance Tap counts 
MCP44XX Microchip 5 kΩ, 10 kΩ, 50 

kΩ, 100 kΩ 
±20% 129, 257 

MCP43XX Microchip 5 kΩ, 10 kΩ, 50 
kΩ, 100 kΩ 

±20% 129, 257 

MCP42XXX Microchip 10 kΩ, 50 kΩ, 
100 kΩ 

±20% 256 

TPL0202 Texas 
Instruments 

10 kΩ ±20% 256 

AD5204 Analog Devices 10 kΩ, 50 kΩ, 
100 kΩ 

±30% 256 

Table 3.2: Potentiometer Technical Consideration Summary 

Device/series Pots. per chip Price per pot. Protocol SPI daisy chaining? 
MCP44XX 4 $.30 I2C N/A 
MCP43XX 4 $.40 SPI No 

MCP42XXX 2 $.86 SPI Yes 
TPL0202 2 $.78 SPI No 

Table 3.3: Potentiometer Logistical Consideration Summary 

The range of values for each device series is provided, where applicable; prices per 
potentiometer are based on present prices from Mouser assuming an order of 100 
potentiometers. One of the most striking differences is in price between the 
MCP43XX/44XX series and the other candidate devices, at a difference of more than 2-
to-1; however, neither device is capable of SPI daisy chaining, indicating there is clearly a 
premium on the shift register architecture necessary to allow for daisy chaining. While cost 
is a fairly high priority considering the  The difference between the top two candidates, the 
MCP42XXX series and the AD5204, is minimal; a price difference of only 1 cent separates 
the two. However, the higher potentiometer count per chip for the AD5204 more than 
offsets the higher tolerances, the effects of which can be minimized. Consequently, the 
AD5204 is clearly the best choice once all factors are brought into consideration. 
 

 Digital Potentiometer Controller   
The controller for our digital potentiometers, and all other components that need digital 
data inputs to function, has a few requirements to be considered ideal. It needs to have a 
floating point hardware unit, at least 7 analog inputs with atleast 12 bit ADC (analog to 
digital converter) resolution, and SPI (serial peripheral interface) and I2C (inter-integrated 
circuit) communication is preferred. It would also require a minimum of 10 GPIO pins, 
and a C compiler to handle the programming. Some microcontrollers that are being 
considered are the Teensy 3.5 Development Board, the TIVA C Series TM4C1294 
Launchpad and the STM32 Nucleo-64 development board with STM32F030R8 MCU. 
Each device will be discussed and analyzed in the following paragraphs of this section. 

The Teensy 3.5 Development Board would be a solid choice in theory, as it meets all of 
the necessary requirements to control our network. It has worked successfully for basic 
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prototyping of the overall network as it was readily available to us during prototyping of 
the smaller scale network. The Teensy 3.5 Development Board has a 120 MHz ARM 
Cortex-M4 with a floating point hardware unit, digital input/output pins with 5 volts DC 
tolerance, and twenty five analog inputs with two 13-bit resolution ADCs. The CPU on 
board will support C programming language.  For communication, the board include three 
serial peripheral interface ports and three inter-integrated circuit ports. The development 
board also require 3.3 to 6 volts DC to operate, which fits within the bounds of the supply 
voltage requirements for the operational amplifiers and digital potentiometers being used. 
With a total of 62 digital input/output pins, there will be more than enough pins to work 
with if this device is to be implemented. The Teensy 3.5 Development Board is 
manufactured by PJRC, and can be obtained on digikey.com. The Teensy 3.5 Development 
Board costs $31.25 which is affordable and within our budget. 

The TIVA C Series TM4C1294 Launchpad is the second device being considered to 
control the entirety of our network. The Launchpad has a 120MHz 32-bit ARM Cortex-
M4 CPU on board that will support C programming language. Other features include 
eleven GPIO pins, serial peripheral interface and inter-integrated circuit communication, 
eight analog input pins, and two 12-bit resolution analog to digital converters. The device 
can use a supply voltage between 3.3 and 5 volts DC to operate which fits within the supply 
voltage bounds of all operational amplifiers and digital potentiometers being used  in the 
network. This is a convenience that is not necessary, but will optimize power distribution 
of the network. The TIVA C Series TM4C1294 Launchpad is manufactured by Texas 
Instruments and can be ordered online from ti.com. The TIVA C Series TM4C1294 
Launchpad costs $19.99, which is also within our budget, but is cheaper than the Teensy 
3.5 Development Board. The approximately twelve dollar difference is not significant 
enough to value the cost of the TIVA C Series TM4C1294 Launchpad over the Teensy 3.5 
Development Board so both controllers are still to be considered. 

The final microcontroller being considered is the STM32 Nucleo-64 development board 
with STM32F030R8 MCU. On the board is an ARM Cortex M4 32-bit STM32F401RET6 
microcontroller, which will suffice as a CPU as it is compatible with C programming 
language. The STM32 Nucleo-64 development board also has a floating point hardware 
unit and six analog inputs. Seven analog inputs is preferable, but the STM32 Nucleo-64 
development board is compatible with Arduino boards which can be used to extend input 
availability. The controller also has three serial peripheral interface ports and three inter-
integrated circuit ports which satisfy our digital communication needs. Another included 
feature is the 12-bit resolution analog to digital converter. The STM32 Nucleo-64 
development board requires 3.3 to 5 volts DC to operate which fits the supply voltage 
bounds of the other active components that make up the network. The STM32 Nucleo-64 
development board is manufactured by STMicroelectronics can be obtained via online 
order from st.com. The price of the STM32 Nucleo-64 development board is a mere $13 
when compared to that of the Teensy 3.5 Development Board and the TIVA C Series 
TM4C1294 Launchpad, but the price is still not our main concern. Price and 
supplier/manufacturer details for each device are provided in Table 3.4. 
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Device Manufacturer Price 
Teensy 3.5 Development 

Board 
PJRC $31.25 

TIVA C Series TM4C1294 
Launchpad 

Texas Instruments $19.99 

STM32 Nucleo-64 
Development Board 

STMicroelectronics $13.00 

Table 3.4: Comparison of Digital Potentiometer Controller Devices 

For essential prototyping of our intermediate network, we decided to implement a Teensy 
3.5 Development Board to communicate with the potentiometers using serial peripheral 
interface (SPI) communication. This controller provides us with all of the necessary digital 
outputs for communication while only using 3.3 volts DC to power the device. These 
necessary digital outputs include: a high frequency clock signal, serial communication 
output and chip select output. The pin out for the Teensy 3.5 Development Board can be 
found in the appendix in Figure X.X. A picture of the physical device can be seen below 
in Figure 3.11. 

 

Figure 3.11: Teensy 3.5 Development Board 

 Communication Protocols 
The long-running universal asynchronous receiver-transmitter (UART) standard has been 
of some interest for embedded communications for this project due to its ubiquity and 
simplicity. However, while it may be useful for controlling an output indicator or for 
bidirectional communication with the network with an external source, it is unlikely to be 
useful for communications among the digital devices of the network itself, as these chips 
are generally designed for I2C or SPI communication. Thus, UART communication is of 
limited utility for this project outside of controlling certain peripherals. 
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Inter-Integrated Circuit (I2C) serial communication is a widespread and extremely useful 
serial communication protocol for embedded systems and device control. Unlike UART, 
which communicates via a single serial line, I2C communication buses contain two lines: 
a clock line and a data line. As multiple devices are connected to the same data line, each 
command begins with an address so that the correct device responds to the given command. 
As multiple devices can be connected in parallel to the same serial data line with 
multiplexing inherent in the protocol, I2C is an attractive choice for communications with 
the potentiometers and other devices in the network. However, as each device requires its 
own slave address, there is a relatively low upper limit on the number of devices which can 
be connected to a single data line. Because of the scale of this project, this necessarily 
indicates that either additional external multiplexing is necessary on the line or that 
multiple data lines must be used. Because most of the potentiometer chips observed only 
have two address bits, allowing a total of 4 devices to be operated simultaneously on one 
data line, this could potentially mean dozens of separate I2C buses that would need to be 
separately activated when necessary, greatly complicating both the training algorithm and 
the external hardware for the circuit. Thus, I2C is not a practical choice for controlling 
large arrays of devices that do not have a convenient method for assigning unique slave-
device addresses. 

Serial-Peripheral Interface (SPI) serial communication is similar to I2C communication, 
but with a few key differences. SPI communication uses three wires: a chip select line, a 
clock line, and a data line. Chips are activated when their chip select pin is pulled low, 
indicating that they should begin reading from the data line. However, unlike with I2C 
devices, every device has both a serial input and a serial output pin. If the chip select of the 
devices are all connected to the same chip select line from the microcontroller and the serial 
output of each device is connected to the serial input pin of the next device in line, it is 
possible to “daisy-chain” a significant number of devices together, causing them to 
function as an extremely large shift register. Each time a write command is given to the 
network, each device writes its contents to the next device in line; this process allows a 
single microcontroller to potentially program dozens of chips with a single data line and 
no additional external hardware for multiplexing.  

Additionally, because each device is only responsible for driving the device after it, there 
is no significant risk of data attenuation as the size of the network grows. As long as the 
clock and chip select signals can be maintained, the upper limit of daisy-chaining is fairly 
arbitrary. Because a single controller can simply output the write commands and data in 
the order they appear in the network, from farthest to nearest, there is no significant penalty 
to speed compared to another approach such as multiplexed I2C communication. Thus, SPI 
is by far the ideal choice for controlling a large array of digital potentiometers due to its 
low footprint and reliable operation.  

A sample SPI master-slave configuration, similar that which will be used for 
communication with the digital potentiometer controller and the potentiometers is shown 
in Figure 12. It should be noted that this is a parallel configuration; in a daisy-chain 
configuration, the SDOx pin of each slave would be connected to the SDIx pin of the 
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following slave, with only a single I/O connection from the SPI master to the first slave’s 
SDIx pin. 

 

 

Figure 3.10 SPI Master Slave Configuration Sample. Reproduction Permission requested 
from https://electrosome.com/ 

 Voltage Isolation for External Communication 
Electronic communication networks are based on the transmission of information as an 
electrical signal that is propagated through a circuit. In many small-scale communication 
networks, the different devices that are attached to the network will at least have their 
power supplies tied to a common ground, which facilitates the creation of network circuits. 

For TACOCAT’s communication network, the microcontroller device that controls the 
low-level procedures for training and prediction operations operates on the same split-rail 
power supply as the analog neural network itself. While the microcontroller and other 
digital components in the neural network such as the digital potentiometer control circuits 
share a common ground connection, the microcontroller is also expected to communicate 
with a PC or mobile device that sends user-input data and may receive results or meta-data 
for performance analysis. This “user-interface device” is unlikely to be powered by the 
same split-rail power supply as the neural network, which has a nominal maximum voltage 
of 3.3V between the positive and negative rails. 

One way to establish communication links between devices with different ground levels is 
to connect two device’s network circuits together through a pair of matching nodes that are 
separated by an insulating layer, but able to communicate with each other using a signal 
transmission medium that does not require an electrical connection. Assuming that I2C or 
an I2C-derived protocol will be used for external communication, the link needs to provide 
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at least one bi-directional channel (for serial data) and one unidirectional channel (for the 
serial clock). Because the I2C slave device might employ clock-stretching, we will only 
consider devices that support bi-directional communication for the clock signal as well as 
the data signal. 

Optocoupler devices, containing a light-emitting device and a light-dependent resistance, 
have been used to perform this type of isolation in the past, but modern digital isolator 
designs have largely taken their place. These digital isolators use a variety of 
electromagnetic waves or fields to transmit data without a completed electrical circuit. 
Table 3.5 shows a comparison of several different digital isolators that are marketed 
specifically for use with I2C-based communication links. 

Device Manufacturer Min/Max 
Supply 
Voltage  

Maximum 
Clock Rate 

Isolation 
Technology 

Price 

ADUM1250 Analog 
Devices 

3.00 - 5.5 V 1 MHz Magnetic 
Transformer 

$5.55 

MAX14933 Maxim 2.25 - 5.5 V 1.7 MHz Not Stated $3.00 
ISO1540 Texas 

Instruments 
3.00 - 5.5 V 1 MHz Capacitive $4.66 

SI8400 Silicon Labs 3.00 - 5.5 V 1.7 MHz Radio 
Frequency 

$3.09 

Table 3.5: Comparison of Digital Isolator Devices 

The datasheets for all of the devices listed in the comparison table recommend adding a 
small capacitor across the power-supply rails on each side of the chip, but no other 
additional components are typically required. Considering that the expected clock rate for 
external communications is not expected to exceed 1 MHz, all of the devices that were 
considered should meet the specifications for maximum clock rate. All devices should also 
be compliant with the expected supply voltages of 3.3V on each side of the IC. 

There may be other issues related to performance, reliability, and efficiency that 
differentiate the devices, but they are not readily apparent from looking at the device 
datasheets. Fortunately, because the different devices can easily be substituted for one 
another, prototype testing can be conducted conveniently with several different device 
models to see if there are any tradeoffs between price and operating characteristics. 

 Power Distribution and Regulation  
After selecting our microcontroller used for communication with the digital 
potentiometers, it occurred to us that we should apply a voltage regulator to protect our 
microcontroller and the circuit itself. Based on which operational amplifier is used, we may 
have to distribute supply power differently. If the MCP6274 operational amplifier, 
TL974IN operational amplifier, or MCP6294IPWR operational amplifier are going to be 
used, then the power should be able to run off the same voltage lines that power the digital 
potentiometers and microcontroller. Since the required supply voltage is within the bounds 
of the supply voltage required for the digital potentiometers and microcontroller this would 
be convenient. The TL084 operational amplifiers require a minimum of plus and minus 5 
volts DC, which does not match with the voltage required to power the digital 
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potentiometers and microcontroller. In this case, a dual power supply voltage regulator 
must be implemented to take the –1.66 Volts DC and +1.66 Volts DC lines and boost them 
to – 5 Volts DC and + 5 Volts DC. This is an option, but can create issues when designing 
the printed circuit board of a singular neuron circuit. Instead of using three voltage planes, 
plus and minus 1.66 Volts DC and ground, there would be five. The addition of the plus 
and minus 5 Volts DC creates two more voltage bus layers that will be needed. 

Since TL084 operational amplifiers are readily available to us, our group decided to do 
some breadboard prototyping with these integrated circuits in the mean time. Since a dual 
power supply voltage regulator was essential for proper power distribution, the LM317 & 
LM337 precision voltage regulator was decided upon for prototyping.  This voltage 
regulator fits our desired input and output voltage ranges, and is highly affordable. The 
voltage regulator is being used as a dual power supply to regulate our bipolar power 
configuration. It can be seen in Figure 3.11. A –1.66 V DC to +1.66V DC voltage range 
will be applied to the digital potentiometers and the Teensy Development Board to power 
the devices. The final components that need power to operate are the TL084 operational 
amplifiers mentioned above. For these amplifiers, we will be using -5 V DC to +5 V DC 
rail power supplies. Our overall power distribution is routed as follows. Starting with one 
-5 V DC bus and one +5 V DC bus from a DC Voltage power supply, wires will be jumped 
to the plus and minus rail terminals of each operational amplifier.  Then, running the +5 V 
DC and -5 V DC in to our dual power supply from the DC voltage power supply. This 
converts the plus and minus 5 V DC in to a respective +1.66 V DC and - 1.66 V DC. These 
plus and minus 1.66 volts DC voltages are then run in to their own bus which we can 
distribute power to the Teensy 3.5 Board and all of the digital potentiometers from. 

 

Figure 3.11: LM317 & LM337 Precision Voltage Regulator 
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In the future, different operational amplifiers may be implemented, which will require us 
to reroute our power distribution in a simpler fashion. In this case, the amplifiers will be 
chosen to match the rail to rail voltage of the digital potentiometers and Teensy 3.5 
Development Board. This will make the printed circuit board design much simpler since 
there will not be two different voltage planes to be considered. After testing with the TL084 
and acquiring promising results, we must make sure that introducing new operational 
amplifiers to not degrade previously obtained results. If possible, it would be ideal to 
implement operational amplifiers with lesser supply voltage requirements while still 
providing the same promising results of our system. 

 Programming Languages 
The codebase for this project was divided into sections that are run on two separate 
platforms for different purposes: one is a simulation/training and user-interface program 
group that runs on a minimal PC platform, and the other is firmware that runs on a ARM 
microcontroller platform. 

Python was chosen as the programming language for the simulation/training software due 
to several of its qualities that also make it popular as a language for other research in 
machine learning. Python has strong support for vector/matrix math operations, which is 
provided by the NumPy library. Python also supports functional programming constructs 
such as list comprehensions and lambda functions that simplify the manipulation of large 
data sets. 

C/C++ was chosen as the programming language group for the implementation of firmware 
functionality due to its efficiency and reliability. The option of compiling Python code into 
binary files that could be executed on a microcontroller, via the MicroPython project’s 
code library, was considered, heavy reliance on a toolchain that is still in the development 
stage seemed like too big of a risk to take in the firmware design plan. 

The C/C++ toolchain for ARM microcontrollers is mature and comes with few limitations 
relative to the C/C++ toolchains for common personal-computer CPU architectures. 

  Handwritten Character Data Set 
Recognition of handwritten numeric characters in the Modified NIST (MNIST) data set is 
a common benchmark for machine-learning algorithms. This data set, described in LeCun 
et al., consists of image samples of handwritten numeric characters from ‘0’ to ‘9’ that 
were provided by the U.S. National Institute of Standards and Technology. Roughly half 
of the samples in the data set were gathered from U.S. Census Bureau employees, and the 
remainder of the data set was collected from samples submitted by high school students.  

The MNIST set is divided into two distinct subsets, one intended for training and another 
for testing. Images were cropped from the original data at a size of 20 x 20 pixels, and these 
images were centered in 28 x 28-pixel squares. The images contain 8-bit pixel values 
representing grayscale levels ranging from 0 to 255. 

In this work, we chose to use the Extended MNIST (EMNIST) data set, which is a close 
relative of MNIST, is described in Cohen et al. This dataset follows the same sample 
formatting and file structures as MNIST, and while MNIST contains only numeral 
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characters, EMNIST contains numeral and alphabetic characters. Like MNIST, EMNIST 
is also divided into distinct training and testing subsets. 

 Diode Component Selection 
Inside the artificial neuron circuit configuration that has been designed for the MLP neural 
network, the last activation function stage operational amplifier needs to implement the 
sigmoid activation function. This is achieved by utilizing a rectifier diode bridge on the 
feedback of the operational amplifier. Diodes are used for waveform manipulation in the 
way of voltage rectifiers, clamping and clipping circuits. The purpose of the diodes in this 
circuit would be to rectify the weighted and summed inputs from the summing amplifier 
circuit and clip the extremes of the output waveform.  

To choose an appropriate diode for this application, a range of voltage for which to clip 
was first needed. Since the range of output voltages for the multi-layer perceptron needed 
is -1.65V to +1.65V, a diode with a 2V turn-on voltage would be enough if the circuit was 
designed with diodes both in forward and reverse current directions on the feedback loop 
of the activation function operational amplifier. There are several options for types of 
diodes to use for this purpose i.e. Zener diodes, rectifier diodes, germanium or silicon 
diodes, PN diodes, Schottky diodes, etc.  

The first possible type of diode to choose from, Zener diodes. These types of diodes are 
typically used for reliable voltage reference applications. They also have a higher turn on 
voltage than a regular diode would, somewhere in the range of 5V, which would be too 
large for the activation function stage of our neural network circuit design. Furthermore, to 
turn on the diode would require it to be reverse biased. This would be inconsequential to 
the application, but it would require a different configuration than the one designed in the 
circuit schematic of the 2x2 network design.  

Schottky diodes would be another option of diodes from which to choose from for the 
signal rectification of the activation function operation amplifier circuit. However, 
Schottky diodes tend to have a much lower turn-on voltage than that of PN junction diodes. 
They have forward voltage somewhere in the range of 0.15V to 0.4V as opposed to a typical 
0.6-0.7V forward voltage of a PN junction diode. This would mean that many would be 
required to be placed in series for the rectifier bridge of the activation function operation 
amplifier circuit and would be less efficient than finding a more appropriate singular diode 
with a larger forward voltage for this project’s application.  

Small signal diodes offer perhaps the smallest package size while offering a fast switching 
rectification with low leakage and high reliability. Specifically, the 1N4148 small signal 
diode from ON Semiconductor could be used for the rectifying diode bridge of the 
activation function circuit design. It would offer an affordable option with a 1V forward 
voltage, despite it having a low acceptable current of 200mA. At around $0.10 per unit, it’s 
a good contender for this application as it would over a reasonable 0.2W maximum power 
dissipation, and fast signal switching speed. However, rectifier diodes from Vishay 
Semiconductor of the 1N400X family would offer a more affordable price per unit, with a 
higher power dissipation capability, while having a lower signal switching speed.  

The final and most appropriate diode type for the activation function circuit is a rectifier 
PN junction diode. This is because of its use of only allowing current to conduct in one 
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direction, and typical forward voltage of around 1V. For the activation function circuit, a 
1V forward voltage rectifier diode would call for the need of at least 2 identical diodes to 
be connected in series in both forward and reverse directions on the feedback loop of the 
operational amplifier to achieve positive and negative voltage rectification.  

Many rectifier diodes with 1V forward voltage exist in the electronics market, though they 
have different maximum forward-bias currents. For this project’s purposes, a 1-ampere 
rated rectifier diode would be more than enough considering the low current draw of the 
network. The 1N400x family of 1-ampere general-purpose silicon rectifier diodes are 
commonly used for AC signal rectification for applications similar to the clipping 
performed in this project. Compared to the 3-ampere family counterpart, the 1N540x, they 
are less expensive due to their lower heat dissipation requirements and more appropriate 
for the much lower expected currents in the activation function’s analog circuit.  

Finally, the 1N4001 rectifier diode was chosen for its price trade-off compared to the 3A 
counterpart, and its ease of integration with this project’s activation function circuit. 
Despite it having a lower switching speed than the small signal diodes of the 1N4148 
variety, it is a specification that is traded off for a higher power dissipation ability, since 
that is a more concerning specification. A summary of all diodes considered for the 
activation function operational amplifier circuit can be found in Table 3.6.  

 

Device Manufacturer Forward 
Voltage  

Forward 
Current 

Diode 
Type 

Starting 
Price per 

Unit 
1N4001 Vishay 

Semiconductors 
1.1V 1.0A Rectifier  $0.07 

1N5400 Vishay 
Semiconductors 

1.2V 3.0A Rectifier $0.10  

1N5819 Vishay 
Semiconductors 

0.55V 1A Schottky 
Rectifier 

$0.37 

1N4733A Micro 
Commercial 
Components 

5.1V 200mA Zener  $0.32 

1N4148 ON 
Semiconductor 

1.0V 300mA Signal 
Fast- 

Switching  

$0.10 

Table 3.6: Diode Component Selection Technical/Price Comparison 

 Shift Register Component Selection  
Shift register IC will be used to provide the input data to the input layer of the final MLP 
neural network circuit design. This is being done to avoid having a large number of parallel 
traces being run from the microcontroller that processes the input image data, to the 
synapse circuits of the neurons from the input layer. To overcome this problem, serial-input 
serial-output shift registers will be used. 
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Serial-input (SI) shift registers benefit from the fact that they can be connected to peripheral 
circuits via the serial communication protocols used. In the case of the final circuit design, 
SPI serial bus and clock signal from the microcontroller chosen will be used to feed the 
input pixel data to the necessary CMOS hex inverter and buffer chips, which will in turn 
set the voltage levels of the PB0 and PA0 pins of the digital potentiometers. To integrate 
the SI Shift registers, when considering the 25-input final network design, at least 2 16-bit 
SI registers or 4 8-bit SI shift registers must be utilized.  

There are some technical specifications to be taken into account when choosing the right 
shift register for this application. The first of which, is the number of bits desired for the 
shift register’s storage register. A larger number of bits allowed in the storage register will 
call for a lesser number of chips for the input layer of the neural network, as the number of 
chips needed is directly related to the number of input pixels obtained from the input image. 
Therefore, careful price consideration for the shift register chip needs to be taken as a lower 
total number of chips needed would benefit the cost of the design if it can be done using a 
16-bit registers over 8-bit registers. 

As previously mentioned, the SI shift register IC is the main shift register type being 
considered for this application. This is due to the parallel-input shift register types being 
obsolete for the input layer design of the final neural network circuit. The purpose of using 
the shift registers for this design is to avoid having a number of parallel input traces to the 
input layer of the network equal to the number of inputs from the pixel data. If the input is 
of large pixel quantity, it would be more efficient use of PCB space to allow the serial bus 
of the SPI interface to feed the input data to the input layer of the network. Having a 
parallel-input shift register would defeat this purpose as it would encounter the same 
problem with the number of traces. Furthermore, having parallel-input shift register would 
mean that the same number of traces would be needed as not having obtained the input data 
serially would in the first place, making this option obsolete. Thus, the SI shift register type 
is optimal for the input layer.  

Next, the communication protocols available to the shift register chip need to be 
considered. Ideally, a shift register with SPI communication capabilities would be the 
choice for the input layer of the final circuit design, over one with I2C communication. This 
is due to the rest of the circuit design utilizing SPI communication buses instead of I2C 
busses, as the communication protocol used by the digital potentiometers of choice for the 
weights of the synapses use SPI communication. Thus, the data in the serial data bus will 
be providing the serial input bits to the chosen shift register IC.  

Supply voltage ranges for the shift register is perhaps the most important technical 
consideration for choosing the right IC for input layer of the final neural network design. 
The voltage range needed for the inputs to the digital potentiometers will be directly 
affected by the logic high and logic low levels used by the shift register chip. Several shift 
register IC’s use high and low logic levels that are proportional to the supply voltage it is 
provided with. This means that carefully choosing one with the right built in hysteresis 
between high and low logic levels is needed to find one that will fit the input voltage range 
needed of -1.65V to +1.65V to the digital potentiometers.  

Certain shift register options in the market have the benefit of including a chip select pin, 
which can disable the shift register clock and the storage register clock, placing the serial 
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data read in a high impedance state. The serial data input and read pin provides the ability 
to read the stored data in the storage register of the chip, which allows for ease of 
troubleshooting the device, since reading the data stored can be done in a recirculating 
loop. These types of shift registers have four basic modes of operation: 

 Hold (no operation performed) 
 Write (via serial input) 
 Read (via serial output) 
 Load (via the serial input data, stored in parallel to the register) 

This capability is a reason to be cautious, however, as chips with this configuration can 
result in a false clocking of the shift register data via the chip select line, if it goes logic-
low. Typical maximum clock rate should also be taken into account, as the serial data clock 
rate would be driven by the clock edges of the microcontroller used to process the input 
pixel data. A detailed summary of technical considerations for candidate SISO shift register 
chips from different manufacturers can be seen in Table 3.7.  

It should be noted that the low and high voltage levels of the devices chosen above are 
measured with respect to the ground terminal of the network the device is to be included 
in, meaning that the high and low logic levels can be adjusted by supplying the ground and 
VCC terminals of the shift register chips with an appropriate voltage level range to match 
the range needed for the inputs to the digital potentiometer weights of the input layer.  

Device Manufacturer Low Level 
Output / 

High Level 
Output 

Storage 
Register 

Size 

Nominal 
Supply 
Voltage 

Starting 
Price 
per 

Unit 
TPIC2810 Texas 

Instruments 
0.3VCC  
0.5VCC 

8-bit 3V ~ 
5.5V 

$1.56 

MC74HC165A ON 
Semiconductor 

0.1V - 0.4V 
1.9V - 5.9V 

8-bit 2V ~ 6V $0.099 

SN74LS165AD Texas 
Instrument 

0.2V - 0.4V 
2.4V - 3.4V 

16-bit 5V $0.74 

74HC165D Nexperia 0.1V - 0.4V 
5.2V - 5.81V  

8-bit 2V ~ 6V $0.37 

74HC595 Texas 
Instruments 

0.002V – 
0.4V 

1.9V – 5.8V 

8-bit 2V ~ 6V $0.15 

Table 3.7: Shift Register Component Selection Technical/Price Comparison 

 CMOX Hex Inverter Component Selection 
The modified design for the input layer of final neural network design, containing the SISO 
shift register chip, calls for a way to invert the input digital signals to the PB0 and PA0 
pins of the digital potentiometer, such that an appropriate range of weight voltages can be 
achieved. To complete this task, there needs to be a complementary voltage to both 
aforementioned pins of the digital potentiometer. The use of a CMOS hex inverter will 
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allow for the complement of the corresponding digital logic voltage level input to the 
neurons of the input layer.  

CMOS hex inverters consist of 6 input logic-level input voltages and 6 logic-level inverted 
output voltages. There are several important technical considerations for choosing an 
appropriate CMOS hex inverter for this application, first of which, is the supply voltage. 
To keep a simple and compact PCB and final neural network circuit design, it is desirable 
to keep the supply voltage of the peripheral circuit IC’s in the input layer of the neural 
network to run off of the same supply voltage line (VCC) as the other components of the 
network. This would mean that it would be optimal to try to choose a hex inverter chip 
with a supply voltage in the range of about 5V, if it is to be kept at the same rail voltages 
as the operation amplifiers in the network, or 3.3V if it is to be kept at the same voltage 
level as the digital potentiometers of the network.  

CMOS inverter chips are sometimes sold as CMOS gate packages that don’t always include 
hex inverters (6 inverter circuits). These are not the ideal IC to select for the application of 
this circuit, as it would mean an inefficient use of PCB space. A larger quantity of hex 
inverter chips would be needed to complete the task of inverting all the digital logic-level 
inputs to the synapses of the input layer. CMOS hex inverters are ensured to include 6 pairs 
of input and complementary (inverted) output voltage at logic-level high when the input is 
triggered.  

The minimum edge rate of the hex inverter chips would be an important technical 
specification to consider if the fast switching voltage speed was needed. For example, the 
74AC04 hex inverter chip from Fairchild Semiconductor offers a minimum input edge rate 
of ~125mV/ns. At the expected edge clock rate of 20MHz, the minimum edge rate of the 
chip would certainly be met, and thus, it isn’t going to be a limiting factor for choosing an 
appropriate hex inverter for the input layer, as the serial data would meet the requirement. 

A survey of available hex inverters is provided in Table 3.8. 

Device Manufacturer High Level 
Output 
Voltage 

Nominal Supply 
Voltage 

Starting 
Price per 

Unit 
74LS04 Renesas 0.4V – 2.7V 4.75V – 5.25V $0.69 

CD4069UBE Texas 
Instruments 

4.95V – 15V 3 – 18V $0.28 

74HCT04 Texas 
Instruments 

0.1V – 4.4V 4.5 – 5.5V $0.44 

74AC04 Fairchild 
Semiconductor 

2.9V – 4.86V -0.5V – 7V $0.19 

Table 3.8: CMOS Hex Inverter Technical Considerations Summary 

The high output voltage level range of the hex inverter chips is perhaps the most significant 
technical consideration for choosing an appropriate component for the synapse circuit. 
Since the voltage levels on the PB0 and PA0 pins of the digital potentiometers in the 
weighted synapses of the input layer have a minimum voltage level requirement of -1.65V 
to +1.65V, the high level output voltage range capability of the hex inverter chip chosen 
must take this into account. Upon analysis of the data shown in Table 3.8, the Texas 
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Instruments 74HCT04 Hex Inverter IC seems like the most appropriate choice for the input 
layer design of the final neural network. This is due to the nominal supply voltage range 
being the same as the intended supply voltage of the operational amplifiers used for the 
neurons, as well as the high level output voltage range having sufficient enough leeway to 
accommodate for the voltage range needed by the digital potentiometers of the synapses. 

 Touchscreen Interface Selection 
The way that our neural network will receive an input to recognize, is through a touchscreen 
input. Users will be able to write a letter on the touchscreen device and the neural network 
will be able to decipher what they wrote. This touchscreen interface will be connected to 
the Raspberry Pi, which will be converting the image in to a ten by ten-pixel array that 
represents the character the user intended the machine to guess. These inputs will then be 
fed in to the network for processing. Some touchscreens that are being considered for 
selection are the Raspberry Pi 10.1-inch LCD (B) Touchscreen Display Capacitive Touch 
Screen Monitor, the Raspberry Pi 7-inch HD IPS Capacitive Touch Screen Display, the 4-
inch Raspberry Pi LCD Resistive Touchscreen Monitor TFT LCD, and the 5-inch 
Raspberry Pi LCD Touchscreen Monitor TFT.  

The Raspberry Pi 10.1-inch LCD (B) Touchscreen Display has a maximum resolution of 
1280x800 and is a touchscreen that is officially supported by Raspberry Pi. This ten inch 
touchscreen interface seems to be a perfect size for our project, but the larger size comes 
with a larger cost. This interface will definitely feel the best when using, and look the best 
overall compare to the other options. Each touchscreen interfaces price will be taken in to 
consideration before purchasing. 

The Raspberry Pi 7-inch HD IPS Capacitive Touchscreen Display has a 1024x600 pixel 
maximum resolution. This will more than satisfy the needs for our neural network. It also 
has a USB interface for communication which will handle data and power signal flow. The 
seven inch touchscreen seems to also be a considerable choice for a touchscreen that is 
supported by Raspberry Pi, and this size should be fine for what we are trying to implement. 
The price of this touchscreen is less than that of the ten inch touchscreen interface while 
still being big enough to be comfortably drawn on. 

The four-inch Raspberry Pi LCD Resistive Touch Screen Monitor TFT LCD is the third 
touchscreen interface to be considered for our project. This device has a resolution of only 
480x320 when compared to the other two larger touchscreen interfaces, but this is still 
more than enough to get the job done. Since we are only considering a ten by ten pixel 
input, this should not be a concern. This is by far the cheapest component to select, but four 
inches is rather small, even tinier than most smart phones nowadays. This is a possibility, 
but probably not the best option when taking user comfort in to account. 

The five-inch Raspberry Pi LCD Touchscreen Monitor TFT is the last touchscreen 
interface device being considered for use within our project. The five inch touchscreen 
display has a maximum resolution of 800x480 which will also provide us plenty of room 
to work with. The prices of each touchscreen interface and where to obtain them can be 
found below in Table 3.9. Each of the touchscreen devices are manufactured by Raspberry 
Pi and are official products. 
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Device (Size) Supplier Price 
10 inch Newegg.com $209.99 
7 inch Digikey.com $79.00 
5 inch Wish.com $30.00 
4 inch Wish.com $15.00 

Table 3.9: Touchscreen Interface Comparison 

It is clear to see that as inches are shaved off, the price is significantly lowered. The four- 
and five-inch touchscreen interfaces are on sale at the time of this table being created, 
which explains why they are such lower cost than that of the seven-inch. The seven-inch 
screen seems to be the best choice for a comfortable yet affordable touchscreen input 
device. We have not yet implemented the touchscreen interface during prototyping but plan 
to add it to the network as we construct the final network. Ideally, users will be able to 
draw a character within the English alphabet with a stylus, and the neural network will be 
able to output which letter has been drawn. 

 Additional Component Considerations 
While most attention is directed – rightfully – towards the selection and vetting of 
components such as the operational amplifiers and digital potentiometers used in the 
network, the level of precision required for this device does not allow for broad 
assumptions of ideal behavior and minimal error. While the network’s training algorithm 
is extremely forgiving with many sources of error, it may take unreasonably long or fail to 
converge with certain training sets if error is too high. One of the largest sources of 
potential error is the inverting/non-inverting buffer pair for each input into each layer of 
the network. Assuming a worst-case scenario with 5% resistors, it is possible for the 
inverting buffer to distort the input signal by up to 10%, or 165 mV on the maximum signal 
of 1.65 V. By comparison, a 256-tap potentiometer can adjust a 1.65 V signal – or 3.3 V 
from positive to negative – by around 13 mV, or .4%. Thus, the maximum error even with 
5% tolerance resistors is equivalent to around 25 potentiometer taps, or 10% of the entire 
range of the potentiometer. In a design with multiple layers, this error may accumulate to 
the point that the network may no longer be able to converge once other sources of error 
are included. 

CMOS hex buffers are one component that could be considered for including in the input 
layer circuit of the final neural network design’s synapses. Previously, in the intermediate 
network design, analog unity-gain operational amplifier buffers were used to reduce the 
loading effect of the input voltages to the layers of the neural network. Complementary 
CMOS hex buffers could be used in the input layer of the final neural network to provide 
the PB0 and PA0 pins of the digital potentiometers with the required voltage ranges for 
synapse weight adjustment in training. Since the SIPO shift register that will provide the 
logic-level input data voltages to the CMON inverters and buffers, the same logic level 
voltage could be applied to the corresponding pin of the digital potentiometer. Thus, it isn’t 
absolutely necessary to include the CMOS hex buffer component, since the loading effect 
wouldn’t be as great when using these digital components in the input layer. However, if 
CMOS line drivers with buffer/inverter pairs in the same IC are made available, they could 
prove a more efficient use of PCB space and could be considered for including in the input 
layer’s circuit design. 
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3.5 Small-Scale Network Design 
An intermediate network design is a must when considering a final design of the magnitude 
at hand. Being able to design a smaller network that performs the same end goal will be a 
tremendous help in designing the final network since we are taking a modular approach to 
its construction. The idea in mind is that the smaller scale network will be able to 
seamlessly become the larger network after some slight modifications to input size and a 
couple other of factors. The goal is to have a smaller scaled network that can easily 
transform in to the final neural network by connecting neuron circuits together in such a 
way to realize a larger network. Since we are taking a modular approach to the construction 
of our network, this should not be too difficult. What may cause difficulty is obtaining the 
same results that our smaller scaled network is obtaining while scaling up to an exponential 
increase in components. 

 Small-Scale Network Design and Functionality 
Before the end goal of a neural network that can recognize a hand drawn character in a 5x5 
pixel array can be accomplished, an intermediate step needs to be taken. The approach 
taken in this project is to construct a simple neural network that can recognize a hand-
drawn pattern in a 2x2 pixel array. These patterns will consist of columns, rows, diagonal 
lines, single pixels, and three- or four-pixel patterns. These cases cover every possible 
combination of pixel inputs for a 2x2 network. These network dimensions were chosen 
because it is scaled down enough to make it feasible to build the constituent subsections 
on breadboards. As such, this intermediate network provides the opportunity to take 
necessary testing measurements to ensure that the 5x5 network will operate smoothly 
before designing and order a printed circuit board to officially train and test the end goal 
functionality of the final network. At the same time, it is also large enough to introduce 
some problems that may become unmanageable when scaling the network up to the final 
5x5 network, such as current and voltage fan-out, power distribution management 
problems, digital communication errors, and unwanted signal noise. Any inconsistencies 
between the intermediate and final network may be potential problems, so any significant 
problems must be addressed before scaling up to a larger network. Minimizing any 
inconsistencies is key to have the most seamless process possible when increasing to the 
complexity of the final network. 
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Figure 3.12: Small-scale prototype assembly. 

The design is effectively a scaled down version of what the final network will look like. 
Since a modular approach is being taken to constructing the total network, this should not 
be too difficult. Each printed circuit board ordered will serve as one complete neuron 
circuit, and they will be configured together as necessary to realize the network. The full 
smaller scale prototype design can be seen mounted and configured in Figure 3.12. 
Depicted are two synapse-neuron circuit boards located in the bottom center, the Teensy 
3.5 development board located in the upper middle, power supply input jacks that feed in 
to the precision voltage regulator in the top right, and the Raspberry Pi, which feeds inputs 
to the Teensy 3.5 development board, at top left. 

 Necessary Tests and Measurements 
There are many necessary tests and measurements that need to be conducted before an 
artificial neural network is brought to life. Every parameter that can be reasonably 
controlled must be intentionally chosen and measured to a tee. Some required 
measurements include the current and voltage at each node throughout the circuit to allow 
for troubleshooting when errors or unanticipated behavior occur. Testing input versus 
output transfer functions and voltage levels is also crucial when managing a large network. 
For example, if there is a voltage drop between the input and output of the summing 
amplifier stage, that is a red flag that the neuron is not functioning properly. Precise control 
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over the voltage and current levels in every portion of the device is crucial, as the network 
is sensitive to millivolts of noise. While static error can be trained around, dynamic, 
random, or intermittent noise issues will cause severe problems for the network and must 
be located and eliminated wherever possible. Additionally, since the network’s training 
relies solely on the output voltage produced by each neuron, fast and accurate 
measurements must be repeatedly made with the ADC; inconsistent measurements will 
complicate training and may result in an erroneous solution for the network. Results and 
measurements obtained will be properly recorded and documented to ensure proper 
functionality as we continue to prototype. 

 Small Scale Network Training 
Since producing a functional network on breadboards proved extremely difficult, the 
design was realized on PCBs. Since this allows for much shorter and stronger connections, 
this eliminates the signal loss issues common to the breadboard implementation and allows 
a single controller to control the entire network serially and make the necessary ADC 
readings for training. Since the SPICE simulation training and physical network training 
function in an extremely similar manner, it is not a particularly complicated endeavor to 
convert the SPICE training program into a suitable program for training the physical 
network, since the dimensions and overall training process are identical. The key difference 
is that the controller no longer needs to wait for each individual SPICE simulation to finish; 
the speed of the physical network is nearly instantaneous by comparison. Thus, within 
reason, a much higher training speed can be achieved. Even if the network struggles to 
converge and requires far more training than the simulations to reach a solution, the 
superior speed of the physical network more than offsets any difficulties. 

 Problems and Concerns for the Final Network 
There are several concerns for the functionality of the final network to be constructed. 
Maintaining high accuracy results with twenty-five or more inputs is the goal to be 
accomplished. There are several different variables that can affect our results accuracy and 
overall functionality of the network. One of these variables would be the fan-out of the 
system. Fan-out is a term that describes the maximum number of inputs we can feed for 
one output. If our current as we pass from individual neuron circuits with a modular 
approach diminishes at too quickly of a rate, this will be a problem. When the larger 
network is being tested, measurements will be taken to ensure that our current is stabilized 
throughout the entire network. This is one of the most crucial concerns for our network 
from an analog hardware perspective. Another concern would be voltage dropping across 
long traces on the printed circuit boards. This can be a voltage drop up to 15mV, which is 
the difference between several digital values on the wipers of the digital potentiometers in 
place. These values are highly important since they determine the weight that needs to be 
applied to each synapse. If the weight that’s being applied to one synapse is not what it is 
intended to be, the results can lose tremendous amounts of accuracy. The printed circuit 
board needs to be designed with intentions to avoid long traces and without a clunky spread 
of the components. Components should be placed logically to have short traces connect 
power to each integrated circuit being used in the design. The integrated circuits that draw 
power are the TL084 operational amplifiers and the MCP42010-E/P digital potentiometers. 
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This will be solved by cutting one of the PCB layers in to four different rails. Plus and 
minus 5 V DC as well as plus and minus 1.66 V DC. This will allow for logical placement 
of each integrated circuit to avoid long traces which can cause significant voltage drop.  

Besides hardware limitations, another concern is proper implementation of training the 
network. While simulations performed to date have indicated the network will function 
properly, but there are several things that could go wrong. One constant concern is that, 
because the voltage losses across the network’s traces and pathways will be non-negligible, 
the training algorithm may not be able handle signal aliasing beyond a certain threshold. 
Because the network relies on fairly precise analog voltage levels, relatively small 
inconsistencies in the network’s voltage levels can produce a dramatically changed 
network output if the training algorithm does not respond properly. While the network is 
fairly flexible and is capable of training around these deficiencies when they are relatively 
small and consistent, blindly relying on training to deal with poor design is not an 
acceptable solution, especially when other sources of error must be factored in. Intuitively, 
there is a cumulative limit to the amount of error that the network training can handle before 
there is no longer a convergent solution to the training data. 

3.6 Top-Level Design 
A top-level design for the intermediate neural network needs to be made for testing and 
prototyping. The small-scale network’s PCB layout and the circuit schematic of the 
artificial neurons and synaptic weights are included in the chapters below. This section of 
the document covers essential design steps for intermediate prototyping that will be 
conducted. 

 Singular Synapse-Neuron Circuit   
Starting from scratch, our first goal was to build a singular completed synapse-neuron 
circuit, which consists of an “A block” (buffer stage), “4 B blocks” (digital potentiometers) 
and a “C block” (neuron output stage) from our block diagram. This circuit will commonly 
be referred to as a single neuron throughout the document. The completed circuit of one 
neuron consists of a unity gain buffer amplifier that will feed in to four different digital 
potentiometers. This part of the circuit is what we refer to as the synapse stage. The output 
of each digital potentiometer will then feed into an inverting summing amplifier that will 
sum the four voltages acquired from the output of the digital potentiometers. The input 
voltages will vary based on the wiper position of the digital potentiometers, which will 
change weights based on the input and desired response of the fully trained system. The 
output of the summing amplifier stage will feed into the activation stage, which is another 
amplifier circuit that gives us a sigmoid response transfer function.  

After finding encouraging results from both the hardware network simulations and SPICE 
simulations of the device, the decision was made to proceed with a sigmoid function 
response, which is amongst a number of commonly used non-linear activation functions 
for neural networks. With this summary of the design process and major components and 
subsections of the singular synapse-neuron circuit complete, the actual schematics and 
board design of the network can be discussed. The activation function also closely 
resembles the  hyperbolic tangent function which is another commonly used non-linear 
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activation function for neural networks. Using this  hyperbolic tangent function may also 
be viable and will be looked in to as the network construction progresses. 

First, a schematic of an individual synapse-neuron circuit has been provided below in 
Figure 3.9. In this case, the neuron has been designed with a total of 4 inputs, suitable for 
the 4-pixel test network used in this project. 

 

Figure 3.9: Individual Synapse-Neuron Circuit 

 Smaller Scale Implementation   
Now that we can successfully construct one synapse-neuron circuit, it is time to combine 
several of these circuits to create our 2x2 four-pixel recognition neural network. This will 
be done by essentially creating two separate layers. One layer will consist of four synapse-
neuron circuits and the other will consist of three synapse-neuron circuits. This will be 
referred to as the 4x3 layout. For the initial four pixel network used to test the components 
and theory of the project, refer to Figure 3.13 for a schematic created in Eagle PCB Design 
Software.  

While a 4-pixel network only allows for the classification of extremely simple shapes and 
figures, such as lines, dots, and Ls, the number of neurons and synapses in the network is 
still sufficient to produce valid feedback on the behavior of the individual components and 
the network as a whole. If it were practical to use a smaller network, this most likely would 
have been done; however, the network dimensions cannot reasonably be reduced below 4 
inputs without effectively turning it into a simple switchboard for 1 or 2 pixels, at which 
point the design could simply be implemented with a few logic gates. 
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Since the PCBs are designed in a modular fashion, the number of layers for this network 
can easily be varied. The default layout being targeted is a 4x3 layout to observe the 
behavior of a multi-layer network without excess cost; layers can easily be added or 
removed to the design to observe the changes in network behavior, since the process is as 
simple as connecting or disconnecting one of the PCBs. This provides tons of flexibility 
when considering the potential size of our final network.  

Figure 3.13 shows the layout of our four to three-layer intermediate network. You can see 
the four initial input buffers in the top left. These input buffers consist of two unity gain  

 

 

Figure 3.13: Four to Three Layer Neural Network 



EEL 4914  Senior Design I
 

 
53 

buffer amplifiers, one inverting buffer amplifiers and one non-inverting buffer amplifier. 
The outputs of the inverting buffer amplifier are fed in to the PB pins of the digital 
potentiometers, while the outputs of the non-inverting buffer amplifiers are fed in to the 
PA pins of the digital potentiometers. Setting these two voltage levels lets us control the 
voltage output of the wiper pin by changing the wiper position of the chip using serial 
communication from the Teensy 3.5 Development Board. The outputs of four wipers (two 
digital potentiometer chips) are then fed across 10kΩ resistors and summed at the negative 
input of our summing amplifier stage. This can be seen in the long middle column of the 
schematic that consists of four individual neuron circuits. The output of our summing 
amplifier stage is then fed into the activation stage which consists of the operational 
amplifier circuits that have a clipping diode bridge in parallel with a 100kΩ feedback 
resistor on the output terminal. The neuron outputs are finally fed into another set of input 
buffers that will regulate the current output. This makes up the four-neuron layer of our 
intermediate network. 

The four-neuron layer feeds in to a three-neuron layer which is shown in the right side 
column of the schematic provided. This is done by feeding the new input buffers into the 
respective PA and PB pins of the following layers digital potentiometers. After this 
connection is made, the same process described above is completed again, but with only 
three synapse-neuron circuits instead of four. After this circuit was assembled and desired 
output responses of each neuron were obtained, we just needed to train the circuit using 
software so that it can adjust the weights of each digital potentiometer’s wiper output based 
on the given pixel inputs to give an accurate response of what was inputted. Now that we 
have a proper schematic resembling our breadboard prototyping, we will design and order 
printed circuit boards, solder components and continue to test the network. Being able to 
test with PCBs opposed to breadboard prototyping allows us to bypass tedious 
troubleshooting with the breadboard. We can now swap out components quickly to ensure 
consistency between circuit boards and functionality of the overall network. 

 Small-Scale PCB Design 
The creation of the initial 4-pixel test network was the first foray into PCB design for this 
project. While breadboarding was practical when dealing with individual neurons and very 
small partial networks, it became unmanageable when scaled up to the size of even a small 
network. Because a PCB is unavoidable for the final network, the 4-pixel test network was 
an ideal opportunity to begin producing PCB layouts as practice for the eventual production 
of the final 25-pixel network’s layout.  

In accordance with the discussions and guidelines laid out in Section 6.5 and throughout 
Chapter 8, a board layout with 4 inputs and 4 outputs was selected. This allowed for an 
arbitrary number of layers to be added or removed from the network for testing purposes 
and allowed for the implementation of an “unclassifiable” output neuron in addition to the 
“diagonal”, “horizontal”, and “vertical” output neurons used to classify line directions in 
the 4-pixel input. As shown in Figure 3.14, the board features a compact design with two 
sets of pins and streamlined analog signal pathways. 

Since this design is intended to be a transitional step between breadboard testing and a full-
sized character recognition network, the decision was made to utilize through-hole parts 
for this step, though surface mount components will be used for the final network design. 
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While this increases the footprint of the device by a factor of around three, it allows for 
easier component placement and handling and permits the re-use of parts from earlier 
prototyping stages. Since the purpose of these boards is primarily to eliminate the noise 
and interference issues that plagued breadboard prototyping, the ability to adjust, replace, 
or remove various components is key to this design. Through the use of DIP sockets, 
integrated chips with identical pinouts can readily be swapped out. 

Because component swapping is so easy, it is extremely useful to observe the behavior and 
function of various components in a network application. While it is possible to test 
components by themselves or in a simple individual neuron, the true test of a device’s 
behavior is in a network application. For example, while an amplifier may appear to be fine 
when tested in a single neuron, propagation errors may occur when multiple neurons are 
run in series and parallel, as in a standard network. The ability to swap components out of 
an already-functioning network allows for rapid component testing and eliminates the need 
for guesswork or trial-and-error testing of components. This is especially key when dealing 
with fairly expensive parts, such as potentiometers; purchasing a hundred devices for a 
full-size network only to discover they do not function in a large network application is an 
unacceptable risk and an unnecessary budget violation. 

 

 

Figure 3.14: 4-pixel network layer PCB with voltage planes omitted 
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The EAGLE PCB layout utilized for this initial test network is shown in Figure 3.14, with 
voltage planes (bordered by dashed red and blue lines) left unfilled for clarity. Voltage 
planes are used for the voltage rails of the circuit where possible, and trace widths are 
maximized within reason to minimize signal attenuation. Small voltage drops over long 
traces are another concern that will only show in practical application, and must be 
accounted for. Minimization of these trace lengths has been implemented in the design to 
avoid any significant voltage drops that could disrupt obtaining clear results. The four 
inputs to the circuit are provided via the top left row of four pins, and the four output signals 
can be read from either the top right row or bottom center row of pins. The remaining pins 
are used to carry the voltage rails and SPI signals. In the third and final layer, the rightmost 
two potentiometers and rightmost neuron are omitted to produce a 4-input, 3-output layer. 
This design is subject to change as more tests will be completed to determine the designs 
functionality. 
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4 Related Standards and Real-World Design Constraints 
This chapter describes how implementation details of the TACOCAT project are affected 
by two domains of real-world design rules: Related Standards and Real-World Design 
Constraints. All major projects, especially those with intent to be distributed,  

4.1 Related Standards 
This section describes technology standards that are relevant to the TACOCAT project. 
Since this device relies heavily on software-based theory and on digital communication, 
most of the applicable standards are related to software and firmware. 

 Serial Peripheral Interface (SPI) 
Serial Peripheral Interface, or SPI for short, is a widely used communication protocol in 
embedded systems. It was first developed by Motorola in the 1980s, and today, it is a 
widely accepted standard, not enforced by any major institution. A SPI consists of a master 
device, that is the generator of a serial clock and serial data stream, and at least 1 (possibly 
many) slave devices that share these serial clock and data buses.  

For TACOCAT, the microcontroller chosen for adjusting the weights of the synapses of 
the neural networks being trained, is the master device responsible for regulating the timing 
and transfer of serial data using this communication protocol. All the peripheral devices, 
like the digital potentiometers, serial shift registers, and hex inverters would be the slaves. 

4.1.1.1 Impact of SPI on Design 
The effect of SPI on this project is difficult to understate. While SPI, I2C, and other 
hardware communication protocols generally rely on parallel devices and device 
addressing, a special case of SPI does away with this characteristic. In certain devices, 
device RAM is implemented using a shift register along the SPI data pathway instead of a 
standard register. While the difference may seem subtle, this allows data to be moved 
serially from one device to another along the same pathway. Since each device only 
supplies the device in front of it, the length of an SPI daisy-chain is theoretically arbitrary, 
and only practically constrained by clock and chip select attenuation. 

The ability to create arbitrarily long serial communication paths is the linchpin to the 
function of this project. Since network sizes vary by orders of magnitude, the number of 
digital devices can vary from less than a dozen to several hundred. Parallel signaling to 
hundreds of digital devices is an unreasonably difficult task, as external multiplexing 
hardware would be required to manage so many devices. Even with multiplexing, a 
significant number of additional controller pins would be required to operate the 
multiplexer. In contrast, the SPI daisy-chain approach requires a total of three data lines – 
clock, chip select, and data – regardless of the length of the chain. As a result, standardized 
control software can easily be created, and the number of pins required is constant 
regardless of network dimensions. Additionally, since there is no longer a need for dozens 
or hundreds of chip-select lines in parallel, routing becomes dramatically easier and allows 
for much more efficient component placement. 
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 I2C-bus Communication 
The Inter-Integrated-Circuit (I2C or I2C) communication bus is a two-wire serial 
communication protocol that was developed by Philips Semiconductors (now NXP 
Semiconductors) and originally released in 1982 (NXP document UM10204). The protocol 
became a de-facto standard in the embedded systems industry, and the first formal 
specification document for the protocol and related hardware was published in 1992.  

The standard is currently described in the 6th revision of the formal specification document 
that is published by NXP Semiconductors as document UM10204, “I2C-bus specification 
and user manual.” Among other topics, the specification document describes the standard 
specifications for the following aspects of I2C: 

 Master/slave device organization for I2C busses, including multi-master systems 
 Clock and data signal timing 
 Communication procedures using affirmative and negative acknowledgements 
 Device-address allocation and format 
 Communication control mechanisms, including clock-stretching and multi-master 

arbitration 

The standard specifications also include specific guidelines for maximum data 
transmission rates depending on the mode of operation for an I2C bus, which are shown in 
Table 4.1. 

Mode Maximum Data Rate 

Standard 100 kbit/s 
Fast 400 kbit/s 
Fast+ 1 Mbit/s 
High-speed 3.4 Mbit/s 
Ultra-fast 5 Mbit/s 

(unidirectional only) 
Table 4.1: Maximum data rate by I2C operation mode 

Previous I2C documents specified that I2C-bus technology was protected under patents 
held by Philips Semiconductors and that any manufacturers wishing to implement I2C 
protocols on an IC device were required to obtain a license from Philips (Philips document 
AN10216). However, this is no longer mentioned in the current I2C standard 
specifications. 

 Federal Regulations for Radio Frequency Devices 
Standards for radio-frequency devices are specified in Title 47, Chapter I, Subchapter A, 
Part 15 of the U.S. Federal Code. While the TACOCAT project does not involve any 
intentional emission of radio-frequency signals, any device manufactured using 
TACOCAT technology would still need to conform to the standards for unintentional 
radiators of radio-frequency signals that are described in this part of the Federal Code, 
which is administered by the Federal Communications Commission. Title 47, Chapter I, 
Subchapter A of the Federal Code may also be referred to as the “FCC Rules.” 
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4.1.3.1 Device Classification 
According to section 15.3 of the code, TACOCAT technology would most likely be 
evaluated as a Class B digital device: “A digital device that is marketed for use in a 
residential environment notwithstanding use in commercial, business and industrial 
environments. Examples of such devices include, but are not limited to, personal 
computers, calculators, and similar electronic devices that are marketed for use by the 
general public.” Depending on the application, TACOCAT technology might also be 
evaluated under the criteria for a Class A digital device: “A digital device that is marketed 
for use in a commercial, industrial or business environment, exclusive of a device which is 
marketed for use by the general public or is intended to be used in the home.” 

Additionally, TACOCAT would be considered an “unintentional radiator” of radio-
frequency signals, which is described in 15.3(z) as a device that intentionally generates 
radio-frequency energy for its own internal purposes but does not intentionally broadcast 
radio-frequency signals. Radio-frequency signals seem to be described in Section 15.3(k) 
as “signals or pulses at a rate in excess of 9,000 pulses (cycles) per second.” 

4.1.3.2 Information Provided to the User 
Section 15.105 of the code specifies that the device must include a statement indicating 
compliance with part 15 of the FCC Rules in the device’s user manual. Boilerplate text is 
provided for both Class A and Class B digital devices. For Class A devices, the suggested 
statement is: 

Note: This equipment has been tested and found to comply with the limits for a Class A 
digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide 
reasonable protection against harmful interference when the equipment is operated in a 
commercial environment. This equipment generates, uses, and can radiate radio frequency 
energy and, if not installed and used in accordance with the instruction manual, may cause 
harmful interference to radio communications. Operation of this equipment in a residential 
area is likely to cause harmful interference in which case the user will be required to correct 
the interference at his own expense. 

4.1.3.3 Limits for RF Signals Conducted into AC Power Lines 
Section 15.107 of the code describes voltage limits for RF signal that is unintentionally 
conducted back into the AC power lines that Class A or B digital devices would be 
connected to. Different relative voltage levels are listed (in dBμV) depending on the 
frequency of the RF signal. 

Table 4.2 shows the limits that are given for Class A and Class B digital devices in Section 
15.107 of the FCC Rules. Limit ranges that are marked with an asterisk (*) reflect that the 
prescribed relative voltage levels decrease with the logarithm of the frequency. 

While power supply design is not within the scope of the TACOCAT prototype 
development process that is described in this document, it is reasonable to assume that as 
the technology matures and is implemented commercially, these limits would need to be 
evaluated. 

In its current design iteration, TACOCAT’s MCU clock frequency of 120 MHz is well 
above the maximum frequency of 30 MHz that this section concerns. However, with an 
SPI communication network operating in the 4.0 – 5.7 MHz range and an I2C bus designed 
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to operate at 0.40 MHz, the prototype does have some systems that could present problems 
with RF signal leakage into the AC supply lines. 

Digital 
Device Type 

Frequency of emission 
(MHz) 

Conducted limit (dBμV) 

Quasi-peak Average 

Class A 0.15 - 0.50 79 66 

0.5 - 30.0 73 60 

0.15 - 0.50 79 66 

Class B 0.15 - 0.50 66 to 56* 56 to 46* 

0.5 – 5.0 56 46 

5.0 – 30.0 60 50 
Table 4.2: Limits for RF signal conducted into AC power lines. Adapted from tables 
provided in FCC Rules Section 15.107. 

It is also specified in this section that devices operating solely on battery power are exempt 
from these measurements. It is unclear if devices that operate primarily on rechargeable 
batteries but can also be powered by a charging device (such as mobile phones or tablets) 
would also be exempt from these regulations. 

4.1.3.4 Intentional RF Radiation in Peripheral Devices 
The TACOCAT prototype is likely to incidentally include some peripheral communication 
devices that are designed to transmit and receive RF signals. A primary example would be 
that most of the mini-PC or mobile computing devices that would be candidates for user 
interface implementation will include wireless communication modules for wireless 
internet or Bluetooth protocols (typically operating at 2.4 GHz or 5 GHz). 

In order to provide a reasonable level of assurance that these communication devices would 
comply with the specifications found in the FCC Rules, any mini-PC or mobile computing 
devices used for the TACOCAT user interface should include documentation stating their 
compliance with the FCC Rules. For commercial production, independent testing would 
still be required for the completed TACOCAT device, but the chance of peripheral 
components failing to comply with federal regulations would hopefully be minimized. 

 U.S. Food and Drug Administration: Proposed Regulatory Framework 
for Modifications to Artificial Intelligence/Machine Learning-Based 
Software as a Medical Device 

As artificial intelligence and machine learning technologies have only recently made 
significant entries into the marketplace of safety-critical devices, there are few examples 
of formal standards regarding the safety of AI/ML-based devices. In a discussion paper 
released in 2019, titled Proposed Regulatory Framework for Modifications to Artificial 
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) - 
Discussion Paper and Request for Feedback, the U.S. Food and Drug Administration 
(FDA) has described a hypothetical system for evaluating the safety of proposed updates 
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to Artificial Intelligence/Machine Learning (AI/ML)-based medical devices, including 
software-based “devices” such as mobile computing device apps. 

While the handwritten-character recognition function performed by the prototype 
TACOCAT device described in this document is unlikely to be useful in medical 
applications, due to the universal approximation potential of the MLP architecture, future 
iterations of the TACOCAT technology could conceivably be used for other recognition 
tasks, such as identification of skin cancer in a photograph image, real-time detection of 
cardiac arrest in EKG monitor signals from at-risk patients, or intelligent control of blood 
sugar in a wearable insulin pump device. 

Some guidelines discussed for the proposed safety standards in the FDA paper are general 
enough that they could be used for safety standards in other safety-critical domains, such 
as autonomous vehicle control. It seems reasonable to expect that standardized safety 
guidelines and certification will soon play a very important role in the design of safety-
critical AI/ML-based devices. 

4.1.4.1 Model for Best Practices in SaMD Development 
While the FDA’s discussion about proposed safety standards for development of Software 
as a Medical Device (SaMD) focuses primarily on the development of guidelines for 
improvements to existing devices, it also outlines a holistic model that describes best 
practices for development based on the Total Product Life Cycle (TPLC) of AI/ML-based 
SaMDs. Parts of the model, depicted in Figure 4.1, are also general enough to be extended 
to other types of safety-critical AI/ML-based systems. 

The FDA discussion points out that the TPLC approach is particularly important when 
working with artificial intelligence and machine learning technologies due to their abilities 
to adapt over time. Conventional software typically has a static code base that is only 
changed when developers release an updated version, but many machine learning 
algorithms are designed to adapt over time based on prior results. Regulatory bodies need 
to account for the possible future states of these algorithms and not just the state of the 
software at the time of its release. 

The development model also maintains a holistic perspective by considering the 
development organization’s “culture of quality and organizational excellence” in addition 
to auditing more concrete aspects of the organization such as its methods for management 
and maintenance of data sets, its training/tuning methods, and its validation and clinical 
evaluation processes. 

As part of the TPLC approach, the model also accounts for the review and certification 
processes required for the release of new or updated technology, as well as tracking 
performance and evaluating changes in devices that have been released into production. 
Along with changes to the software algorithm, the device’s effectiveness can change if it 
is exposed to new input data or if it is used for purposes that it was not originally intended 
to be used for. These changes are considered in greater detail in other sections of the FDA 
discussion document, especially in the context of deciding the extent to which product 
changes need to be regulated. 
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Figure 4.1: FDA’s proposed model for AI/ML-based SaMD development. Reproduced 
with permission of U.S. Government from discussion paper at: https://www.fda.gov 
/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-
learning-software-medical-device 

4.1.4.2 Assessment of Product Modifications 
The main purpose of the FDA discussion paper is to propose specifications for a new 
standard that could be used to regulate proposed changes to existing AI/ML-based SaMDs. 
The document discusses methods for classifying different types of proposed changes, 
evaluates the degree to which different changes should be scrutinized, and describes formal 
procedures for the approval of device modifications. 

4.1.4.2.1 Classifications for Device Modification 
The document proposes the classification of device modifications into three different 
categories: 

 Performance: Device modifications for the purpose of increasing performance. 
 Inputs: Modifications to the device’s intended input data set. 
 Intended Use: Modifications to the device’s intended uses. 

It is specifically noted that these categories are not mutually exclusive, but most proposed 
modifications can primarily be described using one of these classifications. The 
Performance classification encompasses modifications that only effect performance and do 
not change the way that the device is used. Modifications in the Inputs category are made 
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for the purpose of allowing the device to consider different kinds of inputs. These new 
inputs could relate to training and validation data or to operational input data. 
Modifications in the Intended Use category include the addition of completely new roles 
for an existing device (such as the addition of stroke detection to a device that is meant to 
detect cardiac arrest) or the degree to which devices are used in existing roles (such as 
converting an application that notifies doctors of possible tumor detection in a CT scan into 
an application that directly diagnoses tumors in CT scan images). 

4.1.4.3 Proposed Framework for FDA Approval of SaMD Modifications 
The discussion paper describes a series of “premarket certification” steps that 
manufacturers would be asked to complete prior to making changes to an existing AI/ML-
based SaMD. At the core of the approval process is the requirement for manufacturers to 
submit a modification plan that gives a detailed explanation of the SaMD Pre-
Specifications (SPS) and Algorithm Change Protocol (ACP). The SPS describes the 
proposed changes to the device in terms of the three classifications listed in the previous 
subsection. The ACP describes the specific methods that the manufacturer plans to use in 
order to change the SaMD in a safe, controlled manner. Figure 4.2 shows the decision flow 
for the approval process proposed in the discussion document. 

 

Figure 4.2: FDA's proposed approval process for SaMD modifications, to be considered in 
conjunction with discussion text. Reproduced with permission of U.S. Government from 
discussion paper at: https://www.fda.gov/medical-devices/software-medical-device-
samd/artificial-intelligence-and-machine-learning-software-medical-device 
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The document provides detailed rationale for the evaluation of different SPS/ACP 
combinations, including the degree of scrutiny that required from various subgroups within 
the FDA and the amount of additional input/documentation that could be requested from 
the manufacturer. 

4.1.4.4 Relevance to TACOCAT Project 
While the TACOCAT prototype is not currently intended for any type of use as a medical 
device, the guidelines for safety certification standards proposed in the FDA discussion 
paper offer some key insights that can inform the TACOCAT design process. The most 
valuable insight is that the creation of effective AI/ML-based devices depends on the 
establishment of a development team that is rooted firmly in a “culture of quality and 
organizational excellence.” The best way to ensure the effectiveness of the team’s 
development methods is to build them on this solid cultural foundation. 

In more practical terms, the FDA’s discussion of proposed standards points out the primary 
objectives of the AI/ML-based development process: data selection/management, 
training/tuning, and validation. While any developer working in the AI/ML domain is 
bound to include these processes in the course of developing a new product, it is certainly 
helpful to have them clearly enumerated along with an explanation of how they should 
interact with one another during the development cycle. 

Finally, while modifications to the TACOCAT prototype design are not likely to be subject 
to the approval of any official regulatory body concerning product safety, it is helpful to 
have a framework that can be used in order to consider the effects of any changes that 
might be made to the prototype during the course of its development. For example, while 
it might be tempting to modify the layout of a working prototype’s input layer in order to 
expand the set of possible inputs, the risk of damaging a working prototype before it can 
be presented for evaluation by instructors could be a serious mistake for a Senior Design 
development group. 

4.2 Real-World Design Constraints 
There are constraints placed upon the team members and the overall development of 
TACOCAT that do not pertain to those resulting in the physical laws and objectives of the 
main project. Some of these constraints stem from real-world causes, which can be seen 
below in the economic, time, and safety constraints considered.  

 Economic Constraints  
First, the economic constraints present in constructing a hardware implemented neural 
network using analog and digital circuitry as opposed to simulating it in software is 
discussed. Physical neural networks in the industry typically use nanostructures, like 
memristor arrays, to implement the adjustable weights of a neuron in the synapse of a 
network layer. These highly scalable devices, however useful for this application they may 
be, are incredibly expensive and range from $89 to $300 for a 1x16 discrete memristor 
device array. While one could argue for using these to achieve a smaller area design, the 
high cost of building the weights of each neuron’s synapse with these devices will start to 
get expensive very quickly. With just the prototype board, 2 of the 16 discrete device arrays 
will be needed, which will cost about $600 for the prototype board. This would make 
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funding an issue when just getting started with the project. It is not a good idea to spend 
tons of money on a prototype when you don’t know if it will function properly yet. 

Even more concerning to the economic constraints of the project is the scale of the final 
implemented network. There is an exponential increase in the cost of the devices needed 
to realize a larger network. A 25-input neural network hardware MLP with the described 
design will already require a large quantity of digital potentiometers, which is the most 
expensive component needed to realize this design. If we were to increase the size of the 
network to a larger number of input-pixels to have a wider range of recognizable characters, 
the need for more digital potentiometers to weigh these input pixel data would drive the 
cost of the project up rapidly by about a factor of 5 if the project were scaled to obtain 
inputs for a 8x8 pixel image.  

Lastly, the number of PCB’s used to implement each “module” of the neural network will 
increase the cost of the total project. Thus far, a 4-input neuron module will be soldered 
per PCB, and then each of these will be interconnected using jumpers from breakout pins 
included on the boards. If the size of basic module used to physically realize and solder 
this network were increased, the cost of printing each of the PCB would increase as the 
total area needed would be greater.  

 Time Constraints  
Time constraints that are placed on the TACOCAT project affect the overall project’s 
specifications more perhaps than any other design constraint. All of the authors need to 
complete the milestones required by the ABET program in the University of Central 
Florida, which impose necessary timeline for completion of project milestones. This means 
that any added feature for this design that would otherwise largely extend the deadline for 
these milestones beyond the required date would cause any one of the authors to possibly 
delay graduation if there are any failure to meet these deadlines. This would cause not only 
a delay in proceeding to a career in their respective fields of study and interest, but it would 
also mean they would also jeopardize their academic performance in the form of their grade 
point average. While failure to meet these requirements is highly unlikely, the seriousness 
and possibility shouldn’t be taken lightly and need to be kept in mind in the process of 
designing the scope of this project.  

There are several ways that the risk of time constraints putting a halt to the overall 
development and completion of this project can be mitigated. First and most important of 
all, is proper and skilled guidance from experienced university faculty. This team of 
engineering students is under the mentorship of Dr. Chung Yong Chan throughout the 
development and execution of this project. His highly diversified and extensive technical 
background in guiding students through the senior design process will help prevent 
unnecessary mistakes and possible delays from occurring. His mentorship and guidance 
will help the authors set realistic milestones that will be held in high regard for completing 
the project in a timely manner while achieving all the required ABET and design 
specifications.  

 Safety Constraints 
Safety is of paramount importance when handling electronic devices. While 
microelectronic circuits don’t have the same potential dangers as projects with higher 
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power dissipating devices would have, safety precautions and concerns must be considered 
throughout the design process and while implementing the final design of TACOCAT.  

Improper handling of electronic micro-chips and power supplies is a possible source of 
safety breach as the dissipation of heat is a possible source of bodily injury that either an 
observer or one of the authors could suffer if proper precautions are not taken. Thus, proper 
reading of data sheets of each components used must be done carefully to not bias power 
rails incorrectly and possibly cause the breakdown of devices to occur. Furthermore, proper 
handling of power supply units while prototyping TACOCAT need to be taken to ensure 
that no possibility of electrical shock could occur. 
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5 Final Network Design   
The final network design will be a scaled-up version of our intermediate design. The 
multilayer perceptron network will take twenty-five inputs opposed to four. This is taking 
it from a 2x2 pixel recognition network, to a 5x5 pixel recognition network. Scaling higher 
is a possibility but it is intelligent to work our way up. Once the four-pixel network is 
functional, the twenty-five-pixel network will be tackled. If the twenty-five-pixel network 
is completed well before the due date of the project, a larger network may be attempted. 
With this being said, a larger network will only be constructed when proper testing has 
taken place to ensure its functionality. Desired simulation results are apparent, but there 
may be obstacles.  

Simulation results thus far are enticing, but this doesn’t mean it will be a seamless process 
when attempting to train the final network and get immediate success. Troubleshooting is 
an expected process with building any network, let alone a hardware neural network. Fan-
out also may become an issue, but this will need to be tested as the network is being 
constructed. The final network is constructed of individual synapse-neuron circuits that 
consist of the stages described below. Each stage is important and will be tested to ensure 
success. The stages make up a singular synapse-neuron circuit, and the synapse-neuron 
circuits are used to realize the overall network. 

5.1 Synapse Circuit Design 
The synapse circuit is the first circuit encountered when following the signal path in the 
schematic of a fully constructed individual neuron circuit. The synapse circuit handles each 
input to the neuron, buffering and providing complimentary input signals before supplying 
these signal pairs to the synapse’s digital potentiometers. The potentiometers weight each 
of the inputs based on the values dictated by the training algorithm for the network. 
Weighting the inputs is achieved by using the potentiometers as voltage dividers and 
adjusting the wiper positions of the potentiometers, altering the voltage level at the wiper 
of each potentiometer. These output voltages are then fed in to the summing amplifier 
stage.  

The circuitry of the synapse stage is relatively simple. The decision was made to use simple 
inverting and non-inverting buffer pairs to provide reliable current and voltage input into 
the digital potentiometers. While two inverting buffers could be used in series to produce 
the inverted and non-inverted versions of the signal, inverting amplifiers require two 
resistors, while unity-gain non-inverting buffers require none. Since perfect components 
are not available, this unnecessarily increases the component count while simultaneously 
introducing signal aliasing, so a complimentary pair of inverting and non-inverting buffers 
is used. 

The chosen buffer setup is depicted in Figure 5.1. Since the input is isolated from the 
neuron and synapse hardware, the input signals are protected against excess current draw, 
which may cause distortion or damage any supply hardware or previous network layers in 
extreme cases, as a single amplifier could otherwise potentially be responsible for 
supplying dozens of synapses. 
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Figure 5.1: Complimentary input buffer pair schematic 

The setup provided above is the least hardware-intensive implementation possible; a total 
of only four discrete components is necessary to buffer a single input. There are no 
reasonable alternatives to this design, as other implementations either sacrifice input 
safeguards or introduce redundant sources of error to the network. 

Once these voltages are buffered, they are supplied to each end of a potentiometer, 
producing a voltage gradient across the device; the wiper of the potentiometer is then 
moved as desired along the device, allowing the desired voltage level to be chosen. This 
effectively allows the input signal voltage to be multiplied by any value between -1 and 1, 
with precision limited by the number of taps on the device. 

5.2 Summing Amplifier Design  
The summing amplifier circuit stage occurs immediately after the weighted input synapse 
circuit stage. The summing amplifier stage’s purpose is to collect the outputs of the 
preceding digital potentiometers and sum their output voltages. Each output of the digital 
potentiometer is connected to the summing stage via a 10 kΩ resistor which feeds into the 
summing line of the summing amplifier. The summing amplifier operates in an inverting 
amplifier configuration, so the positive input bias terminal of the operation amplifier is 
connected to ground. In the example provided in Figure 5.2, there are four synapses being 
fed into the neuron; the output of each potentiometer’s wiper functions as the input voltage 
for each branch of the summing amplifier. Each input line is connected across a 10kΩ 
resistor; with this value, the maximum current provided from any given input should be 
well under 1 mA. A 100 kΩ feedback resistor was chosen to set the gain to approximately 
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ten times the input; this ensures that there is more than enough responsiveness to a single 
input, though such a high gain can have drawbacks, as discussed later in Chapter 8.  

 

Figure 5.2: Inverting Summing Amplifier Stage 

The LT Spice schematic shown in Figure 5.2 depicts the synapses and summing amplifier 
stage of a 4-input neuron. The four synapse inputs are tied together to a common voltage 
source, though each potentiometer is independently adjustable, allowing for different 
combinations to be provided to the summing amplifier. This configuration allows for 
thorough testing of a given neuron, as it allows the full range of possible input voltage 
combinations to be observed simply by adjusting each potentiometer.  

5.3 Activation Function Circuit Design  
The activation function stage is one of the most crucial portions of the neuron circuit, as it 
is the stage which produces the actual output function and can vary wildly depending upon 
the chosen configuration and component values. It is responsible for creating a transfer 
function between the input and output that resembles a particular function – in this case, a 
sigmoid function. The importance of the sigmoid function is that it is especially useful for 
network models that need to predict probability, which is a very common neural network 
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application and is effectively the underlying function of a network, regardless of 
application.  

The circuit design for the activation function is a bit more complex than the previous 
building blocks of the overall neuron circuit. It is, yet again, another inverting amplifier 
circuit, though with a few important modifications. The activation stage was built as an 
inverting amplifier so that the transfer function between the input of the summing amplifier 
stage and output of the activation function stage goes through two inverting stages, 
resulting in a positive output given a positive input. 

In this case, the positive terminal of the operational amplifier is connected to ground, as 
usual, and the input to the stage into the the negative terminal is provided from the output 
of the summing amplifier stage and is fed across a 20 kΩ input resistor. This resistor value 
was chosen to minimize the input current to the activation stage to a current value well 
below 1 mA while avoiding distortion caused by the input bias and offset currents of the 
amplifier.  

As in a standard inverting amplifier, the output of the activation stage is fed back to the 
negative input terminal; however, this is where the similarities end. This feedback is 
provided across both a diode-clipped resistor and an independent resistor in series with the 
voltage clipper. The independent series resistor is a 3.3 kΩ resistor, while the voltage 
clipper resistor is a 100 kΩ resistor in parallel with two sets of  diodes, one in each 
direction, as shown in Figure 5.3.  

 

Figure 5.3: Activation Amplifier Schematic 

Each series diode configuration consists of two diodes in series that are facing the same 
way, with the polarity of each branch opposing other. This is so that one pair of diodes is 
set to clip positive voltage and the other pair of diodes is set to clip negative voltage. Once 
the output of the activation stage reaches a certain point, the voltage across the 100 kΩ 
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resistor can no longer increase, resulting in a stable current draw through the feedback of 
the amplifier. Given this constant current, the maximum output amplitude can then be 
chosen by selecting the corresponding series resistor value.  

5.4 Neuron-Output Buffer Design  
Finally, the output signal provided by the activation stage is fed into another unity-gain 
non-inverting buffer to avoid output distortion. While this is redundant for most hidden 
layers due to the input buffers on each successive stage, it is necessary to buffer the outputs 
of the last layer of any network, as additional current draw induced when performing ADD 
measurements or supplying LED or LCD indicators may result in erroneously low-
magnitude output voltages. 

Depending on the current draw of the output setup, whether it be effectively zero, as with 
comparators as described in Section 5.5, or fairly high, as in a fairly complicated LED 
network, output buffering may not be necessary. Since the activation function supplies its 
output directly from the output terminal of the neuron, it is possible to draw current from 
the activation function without affecting its output voltage. However, amplifiers cannot be 
presumed to maintain a perfectly constant output voltage regardless of current draw, so 
attention must be paid to the characteristics of the amplifier used in the network. 

While elimination of the output buffer would reduce the amplifier count to two, allowing 
two neurons to be fit into a single 4-amplifier chip like the TL084, other concerns arise. 
Predominantly, if high current is being drawn from multiple amplifiers on a single chip, 
the power dissipation may become unreasonably high in the device, especially if the supply 
voltages are significantly higher than the output voltages of the amplifiers. Additionally, 
some amplifier chips are prone to crosstalk; while this is not typically a significant factor 
in most chips, certain amplifiers under particular conditions can generate non-negligible 
amounts of interference among themselves within a single chip, resulting in mutual output 
distortion. 

5.5 Output Comparator Design 
Standard software-based neural networks often deal with extremely high value precision, 
calculating to multiple decimal places when processing the values at each hidden layer and 
output node. In many networks, where each output is a different value – for instance, 
predicted temperature, humidity, wind speed, and so forth – each output value is free to be 
as precise as it can be, with no meaningful effect on the other values. However, when 
dealing with network applications like handwriting interpretation, there is a limit to the 
acceptability of this behavior. For instance, if the network is struggling to differentiate 
between “F” and “P”, it is not an acceptable response for the network to simply output a 
value of .5 for F and .5 for P, or something near these values. A user likely expects the 
network to either make a definitive guess or to indicate it does not have confidence in its 
response. While this is easy to solve in a software-based network in a few lines of code, 
such as simply selecting the highest output value and flagging it for low confidence if it is 
below a given threshold, it is somewhat more complicated to handle when dealing with 
physical circuitry. 

There are a few solutions to this problem which vary in suitability depending upon the 
context of their use and the network they are applied to. The first approach is to simply use 
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a positive and negative reference voltage via a divider and supply these voltages to a pair 
of comparators; by attaching LEDs to the outputs of each of these comparators, one will 
be able to determine if the network is confident that it is or is not a given character. This 
solution is somewhat arbitrary, which can be viewed as a positive or a negative. Because 
the voltage reference level can be changed at will, the desired confidence level of the circuit 
can be tweaked. This can, of course, be a strong positive when high confidence is required 
or expected; however, in cases where networks produce weak but accurate calculations, 
one may never see an output despite the network consistently producing correct outputs. 

Another solution to this problem is to add another output to the desired network. This 
neuron can be used as an “unclassifiable” output, which should be indicated whenever the 
network is unable to match another output to an acceptable degree of confidence. For 
instance, in the 4-pixel test network, it would be unreasonable to expect the network to 
guess “diagonal”, “horizontal”, or “vertical” if it were given a blank or completely filled 
in sample; doing so may result in a higher rate of misclassification, especially if the network 
is given grayscale inputs instead of binary black-or-white inputs. Using a fourth neuron, an 
“unclassifiable” output can be used as the default state of the network. In an ideally trained 
network, this output should always be enabled unless the network is highly confident in its 
classification of a signal using the other discrete outputs. This allows new, ambiguous, or 
invalid inputs to the network to safely be disposed of by default instead of forcing the 
network to attempt a solution. This is especially important when using noisy grayscale 
datasets. If a “horizontal” flagged training image is somewhat slanted, it may produce an 
ambiguous solution between horizontal and diagonal in the network and make training 
extremely tedious as the network repeatedly fails to classify either the specific image or 
other images as the neuron weights are constantly pulled back and forth in an attempt to 
converge. While such a sample can always simply be ejected from the training data, it is 
much more useful to simply reclassify the image as “unclassifiable” in the dataset, 
providing the network an example of an ambiguous input and better equipping it to handle 
novel instances of such inputs in the future when handling live data. 

These solutions, of course, can be used in tandem. Through use of a potentiometer, it is 
possible to allow the reference voltages to be dynamically adjusted for each neuron. For 
instance, if the network’s neurons are capable of outputs of -1 to 1, the unclassifiable output 
may produce “1” with an invalid sample and “.7” while raising a “.7” on another output 
when handling a valid input. To handle situations where the network could potentially 
indicate confident outputs on two neurons, the voltage reference levels for each neuron can 
be handled individually to account for the quirks of each unique training solution for a 
network. This has the added consequence of allowing the network to be retrained and 
reorganized on a whim, allowing the hardware of the network to be tailored to the training 
solution of the network instead of forcing the opposite, allowing for much more dynamic 
and meaningful network outputs. 

5.6 Modified Input Layer Design 
The multi-layer perceptron neural network design for the 2-pixel network contains a 4-
neuron input layer with a synapse circuit design consisting of a buffer and inverter 
operational amplifier circuit pair, that provides the complementary PB0 and PA0 voltages 
to the digital potentiometers for weight adjustment. These inputs for the 4-Pixel network 
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are treated as the digital bits corresponding to the image data taken as input to the trained 
network. These digital inputs to the network are done in parallel from the signal processor 
used in the microcontroller.  

It is easy to see that as the inputs to the network are incremented, the number of parallel 
pixel data inputs to the synapse and neurons of the input layer will rapidly increase to an 
unpractical number of parallel inputs to the input layer. There needs to be a more practical 
approach to designing the inputs to the synapses of the input layer of the network to avoid 
unnecessary current draw from the microcontroller, as well as a large amount of traces 
needed to the input layer.  

A practical and efficient approach to planning the digital image pixel data to the input layer 
is utilizing a shift register IC. This is done by connecting a shift register chip to the signal 
processing microcontroller of the design. The serial data bits will be fed to the input layer’s 
synapse circuit using serial communication protocols, either I2C or SPI, utilizing the 
frequency of the microcontroller’s clock. Each high or low voltage level corresponding to 
the pixel data will be provided to the synapse circuit containing a buffered and inverted 
version of the signal to provide the range of weighted inputs to the neuron. Having the 
digital pixel input data fed to the synapse circuits serially avoids the need for multiple 
parallel traces to the neurons in the input layer, as a single serial trace line will be connected 
to all the PB0 and PA0 pins of the digital potentiometers after being buffered and inverted.  

To achieve the buffering and inversion of the output pixel data from the shift register, the 
use of a hex inverting and non-inverting chips must be used to provide the voltage weight 
range of the digital potentiometers as opposed to the operational amplifier buffer and 
inverter circuit designs used for the 4-Pixel prototype network. This is due to the input data 
to the synapse circuits of the input layer being provided digitally by the serial output of the 
shift register IC. This was unnecessary for the intermediate design, as the analog voltage 
levels being provided by the voltage regulators LM337 and LM317 were analog in nature 
and did not require the need for logic-level inversion and buffering. A hex inverter and 
non-inverter CMOS chip will allow for logic-level conversion of the shift register’s output 
to maintain the voltage level desired, and needed, to allow for proper weight ranges that 
the neural network multi-layer perceptron design needs when being trained for character 
recognition, which is the intended application of the final network’s design. Thus, the final 
design of the input layer will be made up of the shift register IC, providing input to a 
modified synapse circuit consisting of hex inverter/buffer pairs that will supply voltage 
ranges for the weights of the digital potentiometers. 

Below, in Figure 5.3, an updated block diagram of the 25-input neural network design can 
be seen, along with a table of descriptions of the blocks included in Figure 5.3. This 
diagram is generally accurate for all of the networks developed for this project, regardless 
of dimensions, as full interconnectivity and multi-layer networks are hallmarks of the 
chosen network architecture for this project. The number of B blocks per C block is always 
equal to the number of inputs to the network, and the number of A blocks is always equal 
to the number of C blocks; thus, each neuron on a given layer looks the same as and is 
connected identically to all of the other neurons on the same layer. The only variation is in 
the algorithm-determined weighting of each potentiometer feeding each neuron.  
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Figure 5.4 Modified Input Layer Block Diagram 

 

Block Name Function 

A Line Driver 
B Adjustable Synaptic Weight 
C Artificial Neuron 

Table 5.1: Modified Input Layer Block Descriptions 

Figure 5.3 and Figure 5.3 provide the general arrangement of each network layer. Each line 
driver block consists of a non-inverting buffer to buffer the output of each neuron. Each 
adjustable synaptic weight block consists of an inverting and non-inverting buffer pair and 
a digital potentiometer; each potentiometer is fed the original input signal on one end of 
the device and the inverted signal on the other. The output of each potentiometer is then 
supplied to each artificial neuron block, where it is summed via the summing amplifier 
stage of each neuron. Finally, the activation stage of the neurons produce the final output 
signals, which are then fed to the corresponding line driver blocks. The signals are then 
buffered by these line driver blocks and either passed forward to each of the inverting/non-
inverting buffer pairs in the following layer or supplied to the final output handling section 
of the network, which may be hardware-based (LEDs, comparators, etc.) or software-based 
(a digital readout of ADC values, a message indicating the highest value, etc.). 
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6 Software Design 
The following sections provide a description of the design process for the integrated 
software/firmware system that was created for the purposes of planning, testing, and 
implementing the TACOCAT hardware-based neural network. 

6.1 Background 
There is no single characteristic way to design, train, or model an artificial neural network. 
Some networks are fully connected, while others are only partially connected; some are 
many layers deep, while others have only a single hidden layer. There are numerous 
activation functions and training algorithms that can be used, and there are a variety of 
possible methods of modeling such implementations. Since a static approach must be 
chosen early on to allow for a discrete hardware implementation to be built, it is necessary 
to weigh the performance and suitability of the many different categories of network 
architecture and algorithm to find the best candidate for translation into a physical device.  

 Neural Network Architecture 
Before starting work on the design process, it was necessary to determine what kind of 
neural-network architectures would be able to successfully perform the classification tasks 
that are described in the project specifications. The two main families of ANN architectures 
that were considered were the multi-layer perceptron (MLP) and convolutional neural 
network (CNN). Several different CNN-based designs have shown exceptional 
performance in image recognition tasks, but these networks tend to be large, and the 
convolutional layer schemes included in these networks were expected to require a more-
complex hardware design. 

 Training Algorithm 
The typical training algorithm used with MLP networks is gradient descent through 
backpropagation. This algorithm requires the outputs of each neuron layer to be known, 
and the algorithm is applied one layer at a time, starting with the last layer and moving 
backwards through the network to the input layer (hence “backpropagation”). 

In order to use this training algorithm, we must define a “loss function” that relates the 
output values of the neurons in a given layer to the expected output values. Once we have 
determined the loss for a layer of neurons during a given training iteration, we can take the 
gradient of the loss function and multiply it by a scalar “learning rate” coefficient to 
calculate an estimated set of synaptic weight adjustments for the neuron layer. The object 
of this process is to find a set of weight parameters that will minimize the loss for each 
layer. 

Once the output values of the final layer have been compared to the expected values and 
the backpropagation album has been applied, an expected set of output values from the 
second-to-last layer can be inferred, and the process is repeated until the gradient descent 
calculations have been applied to the network’s input layer. 

There are some known shortcomings of this training algorithm. Where a multi-dimensional 
“error surface” can be described by the network’s loss function, classification problems 



EEL 4914  Senior Design I
 

 
75 

will sometimes have error surfaces that have local minima as well as saddle points. Non-
linear activation functions are thought to mitigate the difficulties caused by these issues. 

 Existing Software Models 
There are a variety of open-source and commercially available software libraries and 
frameworks (e.g. Torch, TensorFlow, Keras, Caffe) that allow researchers to design and 
test software-based neural networks of arbitrary sizes, using a wide range of training 
algorithms and other parameters. 

One option that was considered was the use of a ready-made framework in order to evaluate 
different network topologies and hyperparameter values in preparation for the hardware 
design phase. However, the main drawback of this approach was that any complex training 
algorithms that a framework might offer could be very difficult to implement in a lower-
level embedded programming language without already having understood and written the 
code in a higher-level language. 

6.2 Design Overview 
There are three separate software projects that are being used to implement the hardware-
based neural network. First, a software-based neural-network model is used to simulate the 
expected behavior of the network. This same model can also be used to train the hardware-
based network. Second, the training and I/O interface controls for the network are 
implemented in an embedded software program that is designed to be run on a 
microcontroller. Finally, a user interface (running on a minimal PC platform) needs to be 
created in order to apply real-world inputs to the hardware-based neural network. 

Python 3 was chosen as the development language for the software model/simulation 
component of the project. The microcontroller firmware is written in C/C++. Arduino 
libraries were used for prototyping and testing, although the production version of the 
firmware may instead use function libraries that are provided by the MCU manufacturer. 
The graphical user interface (GUI) component of the project will be implemented in Python 
and run on a mobile-touchscreen device with a Linux operating system. 

6.3 Development Tools  
As is generally the case, a range of development environments were available for both the 
software and firmware used in this project. Since both Python and C programming are 
utilized both on the network controller and on the host computer, it is not reasonable to 
attempt to handle everything using a single development environment. Consequently, the 
various development tools and environments used in this project are briefly described in 
the following subsections. 

 Python Development Environment 
The software model was written in Python 3, and version 3.7.3 of the Python interpreter 
was used for development. The interpreter was run inside a Conda environment that was 
managed using Anaconda. 

Microsoft Visual Studio Code was used as a code editor and debugging environment for 
Python modules. 
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 Firmware Development Environment 
For the small-scale prototype network, firmware development was carried out in the 
Arduino IDE software with the Teensyduino extension package. The Arduino IDE offers 
convenient integration with the Arduino code library and with the toolchains that are 
required to compile, program, and run software on various microcontroller platforms. 

One shortcoming of the Arduino IDE is that it does not include a debugger. Any debugging 
is typically carried out using “print” statements and monitoring program output through a 
PC-to-MCU serial connection. 

After completion of the small-scale prototype network, we plan to move development to 
an integrated development environment that supports hardware-based debugging of ARM 
devices. 

 Version Control 
Git is being employed for version control in the TACOCAT codebase. While the Python 
code and C/C++ firmware code are being developed in separate repositories these 
repositories can be grouped together as submodules in a “wrapper” repository that will act 
as a central store for the overall project codebase. Hosting for remote Git repositories has 
been generously provided at no charge by GitHub. 

While Git is sometimes avoided for firmware development processes due to its historical 
lack of support for tracking changes in binary data files, due to all of our project work files 
being encoded as text, we do not expect this to cause any issues in the course of firmware 
development for TACOCAT. 

6.4 Neural Network Software Model Design  
Since the overwhelming majority of neural networks at present are entirely software-based, 
software simulation of the networks being designed is an obvious first step. However, 
simple software network simulation is not enough; simulations of the physical behavior of 
the hardware must also be performed to predict and verify the behavior of the circuit once 
its physical implementation is brought to reality. The following subsections dictate the 
reasoning and design process behind the software simulations used for this project. 

  Software Architecture for Simulation 
It is fairly straightforward to implement mathematical models for MLPs, and because the 
MLP-based models have shown relatively good performance in handwriting recognition 
tasks, the MLP was chosen as a starting point for software simulations. 

Instead of taking the very-high-level approach of using a ready-made machine-learning 
framework, we decided to compromise by writing our simulation logic from scratch in 
Python, which is a high-level language that offers powerful libraries for tensor mathematics 
and data manipulation. At this level of abstraction, all of the atomic mathematical 
operations for the software model had to be expressed in code, but the code itself is fairly 
brief and easy to understand. 

The simulation software, as shown in Figure 6.1, was divided into several Python modules: 
a dataloader module for loading training/validation data, a SPICE extension module for 
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simulating neural network “think” operations in hardware, and a core module that contains 
the construction, training, and validation logic for the neural network. 

 

Figure 6.1: Block diagram of software architecture for simulation using SPICE hardware 
model 

6.4.1.1 Dataloader 
The dataloader module uses the Mlxtend library (Raschka) to load training/validation data 
from files that adhere to the formatting used in the MNIST dataset. This module also 
performs interpolation operations to compress data images from the standard size of 28 x 
28 pixels to a square size of a smaller specified width, and it performs a thresholding 
operation to convert pixels from grayscale to black and white, as shown in Figure 6.2. 

In a sense, this thresholding operation is implementing an input-layer activation function. 
This was considered as a possible area of concern, as one of the main objectives of this 
project is to build a hardware-based neural network. However, because the equivalent 
activation function for the input layer would be a hard-sigmoid function, the software 
operation to calculate the function’s output is a simple comparison between the input value 
and the threshold. This function could also be implemented in hardware using a circuit as 
simple as a single transistor. If high accuracy were required, a comparator circuit could 
also be used to implement the comparison operation in hardware. 
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Figure 6.2: Original EMNIST sample images (top), Black/white threshold operation 
applied to images (center), Black and white images compressed/downsampled (bottom) 

6.4.1.2 Simulation of Network Training and Prediction Operations 
Hardware simulation via SPICE was implemented using LTspice, which is a SPICE 
simulation software provided free-of-charge by Analog Devices, Inc. In order to integrate 
SPICE simulations into the software simulation model, a Python module was created to 
generate SPICE netlists based on the weight and input values described by the state of the 
software-model network, run LTspice simulations of the netlists, and parse the output from 
LTspice into a data structure that can be returned to the core module, which will then update 
the state of the software-model network. 

By updating the SPICE hardware model’s netlist after each training iteration and using the 
simulated output values of the hardware neuron models based on the updated weight 
values, the hardware network training is effectively emulated in the software simulation.  

The SPICE connection module has also been programmed to consider parameters for 
digital-pot weight resolution and digital-pot tolerance. By conducting simulations with 
various digital-pot parameters, we were able to estimate the levels of tolerance and 
resolution that would be required to achieve convergence and reasonably low error rates in 
the neural-network training process. Because digital-pot resolution is a major factor in the 
cost of the IC components (for every bit of resolution that is added, the number of “taps” 
in the resistance chain is doubled), this should prove to be very useful, as it appears that 
with insufficient pot resolution, the network training process might fail to converge to an 
optimized set of weight values. 

6.4.1.3 Additional Applications for SPICE Connection Module 
The SPICE connection module was designed to be somewhat generalized so that it could 
also be used for testing simulated circuit behavior aside from the roles that it plays in the 
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integrated testing of neural network training and classification/prediction. Figure 6.3 shows 
the output obtained from the SPICE connection model in conjunction with an activation 
function test-fixture script. 

 

Figure 6.3: Plot of sigmoid activation function behavior based on integrated Python/SPICE 
model 

6.4.1.4 Core 
The core module contains definitions for a NeuronLayer class, with member variables to 
store metadata regarding the neuron layer’s number of synaptic inputs and its neuron count 
along with a reference to a stored array of synaptic input weights, as well as a 
NeuralNetwork class, which contains a collection of references to NeuronLayer objects 
along with methods for training and validating the neural network model. 

This module also maintains collections of metrics related to training, testing, and validation 
and includes methods that can create graphs and charts to visualize this data (examples 
shown in Figure 6.4). 

The core module was specifically designed to separate the implementation of the network 
components in the NeuronLayer class from the training and validation algorithms that 
belong to the NeuralNetwork class. By encapsulating the properties of these separate 
classes, the core module can remain flexible enough to work with multiple different 
NeuronLayer implementations. In fact, the same training and validation algorithms are 
used for software-model based simulations, SPICE hardware-model based simulations, and 
the actual hardware implementation of the neural network (connected via the MCU). 
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Figure 6.4: Results of software simulation for 10 x 10-pixel EMNIST recognition with 3 
input classes 

Python offers a broad range of interfacing libraries that also make this flexibility easy to 
maintain. Python’s libraries for issuing operating-system commands and parsing text-file 
based inputs and outputs simplified the implementation of the SPICE-model connection, 
and Python also has a number of libraries that allow communication using lower-level 
protocols that are commonly supported by integrated circuits, such as SPI, I2C, and UART. 
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6.5 Firmware Design 
A block diagram for the conceptual layout showing the integration of the firmware modules 
with the software modules is shown in Figure 6.5. One of the goals for the overall design 
of the integrated software/firmware system was to use consistent interfaces in similar 
modules. By maintaining similar interfaces between the SPICE connection module and the 
firmware library, we are able to simply “plug in” the firmware library connectors to the 
same Core-module methods that interact with the SPICE connection module as shown in 
Figure 6.1. This ability to easily re-use code is one of the major benefits of the object-
oriented software design paradigm that is employed in this project. 

 

Figure 6.5: Block diagram of software/firmware architecture for hardware neural network 
implementation 

The firmware operations that are required for the project can generally be divided into the 
following categories: 

 Initialize circuit training process 
 Adjust synaptic weight values 
 Configure and activate data input signals 
 Measure neuron outputs 

All of the operations listed above depend on serial communication with the Python-based 
software model, and the function for adjusting synaptic weight values requires an 
additional communication interface with the digital potentiometer ICs. Functions for 
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transmitting and receiving data are imported from a publicly available library called 
SMBus2, which was designed for the SMBus protocol that is a subset of I2C. Any calls to 
the communication library functions are also wrapped in higher-level functions that act as 
interfaces that separate the implementation of the serial communication processes from the 
firmware’s central program logic. 

6.6 Software/Firmware Communication Protocol 
In order to coordinate the operations of the software and firmware programs, a 
communication link is required. In terms of a multi-layered communication network 
model, this section will describe a protocol that is implemented at layer 2 (sometimes called 
the data link layer), the layer directly above the physical layer. 

  Assumptions about Physical Layer 
While one major design objective for this communication protocol is that it should not be 
overly dependent on the designs of its adjacent layers, some assumptions were made about 
the physical layer. It is assumed that the physical-layer protocol will be designed for 
sending and receiving data in groups of bytes, and it is also assumed that the physical-layer 
protocol does not implement any sort of error-detection or error-correction mechanisms. 

It is also assumed that the communication channel may be only half-duplex and that a 
master-slave communication scheme is implemented, where the master device is primarily 
in control of network communications. In TACOCAT’s case, the software modules control 
the master communication device, and the firmware modules control the slave device. 

A typical microcontroller serial communication device should have a buffer size of 32 
bytes, so it is assumed that the data frame size should be 32 bytes or less. 

  Command Codes 
In very simple communication networks, all data messages may occur in the same context. 
For example, a network consisting of a temperature sensor and a microcontroller may only 
carry one type of message: temperature data that is sent from the sensor to the MCU. 
However, in TACOCAT’s inter-device network, messages can be sent in several different 
contexts. 

A system of command codes is implemented so that the master device can describe each 
message’s context to the slave device. The slave device can then configure its response 
appropriately for the message context. Command codes are sized at one byte so that they 
can be sent quickly. The number of commands for this protocol are expected to be far less 
than the 256-command capacity for the byte data-type. 

Table 6.1 shows the commands that are implemented in TACOCAT’s software/firmware 
communication protocol. While the numeric values of the codes can be stored in a shared 
file that is accessible by both the software and firmware packages, the meanings of the 
codes and the required response behaviors must be implemented manually in each relevant 
code package. 
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Command Code (hex value) 

Initialize network 0x01 

Set synapse weights 0x02 

Set data input values 0x03 

Read neuron outputs 0x04 

Table 6.1: Communication Protocol Command Codes 

  Error Detection 
Because the TACOCAT device performs calculations during the training process that rely 
completely on the data that is being sent over the communication link, some error detection 
and error correction policies are implemented in the inter-device communication protocol 
to ensure data integrity. 

Cyclic redundancy checking offers high rates of error detection using a binary polynomial-
division algorithm that can be implemented efficiently on CPU/MCU hardware. (Koopman 
and Chakravarty) compares the performance of different CRC polynomials of various 
lengths and emphasizes that the performance of any given CRC polynomial depends on 
the bit length of the data frame to which it is applied. 

Koopman and Chakravarty found that the CRC-8-ATM polynomial (shown in Equation 
7.1) can have good performance for data frames that are less than 247 bits in length. This 
polynomial is employed in the SMBUS protocol, which is designed to handle data frames 
of 35 bytes or less. In (Maxino), tests showed that for data frames of less than 247 bits, the 
probability of failure for the CRC-8-ATM algorithm was less than 10-8. 

(6.1) 

𝑥 + 𝑥 + 𝑥 + 1 

  Communication Sequences and Error Correction 
Communication operations between the software and firmware packages can be 
characterized by one of the two following communication modes: the master device 
requests data from the slave device, or the master device writes data to the slave device. 
Command codes 0x01 and 0x04 fall under the category of “data requests”, and command 
codes 0x02 and 0x03 fall under the category of “data writes”. 

The Request and Write modes both begin with a command data frame (depicted in Figure 
6.7) that contains the command code and an expected number of bytes to be transmitted. 
When the slave device receives this frame, it configures its program state so that it will be 
ready to begin the transmission type specified by the command code and then sends a 
single-byte acknowledgement message. 
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Figure 6.6: Communication sequence example for a "Set synapse weights" command 

Command Code Block Size 
1 1 

Figure 6.7: Command data frame (segment sizes in bytes) 

The transmitting device (the slave in a “data request” command or the master in a “data 
write” command) will then send a sequential block-transmission data frame (depicted in 
Figure 6.8) that contains a header, a data payload, and a checksum. The header in this frame 
is a single byte that specifies the byte-length of the data payload segment, and the checksum 
is calculated with respect to the bytes in the data payload. Considering a maximum frame 
length of 32 bytes, with the first and last bytes reserved for the header and checksum, the 
maximum data payload size is 30 bytes. With a guaranteed payload size of 240 bits or less, 
good error-detection performance can be expected from the CRC-8-ATM algorithm. 
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Header Payload Checksum 

1 1-30 1 

Figure 6.8: Sequential block-transmission data frame (segment sizes in bytes) 

As the receiving device reads the incoming bytes, it will calculate the checksum of the data 
payload, and when all bytes have been received, it will compare the calculated checksum 
to the checksum that was received at the end of the data frame. 

If the checksum is correct, the receiving device will send a single-byte acknowledgement 
that represents the sequence number of the next byte that it expects. If the transmitting 
device has more data to send, it will send another data frame, and the process will be 
repeated. 

An example of a checksum error sequence is shown in Figure 6.9. If the checksum is not  

 

Figure 6.9: Stop-and-wait error correction in a TACOCAT external-communication 
sequence 
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correct, the receiving device will discard the data from the frame and send a single-byte 
negative acknowledgement that represents the sequence number of the first data byte in the 
previous frame. The transmitting device should then re-send the previous data frame, and 
the process will be repeated from that point. 

  Timeouts 
In addition to bit-errors in the data transmissions, the possibility of data timeouts should 
also be considered. Timeout procedures vary between sending and receiving devices, but 
for either case, a timeout period and a maximum number of re-try attempts should be 
specified as program parameters in the firmware and software code implementations of the 
communication protocol. 

If a receiving device does not receive an expected data frame, it can continue to send a 
single-byte acknowledgement representing the sequence number of the next byte that it 
expects to receive until the maximum number of attempts is reached, at which point some 
action might be performed to notify the user of an error condition. 

Similarly, if a sending device does not receive an expected acknowledgement byte, it can 
continue to re-send the previous data frame until the maximum number of attempts is 
reached. At this point, it can also try re-sending its previous command frame until the 
appropriate acknowledgement is received or a maximum number of attempts is reached. 
This requires a logical block in the receiving device that aborts a receiving operation if a 
command frame is received when a data frame is expected. If these attempts all fail, the 
sending device might notify the user of an error condition. 

 

6.7 User Interface Design 
The user interface components that are implemented in software are mainly concerned with 
gathering handwritten-character input data from a user for testing/demonstration purposes. 
A camera was considered for this purpose, but a digital touchscreen interface was chosen 
instead as it seemed to be a likely source of real-world input for similar hardware-based 
neural networks in mobile devices. Image data from the digital touchscreen interface can 
also be fit into the appropriate number of pixel inputs for the given network with minimal 
processing required in the software. A mockup of the user’s view for the touchscreen 
interface is shown in Figure 6.10 

Because of the wide availability of phone and tablet devices that integrate touchscreen 
inputs with web-browsing capabilities, an Android device running a JavaScript-based web 
application based on a framework such as React or Angular was strongly considered. 
However, the steep learning curve for mobile app development frameworks and the 
complexities of creating a direct interface between a microcontroller device and a 
JavaScript-based web application appeared to be significant enough to steer the design 
process away from this approach. 

Instead of a web-application implementation for the user interface, we have chosen to focus 
on a graphical Python-based interface that uses a peripheral touchscreen device for input 
and display purposes. The freely-available Tkinter package for Python offers an interface 
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Figure 6.10: Mockup of the graphical user interface on a touchscreen device 

between Python and the Tk graphical user interface library, which was originally developed 
for the Tcl scripting language. The PyGObject package also allows access to the GTK 
graphical library via Python code. 

Along with a Python library to handle the generation of graphical output for the user 
interface, we plan to use the native support for touchscreen control input that is included 
with Linux distributions such as Ubuntu. Integrating these two components will allow our 
application to display information to and gather information from the user. 
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7 System Fabrication  
A significant amount of component testing, network prototyping, and equipment 
optimization was performed during the breadboard testing phase. While breadboarding is 
extremely useful for such activities, it becomes impractical to produce any significant 
circuit beyond a few neurons due to the inherent variability of the breadboard connections 
and the dozens of jumpers and through-hole components used. Because any network 
implemented as in this project is extremely sensitive to more than a few millivolts of signal 
distortion, breadboarding is not an acceptable long-term solution to network 
implementation. 

The obvious solution to this shortfall is the use of carefully designed printed circuit boards 
(PCBs). Through intelligent PCB design, jumpers and leads that were once several inches 
long can be efficiently reduced to a few millimeters, and components can be placed and 
oriented at will to reduce the footprint and complexity of the design. While there are a few 
limitations and considerations that must be taken into account during PCB design, the 
overall result is a significantly more reliable, compact, and portable device. 

7.1 PCB Design Software 
PCB design is largely accomplished through the use of semi-automated design programs 
which allow the user to lay down a device’s schematic and realize the equivalent PCB 
layout. A great multitude of design programs are available for schematic capture and board 
design, ranging in functionality from barebones PCB design tools to software suites with 
schematic capture, automated trace routing, and 3D board visualization. Predictably, these 
programs range wildly in price from being completely free with or without an educational 
license, such as Autodesk’s EAGLE, to costing nearly $10,000, as in the case of Altium’s 
Altium Designer software.  

Because of the availability of educational licenses, relative ease of use, and familiarity due 
to use in previous coursework, EAGLE was selected for use in this project. EAGLE 
provides linked schematic capture and board design, allowing for on-demand updates to 
device schematics to be translated onto a board layout, streamlining the board design 
process. The availability of custom package, symbol, and footprint generation in EAGLE 
allows for the creation of new hardware symbols and layouts when a custom design is 
necessary, or a pre-designed component symbol is either inaccurate or unavailable. The 
“ratsnest” command and autoroute tool both greatly reduce the time required to lay out the 
board traces by displaying the most efficient connection routes as airwires, as shown in 
Figure 8.1, and by automatically routing PCBs between these points, respectively. As 
components are shuffled around on the board layout, the ratsnest command will 
automatically recalculate the most efficient routing connections in order to minimize trace 
length and connection overlap. Use of the autoroute function will automatically lay traces 
in accordance with these airwires; several different solutions will be presented 
simultaneously, with each solution prioritizing different trace directions and different 
layers. As a result, it is possible to produce clean, useful board layouts and save significant 
amounts of time and effort when dealing with less complicated designs. Because autoroute 
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is not able to automatically create voltage planes and can often produce unnecessarily long 
or complex routes for certain traces, autoroute should be judiciously and supplement 
manual routing and board design. 

 

Figure 7.1: A 4-input, 4-output layer board with airwires displayed 

 

7.2 PCB Design Philosophy  
Early in the design process, it quickly became apparent that, while single-board 
implementation of the network was possible, it would be difficult, if not impossible, to 
produce a two-layer PCB design for a single-board neural network. The primary factor in 
this difficulty is the high level of interconnectivity between each layer of the network; each 
neuron must provide two connections, an inverted and noninverted signal, to the input of 
every neuron in the next layer. For instance, with 10 neurons in two adjacent layers, a total 
of 200 logic connections between each layer are required, along with 100 potentiometers 
to receive these signals. Because there are already numerous other connections present on 
the board, such as the analog and digital rails, SPI connections to the potentiometers, and 
amplifier circuit resistor traces, it quickly becomes impractical to produce a single two-
layer PCB for the entire network, even when dealing with smaller networks as in the case 
of the 4-pixel test network. While a DAC implementation as discussed previously would 
eliminate this problem, it would produce problems of its own by dramatically increasing 
the amount of digital logic lines entangled in the analog-heavy board and would require 
constant handling by the microprocessor to update the output of each DAC on the circuit 
every time inputs were changed. 
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Another consequence of using a single PCB implementation is a significant reduction in 
versatility. Because all the connections are static within the board, it is unreasonable to 
attempt to modify the dimensions of the network, especially when using surface mounted 
parts. While it would be possible to reduce the size of a layer, it would be impossible to 
increase the size of the layer beyond whatever limit was present on the board. For instance, 
the least-effort method to reduce the size of a layer would be to remove the potentiometers 
on the following layer that relied upon the output of the neuron being removed and jumper 
the data in and data out pins together for each potentiometer removed. However, this would 
not only require a potentiometer to be removed from every neuron on the following layer 
but would leave excess hardware on the board. Similarly, it would be very difficult to 
remove layers from the network and would be impossible to add additional layers to the 
board.  

A third problem with a single-board implementation is the difficulty of obtaining output 
measurements from each neuron, especially when needed for ADC data for training 
purposes. Because the microcontroller’s training algorithm requires ADC voltage 
conversions from the output of every neuron in the network, the output of every neuron 
must be routed to a location accessible to the ADC. Because it is not reasonable to attempt 
to measure output voltages from multiple locations across the board, it is necessary to route 
these connections to a single location for multiplexing. However, due to the previously 
mentioned high density of connections on and large size of full-network boards, traces must 
be run from each neuron’s output to a central location, requiring unacceptably long traces 
to be routed across the board. 

These factors point to the need for a more versatile, modular design. While the most 
obvious answer to this problem may be to simply use one neuron per board with plenty of 
input and output pins, allowing for completely arbitrary network dimensions, this requires 
that every single connection to and from the neuron, both analog and digital, be repeatedly 
jumped from board to board. Because the SPI daisy-chain configuration can potentially 
involve dozens of devices in series, and because the calibration of the network relies on 
very precise voltage readouts, there is far too high a risk of signal attenuation and 
corruption to employ this approach. An intermediate – and more feasible – method of 
modular implementation is to create individual boards for each layer of the network. This 
approach allows for the easy addition, removal, or adjustment of layers simply by 
exchanging the boards, especially if a standard “format” of board is used. For instance, if 
a 4-neuron layer board is used as the standard format of the network, a 4-4, 4-4-4, and 4-
4-4-4 neuron network could all be fabricated simply by connecting successive boards in 
series with the previous layers. Not only can layers be added and removed as desired, but 
the layers can easily be reduced in dimension as needed by omitting components. Because 
the only jumpers required in this case would be across the serial input and serial output SPI 
pins of the missing potentiometers, both the issue of excessive jumpers with the individual-
neuron implementation and the issue of superfluous hardware and lack of modifiability of 
the single-board implementation.  
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Additionally, boards can be created with non-equal numbers of inputs and neurons. For 
example, if a 4-8 network with 8 inputs is desired, this network can be achieved using a 
single 8-input, 4-output board design. One of these boards can form the first layer; to 
produce the output layer, one can simply populate two of the boards with only half of their 
potentiometers, producing 4-input, 4-output boards. By placing these boards in parallel, 
one can produce a 4-input, 8-output layer. If an additional 4-input, 4-output layer hidden 
layer is desired between these two layers, it is very easy to simply half-populate another 
board and connect it between these two layers. Similarly, if an 8-input, 8-output layer is 
desired, two of the 8-input, 4-input boards can be placed in parallel. Thus, the maximum 
size of a layer is constrained by the number of inputs available on a single board. 

Due to this high degree of flexibility, it is possible to realize a very wide range of network 
dimensions and implementations using the same small pool of hardware. Networks with 
large numbers of inputs that would be otherwise impossible to accomplish on a single two-
layer board can be achieved via parallel operation as described previously. However, width 
is not the only dimension that benefits from this approach. Because neural networks benefit 
more from increased depth than increased width, a network’s width has a strong impact on 
the accuracy of its outputs and on its convergence time during training. Depending on the 
difficulty of the task, such as differentiating between capital P and capital F, a shallow 
network may completely fail to converge regardless of training duration. Thus, network 
hardware that is otherwise unsalvageable for use in a certain application can be successfully 
used and reused in more complex applications simply through addition of hidden layers to 
the network. 

7.3 PCB Design Limitations 
A number of PCB design limitations were observed for this project, especially due to the 
use of multiple copies of the same PCB design. The first and most stringent limitation 
observed was the requirement that any and all PCBs used be designed with a maximum of 
two layers. While single- and two-layer PCBs are fairly straightforward to manufacture, 
boards with higher layer counts become exponentially more expensive to produce, as 
multiple layers of substrate are required. Because this project is self-funded and is already 
utilizing multiple boards, it is entirely reasonable to simply reduce the complexity of the 
boards as needed to maintain reasonable two-layer designs. 

Another limitation for this project is the physical size of the boards. Because numerous 
boards are required for this project and board cost is closely related to the total area of the 
board, it is well worth the effort to minimize the dimensions of the board to as high a degree 
as reasonably possible. However, care must be taken not to take this design compression 
to an excessive degree, especially since board population in this project is performed by 
hand. While board size is not a particularly stringent limitation for this project when dealing 
exclusively with surface mount components, the through-hole versions of the components 
used in this project are, on average, approximately three times larger on average than their 
surface mount counterparts. While the use of through-hole components dramatically 
improves the ease of assembly, there must be enough space between component pads to 
avoid undesired contact between components after soldering. 
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7.4 PCB Design Preferences and Practices 
While the design limitations for the PCB needed to be observed, several other practices 
were observed to improve the functionality and ease of use of the boards and decrease the 
likelihood of interference or signal aliasing.  

 Voltage Planes 
The first design practice was the creation of a ground plane on the second layer of each 
board. While single traces can be used to route ground signals as with any other signal, this 
is generally a bad idea due to the non-zero resistance of traces. Because high currents 
through these traces can potentially produce significant voltages on device pins that should 
nominally be grounded, multiple devices that should all be grounded can operate at 
different ground levels, dramatically increasing the risk of noise or interference on the 
network, especially when this occurs with voltage rails. This can be counteracted through 
use of a ground plane, which fills the unused board space on one layer of the PCB with 
copper and ties it to every ground signal on the board with vias. This is extremely helpful 
in simplifying routing and is unquestionably useful when using through-hole components, 
as the vias of the components themselves can be used to bring the desired pins to ground. 

 Via Minimization 
While vias are useful in combination with voltage planes, they should generally be 
minimized. Vias often have higher resistance than comparable lengths of trace, so 
repeatedly jumping between layers of the board with vias can potentially introduce 
significant resistance to the trace and provide more opportunities for noise to interfere with 
the carried signal, especially when handling high frequency signals such as the SPI clock 
and data lines. While not as applicable to this project due to its small scope, devices should 
have the number of vias minimized to speed up production and reduce costs, especially 
when dealing with mass-produced products. 

 Efficient Component Spacing 
Another design consideration is component spacing. While every attempt should be made 
to minimize unused board space, especially on commercial products, care must be taken 
when considering the device must actually be populated and does not magically complete 
itself. Normally, the only major thought that must be given to this factor is when dealing 
with high-density surface mount components, as the limitations of the pick-and-place 
machine being used for assembly must be respected. However, in the case of the boards 
used in this project, population is performed by hand. High-density component layouts are 
not practical to deal with, especially when using small components (below 0603), as 
beyond this point the silkscreen quickly becomes unreadable. Similar care must be given 
when designing the layout of through-hole components, as each of these components must 
be manually soldered instead of cleanly mounted using a solder screen. Since there is 
inherent variation when individually soldering so many connections, it is well worth the 
effort to ensure there is a reasonable margin between pins and devices to avoid undesired 
contact between solder joints. 
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 Input and Output Pin Alignment 
A final consideration specific to this project is the alignment of the input and output pins 
of each board. In Figure 8.1 above, shows the PCB schematic (ground layer omitted for 
clarity) of the 4-input, 4-output board used in the 4-pixel test network; three sets of four 
pins are visible on the upper left and upper right side of the board. Starting at the top, the 
first row of pins, offset from the next two rows, holds the four network inputs to the layer. 
The next row of pins holds the four power rails for the circuit: +5 V, +1.65 V, -1.65 V, and 
-5 V. The final row of pins holds the ground rail and the three SPI lines: clock, data, and 
chip select. Since all communication used in this project is serial, it is very straightforward 
to simply connect the SPI communication lines in series between each board. Because these 
pins are located next to the edges of the board and correspond to the pins on the opposite 
end, each layer can be daisy-chained together using very short jumpers, minimizing any 
voltage drop or signal interference that would otherwise occur. This also provides a much 
more intuitive visual display of the circuit, as each layer has its own discrete board and can 
clearly be seen in the order the network operates.  

7.5 PCB Schematics  
Because this project relies on multiple boards and does not have finalized dimensions, 
multiple board layouts and schematics will be used throughout the project. However, an 
early iteration of the 4-input, 4-output PCB used for the layers of the 4-pixel test network 
can be used as an example, as it is a fairly simple layout which, while fairly reflective of 
the given design preferences and practices, can be improved in a number of ways. The 
design shown in Figures 8.2 and 8.3 was produced through manual placement of 
components and the use of ratsnest to minimize trace length and connection overlap; the 
routes were then completely generated through use of the autoroute function.  

The autoroute tool was run using the “high effort” option, which generated many more 
unique solutions than normal, allowing the most ideal routing layout to be selected. 
Because voltage planes are not generated when using the autoroute function and are often 
necessary – especially when using ground planes – to avoid noise generation and signal 
distortion, a routing solution which prioritized the top layer was chosen to allow for the 
creation of an as-intact-as-possible ground plane on the bottom layer of the board. 

While the autoroute tool can save enormous amounts of time, attention must be paid to the 
details of each solution. Heavy use with complicated designs can result in extremely long 
and inefficient traces, increasing losses and taking up unnecessary amounts of space on the 
board. However, the autoroute tool can be used as inspiration for a final layout; problem 
traces can simply be deleted and run manually, or existing traces can be adjusted in such a 
way to allow for better trace routing. 

As shown in Figure 7.2, circuit components were laid out manually with a flow similar to 
that of the schematic to improve both the routing and the appearance of the circuit. As 
previously mentioned, the autoroute tool was used to produce a top-biased routing strategy 
to allow for the creation of a large, intact ground plane. By maximizing the number oftraces 
on the first layer (red) and minimizing the number of traces on the second layer (blue), the 
risk of ground loops or other noise-generating phenomena can be significantly 
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Figure 7.2: 4-input, 4-output test network layer PCB design 

reduced. As shown in Figure 7.3, the ground plane is nearly completely intact, with only a 
few small sections of the bottom layer isolated from the ground plane. 

The ground plane can be easily generated on the second layer via the polygon tool. By 
creating a polygon surrounding the entire second layer of the board and naming it “GND”, 
the name of the ground signal in EAGLE, the ratsnest command can be used to 
automatically remove any ground traces on the board, fill in the second layer with a copper 
pour, and connect any ground pins directly to the ground plane. Because all of the 
components used in this design are through-hole, voltage planes are immensely helpful in 
reducing the number of traces and vias on the board, especially when a commonly used 
voltage level, such as ground, can be made accessible across the entire board. One can note 
that the number of vias (excluding the through-hole component connections) is very low, 
with only around half a dozen appearing on the board; a natural consequence of eliminating 
any ground traces from the board is that any traces that would have otherwise required vias 
to cross can simply be routed straight to their destination on the first or second layer instead 
of requiring multiple jumps back and forth between the two. 

One shortcoming of this design is the fairly substantial amount of unused space on the 
upper right and lower portions of the board. While this could largely be resolved by 
widening the board and moving the input buffers from the top left to the left side of the 
design, this would result in a board over twice as long as it is tall, resulting in more fragile 
boards and unnecessarily long arrangements when daisy-chaining multiple layers. As a 
consequence of increased length, the length of the signal traces along the network would 
become non-negligible and would introduce significant voltage losses across the network. 
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Having smaller boards to work with provides us convenience since we are taking a modular 
approach to configuring the network.  

 

 

Figure 7.3: 4-input, 4-output PCB design with ground layer 

Arranging the potentiometers and neuron infrastructure in series, as shown in Figure 7.2 
and Figure 7.3, is effectively non-negotiable, as such a linear configuration minimizes trace 
length and avoids the need for more than a handful of additional vias in the entire board. 
This board also demonstrates the importance of selecting ratios of inputs to outputs that 
match well not only from a logic standpoint but from a physical one; since the footprint of 
the synapse hardware for each neuron is roughly equivalent in size, the layout of the board 
is dramatically simplified and does not require complicated routing or enormous swaths of 
unused space. 

This board serves as an excellent example of both the benefits and shortcomings of the 
autoroute function. There is a significant number of components on the board despite its 
relatively simple nature, and many require connection to a large number of other 
components. While many of the traces are quite short owing to the thoughtful component 
arrangement on the board, it is still tedious to manually route so many connections. 
However, there are drawbacks to autoroute usage. One may note that the second row of 
pins on the right side of the board, carrying the positive and negative analog and digital 
voltage rails, feature extremely long traces all the way down the right side of the board, 
across the bottom, and back up the left side. While this does not have a significant impact 
on the digital signals, which are routed similarly, this is a significant issue when dealing 
with voltage supplies and analog signals. Because the autorouting solution for these voltage 
rails was to route these traces through the relevant devices before terminating the 



EEL 4914  Senior Design I
 

 
96 

connections on the other side of the board, there will inevitably be non-negligible voltage 
drop due to the devices’ current draw across these traces. A better solution would be the 
inclusion of an additional, much wider trace directly across the board to aid in power 
transmission, or, much more preferably, the use of small voltage planes on the otherwise 
unused upper layer of the PCB to eliminate many of the traces entirely.  

 

Figure 7.4: Second iteration of initial 4-input 4-output board 

 

One can note in Figure 7.4 that a number of these problems have been addressed. By 
adjusting the component spacing and orientation – specifically, compressing the buffer 
hardware and rotating the neuron hardware 90 degrees – a significant reduction in board 
dimensions, excess trace length, and unused space results. While a few long traces still 
occur, predominantly when handling the output signals from the network, the overall result 
is a decrease in trace length for much of the analog signal pathways. While the number of 
vias has increased slightly, this is an acceptable tradeoff considering the substantial 
improvements in several other regards. Further inclusion of partial voltage planes on the 
unused areas of the top layer to handle the relevant signals, enhancing conductivity across 
the board and further reducing the number of traces present. 
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Figure 7.5: Final iteration of 4-input 4-output board 

Finally, Figure 8.5 shows the final iteration of the PCB design. Heavy use is made of 
voltage planes on both the top and bottom layers of the board, and traces are shortened 
through the strategic use of vias and with 45 degree angles. While the number of vias is 
significantly higher than in earlier iterations, their use in this case allows for both shorter 
connections and significantly thicker traces, minimizing voltage loss across the board. 
Additionally, the use of vias in certain chokepoints encourages the integrity of the voltage 
planes, minimizing the amount of empty space; comparing Figures 8.4 and 8.5 clearly 
showcases this reduction. 

After some discussion, the decision was made to include a second set of output pins at the 
bottom of the board to allow for easier access for ADC readings when training the network. 
Since the other set of pins would otherwise be taken by the following board when daisy 
chaining the network’s layers, inclusion of another output pin set eliminates the need for 
additional hardware, such as breadboards, to allow for the ADC connections to be made. 
This simplifies the circuit board in a way that makes a modular approach to constructing a 
larger network much easier. This approach will allow us to seamlessly combine multiple 
synapse-neuron circuits to realize our final network. 
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8 Prototype System Testing   
Prototype testing is an important part of getting every major project to operate properly. 
This section will discuss how different tests were conducted throughout the construction 
of the artificial neural network. This led us in the right direction to implement solutions for 
any issues that occur when creating the network. There is no final functional network 
without necessary prototype system testing, and it is important to make sure hardware 
implementations of theoretical testing match the theoretical results. 

8.1 Prototype Hardware Testing   
Conducting tests of our hardware prototype in a logical fashion to ensure accurate 
functionality was a huge part of getting our project to operate. Every voltage and current 
level needed to be within certain boundaries. To make certain they were, we measured 
almost every part of our circuit to see that our physical circuit was lining up with our 
expectations based on schematic simulations. The following subsections outline the 
different tests that were conducted to confirm that several key circuits in the neural network 
would function as expected. 
 

 Individual Neuron Prototype Testing  
Prototype hardware testing is a tedious but extremely necessary process in constructing a 
functional analog neural network. Starting from ground zero, every output of every circuit 
had to be tested along with several different significant currents drawn throughout an 
individual neuron circuit. Our most initial prototype of a full individual neuron actually 
used analog potentiometers to weight the four inputs that feed in to the inverting summing 
amplifier stage. We created the circuit based on an existing project that actually used 
memristors as synapse weighting devices. After doing some tests with the circuit based on 
a previous implementation of an analog neural network, we made some modifications that 
better fit a circuit using potentiometers as synapse weighting devices. We got some exciting 
results initially, but knew we needed to spend some time redesigning the circuit for our 
network. The first test we conducted was to look at the transfer function obtained between 
the input of the summing stage and the output of the activation stage. Results of the sigmoid 
response on an oscilloscope using an x-y plot from our initial individual neuron circuit are 
shown below in Figure 8.1. The sigmoid response is apparent, but the output waveform is 
significantly different from the expected waveform. Further design work would be required 
to produce the desired activation function behavior. 
 
Because the original neuron hardware was designed to handle memristor junctions, a 
significant amount of excess hardware was present in the neuron design to allow for 
intermittent high current draw for programming purposes. After the first attempt at an 
individual neuron circuit, the circuit was modified by removing several components and 
designing simple input buffer circuits. Components removed included a basic current 
mirroring transistor configuration that was used to regulate currents for the memristors that 
was no longer necessary and several neuron amplifier stages that were consolidated into 
the two stages used for this project’s design. Additionally, due to the potential variability 
and poor scalability of an analog potentiometer implementation, a digital potentiometer 
implementation was chosen, as they are controllable with a microcontroller, allowing for 
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greater precision and responsiveness when making weighting adjustments. These changes 
provided a much more reliable sigmoid response to work with.  
 
After constructing the new neuron circuit, it was possible to gather a new response curve, 
given in Figure 8.2, from the oscilloscope. This was the much cleaner sigmoid response 
that was sought after; one can see how much cleaner the response is, as the implementation 
now uses much higher resistance digital potentiometers instead of the lower impedance 
analog potentiometers originally used, avoiding thermal drift as the devices heat up due to 
high current draw. Not only was the sigmoid response function at this stage thoroughly 
tested during prototyping, but the output of the summing amplifier stage was tested to make 
sure the input voltages were being summed properly, since the activation function is wholly 
dependent upon the output of the summing stage. Additionally, the voltage levels on each 
of the digital potentiometers’ wiper pins were probed to verify that they were scaling with 
respect to the 8-bit digital value assigned to the wiper’s position. 
 

 
Figure 8.1: Initial Neuron Circuit Sigmoid Response 

 

Figure 8.1, again, shows the sigmoid response using the initial current-driving design. 
While the waveform looks approximately like the expected shape for the upper half of the 
trace, an unanticipated additional hump occurs below this point before the voltage abruptly 
runs into a hard stop. There is also a substantial offset visible, as the vertical portion of the 
trace should be centered, but is instead off by an entire division to the right. 
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Figure 8.2: Modified Neuron Circuit Sigmoid Response 

By comparison, Figure 8.2 shows the resulting sigmoid response with a digital 
potentiometer once the current-driving hardware had been abandoned. The difference is 
night and day; the vertical portion of the sigmoid is perfectly centered, with an almost 
perfectly symmetrical waveform on both the x and y axis of the plot. While the slope is 
quite steep in comparison, this can be adjusted by changing the values of the resistors used 
in the activation function. One thing to consider is that the above response results from 
tying all 4 inputs to a common input, effectively multiplying the slope of the sigmoid by 4; 
the effective response to a single input is somewhat less extreme, as shown in Figure 8.2. 

While the sigmoid response generated by the modified circuit is far cleaner and much more 
symmetrical than the original response, the slope of the response is much less ideal than 
the first circuit, as the overwhelming majority of the range is not used for intermediate 
values. With a 256-tap potentiometer, for instance, a value of 128 should be approximately 
0 V of output. However, with such a steep slope, a maximum output magnitude of 1.65 V 
(or the equivalent value chosen for a given network) will quickly be reached within about 
20 taps in either direction of 128. While this results in a very responsive network, it 
ultimately wastes more than 80% of the taps of the potentiometer, as the difference between 
156 and 256 is effectively zero, as is the case between 0 and 100. While this may not be a 
significant problem in smaller networks with simple logic conditions, a large network 
intended for handwriting recognition or outcome prediction may fail to reach a final state 
any better than random guessing, as there will simply not be enough signal fidelity between 
neurons to produce the necessary outputs, especially when dealing with large layer counts. 
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Although the response produced by a neuron should ideally be unchanged when using 
different operational amplifiers, there is, in reality, a surprisingly high degree of variability 
in neuron response behavior when changing amplifiers, even when the same components 
are otherwise used. 

Since the TL084 was the amplifier used for the majority of prototype evaluation, it was 
chosen as the initial platform for sigmoid response tuning. The response of the neuron is 
heavily dependent upon three neurons, each of which controls a different aspect of the 
device’s response. These resistors are the summing amplifier feedback resistor, the diode 
clipper resistor, and the activation function output resistor. The summing amplifier 
feedback resistor controls the overall slope of the sigmoid response, while the diode clipper 
resistor controls the slope of the response of the sigmoid when the output magnitude is less 
than about 50% of its maximum value. The activation function output resistor controls the 
maximum output voltage magnitude of the neuron. 

Because the relatively steep slope of the sigmoid response was the primary cause for 
concern, reducing the values of the feedback and diode clipper resistors was the most 
obvious approach. As the activation function is reliant upon the output of the summing 
amplifier, it makes little sense to only adjust the diode clipper resistance, as the steep slope 
of the summing amplifier’s response would simply overwhelm whatever reduction was 
effected in the activation function. Consequently, the two resistors must be adjusted in 
tandem to avoid excess gain on either stage. However, a single input, given all other inputs 
are zero, should be able to drive the neuron to a maximum or minimum output by itself; 
otherwise, if a single signal path is necessary to produce the proper output for the network, 
it may attenuate and be lost by the time it reaches the output stage. 

An additional adjustment was made in the form of changing the diodes used in the neuron. 
Because the 1n4001 diodes used in the initial prototypes are a relatively old component, 
1n4148s were used in their place to observe their suitability for this application. Since the 
two diodes do not have identical forward bias voltages, additional tuning was necessary to 
maintain the proper output voltages. 

Component Initial value Tuned value 
Neuron amplifier TL084 TL084 
Clipping diodes 1n4148 1n4148 

Summing feedback resistor 100 kΩ 39 kΩ 
Diode clipper resistor 100 kΩ 10 kΩ 

Activation output resistor 3.3 kΩ 4.3 kΩ 
Table 8.1: TL084-based neuron resistance values 

The initial and tuned components and resistances are given in Table 8.1. Given feed-in 
resistors with values of 10 kΩ, the initial summing amplifier feedback resistance of 100 
kΩ corresponds to a gain of 10. Since this results in a maximum output from the summing 
stage with a single input at 10% of its maximum value, this is far too responsive for larger 
networks. Reducing the gain to 3 or 4 was found to be the best-functioning range of values, 
as lowering the gain beyond this point resulted in an entirely linear response from the 
neuron, which results in signal attenuation from layer to layer as the output is no longer 
able to reach a maximum value. Similarly, the activation function amplifier functions as an 
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inverting amplifier at low current levels, so the gain is controlled by the diode clipper 
resistor and activation output resistor in series. Since the feed-in resistor of the activation 
amplifier is 20 kΩ, the total resistance of these two resistors in series results in a gain of 
around two thirds; overall, this results in a gain of around 2 to 2.7, given the gain range of 
the summing amplifier described previously. This results in a neuron response with a much 
more gradual response while preserving healthy margins at the extreme ends of the 
potentiometer. Using 1n4148s, which have lower forward bias voltages than the 1n4001s, 
the activation output resistance must increase to approximately 4.3 kΩ to maintain the 
proper output magnitude. Initially, three 1n4148s in series were used to produce a clipping 
voltage close to that of the 2 1n4001s in series, but this was reduced to 2 during tuning, 
resulting in a more favorable output. 

 

Figure 8.3: Original and tuned TL084-based sigmoid responses 

Figure 8.3 shows the original and tuned sigmoid responses of the TL084-based neuron. 
The difference between the two responses is obvious; while the original function uses 
perhaps 25% of its range, the tuned response uses roughly 70% of its range. This effectively 
triples the precision of the synapse, as almost three times as many taps can be used between 
the two extremes of the output. Additionally, the reduction in output magnitude from a 
maximum overall gain of 1.33 to unity gain prevents cumulative signal distortion. 

One consequence of this tuning is the introduction of an offset in the positive and negative 
extremes of the sigmoid; while the overall shape of the sigmoid is dramatically better, the 
voltage levels of the positive and negative halves of the sigmoid are no longer consistent. 
This is predominantly due to the inherent behavior of the TL084, as it is not a rail-to-rail 
amplifier and thus is not guaranteed to have equal maximum and minimum output voltage 
magnitudes. The TL084s tend to exhibit some play in their maximum output magnitudes; 
while pushing them with much higher voltages often results in the high and low values 
becoming roughly identical, the lower slope of the summing amplifier and lower gain of 
the neuron overall result in some inconsistency between the two. 
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Component Initial value Tuned value 
Neuron amplifier MCP6274 MCP6274 
Clipping diodes 1n4148 1n4148 

Summing feedback resistor 100 kΩ 15 kΩ 
Diode clipper resistor 100 kΩ 10 kΩ 

Activation output resistor 3.3 kΩ 9.1 kΩ 
Table 8.2: MCP6274-based neuron resistance values 

 

Figure 8.4: Original and tuned MCP6274-based sigmoid responses 

Since rail-to-rail amplifiers offer a significant number of benefits, a neuron design based 
around the MCP6274 rail-to-rail amplifier was also produced. As with the TL084-based 
neuron, the MCP6274 neuron required a significant amount of tuning. Because the 
MCP6274 can operate at 3.3V and is a rail-to-rail amplifier, tuning the output voltage is 
not as involved a process as with the TL084. While the rail-to-rail nature of the device 
eliminates the voltage offset observed in the tuned TL084, it also makes it much more 
difficult to produce the rounded corners found in an ideal sigmoid function. The summing 
amplifier gain must be significantly lower, at around 1.5, and the activation function gain 
must be higher, at around .95, to produce a proper response, as there is no longer any 
overhead in the output of each stage as there was when using 5 V supply rails for the 
TL084. These tuning decisions are reflected in Table 8.2, while the results of these changes 
are provided in Figure 8.4. 

Another factor under consideration is the frequency behavior of each neuron. While there 
are no time constants in an ideal system, as the hardware is purely resistive, the amplifiers 
themselves are not capable of instantaneous response, especially when multiple stages are 
cascaded, as in the neurons. As such, there is an upper limit to the effective frequency that 
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each neuron can be operated at; this frequency limit is largely dependent upon the amplifier  
used for the buffer and neuron hardware.  

 

Figure 8.5: TL084-based neuron response at 20 kHz 

In Figure 8.5 above, the response of a tuned neuron to a single 3.3 Vpp 20 kHz sinusoidal 
input is provided. Comparing this result with the tuned output from Figure 8.3, it is clear 
that a hysteresis appears as the operating frequency of the neuron increases. Since deviation 
of more than 10 millivolts can result in signal corruption, it is not wise to operate the device 
near its upper limit. In the case of the tuned TL084-based neuron, output noise began to 
appear at around 8 kHz, with obvious hysteresis effects beginning around 15 kHz; 
consequently, limiting operation to 5 kHz allows plenty of room for error without 
sacrificing too much time during training operations.  

Since the inputs of the network can be changed rapidly between high and low voltages, 
sinusoidal inputs are not necessarily the most realistic input to test frequency response 
behavior with. While a square wave input approximates these inputs more closely, it should 
not be taken as a definitive limitation on the operating frequency of the neurons. The output 
of each neuron must be read via ADC; as the number of neurons increases, the amount of 
time required to measure each neuron output also increases. While it is tempting to assume 
that a smaller network can simply be run at higher frequencies than smaller networks, the 
rise and settling time of the neurons must be considered. Performing ADC readings too 
early in the cycle will result in inconsistent and variable measurements dependent upon the 
input combination used, while using too much margin for output settling unnecessarily 
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slows down training. Since there are multiple stages cascaded and signal propagation takes 
progressively longer as more layers are added to the network, there is no simple formula 
for the behavior of a given network. Each network must be evaluated based upon its 
dimensions and amplifier technology, and basic experimentation must be performed before 
the maximum operating frequency can be determined. 

 Four-Neuron Prototype Testing  
The four-pixel input neural network prototype consists of four inputs instead of the full 
twenty-five, as it is far easier to debug and modify a smaller network. There are seven fully 
constructed individual neuron circuits in this intermediate prototype; initially, a total of 
eleven neurons was constructed on breadboards, and several tests were performed on each 
circuit to verify that multiple neurons could be produced within the desired current and 
voltage bounds.  

The first test measurements that were taken were the precision voltage regulator outputs. 
Since the digital and analog components do not operate on the same voltage levels, the ±5 
V used to power the operational amplifiers must be reduced to ±1.65 V to power the digital 
portions of the network. After testing the regulator voltages, the voltage levels on each 
potentiometer and amplifier was recorded; this was necessary to ensure each component is 
being powered correctly, since both the amplifiers and the potentiometers are sensitive to 
incorrect supply voltages and a single broken connection can ruin the network.  

After verifying proper voltage supplies to the network components, the behavior of the 
input signal buffer pairs was checked to ensure that the proper signals were being supplied 
to each device. Finally, using an oscilloscope, the output voltages from the wiper of each 
digital potentiometer were measured when supplying the maximum input to each neuron’s 
inputs to determine whether or not the output voltages were properly scaling with the n be 
control signals. This process was performed by using the Teensy to sweep the 
potentiometers’ wiper positions between 0 to 255 bits while observing the output of each 
potentiometer using an oscilloscope or DMM.  

After potentiometer behavior was verified, the final step was to observe the functionality 
of the summing amplifier and sigmoid activation stages. Both the input and feedback 
currents of both stages were measured; these currents are significant because it is necessary 
to maintain currents that are both low enough to minimize power consumption and high 
enough to avoid aliasing due to the amplifiers’ bias and offset currents. The resulting 
current readings from each neuron can be seen in the two following tables, Table 8.3 and 
Table 8.4.  

A noticeable degree of variability is present among the neurons tested. While the neurons 
are, as a whole, fairly similar, the differences present within the set demonstrates the 
difficulty in creating identical neurons, even when the same values and lot of components 
is used in each neuron. However, since the training algorithm is quite flexible, it is able to 
work around reasonably low levels of variability. 
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Neuron 
# 

Input Current to 
Summing 
Amplifier 

Feedback 
Current on 
Summing 
Amplifier 

Summing 
Amp Input 

Bias 
Current 

1 -47uA to +56uA -56uA to +50uA 0.0065uA 
2 -50uA to +56.5uA -54uA to +48uA 0.006uA 
3 -50uA to +57.5uA -55uA to +48uA 0.0055uA 
4 -49uA to +58uA -56uA to +46uA 0.006uA 
5 -49uA to +51.2uA -53uA to +49uA 0.0056uA 
6 -46uA to +47uA -50uA to +50uA 0.0045uA 
7  -59uA to +52uA -51uA to +57uA  Negligible  
8  -59uA to +52uA  -50uA to +57uA  Negligible 
9  -50uA to +59uA  -58uA to +49uA  Negligible 

10  -54uA to +61uA  -40uA to +69uA  Negligible 
11 -58uA to +52uA -59uA to +57uA 0.008uA 

Table 8.3: Summing Stage Current Measurements 

Neuron 
# 

Input Current to 
Activation Stage 

Feedback Current on 
Activation Stage 

1 -0.173mA to +0.204mA -0.210mA to +0.171mA 
2 -0.201mA to +-0.176mA -0.202mA to +0.179mA 
3 -0.216mA to +0.168mA -0.217mA to +0.171mA 
4 -0.216mA to +0.159mA -0.217mA to +0.159mA 
5 -0.180mA to +0.180mA -0.180mA to + 0.179mA 
6 -0.196mA to +0.182mA -0.204mA to +0.182mA 
7  -0.179mA to +0.211mA -0.180mA to +0.203mA  
8 -0.179mA to 0.211mA -0.180mA to 0.206mA  
9  -0.215mA to +0.182mA  -0.216mA to +0.183mA 

10  -0.127mA to +0.273mA  -0.162mA to +0.272mA 
11 -0.178mA to +0.205mA -0.179mA to +0.204mA 

Table 8.4: Activation Stage Current Measurements 

After acquiring these readings along with the sigmoid response of each individual neuron 
via X-Y plots similar to those in Figures 8.3 and 8.4, the project was ready to progress to 
the construction of a slightly larger network. At this point, the next step was to construct a 
very basic four-to-one neuron network and make sure that the desired sigmoid responses 
and current readings were still being generated by each summing and activation stage’s 
inputs and feedbacks, which was the case, as anticipated. Results of this testing can be seen 
in Figure 8.6 in the following section. 

Following these intermediate steps, the completed four pixel input network was assembled. 
The four pixel input network is simply a scaled down version of the final design, and will 
provide insight into which design implementations work well, and which do not. Since the 
number of components is relatively limited by comparison, it is much easier to adjust the 
components and devices used in the network, as described later in this chapter. 
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8.2 Software/Hardware Integration Testing 
After the hardware components comprising the neural network’s neurons and synapses had 
passed unit testing and the TACOCAT software and firmware packages had been unit 
tested and validated, a subsection of the four-pixel prototype network was fabricated using 
solderless breadboards and connected to the MCU and Raspberry Pi mini-PC hardware for 
integrated system testing. 

The circuit, shown in Figure 8.6:, consisted of a 5-neuron network, with a first layer 
consisting of 4 neurons and 4 synaptic inputs per neuron, and a second layer consisting of 
1 neuron with 4 synaptic inputs. The Teensy 3.5 MCU was connected to the SPI bus of the 
neural network’s digital potentiometer array, and each neuron’s non-inverted output was 
connected to a separate ADC input channel on the MCU. 

A Raspberry Pi 3B+ mini-PC hosted the TACOCAT software package, and it was 
connected to the Teensy MCU via an I2C interface. An Analog Devices AD1250 digital 
isolator IC was used to connect the mini-PC and the MCU, which did not share a common 
ground level. The Raspberry Pi mini-PC was operated remotely over ethernet via an RDP 
connection from a laptop PC running Windows 10. 

Since the breadboards suffered from noise problems and tenuous connections, especially 
between digital components, the size of the tested network was limited. However, this 
testing still produced useful feedback on the behavior of the potentiometers and the SPI 
signals and proved that the SPI daisy chain approach would work. 

 

Figure 8.6: Network prototype circuit for software/hardware integration testing 
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The +/- 5V supply rails were powered by a laboratory bench power supply, and the primary 
side of a commercially available LM317/LM337-based split-rail voltage regulator unit was 
connected to these rails in order to power the separate +/- 1.65 V supply rails. 

The objective of the integration testing procedure was to ensure that the following 
software/hardware interfaces and control systems worked properly: 

 Software commands transmitted to the MCU over the I2C interface can be used to 
read and modify the state of the neural network. 

 The MCU can send updated synaptic weight values to the digital potentiometers 
during an appropriate timeframe so that weights will be set for the next recognition 
task. 

 The MCU’s onboard ADC can read the network’s neuron-output voltages and 
transmit them back to the software package. 

A Python script was written to implement the test procedures using the existing software 
and firmware modules that were developed for the TACOCAT system. For this test, all of 
the inputs to the neural network’s first layer were set to their maximum values. Neuron 
activation was gradually increased by sequentially incrementing each neuron’s synaptic 
weights from 0 (full negative weight) to 255 (full positive weight), for a total of 1024 
discrete activation input levels. This input sweep was applied to the first layer before being 
applied to the second layer. 

At each one of the 1024 synaptic weights for each neuron’s input sweep, an ADC sample 
was taken using the MCU to measure the neuron’s output voltage, and the 13-bit ADC 
measurement value was transmitted back to the mini-PC. These data points were logged 
for later graphical analysis. 

Initially, results were inconsistent and appeared to be incorrect. The major cause of this 
issue seemed to be a lack of sufficient delay after adjusting the digital potentiometer’s 
wiper values before taking a sample reading of the neurons’ output voltages. After adding 
a 20 µs delay between the weight-update and output-sampling operations, results became 
much more consistent. Plots of total synaptic weight value vs. neuron output level for each 
neuron in the test network are shown in Figure 8.7:. 

The test results indicate that all of the hardware/software integration interfaces were 
operating as expected. Further testing and validation will be needed to obtain quantitative 
data regarding reliability and accuracy of these systems, but these preliminary results 
indicate that the TACOCAT system components did not have any major operational errors. 

A secondary objective of integration testing was to develop a test platform that could be 
re-used for validation of circuit board assemblies during the next phase of the prototyping 
process. This validation logic may also be included in the final TACOCAT 
software/firmware package’s initialization and self-checking diagnostic routines.  
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Figure 8.7: Software/hardware integration test results 

8.3 Four Pixel Network Op. Amp Testing 
Part of validating the design of the four-pixel network’s design, is to ensure that the 
operational amplifier components used in the neuron and synapse circuits perform well 
with respect to the desired design specifications. One of which, is power consumption. To 
maintain a low power consumption throughout the entire network, low rail voltages and 
efficient use of supply drain current must be taken into consideration. This is the main 
concern when performing tests of these operational amplifier components and the 
following tests that were performed. 

Firstly, the rail voltages of the operational amplifiers that were chosen for the prototype 
design, the TL084 Quad op. amp. chips require a +5V to -5V minimum VCC rail voltages. 
Other components in the neural network circuit only require a +1.65V to -1.65V rail 
voltages, like the digital potentiometers and the Teensy 3.5, which only needs to have 3.3V 
VCC. To simplify the overall design of the circuit, and consume less power, an operational 
amplifier chip needs to be chosen with the same rail voltages, preferably one with bipolar 
rail to rail voltages run at +/- 1.65V. Furthermore, simplifying the supply voltages of the 
final neural network, allows for a reduction in complexity of the PCB layout of the 4-
neuron modular PCB design. There would no longer be a need for divided voltage planes 
and vias for the TL084 op. amps, as the newly chosen op amps could use the same +1.65V 
to -1.65V rails or planes of the PCB.  

Two primary operation amplifiers in the market were chosen to be used for tests in a 
prototype 2-neuron circuit with 4 synaptic weights each, the TL974 and MCP6274 Output 
Rail-To-Rail Very-Low-Noise Operational Amplifiers. The circuit components that 
remained from the previous prototype design include the MCP42010 digital potentiometers 
for the synaptic weights, and the 1N4001 rectifier diodes for the sigmoid activation 
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function circuit of the neuron. This is to ensure that only the amplifiers are being modified 
in the circuit, and that a change in results will only be tied to the change in amplifiers. 

The primary tests considered for the performance of each amplifier, was the sigmoid 
response of each neuron, as this was most significant response to test. As changing the ratio 
of input voltages to the summing amplifier circuit, to the output voltage of the sigmoid 
activation function circuit as a result from lowering the rail voltages, could alter the training 
time and performance of the final network’s design. Aside from the performance of the 
sigmoid response of the neuron, the viability of using these amplifiers as buffers and 
inverters for the input synapse circuits needs to be tested for true voltage polarity inversion 
and buffering. 

The first operational amplifier in contention is the TL974 operational amplifier. It offers 
potential operation at low rail-to-rail voltages, as low as +/-1.35V and features very low 
noise and low distortion. However, the functional block diagram of the data sheet reveals 
that it is a BJT differential input amplifiers. This would suggest a larger current draw at the 
input terminal of the amplifier, and a much higher temperature variance than a JFET input 
amplifier would have. To validate the sigmoid response of the circuit, the response was 
measured using the same +1.65V to -1.65V rail voltages supplied to all components, while 
removing the LM317 and LM337 regulator pairs that were used for the previous prototype 
circuit configuration. The resulting sigmoid response, at the extremes of the inputs to the 
summing amplifiers can be seen in Figures 8.7a and 8.7b. 

As shown from the oscilloscope image of the sigmoid response, the performance of the 
voltage extremes in the sigmoid response of the circuit is largely degrades in resolution, 
and noisier. This can be explained by the fact that a much higher input bias current in 
necessary to drive the inputs of this operational amplifier. Only voltage ranges in the input 
of the summing amplifier and the output of the sigmoid circuit can be seen in the range of 
-700mV to + 700mV.  

To validate the performance of the input synapse circuit’s drivers, the inverting and buffer 
op. amp. circuits, a simple circuit consisting of just the TL974 op. amp. chip, supply 
voltages of +/-1.65V from a DC power supply, and wires and high-power tolerance 
resistors were used to build the buffer and inverter circuits. A largely varying output 
voltage at the outputs of these circuits were observed. Finally, the input voltages at the 
inverting and non-inverting terminals of the operation amplifier were measured to ensure 
an adequate open-loop performance was obtained from these op. amps. Voltages in the 
range of 600mV were seen at the inverting terminal while voltages in the range of 700mV 
were measured in the non-inverting terminal. When taking the very large open-loop gain 
of an op. amp into account, this can explain the poor circuit driver performance of the 
synapse circuit, and ultimately prove a poor choice for the final neural network design.  

Next operational amplifier considered for the final network design, the MCP6274 low 
noise, 0.9V/us slew rate, low rail-to-rail voltage supply, Quad JFET operational amplifier 
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Figure 8.5: Sigmoid response using TL974 op amps shown at their maximum (a) and 
minimum (b) amplitudes with respect to the weighted and summed inputs 

was used for similar tests. First and foremost, the most significant difference from this 
amplifier when compared to the TL974, is the fact that it offers a JFET differential input 
to the op amp. This means that a much lower power dissipation in the op amp, as the input 
bias current of it’s internal circuit would demand a current draw from input terminals of 
about +/-1 pA range. When compared to the TL974, which offers an input bias current of 
1000nA (when operated in +/-2.5V range according to the data sheet), the difference is 
obviously orders of magnitude. Even at these small current magnitudes, the large number 
of these op amps that would be needed for the final network design would quickly add up 
to a much higher power consumption.  

The performance of the sigmoid response using these operational amplifiers was tested 
using the same testing procedure described above, for the TL974 op amp. The transfer of 
the input voltages to the transfer function versus the output voltages of the sigmoid 
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activation function circuit can be seen in the oscilloscope images taken and shown in Figure 
8.8a and 8.8b, below.  

An adequate +1.65V to -1.65V range of output voltages in the sigmoid response can be 
seen while using these MCP6274 op amps. One concerning result from this test, is the lack 
of vertical portion of the sigmoid response. To yield a proper sigmoid curve, further tests 
need to be performed when changing the ratio of resistors to provide a smaller/larger 
feedback in the summing amplifier circuits and the activation function circuits. However, 
the MCP6274 shows promising results for the final network design and will be used in 
following experimentation for adjusting the resistors of the summing activation function 
circuits of the 4-pixel network and final network design.  

 

 

Figure 8.6 Sigmoid Response using the MCP6274 op amps shown at their maximum (a) 
and minimum (b) amplitudes with respect to the weighted and summed inputs 
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8.4 End-to-End Testing of Four-Pixel Network Prototype 
Following the unit testing of a breadboarded version of the four-pixel network hardware, 
the decision was made to design and order printed circuit boards for the fabrication of a 
working small-scale network prototype. Using a modular design approach, each circuit 
board represents an individual layer in the network, allowing layers to be added or removed 
without any additional PCB design work, provided that each layer contains no more than 
four neurons, each with a maximum of four synaptic inputs. 

The goal for complete end-to-end testing of the four-pixel prototype network was to train 
the network to an accuracy rate of 100% for recognition of the binarized/black-and-white 
four-pixel line orientation data set. Validation was conducted by stimulating the network’s 
input synapses and measuring the voltage at each output-layer neuron. 

 Hardware Configuration 
The four-pixel network prototype, designed as described in previous chapters, was 
mounted semi-permanently to a wooden panel (see photograph in Figure 3.12). Two 
custom PCBs represented the hidden layer and output layer of the neural network. A 
Teensy 3.5 MCU was used for circuit-level control of the network training operations 
according to instructions provided by a Raspberry Pi 3 Model B+ mini-PC. The MCU and 
mini-PC modules shared an I2C-based data link with galvanic isolation provided by an 
Analog Devices ADuM1250 digital isolator IC. 

The network was powered by a regulated DC bench power supply, which provided a split-
rail supply at +/- 5V. An onboard combination LM317/LM337 regulator circuit was used 
in conjunction with additional 3.3V regulation on the Teensy MCU to create additional 
split-rail supply lines at +/- 1.65V. 

The Raspberry Pi mini-pc was controlled using VNC-based remote access from a Windows 
10 laptop via ethernet connection. The mini-pc unit’s ethernet jack is galvanically isolated 
to eliminate any problems caused by mismatched ground levels between the two ethernet 
controllers. 

 Software/Firmware Configuration 
The mini-pc was loaded with the Python-based neural network model and training control 
modules that are described in section 6.4. The MCU was programmed with the firmware 
package that is described in section 6.5. 

 Testing Procedure 
The Python-based training algorithm was run using the binarized four-pixel line orientation 
data set, which consists of six samples (representing all possible 4-pixel images that contain 
exactly two white pixels and two black pixels). Each image can be classified according to 
the spatial orientation of a line connecting two pixels with the same activation state. The 
three image classes are labeled “Vertical”, “Horizontal”, and “Diagonal”. 

The training algorithm was configured to run for 200 training epochs. At the end of each 
training session, the network’s trained state was validated using the full data set. Due to 
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the small size of the binarized four-pixel data set, cross-validation techniques were not 
found to be applicable. 

 Test Results 
In initial runs of the training algorithm, the network failed to converge. Even after long 
training runs of up to 20,000 epochs, the accuracy of the network appeared to oscillate 
randomly. Upon analyzing the training model and comparing it to the hardware design, a 
discrepancy was found in the input-layer voltages that correspond to the training data’s 
input values. The initial configuration of the prototype device was using high and low 
logical voltage values to represent the binary input values 1 and 0, but because the network 
is designed to represent positive and negative weights, the high and low logic voltages of 
+1.65V and -1.65V actually represent input values of +1 and -1. 

In order to represent the intended binary input values of 1 and 0 as they appear in the 
software training model, two simple modifications were made to the prototype’s hardware 
and firmware. First, each input-driver pin on the Teensy MCU was connected to the 0V 
ground supply line via individual 3.2 kΩ resistors. Second, the firmware’s input-driving 
function was modified to place each input-driver pin in a high-impedance/floating state 
whenever it is set to the binary 0 value by the training software. When the pin is set to a 
high-impedance state, the attached resistor pulls the pin’s voltage to 0V. 

After making these modifications, performing some minor firmware debugging, and 
testing a small number of different pseudorandom initial synaptic weight sets, the prototype 
was successfully trained to 100% accuracy and validated using the full four-pixel binary 
training data set. A graph depicting changes in network accuracy during the training 
process is shown in Figure 8.7, and validation results showing the Teensy ADC-based 
voltage output readings for each input sample are provided in Table 8.5. 

 

Figure 8.7: Accuracy percentage by training epoch for four-pixel network prototype. 
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Input Sample 
ADC Readings of Neuron Output Voltages 

(scaled from -1.0 to 1.0) 

Vertical Horizontal Diagonal 

  
  

 

 0.73068001 -0.72677329 -0.740691 

  
  

 

-0.26114028 -0.49578806 -0.88621658 

  
  

 

-1.0  1.0 -0.98559394 

  
  

 

-0.90282017 0.52264681 -0.93505067 

  
  

 

-0.85642779 -0.99511659  1.0 

  
  

 

-1.0 -0.89720425  0.83347577 

Table 8.5: Prediction results from four-pixel prototype network test. The network’s 
prediction is indicated by the output neuron with the highest voltage. 

ADC readings from the Teensy MCU were confirmed manually by measuring output 
voltages with a digital multimeter. The MCU’s 13-bit unsigned ADC output was scaled to 
a range of -1.0 to 1.0 for readability. These numbers translate to a voltage range of -1.65V 
to 1.65V. 

 Conclusions 
Once the debugging was completed, the prototype exhibited training and prediction results 
that were comparable to those found in the software model. This is a positive indication 
that the foundational design for the final TACOCAT network is working properly. While 
the training software was set to run for 200 epochs, the network first reached 100% 
prediction accuracy in less than 150 epochs. 

Most input samples showed a substantial voltage difference between the maximum output 
level and the next lowest voltage level, which is favorable for use with an analog 
comparator/LED-based visual output interface module. The smallest of these differences 
in the test results occurred in the second test sample shown in Table 8.5. The difference in 
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the ADC values of -0.26114 and -0.49579 translates to a voltage difference of 
approximately 37.9 mV. This voltage difference is an order of magnitude larger than the 
hysteresis voltage levels used in typical comparator ICs, so it seems unlikely to cause 
problems in the LED/comparator output section. 

After completing these tests, plans have been made to enhance the training logic in the 
TACOCAT software package by considering not only the accuracy of the network’s 
predictions, but the minimum difference between its prediction output levels, which 
corresponds to the certainty of the network’s predictions. Subsequent testing has shown 
that it is possible for the network to achieve minimum distances approaching the full output 
voltage range in less than 200 epochs, so in the case of the four-pixel test network, training 
for this additional criterion does not seem to incur any real additional costs. 

After noticing that different starting weights created distinctly different training patterns, 
plans have also been made to include an “outer loop” in the training algorithm that can re-
train the network using multiple sets of starting weights. By using the best results from 
training sessions with different starting weights, the network may be able to achieve higher 
levels of accuracy and prediction certainty than it would by only using the results from a 
single set of starting weights. While training with a single starting-weight set appeared to 
be sufficient for the four-pixel network, it might be a significant limitation on the training 
process for the large-scale TACOCAT prototype, which will be performing a much more 
complicated recognition task. 
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9 Administrative Content 
To manage sustained progress and ensure creating a functional artificial neural network 
that is affordable, some administrative content needs to be considered. In this chapter our 
overall project budget and timeline for completion will be discussed. A project budget is 
essential for any major design project and will keep track of all costs. The project 
milestones exist as a guideline for goals to reach and a reminder to stay on track. This 
project will be developed over an approximate six month period and will be documented 
accordingly to keep a steady pace. 
 

9.1 Project Budget 
At present, this project is entirely self-funded by its participants. The current goal of this 
project is to build a 4-pixel (2x2) test network designed for basic pattern recognition, then 
use the results and behavior of this network to improve and up-scale the design to a 25-
pixel (5x5) network for basic handwriting recognition. Because the costs of the network 
increase exponentially with the size of the network, a reasonable limit must be placed on 
the dimensions of the input image and on the width of each layer in the network. Since, as 
previously discussed, certain networks have more to gain from increased depth than width, 
it is possible to reduce the total costs of the network while simultaneously improving 
performance by using multiple smaller layers instead of a few wide ones. This becomes 
increasingly important as the number of inputs increases, as each neuron in the first hidden 
layer requires synapse hardware between it and the input layer. To put this into perspective, 
the difference between a 10-neuron layer and a 4-neuron layer for the first hidden layer of 
a 25-input network is 150 potentiometers, which, at $2 per 2-potentiometer MCP42010 
chip, is a reduction in price of approximately $150. Even if two additional 4-neuron layers 
are connected in series with this first layer, a net reduction of 118 potentiometers or $118 
results, more than enough to offset the cost of the additional boards and neuron components 
despite the overall neuron count increasing relative to the single 10-neuron layer 
implementation. 
 
Because the overall dimensions of the final network will depend upon the performance of 
the 4-pixel test network, it is difficult to produce an error-proof budget for the project. 
However, by taking advantage of the cost-saving measures discussed previously, it is 
possible to reconfigure the network to maximize the possible performance from limited 
hardware. With these considerations in mind, the project budget provided in Table 9.1 
results. Again, it should be noted that this is merely a rough estimation of the project budget 
management and is subject to change as time goes on. 
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Budget item Allocated funds Comments 
Prototyping development 

boards 
$50 Already acquired 

PCBs $150 Assuming 2 total networks 
Network microcontrollers $50   

Potentiometers $250 Assuming MCP42010 use 
Operational amplifiers $75 Assuming TL084 use 

Buffer and neuron 
feedback resistors 

$25 Assuming 5% .25W axials 

Activation clipping diodes $25 Assuming 1N4001 use 
Sample collection 

camera/pad 
$100 Dependent upon method 

Total $725  
Table 9.1: Estimated project budget item breakdown 

The first set of items provided for is the group of prototyping development boards needed 
for the network. While the ideal end result will be total integration of the training 
microcontroller into a custom PCB, the complexity of the later networks may be so big that 
this is not a practical goal. Regardless, some kind of development board is necessary for 
both performing the necessary ADC readings and training and for supplying the numerous 
voltage supplies and signal inputs to the network. 
 
The next budget item listed is the allocation for the project’s PCBs. While the manufacturer 
used for this project, JLCPCB, is able to produce modestly sized 2-layer PCBs at less than 
$1 per board before shipping, this price increases sharply when dealing with 4-layer boards, 
as may be the case for the final network. Because the cost is potentially $10 to $20 per 
board in this situation, a healthy amount of breathing room has been provided. If 2-layer 
PCBs are practical for the final network, this budget should be more than sufficient. 
 
The third item listed is the network microcontroller provision. While the network is 
currently being handled by development boards and external computers, these processors 
will need to be re-purchased and integrated along with the necessary external hardware. 
Although the processors are not particularly expensive, more than one may need to be 
purchased along with additional components, so an allocation similar to that of the 
development boards has been provided. 
 
The next item, the potentiometers, is by far the largest single item on the budget. While the 
potentiometers themselves are not ridiculously expensive, the comparisons provided in 
Chapter 3 produce a price point of around $.80 to $1 per potentiometer. A 100-3 network 
would require one potentiometer per connection, or 300 potentiometers, which would 
quickly run over budget if any problems were encountered; as a result, the maximum 
network size that can be achieved by this project is limited by budget. 
 
The operational amplifiers for this project, by contrast, have a much smaller allocation. 
Assuming a quad-potentiometer chip is used, only one chip is required per neuron, along 
with one chip for every two inputs. At $.50 to $.60 per chip for the TL084, for instance, 
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this amounts to a cost of only $25 to $30 for a 100-input network, or around 10% of the 
price of the potentiometers. A fair amount of room has been provided beyond this level in 
the event that more expensive amplifiers or a different, more hardware-intensive network 
implementation is chosen. 
 
The next two items are the external resistors and diodes for the buffers and neuron 
architecture. The number of resistors is relatively low and dictated by a number of factors, 
and the number of diodes is always four times more than the number of neurons. While the 
overall price for these components is quite low, at around $.02 per resistor and $.20 to $.30 
per diode, the resistor values and diodes used are subject to change as the performance of 
the network is evaluated. Consequently, the budget has been set up under the assumption 
that additional purchases will need to be made. 
 
Finally, the sample collection device is the least certain section of this budget. Because 
sample collection can only be integrated once the complexity and design of the final 
network have been evaluated, it is difficult to ascertain how complicated the setup will be, 
which kind of device will be preferable, or what the total cost of implementation will be. 
A tentative price of $100 has been attached to this task, though this is by no means a 
certainty. 
 
Though it is not yet certain, this rough price outline is enough knowledge to get started 
with the project. Our budget should not be a limiting factor when designing the network 
and will be closely monitored as progression is made. Choices will be made to maximize 
performance while minimizing cost in the most efficient manner possible. 
 

9.2 Project Milestones 
The milestones listed here are general estimates based upon both our current progress and 
general rate of progress to date. These goals are somewhat pessimistic, as adequate room 
must be left for unanticipated complications, setbacks, or delays. It is reasonable to assume 
that the given milestones will, on average, be met slightly ahead of time, but that milestones 
may not necessarily be met in order or always be met on schedule. As a significant amount 
of research has already been performed prior to the beginning of this project, a fairly 
substantial amount of prototyping of the constituent portions of the network and testing of 
the individual neuron and synapse devices has already been completed. Since the network’s 
neurons and synapses have already been successfully tested both individually and in 
combination, the first significant step is to construct a basic 4-input network and attempt 
to train it to perform basic pattern identification using the prototyping and component 
testing data. Once this test network is completed and trained, the most significant hurdle 
of this project will be passed, as increasing the size of the network once a functioning 
network has been produced is predominantly a logistics problem rather than a technical 
one. Using the test network as a starting point, immediately following goals are to 
streamline the training algorithm and correct any chronic identification errors, potentially 
build a larger intermediate network to scale up and test the efficacy of troubleshooting and 
design the final network’s PCB and peripheral hardware. While the current final goal is to 
produce a 25-input, multi-layer network capable of differentiating between several 
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different letters at a time given a 5x5 input, the number of inputs and outputs in the final 
network may increase or decrease as the difficulty and complexity of the project is 
assessed. A rough schedule of milestones throughout both semesters of this project is given 
in Table 9.2 and Table 9.3. 
 
Date Goal Comments Status 

September 
30 

4-pixel test network 
built on breadboards 

  Met, ahead of 
schedule 

October 15 Complete initial training 
algorithm for 4-pixel 
test network; integrate 
microcontroller into 
network to prepare for 
training 

2 weeks to modify 
training algorithm to be 
compatible with 
physical network 

Milestone skipped 
in favor of PCB 
implementation 

October 31 4-pixel network trained 
and evaluated; 60-page 
draft completed 

2 weeks for 
troubleshooting and 
adjusting algorithm 

Milestone skipped 
in favor of PCB 
implementation 

November 
15 

Finished refining 
algorithm; potentially 
construct intermediate 
network if necessary; 
100-page draft 
completed 

Additional 2 weeks for 
algorithm streamlining 
or ordering parts if 
necessary 

Met on schedule; 
4-pixel PCB-based 
network 
substituted for 
intermediate 
network 

November 
21 

Intermediate network 
trained and evaluated 

May not be performed 
depending on 4-pixel 
network performance 

Met on schedule; 
merged with 4-
pixel network 
milestones 

December 2 Finalize part list that 
will be used for first 
iteration of final design; 
final documentation 
completed and 
submitted 

Parts list dependent 
upon performance of 
prototype networks 

Met on schedule 

Table 9.2: Senior Design I milestones 

It should be noted that the milestones for the 4-pixel and intermediate network were 
adjusted or skipped after the results of breadboard testing. The inconsistent and error-prone 
nature of breadboard testing resulted in intolerable difficulties in network evaluation, so 
the 4-pixel breadboard network and intermediate PCB network goals were merged to allow 
for meaningful data to be recorded. Consequently, the intermediate network in these 
milestones is effectively the PCB implementation of the 4-pixel network, while the original 
4-pixel network is the original breadboard implementation. 
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Date Goal Comments Status 

January 15 Network hardware 
component of PCB 
design complete 
(neurons, synapses) 

6 weeks including winter 
break to collect footprints 
and design PCB network 
layout  

Begun, ahead of 
schedule 

January 21 Power, microcontroller, 
communication 
components of PCB 
finished 

Additional week to finish 
layout of peripherals and 
power 

Begun, ahead of 
schedule 

February 7 First iteration PCB 
ordered and populated 

1-2 weeks to obtain and 
build 

Not yet started 

February 14 First iteration training 
completed 

1 week due to 
streamlining from earlier 
networks 

Not yet started 

February 21 PCB updated and re-
ordered if necessary 

Additional week to 
troubleshoot and update 
design 

Not yet started 

March 7 Corrected PCB obtained, 
built, and retrained 

2 weeks to obtain 
PCB/parts and 
retrain/troubleshoot 

Not yet started 

March 21 Finalized training and 
hardware 

  Not yet started 

March 31 Complete integration of 
sample reader 

Dependent upon overall 
progress and chosen 
method of reading new 
samples 

Not yet started 

April 15 Network organized and 
completed 

2 weeks to neaten up 
setup and smooth any 
remaining issues 

Not yet started 

Table 9.3: Senior Design II milestones 

 

A significant amount of progress towards the milestones listed in Table 10.3 has already 
been made due to the earlier-than-expected PCB implementation process used to substitute 
the intermediate network. As such, most of these milestones will likely be met far ahead of 
schedule, allowing for additional troubleshooting and design revisions. This is ideal as we 
will be able to work more comfortably within the deadline of the project. 
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10 Appendices 
10.1 Appendix A: Copyright Permissions 
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Permission Request for titanium dioxide memristor diagram from https://www.elprocus.com/ 

 

Permission Request for Teensy 3.6 Development Board image from https://www.adafruit.com/ 
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Permission Request for MCP42XXX digital potentiometer pin out image from https://www.microchip.com/ 
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10.2  Appendix B: Component Information 
 

 

Figure A1.1: MCP42010 Digital Potentiometer Pin Out 

 

 

Figure A1.2: Teensy 3.5 Board Pin Out 
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