

TACOCAT:
Trainable Acceleration of Classification Operations

via Commonly Available Technology

Group 31 Authors:

German Romero Castro Luke Minks
Electrical Engineering Electrical Engineering

Deven Morone Justin Sapp

Electrical Engineering Computer Engineering

Mentor:

Dr. Chung Yong Chan

Fall 2019

EEL 4914 Senior Design I

i

1 Table of Contents
1 Executive Summary .. 1

2 Project Description.. 2

2.1 Project Background and Motivation .. 2

2.2 Project Objectives .. 4

2.3 Requirement Specifications.. 5

 Absolute Maximum Specifications ... 5

 Absolute Minimum Specifications ... 6

 House of Quality ... 6

 Additional Specifications .. 6

2.4 Design Overview and Assignment of Responsibilities .. 7

3 Research .. 12

3.1 Relevant Technologies ... 12

 Memristors .. 12

 Analog Potentiometers .. 13

 Digital Potentiometers .. 14

 Digital Rheostats ... 14

 Digital-to-Analog Converters ... 15

3.1.6 Hardware vs. Software Neural Network ... 15

3.2 Neural Network Architecture ... 16

 Multi-layer Perceptron .. 17

 Convolutional Neural Network ... 19

 Spiking Neural Network ... 20

3.3 Existing Hardware-based MLP Designs .. 21

 Memristor MLP Based Designs .. 21

 FPGA Hardware-Based Designs... 23

3.4 Component Selection ... 25

 Operational Amplifier Considerations .. 25

 Operational Amplifier Selection ... 27

 Potentiometer Considerations ... 29

 Potentiometer Selection .. 30

 Digital Potentiometer Controller ... 32

 Communication Protocols ... 34

EEL 4914 Senior Design I

ii

 Voltage Isolation for External Communication .. 36

 Power Distribution and Regulation ... 37

 Programming Languages .. 39

 Handwritten Character Data Set ... 39

 Diode Component Selection ... 40

 Shift Register Component Selection ... 41

 CMOX Hex Inverter Component Selection .. 43

 Touchscreen Interface Selection ... 45

 Additional Component Considerations ... 46

3.5 Small-Scale Network Design ... 47

 Small-Scale Network Design and Functionality ... 47

 Necessary Tests and Measurements.. 48

 Small Scale Network Training .. 49

 Problems and Concerns for the Final Network ... 49

3.6 Top-Level Design ... 50

 Singular Synapse-Neuron Circuit ... 50

 Smaller Scale Implementation .. 51

 Small-Scale PCB Design .. 53

4 Related Standards and Real-World Design Constraints ... 56

4.1 Related Standards ... 56

 Serial Peripheral Interface (SPI) ... 56

 I2C-bus Communication ... 57

 Federal Regulations for Radio Frequency Devices 57

 U.S. Food and Drug Administration: Proposed Regulatory Framework for
Modifications to Artificial Intelligence/Machine Learning-Based Software as a
Medical Device ... 59

4.2 Real-World Design Constraints ... 63

 Economic Constraints ... 63

 Time Constraints ... 64

 Safety Constraints ... 64

5 Final Network Design ... 66

5.1 Synapse Circuit Design .. 66

5.2 Summing Amplifier Design ... 67

5.3 Activation Function Circuit Design ... 68

5.4 Neuron-Output Buffer Design .. 70

EEL 4914 Senior Design I

iii

5.5 Output Comparator Design .. 70

5.6 Modified Input Layer Design ... 71

6 Software Design .. 74

6.1 Background .. 74

 Neural Network Architecture .. 74

 Training Algorithm ... 74

 Existing Software Models ... 75

6.2 Design Overview .. 75

6.3 Development Tools .. 75

 Python Development Environment ... 75

 Firmware Development Environment... 76

 Version Control ... 76

6.4 Neural Network Software Model Design ... 76

 Software Architecture for Simulation ... 76

6.5 Firmware Design .. 81

6.6 Software/Firmware Communication Protocol ... 82

 Assumptions about Physical Layer ... 82

 Command Codes ... 82

 Error Detection.. 83

 Communication Sequences and Error Correction 83

 Timeouts ... 86

6.7 User Interface Design ... 86

7 System Fabrication.. 88

7.1 PCB Design Software... 88

7.2 PCB Design Philosophy ... 89

7.3 PCB Design Limitations... 91

7.4 PCB Design Preferences and Practices .. 92

 Voltage Planes .. 92

 Via Minimization .. 92

 Efficient Component Spacing ... 92

 Input and Output Pin Alignment ... 93

7.5 PCB Schematics ... 93

8 Prototype System Testing ... 98

8.1 Prototype Hardware Testing... 98

EEL 4914 Senior Design I

iv

 Individual Neuron Prototype Testing .. 98

 Four-Neuron Prototype Testing .. 105

8.2 Software/Hardware Integration Testing ... 107

8.3 Four Pixel Network Op. Amp Testing ... 109

8.4 End-to-End Testing of Four-Pixel Network Prototype 113

 Hardware Configuration ... 113

 Software/Firmware Configuration .. 113

 Testing Procedure ... 113

 Test Results ... 114

 Conclusions ... 115

9 Administrative Content ... 117

9.1 Project Budget .. 117

9.2 Project Milestones .. 119

10 Appendices .. 122

10.1 Appendix A: Copyright Permissions .. 122

10.2 Appendix B: Component Information .. 127

10.3 Appendix C: References ... 128

EEL 4914 Senior Design I

1

1 Executive Summary
Over the past decade, major advances have been made in machine learning technology.
However, the most common implementations of machine learning algorithms are currently
software-based systems that perform a large number of mathematical operations digitally,
and due to the computational expense of these operations, tasks such as voice-to-text
transcription cannot be performed on inexpensive mobile devices but must instead be sent
out to central servers for processing. Hardware neural network implementations, capable
of massively parallel analog computations, may soon offer an inexpensive way to
accelerate these operations on mobile platforms and other resource-constrained devices.

The main objective of the Trainable Acceleration of Classification Operations via CMOS
Analog Technology (TACOCAT) project is to create a hardware-based implementation of
a neural network that can be used for machine learning and classification/recognition tasks.
While the emerging devices required to build a very large-scale neural network may not be
ready for production until several years from now, we believe that we can gain valuable
experience in neuromorphic hardware design by building a small-scale, yet highly capable,
neural network circuit using commercially available parts.

Our discussion of the design process begins with the background and motivations that led
our team to begin working on TACOCAT. We then describe the project objectives for
TACOCAT and the requirement specifications that it will be expected to adhere to.

In the following sections of this document, we provide a review the research that our group
conducted prior to beginning design work on TACOCAT. Different technologies that are
relevant to the design and fabrication of hardware-based neural networks are investigated,
some of which are being applied to actively marketed products, while others are mainly
described in academic research literature. We also discuss the design process for a small-
scale prototype that was designed and constructed as a proof of concept prior to the creation
of the full-scale TACOCAT design. This small-scale prototype is a necessary milestone to
reach before going on to fully construct our final network.

Later, we explain the design processes for the full-scale version of the neural network,
focusing on device and circuit-level design of the neuromorphic hardware. This includes
descriptions of the synapse circuit, the neuron’s summing amplifier stage, the non-linear
activation-function circuit, activation-function output buffers, and the comparator circuits
that are used to display the result of the circuit’s classification output. We also describe the
design of all of the project’s firmware and software components in detail. This includes all
microcontrollers, integrated circuits, power distribution and computing that will be used.

Following those descriptions, we discuss the fabrication and testing processes that will be
employed to build the full-scale TACOCAT prototype. We also describe administrative
details of the project, such as budgeting, management, project personnel, and major
milestones along the development timeline. These are all crucial details to be monitored
closely as a timeline will be constructed to make sure things are on track.

In the final section of the document, we provide a summary of the project and some
concluding remarks about the design process for TACOCAT.

EEL 4914 Senior Design I

2

2 Project Description
The following sections describe the background and motivation for the TACOCAT project,
the project’s objectives and requirement specifications, and a high-level overview of the
project’s design process including a summary of the different project tasks that were
assigned to each team member.

2.1 Project Background and Motivation
In the beginning part of the 21st century, the roles that machine learning technology plays
in our everyday lives have increased substantially. Machine learning-based systems are
used for human speech recognition, handwriting transcription, facial recognition, real-time
control of complex electrical and mechanical systems, autonomous vehicle navigation, and
many other applications. We interact with some of these technologies directly, such as the
facial recognition systems that mobile device owners might use to unlock their phones or
tablets. Other machine learning systems, such as those that control fuel injection trim
parameters in some automotive engines, go unnoticed by most users.

We have also begun to see that these technologies can be used in ways that might be
harmful to society. Whereas facial recognition technology offers convenience to mobile
device users, it also could offer a convenient pathway towards intrusive and omnipresent
surveillance by authoritarian governments who would wish to constantly track and record
the whereabouts of its citizens. Similarly, whereas autonomous vehicles could one day
offer increased safety, accessibility, and efficiency in personal transportation applications,
this same technology could be used in military applications to create automated attack
vehicles. While weaponized autonomous vehicles might be used benevolently in defensive
roles, the potential for malicious use is also very real. We are almost certain to face many
challenges in the remainder of this century as we decide how to best apply these powerful
new technologies.

Currently, most machine learning-related processing tasks have high computational
overheads. Especially for optimization and recognition-based tasks, the training of neural
networks and processing of data through those same networks requires a very large amount
of multiplication and addition operations. Artificial neural networks very often have
millions of artificial synaptic connections, and each one of these connections requires a
multiplication operation to be performed between the synapse’s weight value and its input
value in order to carry out calculations using the network. Additionally, at each artificial
neuron node (where groups of synapse connections terminate), all of the incoming synaptic
input-value/weight products must be summed. For mobile devices and typical consumer-
grade PC equipment, these operations can be very time consuming. To address this
problem, cloud infrastructure is often employed so that these edge devices can transmit
their input data to centralized servers that are able to quickly process the data using high-
speed, highly-parallelized vector computations, and the results are then sent back to the
edge device.

While this cloud-computing approach is a practical solution, it comes with some
drawbacks. One important caveat is that edge-device users must have a high-speed data
connection in order to communicate with cloud servers and receive their results with an
acceptable amount of latency. Additionally, communication operations require energy and

EEL 4914 Senior Design I

3

bandwidth that are often limited in the short-term for mobile users by constraints such as
battery capacity and monthly data transmission limits. Finally, the need for central
processing to perform recognition tasks, particularly for image and speech data, presents
significant concerns regarding privacy. Even if assurances are given that any data
processed via cloud services will be confidential, users have virtually no way to ensure that
these guarantees will be honored. On a larger scale, the fact that users must have access to
centralized resources in order to have their data processed can create leverage for corporate
or government entities to restrict access to these computing resources, possibly shifting the
balance of power away from individuals and towards centralized corporations and state-
run organizations.

However, new technologies may soon offer a solution to these problems. While traditional
CMOS-based computer architectures require large amount of processing and memory
resources to perform machine learning operations in a reasonable amount of time,
specialized hardware architectures that incorporate emerging non-volatile memory devices
are showing promising results in performing the same calculations using much less energy
and much smaller physical footprints while still delivering very low computational latency.

While most publicly-disclosed instances of these hardware-based neural networks are
found in academic research works, the fundamental emerging technology that will be
required to produce this next generation of neuromorphic circuits, namely very-large-scale
integrated non-volatile resistive memory devices, are already being brought to market in
niche memory products. In a joint venture, Intel and Micron have commercialized a
resistive memory technology known as 3D XPoint. Adesto Technologies is currently
marketing a Conductive Bridging RAM (CBRAM) technology that also implements
integrated non-volatile variable-resistance devices. Other examples of firms that are
actively marketing non-volatile resistive memory products include Fujitsu, Panasonic, and
Crossbar Technologies. Although these RAM-oriented products do not offer an interface
that would allow the resistive devices within to be accessed in a way that they could be
used directly in artificial neural networks, their commercial availability is a positive
indicator for the state of practical non-volatile memory device fabrication processes.

In light of the potential benefits of hardware-based neural networks and the recent progress
in the development of the novel technologies that are needed to produce these networks on
a large scale, it seems likely that hardware-based neural networks will emerge as a viable
technology within the next decade.

While the non-volatile variable resistance devices that will most likely be needed in order
to implement complex, highly-versatile, hardware-based neural networks are not
commercially available, there are substitutes for these devices that could be used to produce
a smaller-scale prototype for a hardware-based neural network. The TACOCAT project
was inspired by the idea that a group of undergraduate students in Electrical and Computer
Engineering could implement a sophisticated hardware-based neural network prototype,
using off-the-shelf components, which would serve as a proof-of-concept for hardware-
based neural network design patterns and also provide valuable experience in an up-and-
coming field of research and development.

We believe that TACOCAT will be able to employ a surprisingly small number of artificial
neurons and synaptic connections in order to perform somewhat specialized, yet highly

EEL 4914 Senior Design I

4

complex recognition tasks, and we hope that it will contribute in some way towards a
technology that could add convenience, privacy, liberty, and efficiency to the everyday
lives of people around the world.

2.2 Project Objectives
We plan to design the neural network as a Multi-Layer Perceptron (MLP), which uses
several layers of artificial “neurons” each with multiple “synapse” inputs. A scalar numeric
weight value is assigned to each synaptic input, and the neuron’s output is determined by
multiplying each synapse’s input value by its weight value, taking the sum of those
products, and applying that sum value to some non-linear activation function. Common
activation functions include the sigmoid function, hyperbolic tangent, and rectified linear
unit.

A fully-connected network of these neurons and synapses can be “trained” using a set of
input data samples that are paired with labels indicating the network’s expected output.
Inputs are applied to the synapses of the first neuron layer, and outputs are sampled from
the neurons in the final layer. We plan to use an algorithm known as gradient descent
optimization to implement training by backpropagation, where each layer’s outputs,
starting with the final layer and moving backward, are compared to the expected output
values, and that layer’s synaptic weights can then be adjusted based on the activation
function’s derivative in an attempt to minimize the output error percentage. This process is
repeated for the entire network over multiple “training epochs” until some minimum level
of error is attained.

In most neuromorphic circuits, synaptic weights are represented by variable resistances.
Emerging non-volatile memory technologies such as memristors/resistive RAM, phase
change memory, and magnetic tunnel junctions may soon offer nanometer-scale, low-cost
devices that can store these synaptic weights, but most current research works on
neuromorphic hardware are based on custom-fabricated VLSI devices that are not available
to the general public.

Instead of using novel devices, one of our design objectives is to use common digital
potentiometers (with onboard memory) to implement non-volatile synaptic weight values
in our circuit. While these devices may be too large and expensive to use in a circuit with
millions of synapses, they should be useable in a circuit on the scale of several hundred
synapses. We plan to implement the neurons’ summing and non-linear activation functions
using operational amplifiers.

The main functional objective for the TACOCAT project relates to its ability to recognize
input data and identify one of the discrete classes that each data sample belongs to. For a
data set of different line patterns, these classes could be Vertical, Horizontal, and Diagonal.
They could also be Straight and Curved. The classes that are used to describe the data are
determined prior to training this type of neural network.

While we plan to build a small-scale prototype network that is capable of classifying
different line orientations, as mentioned in the example above, the goal for the full-scale
TACOCAT network is to recognize a limited set of handwritten characters. The data
samples of handwritten character images are available in datasets provided by the U.S.
National Institute of Standards and Technology (NIST). TACOCAT will not have a

EEL 4914 Senior Design I

5

sufficient number of synapses and neurons to accurately recognize a large number of
different character classes, but the project will instead be focused on the objective of
recognizing a small subset of character classes with reasonably high accuracy. We plan to
use the characters ‘U’, ‘C’, and ‘F’ as the classes for our sample data.

Given a sufficiently large number of data samples, the probability of randomly guessing
the classification for any given input sample would be roughly 33.3%. Our goal for
TACOCAT is to reach at a level of at least 50.0% for our prediction accuracy, and
optimistically, we hope that we can attain levels of accuracy higher than 75.0%.

We also have an educational objective for this project, which is to become familiar with
the design process for both neuromorphic hardware and machine-learning software
models. We expect that we will achieve the hardware aspects of this goal through the
processes of researching, designing, and testing the elemental circuits involved in
hardware-based neural networks. For the software aspects of our educational objective, we
expect to gain an understanding of the fundamentals of machine-learning models by
designing, writing, and testing our own code for the implementation of a multi-layer
perceptron. By avoiding the use of existing high-level machine learning frameworks and
instead producing all of the core software model code from scratch, we should gain a
command of the fundamental aspects of designing and implementing a neural network
model in software.

2.3 Requirement Specifications
In Table 2.1 and Table 2.2, sets of absolute maximum and absolute minimum requirement
specifications for the TACOCAT project are listed. The absolute maximum specifications
serve as hard limits on certain aspects of the final design, including physical and electrical
characteristics. Alternatively, the absolute minimum specifications describe the minimum
levels of performance and system capacity that will be considered satisfactory for the
design.

 Absolute Maximum Specifications
Because the physical characteristics are being specified at a very early stage in the design
process, we have tried to assume very pessimistic values for the absolute maximum
specifications regarding physical size and weight. We arrived at these figures by
approximately doubling our expected measurements for these characteristics, while
making sure that these cautiously pessimistic estimates would still describe a prototype that
would be practical to build and safe to operate.

Weight 5 kg
Footprint area 1 m x 1 m
Supply Voltage 18 Volts rail-to-rail
Power Consumption 10 Watts
External Temperature 50° C

Table 2.1: Absolute maximum physical and electrical characteristics

EEL 4914 Senior Design I

6

 Absolute Minimum Specifications
For the absolute minimum specifications, we were able to look at the results of software-
based simulations to see what characteristics would be required in order to implement some
appreciable level of handwritten character recognition capability. Simulations indicated
that the neuron counts listed in Table 2.2 should be adequate to allow a small network to
distinguish between two different handwritten letters, although it should be mentioned that
at this size, while the network will most likely have decent prediction accuracy with easily
distinguishable sets of input letters, such as ‘X’ and ‘O’, it would most likely struggle to
classify letters with similar features, such as ‘E’ and ‘F’. Estimates for throughput and
latency are very pessimistic, but even as worst-case estimates, these results would be
acceptable for testing and demonstration purposes.

Number of input neurons 25
Number of output neurons 2
Input data resolution 1 bit
Output latency 500 ms
Throughput 1 recognition operation per second
Accuracy 50%

Table 2.2: Absolute minimum operational and performance characteristics

 House of Quality
The House of Quality diagram shown in Table 2.3 describes the trade-offs that are involved
between different aspects of the project design.

One of the key points illustrated in these diagrams is that a larger number of neurons (and
consequentially many more synapses) are often required in order to attain higher levels of
prediction accuracy and flexibility/generality. While this principle holds true in software-
based neural networks, it is less likely to be a major cost-driver in that domain. On the other
hand, because hardware-based neural networks can conduct large numbers of mathematical
operations in parallel, increased neuron counts are less likely to have a noticeable effect on
output latency times.

 Additional Specifications
The following specifications are also included in the TACOCAT design specifications:

 All voltage supply rails should be isolated from the mains supply voltages
 All ground rails should be tied to earth ground
 All printed circuit boards should be securely mounted to a panel or chassis using

bolts or screws
 Prediction outputs should be displayed to the user via dedicated visual indicator

devices such as LEDs that are activated by the neural network’s output neuron
voltages, without any additional software processing

 The user interface hardware should be mounted in a manner such that the user will
not be exposed to any sharp edges, exposed electrical wiring, or components with
high surface temperatures

 The user interface should be accessible for users who are color-blind

EEL 4914 Senior Design I

7

Table 2.3: House of Quality

2.4 Design Overview and Assignment of Responsibilities
The neural network block diagram shown in Figure 2.1 represents the main hardware
components of the TACOCAT project. The 3 block types that it is comprised of (labeled
“A”, “B”, and “C”) represent the 3 functional hardware component groups that are used to
construct the TACOCAT neural network. These components must be able to multiply,
accumulate, and introduce non-linearity inside the network so that the network weights can
be trained properly using machine learning algorithms. The blocks of this network diagram

EEL 4914 Senior Design I

8

will be made up of digital and analog circuitry that will execute these functions while being
trained to correctly recognize user input in the form of handwritten-character image
samples.

The first block, A, is made up of a line driver circuit. This circuit will provide buffered and
inverted source voltages to the next block in the sequence. The voltages that this circuit
provides will be fed to block B, which is the circuit that will supply the synaptic weights
that the input source voltages will be multiplied by. These synaptic weights will be
adjusted, at the system level, by an on-board MCU that controls the training process.

Finally, block C of the diagram contains the summation and nonlinear activation-function
circuits used in the neural network. The first component of this block must add all of the
outputs of the B blocks-from the previous stage of the diagram, thus completing the
accumulation portion of the multiply-and-accumulate requirement of the network. This
will be achieved using an inverting summing amplifier circuit. Afterwards, these
accumulated weighted inputs will be subjected to a non-linear activation function using
another analog circuit to implement the activation function requirement for the TACOCAT
network. This non-linear activation function will be implemented using another operational
amplifier circuit with an external rectifier-based clipping circuit. A brief summary of the
blocks and components utilized in the intermediate neural network design can be seen in
Table 2.4.

Note that this neural network layout consists of a 4-pixel recognition circuit representing
an intermediate network with a 2-by-2-pixel square input image pattern. Our goal for this
smaller scale network is to configure it using a standard training algorithm to distinguish
classes of input patterns between horizontal, diagonal, or vertical lines in 4-pixel user
inputs. Once this network is fully implemented and tested, we will look to expand the size
of the network to a 5x5, 25-pixel network that will be able to recognize the difference
between handwritten user input characters. This should be achievable, as we expect the
only major difference to be a larger number of components and circuit boards necessary to
construct the network. It is expected that by increasing the size of the neural network,
especially by increasing the size of the network’s input layer, that the range and efficacy
of the network classification abilities should improve.

The current design of the 4-pixel network’s input layer receives all of the input signals of
the sensed image as parallel inputs to the line driver circuits of the synapse in the input
layer. We would expect this design pattern to become much more difficult to implement as
the size of the input layer increases proportionately to the squared width of the input image,
so a different method to process these inputs will most likely become necessary once a
larger number of sensed pixels are considered. A detailed re-design of the input layer for
the final neural network architecture is explored in section 5.6 of this document.

There are a number of other parts that will be required to produce the final demonstration
version of this hardware-implemented neural network design. This project seeks to take a
digitally processed array of image pixel data as the input to the neural network. After being
trained, the demonstration of the efficacy and accuracy of the trained neural network that
has been designed, will be a test of character recognition.

EEL 4914 Senior Design I

9

Figure 2.1: Intermediate Neural Network Block Diagram

Block Name Function Neural Network
Component

A Line Driver Synapse
B Adjustable Weight Synaptic Weight
C Multiply and Accumulate Neuron

Table 2.4: Intermediate Neural Network Block Diagram Summary

The distribution of labor and responsibilities for completing the tasks and components of
the final demonstration necessary to achieve the task described above, can be seen in Table
2.6, which also coincides with the block diagram of TACOCAT’s system.

Our finalized project will be comprised of six main components as illustrated by the block
diagram in Figure 2.2. A commercial power supply will be utilized to provide power to all
electrical components. This should be appropriate since we will meet the project’s
hardware expectations with what has been explained in the paragraph above.

The MCU we choose will be responsible for the low-level aspects of the training and
adjustment of our network’s circuit. Data sets will be provided to the MCU such that the
network can be trained to recognize the user input that the network receives. User input
will be provided by a touchscreen interface with which the user can write an alphabetical
character, draw a vertical, horizontal, or diagonal line, or create whatever other input
images might be relevant to a particular network configuration. This input will be
processed and transmitted to our neural network as digital pixel data through the MCU.

EEL 4914 Senior Design I

10

Role Person(s) Responsible

Commercial Power Supply Deven, German

Network Deven, German

MCU Justin, Luke

Touchscreen Input Justin, Luke

Status LED Array Deven, German, Luke

Training Data Set Justin

Table 2.5: Responsibilities of Team Members

Figure 2.2: System Block Diagram

EEL 4914 Senior Design I

11

Once this pattern recognition or handwritten character recognition (depending on the scale
of the network) is completed within the neural network hardware, the result will be
displayed in an LED status array, where the user will be able to see the network’s prediction
for either the orientation of the line they have drawn or the handwritten character that they
have entered.

Because a significant share of the hardware components of the network are heavily
entangled with numerous other portions of the hardware, it is difficult to modularize the
project. Since changing a single component can, in many cases, result in changes to almost
every other module given above, the role assignments are predominantly administrative,
not technical, since adjustments to a broad spectrum of features must often be made by a
single person.

EEL 4914 Senior Design I

12

3 Research
Research is a crucial part in the development of any high level project. A logical starting
point for TACOCAT project research is to survey existing software and hardware
implementations of neural networks. Innovation sets new designs apart from existing
works, but research is necessary to understand how the network will be implemented. It is
important that we understand the software and hardware that is behind building an analog
neural network.

3.1 Relevant Technologies
Each neuron in the network sums its inputs and produces the output dictated by its
activation function. However, as this is not a binary network, meaningful computation
cannot be achieved with unweighted inputs, as the only possible input and output values
would be -1, 0, and 1, assuming ideal circuitry. This can be remedied by weighting the
input of each neuron, which allows the input to be multiplied by an arbitrary value within
a certain range. By weighting the network’s inputs, each signal can be amplified, reduced,
inverted, or nullified as desired. While a software-based neural network brute forces the
signal weighting on each synapse, a simple algorithm can be used to read the voltages at
each node of a physical network and adjust the weighting accordingly. As this network’s
signaling is based on voltage level, this weighting can be accomplished via voltage
division. While voltage division is a straightforward enough concept, there are numerous
ways to accomplish this goal which must be considered. The most obvious candidates are
memristors, analog potentiometers, digital potentiometers, digital rheostats, and digital-to-
analog (DAC) arrays.

 Memristors
Memristors are solid-state variable resistance devices which do not have any digital
component or moving parts. The most common way of implementing memristor
technology is through use of titanium dioxide films with different levels of oxygen
depletion; the oxygen vacancies can be shifted around by electric current, adjusting the
resistance of the device. This can be achieved by “programming” the device with a higher
voltage the device would otherwise operate at, as the lower operating voltages will not push
the device out of its hysteresis and disturb the resistance setpoint. A diagram of the typical
construction of a titanium dioxide memristor is shown below in Figure 3.1. Consequently,
the memristors are entirely analog and do not require any direct digital control to program.
Additionally, due to their potentially small size – implementable at a nanometer level – it
is possible to achieve extremely high junction densities for use in integrated circuits.
However, due to the infancy of the technology and inherent variability in manufacturing,
memristors currently exhibit very high failure rates. While reliability is fairly good for
functioning junctions, many remain stuck “open” or “closed” upon fabrication and cannot
be adjusted, while many more are only partially usable and cannot operate across the
expected range. Additionally, it is a fairly complicated endeavor to implement hardware to
allow each individual memristors to be repeatedly and precisely reprogrammed, as the high
voltage must be supplied without damaging hardware which is otherwise designed to

EEL 4914 Senior Design I

13

operate at lower voltages. Consequently, memristors are not suitable for this design, though
they would be the only option if an integrated circuit implementation was desired.

Figure 3.1: Titanium-dioxide Memristor Diagram

Titanium dioxide memristors may be common, but there are several types of memristors
to be considered. There are two main different types of memristors, molecular and ionic
thin film memristors, and spin and magnetic resistors. The molecular and ionic thin film
memristors rely on unique properties of each type of material. The four types of memristors
of the molecular and ionic thin film family are titanium dioxide memristors,
polymeric/ionic memristors, resonant tunneling diode memristors, and manganite
memristors. The titanium dioxide memristor shown in Figure 3.1 is usually used for
modeling. The image used in figure 3.1 has reproduction permission requested in the image
reproduction section of this document. Polymeric/ionic memristors use active doping of
di-electric materials to create solid-state ionic charge carriers. Resonant tunneling diode
memristors use specifically doped diode junctions as the breakdown layers between drain
and source of CMOS components. While a manganite memristor consists of a bi-layer
oxide film substrate that is dependent on manganite contrary to using titanium dioxide.

Magnetic Tunnel Junctions (MTJs) use the interaction between magnetic fields and
electrons with different spin states to create junctions with high and low states of resistance.
Because resistance in an MTJ depends on the polar orientation of a variable magnet, these
resistance states are persistent even when the device is powered down. This can provide
significant energy savings in a system that requires non-volatile storage. There are a
number of different styles in which MTJs can be fabricated, including Spin Orbital Torque
MTJs, Spin Hall Effect MTJs, and even application-specific designs such as the
stochastically-activated P-Bit MTJ. The main drawback for MTJ use in synaptic weighting
systems is that the ratio of an MTJ’s highest resistance value to its lowest resistance value
is much lower than other resistive memory technologies. Current MTJ technology is
limited to resistance ratios in the 0-10 range of magnitudes. This order of magnitude allows
for reliable storage of binary data values using typical sensing circuits to read the stored
values, but it does not provide enough margin to store a wide range of analog values.

 Analog Potentiometers
Potentiometers are, at present, the most obvious and widespread way to implement variable
resistance for most applications. Analog potentiometers are one of the oldest types of

EEL 4914 Senior Design I

14

variable resistors and can be found in a wide range of contexts. Generally speaking, analog
potentiometers have three terminals: the two ends of the potentiometer and the wiper. The
wiper can be moved along the resistor between the two ends of the potentiometer, allowing
an effective resistance anywhere between the relatively minimal resistance of the wiper
and the full resistance of the potentiometer to be chosen. While the details of the
implementation may vary, such as the precision with which the device can be adjusted and
the mechanism of the wiper, the behavior is the same. In the case of this project, analog
potentiometers are useful for basic prototyping and experimentation. However, they are
not useful for actual network implementation due to the lack of usability in training.
Because training often takes hundreds of epochs and requires precise adjustment of the
weighting of each synapse, it could take days or weeks of manual adjustment of each
potentiometer to arrive at a properly calibrated device, even for a very small test network.
Additionally, because it is difficult to precisely adjust the potentiometers by hand, it is
difficult to ever arrive at an accurately calibrated value, as even a few poorly calibrated
synapses can result in both erroneous adjustment data from the training algorithm and
incorrect network outputs. Consequently, analog potentiometers are unsuitable for this
project beyond early prototyping and experimentation.

 Digital Potentiometers
Digital potentiometers are, perhaps obviously, digital implementations of analog
potentiometers. Unlike analog potentiometers, which can ideally be adjusted to infinitely
precise values, digital potentiometers are implemented with discrete resistance ladders.
Due to the use of discrete resistance components instead of a true analog potentiometer
mechanism, there are a finite number of possible configurations – corresponding to the
device’s number of potentiometer taps – that the device can produce. This value is typically
represented in binary using 7 or 8 bits. Given a value, the device automatically adjusts the
switches on the resistor network to produce the appropriate total resistance. While some
precision is lost, especially when using devices with lower tap counts, the overall accuracy
of each device is far higher in a network application, as the resistance at each tap in each
device does not change appreciably between adjustments. Additionally, the relatively low
cost and small footprint of digital potentiometer chips, along with the widespread
availability of devices with EEPROM and serial communication protocol functionality
makes them an excellent choice for smaller-scale neural networks.

 Digital Rheostats
Digital rheostats are very similar to digital potentiometers and are often sold in the same
packaging and series of chips as regular digital potentiometers. The key difference between
rheostats and potentiometers is that while potentiometers use three terminals, the rheostat
only has two terminals, corresponding to a simple variable resistance instead of a
potentiometer. While rheostats can be useful for high-power applications and for simple
resistance trim adjustments, these advantages are not particularly applicable to this project.
However, the key disadvantage of rheostats in this context is the devices’ lack of a third
terminal. Because the synapse weights of this network functions by using the wiper to
choose between a positive reference voltage and a negative reference voltage according to
the principle of resistive voltage division, two rheostats would be needed for each synaptic

EEL 4914 Senior Design I

15

weight. Rheostat devices also might not offer the same accuracy as true potentiometers due
to the lack of the inherent proportionality exhibited by the wiper mechanism in
potentiometer devices. Thus, rheostats are less suitable for this project in comparison to
three-terminal potentiometers.

 Digital-to-Analog Converters
Digital-to-analog (DAC) converters operate very similarly to digital potentiometers, using
a discrete resistor array of one form or another to allow the desired resistance to be selected.
The primary difference between digital potentiometers and DAC arrays is the presence of
an op amp on the output of the DAC array. This output op-amp buffers the output voltage
of the device, providing extremely precise output voltages and preventing the output
voltage from acting as a function of the output current, as may occur with digital
potentiometers. However, DACs suffer from a major handicap related to their basic
function. DACs divide their provided reference value into a predetermined number of steps
(256, 1024, 4096, etc.), but do so relative to the voltage connected to the ground of the
device. Because the voltage output of the previous neuron can potentially be negative, the
DAC may either be exposed to a reference voltage lower than its ground voltage or
incorrectly divide a positive voltage relative to the wrong ground level. While DACs would
be useful in this case for adjusting the initial inputs to the network, the only possible way
to implement DACs in an entire network would be to employ ADC conversion at each
neuron’s output and then use the DAC to select an output voltage on each synapse,
defeating the purpose of an analog network. Thus, while DACs are extremely useful in
certain applications, their utility is limited in this project.

3.1.6 Hardware vs. Software Neural Network
Artificial neural networks can be implemented using a software approach or a hardware
approach. Using software to implement the network is generally a simpler approach, while
hardware design tends to be a longer, more difficult process. Software neural networks can
be modeled in many different programming languages, including Python, C, C++, and Java
as common examples. Software packages for constructing neural networks and running
simulations are also widely available. Examples of these programs include Neural
Designer, GMDH Shell, Neuroph, Darknet, DeepLearningKit, and many more. It is much
simpler to design and implement a neural network using software due to the ease of code
revision in comparison to physical circuit modification, but creating a neural network
implemented with hardware has key benefits.

Artificial neural networks implemented by hardware on a large scale may soon be faster
and more conveniently manufactured than software-based networks. Typical hardware-
based approaches to implementing a neural network consist of digital or analog circuitry
that realizes the main functions of a neuron and synapse. The synapse needs to sense the
inputs to the neuron by using some sort of input-sensing interface. Next, this input data
needs a way to be weighted. Some examples of weight-applying hardware include
memristor devices that change their resistance states based on the voltage applied to them,
digital potentiometers that change their wiper position based on digital signals, and phase-

EEL 4914 Senior Design I

16

change memory devices that change resistance based on the physical state of a resistive
material.

The output of the input-weighting-device is fed into a hardware artificial neuron. This
hardware neuron must be capable of accumulating all weighted synaptic inputs by some
sort of summing amplifier, digital adder, or similar accumulation device. Additionally, in
order to solve a wide range of problems using typical neural-network architectures, the
hardware neuron must be able to apply non-linearity, which is available through a wide
range of analog non-linear devices.

Smaller arbitrary hardware-based implementations already consume much less power and
develop results quicker while maintaining higher accuracy. Impressive results have been
achieved with existing hardware neural networks, but even better results are expected in
the future, particularly as ongoing development non-volatile memory devices allows more
efficient implementations of synaptic weighting and input-summing processes. In this
regard, the design of new hardware-based artificial neural networks is an exciting frontier
in the field of machine-learning research and development.

3.2 Neural Network Architecture
Neural networks are one of the primary tools that are used to achieve machine learning and
deep learning in all sorts of engineering applications. As their name would suggest,
“neural” networks seek to replicate the way that human brains learn and recognize patterns
through interpreting and adapting to sensory data. Artificial Neural Networks (ANNs),
however, are currently being designed and implemented with a specific application in
mind, such as object or pattern recognition and data classification.

An ANN consists of multiple artificial neurons, which are configured to be grouped into
“layers”. These layers have interconnection between nodes in other layers which include
synaptic weights that can be adjusted for the network’s adaptation to a specific application
through the process of backpropagation. At each artificial-neuron node in a given layer, the
combination of input from the data with a set of synaptic-weights coefficients, that either
attenuate or amplify that input, serve to assign a significance with respect to the machine
learning algorithm used to program it. These weighted inputs are then accumulated by
summing them and passed through the node’s assigned “activation function”, which is a
pre-defined relation between neuron inputs and neuron output that is used to determine if
the input signal should be represented in the neuron’s output in order for it to be processed
further down the network and affect the network’s final-layer output. This relationship
between inputs and outputs in an artificial neuron can be seen in Figure 3.2.

EEL 4914 Senior Design I

17

Figure 3.2 Artificial Neuron Layout. Permission requested from
https://towardsdatascience.com

Using this basic artificial neuron structure, several neural network architectures can be
constructed to achieve the applications desired. The suitability of a network for performing
particular tasks depends heavily on the activation functions used in the neurons, the
interconnections between neurons and layers, and the machine-learning algorithms used to
train the network.

Interconnections in a neural network are the pathways that allow a network’s processing
elements, artificial neurons, to connect to one another. In their simplest form, these
interconnections form at least two of the layers previously mentioned, one being the input
layer and one being the output layer. A hidden layer is a third kind of layer, which may not
be included in all types of neural networks, that act as a “black box”, inaccessible by the
users interfacing with the overall system.

 Multi-layer Perceptron
The Multi-Layer Perceptron (MLP) is a class of artificial neural network with several
unique characteristics and requirements. First, the network consists of at least 3 layers of
neurons. These neurons are made up of the inputs and weights, as well as a non-linear
activation function. A sigmoid function, such as the hyperbolic tangent or the logistic
function (shown in Figure 3.3), has traditionally been used for neuron activation in MLPs.
Both of the typical sigmoid functions are easily differentiable, which eases the process of
backpropagation with gradient descent when training the network. The activation function
and its derivative used in the training algorithms are included in (3.1).

(3.1)

𝑠𝑖𝑔(𝑥) = = ;
()

()
= 𝑠𝑖𝑔(𝑥)(1 − 𝑠𝑖𝑔(𝑥))

EEL 4914 Senior Design I

18

Figure 3.3 Plot of Logistic Sigmoid Transfer Function

The MLP must be made up of a minumum of 3 layers of neurons, comprising one input
layer, one output layer, and at least one hidden layer in order to solve non-linear, complex
problems (Figure 3.4).

Figure 3.4 Proposed MLP 4-Pixel Input Network Architecture

EEL 4914 Senior Design I

19

 Convolutional Neural Network
Convolutional neural networks (CNNs) are often utilized for processing input data sets
consisting of photographic images. Typically, the CNN consists of the traditional input and
output layers found in other neural network architectures, however, since its primary goal
is to assign significance to various aspects and objects of an input image and differentiate
one of these from another, it must consist of more than the usual number of hidden layers
when compared to a regular MLP.

The hidden layers of a CNN primarily consist of their namesake “convolutional” layers.
These layers apply filters (also called kernels) that convolve the width, height, and input
volume of the previous layer’s output and compute the dot product between the
characteristic weights of the layer and the input to produce a 2D map of that filter. These
produce a feedforward process responsible for subsampling the input image to facilitate
the process of key feature mapping and object recognition of the CNN. Input images to the
CNN are in the format of length, width, and channel dimensions before feeding forward
into pooling and kernel layers of the fully connected network (Figure 3.5).

Figure 3.5 Example of CNN Sequence for Recognizing Handwritten Digits. Reproduction
permission requested from https://towardsdatascience.com

Combining design principles from both the CNN and MLP network architectures could
help realize the final form of the neural network architecture in this project. For the
objective of producing a network with 25 or more inputs that is capable of classifying
handwritten character image inputs, the image-processing abilities of convolutional layers
is certainly desirable, but the complexity of implementing convolutional architectures in
hardware may be too great, given the real-world constraints on the amount of time allowed
for project development.

EEL 4914 Senior Design I

20

 Spiking Neural Network
An emerging trend in artificial neural network architecture is the development of Spiking
Neural Networks, which are composed of artificial neurons that are designed to emulate
biological neurons by performing computations based on incoming binary spike
information. These neural networks differ most significantly from other types of artificial
neural networks used for machine learning in the fact that they depend on what’s known
as “spikes”, or discrete triggering events, to spike and reset the potential of a single neuron
in the network. The activation method for neuron in these networks often follows a leaky
integrate-and-fire model, which dictates the creation of an output spike upon the
accumulation of a certain number of input spikes within a time period. Spiking neural
network architectures are naturally well-suited to implementations that use purely analog
circuitry. Although these systems can be based on analog hardware, they are expected to
be able to encode digital communications and not lose signal fidelity, with the networks
functionality being dependent on receiving the “spiking” input that surpasses a certain
threshold and fires the consequent neuron layers. An example 3-layer input-spike to hidden
layer to output-spike SNN architecture can be seen in Figure 3.6.

Figure 3.6 Diagram of Multilayer SNN. Reproduction permission requested from
https://towardsdatascience.com

Some advantages that spiking network offer compared to other neural network
architectures include lower energy usage and increased parallelizability due to neuron spike
interactions being localized to the system that they are integrated within.

Spiking Neural Networks (SNNs) are best suited for time-space dependent and event-based
information obtained from neuromorphic sensors, thus, a SNN-based design may not be
the best suited architecture for the goals we wish to achieve with this project. Machine
learning programming and training protocols for our implemented neural network will need
to be manually programmed before the network can perform freely. Its computations and
overall performance will mostly depend on how well the training algorithm adjusted the
weights according to the task required. Given the project’s goal of creating a network that
can differentiate between hand-written characters, the input data set is composed of
bitmapped images. Without potentially large amounts of additional research and
development effort, it could be very difficult to translate image-based input data into the

EEL 4914 Senior Design I

21

spike timing-based input data that a SNN would require, which limits the suitability of an
SNN architecture for this project.

3.3 Existing Hardware-based MLP Designs
Several other Hardware-based Multi-Layer Perceptron designs exist in academia research.
Some of these designs offer an alternative to fully software simulated implementations of
artificial neural networks, which have the possible downside of not providing a real-time
response and learning for neural networks made up of many neurons and synapses. This
means that a hardware implemented neural network with parallelizable processing and
close-to-real-time response capabilities offer a cheaper and faster alternative for more
commercial devices’ applications, i.e. facial recognition, speech recognition, etc.

Our project aims to prove this concept by implementing the core components of an MLP
Neural Network using analog circuitry. First, the synapses are implemented using
operational amplifier circuits to buffer and invert the inputs to the neuron. Since weights
to the input to the neuron need to be adjusted by the training algorithm, digital
potentiometers are used for this purpose, by having both the inverted and buffered input to
each end of the potentiometer. The position of the wiper along the entire “resistor”
determines the weighted input into the next summing amplifier, which will accumulate all
the weighted inputs to the neuron. Once this is done, the last operational amplifier circuit
of the neuron will be used to implement the activation function of the neural network
(Sigmoid function), by rectifying the summing amplifier’s output using a diode rectifier
bridge configuration on the feedback of the operational amplifier.

Key differences between our design and others found in academia research can be found
by looking at the analog circuitry used to implement each of the significant parts of the
network (Neuron, Synapse, and Activation Function).

 Memristor MLP Based Designs
Memristor-based designs have been used in many research experiments when having their
analog voltage-dependent-resistance be the weight that will be applied to the inputs of each
neuron (Mikhailov et. al.) was desired.

Many benefits of using Memristor-based designs exist when implementing them as the
adjustable weights applied to the inputs in the synapse of a neuron inside our neural
network architecture. The physical characteristics of Memristors allow for the resistance
to be adjusted depending on the “Set” and “Reset” voltages that cause the memristor to
change states and alter the resistance perceived by the current passing through the device.
The range of pulse voltages and state-change Voltage-Current plot for memristor devices
similar to those used by Mikhailov et. al. can be seen in Figure 3.7.

Artificial neurons in this paper’s designed experiment utilized complementary
memristors paired with a multiplexing chip ADF436 to provide analog multiplexed
inverted and buffered input voltages to the neurons, provided from the Atmel AVR-
Microcontroller that was used to program and train the network. This weighted input
from the memristor devices are fed into a 4-stage operational amplifier circuit. The first 2
operational amplifier circuits are current amplifiers that provide constant rail voltage to
the cascaded layers of the network, as well as summing the input layer inputs. The next

EEL 4914 Senior Design I

22

two operational amplifier circuit topologies serve as the non-linear activation function of
the network by taking the accumulated inputs to the neuron and applying a rectifying
diode bridge to clip the maximum and minimum peaks. The very last operation amplifier
stage is a simple amplified version of the Sigmoid activation stage operational amplifier.
A block diagram of the circuit schematic used in this experiment is provided in Figure
3.8.

Figure 3.7: Memristor Characteristics Based on Voltage and Current Pulses at several
frequencies. Reproduction permission requested from https://royalsocietypublishing.org/

Figure 3.8: Block Diagram of Circuit Schematic used for Memristor based MLP Circuit
Design

EEL 4914 Senior Design I

23

From the prospective neural network design described in Section 3.4, it can be seen that
this circuit design shares many common characteristics of their respective circuit
topologies. Our network’s synapse shares the use of inverted and buffered inputs to the
first operational amplifier stage of our neuron; however, we are replacing the memristor
devices with digital potentiometers to adjust the weights of the inputs.

Similar neuron designs are also shared. Although, we don’t have an addition current
amplifier operational amplifier circuit to provide the voltage line as seen in the circuit
diagram of Fig 3.7. In comparison, the rail voltages of the prototype 4:4:4 network are
provided from the LM317 and LM337 linear voltage regulator pairs and supplied to the
VSS and VDD rails of the potentiometers and the Teensy 3.5. Finally, both neurons share the
same rectified feedback operational amplifier to apply the non-linear activation function of
the Sigmoid.

 FPGA Hardware-Based Designs
Another common hardware implementation of MLP include Field Programmable Gate
Array (FPGA) designs of the artificial neural network. One of the implementations of these
designs is a digital architecture for the realization of multiple layer feedforward networks
using digital logic blocks, in software like VHDL and Xilinx, to achieve this as a
configurable system implementable for specific functions (Tisan et al. 2006).

Fully customizable control logic blocks are configured and designed to control the neurons
of each layer of the network. Control blocks are distinguished from one another as the
design of each layer calls for an adjusted logic block flow. The input layer logic block
composition will differ from the logic blocks in the hidden layers and differ from those in
the output layer of the network. This digital hardware implementation of a MLP has the
ability of learning-on-chip as all the hardware necessary to adjust weights for training the
network and reconfiguration of interconnections between neurons in previous or
subsequent layers are found directly on the FPGA. It has very high reconfigurability and
has the benefit of being able to operate under real-time constraints, making it possible to
implement spiking neural network MLP architectures

The entire digital architecture of this type of implementation is split up into certain groups
of digital logic blocks that are essential to realizing this design on an FPGA. These groups
include the following:

 Control logic block
 Processing block
 Error check block
 Calculus block of hidden layer weights
 Calculus block of output layer weights

The first type of block, the control logic block, is designed to control the neurons of the
neural network, giving signals to multiply and accumulate the weight adjusted inputs to the
network, as well as finally telling the memory blocks to compute the total accumulated
sum of the neuron’s inputs. The control logic block also serves to control memory and act
as a data buffer for sensory input data to the neuron.

EEL 4914 Senior Design I

24

Next, the processing block is designed as the main component of the digital hardware
neural network design. It is created to incorporate the artificial neuron functions of
summing inputs and applying non-linearity, as well as housing the learning algorithm on-
chip.

Neurons are modeled using a block made up of logic blocks that provide memory, one for
data sampling, one that multiplies and accumulates, and finally a unit that applies the
activation function. All these individual units achieve the main neuron designed compared
to this project’s design that purely consists of analog circuitry with additional digital
circuitry to implement these functions.

Lastly, the calculus blocks for both the hidden layers and the calculus layers use digital
logic blocks that calculate the weights applied to the inputs of the neurons in these layers.
Their parameters to calculate the weights are modifiable through programming the FPGA
when training the network or programming the desired training algorithm for the neural
network.

All these separate digital circuit blocks that are used to realize this FPGA artificial neural
network implementation with one hidden layer as seen in Figure 3.9.

Figure 3.9: FPGA Digital Circuit Blocks utilized for single layer MLP Neural Network
Architecture.

There are considerable benefits to implementing these neural networks in Field
Programmable Gate Arrays. Their highly parallel architecture, customizability, and very
high-power efficiency and low consumption are desirable traits. However, due to the time
constraints and high difficulty in programming the entire network on FPGA, the final
design architecture will be an analog circuitry MLP neural network architecture.

EEL 4914 Senior Design I

25

3.4 Component Selection
Needless to say, component selection is an important aspect of any project. It can be the
difference between success and failure. After designing a schematic to perform a certain
way in testing software, the actual physical hardware needs to be chosen based on the
electrical tendencies of the circuit. Each component must be carefully and intentionally
chosen to avoid failure of the neuron circuits. This is one of the most important parts of the
entire creative, and design process.

The next step in the design process is to choose the physical components for each stage of
the circuit mentioned in the previous section. The TL084 operational amplifier was
temporarily chosen to carry out all of the amplification stages, as they are easy to obtain
with low cost. They have generally low noise output, and a high slew rate while working
well with low currents. These operational amplifiers are used in each amplification stage
of the entire system. They are seen in the buffer stage, the inverting amplifier stage, the
sigmoid response amplifier stage and neuron output stage. The next components that need
to be chosen are the digital potentiometers. The digital potentiometers that are currently
being used are the MCP42010-E/P integrated circuits. These digital potentiometers have
256 taps which provide a digital wiper value range from 0 to 255 as they are 8-bit devices
that can sweep up to 10kΩ of resistance. These chips have several different resistance
values offered, including 50kΩ and100kΩ. We temporarily decided on the 10kΩ digital
potentiometers because it suits the power consumption of the network. The pin out for the
digital potentiometers we chose can be found in the appendix in Figure X.X. These
MCP42010-E/P chips have two separate wiper outputs letting us utilize two potentiometers
per chip. The digital potentiometer chips can use different types of communication as well,
as SPI communication will be implemented. Communication between the Teensy 3.6
Development Board and the MCP42010-E/P digital potentiometer chips is what will
control the wiper positions of the digital potentiometers as they will be adjusting the weight
of each individual synapse input.

The last component decided on are which diodes to go with for the output clipping of the
sigmoid amplifier stage. The 1n4001 diodes are being used in prototyping because they
provide a desired turn on voltage for the required output clipping of the activation stage.
The rest of the components throughout this circuit are all just typical resistors and jumper
wires that many distributors provide. There was no need to go with any bulky power rated
resistors as we are working with low enough current (50uA to 250mA) throughout the
entire circuit. In the subsections below, there lies a further analysis of all components
considered which shows some insight to how decisions were made when finalizing
component selection. The subsections below will give an in depth analysis on how our
decisions on component selection were made.

 Operational Amplifier Considerations
Amplifier selection is one of the most crucial processes for this design, as everything from
input buffering to activation functions is handled by the network’s amplifiers. Because the
amplifiers in this project are used in a number of ways, the selected amplifiers must be able
to function adequately in all of these roles with minimal supporting hardware or
concessions. The operational amplifiers chosen to construct the network must meet certain
parameters that will be discussed below.

EEL 4914 Senior Design I

26

One of the most obvious considerations is the chosen amplifier’s output range. The signals
being handled in this project run between -1.65 V and 1.65 V, so it is a requirement that
the chosen amplifier be able to output across a range of at least 3.3 V. While most
amplifiers’ power supplies run at a minimum of 3.3 V, a significant portion of them are not
rail-to-rail, and many more perform poorly at the upper and lower ends of their operating
range, exhibiting behavior such as “latching” their outputs to the corresponding voltage
rail, effectively freezing the output in place even if the input’s magnitude drops. There are
two methods of addressing this problem: find a suitable rail-to-rail amplifier which does
not exhibit undesirable behavior when outputting at or near the rail voltages, or use an
amplifier with a much larger range than the necessary 3.3 V.

Each method has its benefits and drawbacks. The benefits of a 3.3 V rail-to-rail amplifier
are dramatic simplification of the voltage rails for the network, as the digital hardware in
the network runs at ±1.65 V, similar to the network signals. However, it can be a fairly
expensive endeavor to fully employ such amplifiers, as such precision and functionality is
not without matching cost. Given a reasonably priced and suitably functional candidate,
however, it is well worth the cost and effort to eliminate excess voltage levels from the
network. However, using an amplifier at higher voltage levels, such as Texas Instruments’
TL084, is a valid approach; the TL084 is very cheap, at around $.15 per amplifier on the
quad-amplifier chips, and is able to function in all of the applications required for this
project, such as input buffering and rapid settling due to its high slew rate. As implied,
though, the TL084 is neither rail-to-rail nor 3.3 V; the minimum operating voltages are ±5
V, or 10 V rail-to-rail, with the maximum output at roughly ±3 V under these conditions.
However, this is approximately twice the necessary range, which allows undesirable
behavior near the maximum and minimum output voltages to be ignored.

As mentioned, another device characteristic to consider is the versatility and offset
characteristics of the amplifier. Since the chosen amplifier must be able to function as a
unity gain buffer, inverting amplifier, summing amplifier, and activation function neuron,
it is crucial that it be able to function well in each of these contexts. Because some
amplifiers are not fully stable in unity-gain buffer applications, care must be given to avoid
such parts. Similarly, the input bias and voltage offset characteristics must be paid attention
to. In smaller networks, such as the 4-pixel test network for this project, only four inputs
are summed by the summing amplifier stage of each neuron. With the 10 kΩ feed-in
resistors used for the summing amplifier stage of each neuron, the current through each
resistor should typically be in the microamp range, and 135 μA at most. When dealing with
small signals, these currents may be only a few μA; an amplifier with an input bias current
of 1 μA, for example, would cause substantial signal distortion and ruin the neuron’s
output. As such, JFET amplifiers are effectively mandatory for this project, as typical BJT
amplifiers draw too much current to be worth the risk.

Another factor to pay adequate attention to is the number of amplifiers per chip. Since a
minimum of two amplifiers are needed per input to each layer for buffering in addition to
two amplifiers per neuron for the summing and activation stages, it is highly preferable to
use amplifier chips with at least two amplifiers. A reasonable upper limit must be observed,
however; cross-talk between signals, while negligible for many applications, must be
considered for this project. Additionally, while routing can be greatly simplified by

EEL 4914 Senior Design I

27

reducing the number of amplifier chips, it becomes more complicated once more if the
number of chips drops too low, as significant numbers of resistors must be placed in close
proximity to and connected to each amplifier. The ideal number seems, by estimation, to
be around 2 to 4 amplifiers per chip, though this is dependent on the device package and
the dimensions of the network.

An additional consideration is the slew rate of the amplifier. While the slew rate is not
particularly meaningful during standard operation of a trained network, as the signals will
overwhelmingly be DC, it is a limiting factor when training the network. Because training
is effectively constrained by how fast the digital devices on the network can update,
amplifiers must have an adequate slew rate to allow sufficient time for signals to update
and settle. Because there are potentially up to a dozen or even more amplifiers feeding into
each other sequentially, this problem is significantly more apparent than in other
applications. If training at 10,000 samples per second was desired, for instance, a slew rate
of .01 V/μs would not be acceptable, as the signal would not even have time to rise or fall
if it were over 1 V, let alone produce a stable value for the entirety of the ADC collection
period. Because multiple ADC readings must be made after the network is given sufficient
time to stabilize, a safe estimate is that the slew rate be at least 100 times faster than
required for the signal to rise. For 10,000 training samples per second, a slew rate of around
1.5 V/μs or higher would be adequate.

Finally, the current driving ability of the amplifier must be carefully considered. As
mentioned previously, the maximum current under ideal conditions through each feed-in
resistor of the neurons’ summing stages is 135 μA; to supply 10 neurons in the following
layer, each amplifier must be able to supply at least 1.5 mA once the current draw of the
corresponding buffer or activation stage is considered. In reality, the current supplied by
each amplifier should be significantly higher than this value, as voltage drops and
overheating may occur when devices are pushed near their limits.

 Operational Amplifier Selection
For each amplification stage throughout the neural network circuit, we need an operational
amplifier. There are many operational amplifiers available to choose from, but we need to
choose the component with intention. An ideal operational amplifier for constructing the
artificial neural network has a high slew rate, low power consumption and low noise. The
operational amplifiers to be considered for selection are the TL084 operational amplifier,
the MCP6274 operational amplifier, the TL974IN operational amplifier and the
MCP6294IPWR operational amplifier.

The TL084 operational amplifier is a standard and commonly used integrated circuit. It has
a high slew rate at about 13-V/µs which will give us a quick response in our output based
on our change in the input voltage. This device is also designed to maintain low input and
feedback currents, and it requires a minimum of plus and minus 5 V DC rail to rail voltage
to operate. This will work for constructing the network, but we will need to come up with
a solution for power distribution since the rail to rail voltage is greater than that of its
neighboring components, the digital potentiometers and microcontroller in charge of

EEL 4914 Senior Design I

28

controlling said components. It would be more convenient to find an operational amplifier
with rail to rail voltage requirements that are equivalent to the other integrated circuits
being implemented.

The MCP6274 operational amplifier is to be considered as well. When looking at the
datasheet it seems like a good choice for our project as well. It has a significantly lower
slew rate than the TL084 operational amplifier, but may still work well in the circuit. The
slew rate is 0.9-V/µs compared to the TL084’s 13-V/µs. Tests will need to be done
comparing the quickness in output response based on our change in synapse input voltage
to see if this is an ideal choice. The main benefit of using this integrated circuit opposed to
the TL084 operational amplifier is that it requires less voltage to power the device. The rail
to rail voltage required to operate this device is a minimum of plus and minus 1 V DC to a
maximum of plus and minus 6 V DC. This will let us run the power for all of the integrated
circuits, digital potentiometers and microcontrollers, off of the same voltage bus. This
would ridden the problem of having to use a voltage regulator to maintain proper power
distribution throughout the network. This would also give a more simple approach to
designing the printable circuit board since there would be only two voltage layers besides
the ground layer. The main benefit of using the MCP6274 operational amplifier compared
to the TL084 operational amplifier is that it requires much less current and voltage to power
on the device in to its operational state.

The TL974IN operational amplifier is the third operational amplifier that is being
considered to implement in the neural network circuits. After reviewing the datasheet, it is
plain to see that its operating voltage requirements fit within our required specifications.
The TL974IN operational amplifier has an operating range of plus and minus 1.35 V DC
to plus and minus 6 V DC. This is a great range of voltages because within this range are
convenient voltage levels for powering the other integrated circuits on board. The most
valuable quality of implementing these operational amplifiers opposed to the others
mentioned is that it still maintains a relatively high slew rate with an extremely low noise
level on the output. The slew rate is typically 5-V/µs which is relatively high, not as high
as the TL084 operational amplifiers slew rate, but should be enough to get the job done
correctly. The noise level is typically only 4 nV/√Hz, which should provide us with precise
and accurate output responses. This operational amplifier meets all the conditions to be
chosen for, and implemented in to the neural network circuits.

The MCP6294IPWR operational amplifier is the last device to be considered for our
amplification stages throughout the neural network circuit. The MCP6294IPWR
operational amplifier has a typical slew rate of 6.5-V/µs. This slew rate should also be
within the bounds needed for the circuit to operate properly. This integrated circuit
maintains a low noise output level as well, sitting at 8.7 nV/√Hz, which is a relatively low
noise level. The rail to rail operating voltage levels for the MCP629IPWR are plus and
minus 1.2 V DC to plus and minus 2.75 V DC. The low input bias current of 1 pA is also
to be considered since it is thirty times less than that of the TL084 operational amplifier.
These parameters provide a very low power consumption device compared to the TL084

EEL 4914 Senior Design I

29

operational amplifier, but needs about the same as the MCP6274 and TL974IN operational
amplifier’s required operation voltage.

All four of these operational amplifiers will be compared during the testing of each. It is
not difficult to choose the best component when just considering the information offered
on the datasheets, but testing each device is important. There are always issues that can
appear when testing actuality against theory. The price comparison of each component is
another factor to be considered, and can be seen clearly in table x.x, which shows the
distributor, and price of each component mentioned. The TL974IN operational amplifier
seems to be the best choice for the circuit at hand since it has a relatively high slew rate
and low enough power consumption to fit in with our other integrated circuit components.

Table 3.1: Operational Amplifier Price Comparison

Device Distributor Price
TL084 Texas Instruments $1.10

MCP6274 Microchip $1.01
TL974I Texas Instruments $0.89

MCP6294IPWR Texas Instruments $0.78

Price is not a huge concern for selection of this component, as the difference between the
lowest and highest price is 32 cents. This will add up to about a $60 total difference in cost
between the cheapest and most expensive operational amplifiers when considering the
quantity needed to construct the final neural network. Conveniently, the cost per
component is within a relatively low cost margin and there will be no issue funding these
components.

 Potentiometer Considerations
A number of factors were considered during potentiometer selection, including the
communication protocol used, number of potentiometers per chip, number of taps per
potentiometer, and total resistance value of the potentiometers. As mentioned previously,
the SPI communication protocol is fairly non-negotiable when selecting chips due to the
impracticality of using any other commonly available protocol. Results to date have
indicated that 256-tap potentiometers are necessary, as significant difficulty has been
encountered when attempting to obtain convergence in networks simulated with 128-tap
potentiometers. The number of potentiometers per chip should be as high as possible, as
this dramatically reduces both the programming time of the network and the number of
components, traces, and vias required on the final PCB. However, cost becomes somewhat
prohibitive as the potentiometer count increases, and it is often difficult to find 4 or more
potentiometers on a chip without sacrificing some other characteristic, such as affordability
or tap count. Finally, the total resistance of the potentiometer should be minimized to a
reasonable degree to avoid signal distortion. Because each potentiometer is functioning as
a voltage divider between a positive and negative voltage on each end of the device with
the wiper selecting the dividing point, it is easily possible for the buffering, inverting, and
summing amplifier hardware to pull a non-negligible amount of current from either the

EEL 4914 Senior Design I

30

positive or negative end of the potentiometer, introducing significant aliasing in the actual
output voltage of the potentiometer and causing a breakdown of the ideally linear behavior
of voltage as a function of wiper position. However, it is possible to use larger values for
the potentiometers by buffering and inverting the output of each potentiometer with op
amps with very low input bias currents, minimizing the current draw from the
potentiometers and ensuing voltage skew, though this is a fairly hardware-intensive
solution.

 Potentiometer Selection
Since SPI communication and a high tap count are effectively mandatory, there is not a
significant amount of room left for potentiometer selection. While elimination of the
EEPROM (or equivalent) requirement would broaden the range, it is more of a last resort
decision than a mere tradeoff. Despite these constraints, a few viable candidates were found
which fall within the desired boundaries given for the network’s potentiometers.

The first candidate observed was Microchip’s MCP44XX series. For early prototyping and
testing, the MCP4441 variant of this device series was used. The MCP4441 is a 10 kΩ,
quad-potentiometer I2C chip with 129 taps and onboard EEPROM; a variant with 257 taps,
the MCP4461, is also available in this series. The operating range of the EEPROM variants
is 2.7 to 5.5 V, with limited operation down to 1.8 V possible. The devices are available in
20-pin TSSOP and 4x4 QFN packages at a reasonable price of about $1.90, or around $.48
per potentiometer, for the MCP4461. The relative ease of placement of the TSSOP package
allows for easy PCB integration, but the lack of a through-hole variant necessitates the use
of breakout boards to perform breadboard testing. The device’s use in this project is
severely handicapped by its use of the I2C protocol, since the parallel nature of I2C devices
is not practical for even small networks. Consequently, its use was limited to use in
transitioning the early neuron prototypes from analog to digital potentiometers, and was
not used beyond this point.

The SPI equivalent series of these devices is the MCP43XX series. Due to the satisfactory
behavior observed during early testing with the MCP4441 and the similarity of the two
series, the MCP43XX series was examined as a candidate for surface-mount PCB
implementations. At an identical price to the MCP4461, the MCP4361 sports a price of
around $.48 per 256-tap potentiometer, even better than the price of many 128-tap
potentiometers available for purchase. Additionally, the fact that the device is a quad-
potentiometer chip instead of a dual-potentiometer chip like most of the other candidates
is advantageous when dealing with PCB routing and device layout, as it halves the number
of chips required for the network’s synapses. While the MCP4361 is only produced in 20-
pin TSSOP and 4x4 QFN packages, precluding easy breadboard testing, the availability of
the TSSOP package makes it a very attractive choice for later surface mount PCB design.
However, a critical shortcoming of the MCP43XX series is that it does not support daisy
chaining. Since the ability to daisy chain potentiometers dramatically simplifies the board
routing and device layout, it is a fairly serious endeavor to control dozens or hundreds of
devices without the ability to operate them serially.

EEL 4914 Senior Design I

31

The next potentiometer candidate is Texas Instruments’ TPL0202. The TPL0202 is a 10
kΩ dual-potentiometer SPI chip with 256 taps and onboard EEPROM. The device has an
operating range of 2.7 to 5.5 V and is produced in a 4x4 QFN package. Aside from the sole
availability in a QFN package, which is difficult to solder, this device meets the technical
requirements of this project. One of the primary non-technical drawbacks to this device is
that, due to its sole availability in a dual-potentiometer package, the cost per potentiometer
is relatively high at around $.92, almost double that of the MCP4461. The 4x4 QFN
package also complicates routing and soldering, and the doubled number of chips
significantly increases the overall footprint and design complexity of the network.
Additionally, since QFN packages are difficult to solder without a screen, it is difficult to
even attach the device to a breakout board for breadboard performance testing. Finally, as
with the MCP43XX series, daisy chaining is not supported by the TPL0202, greatly
limiting its usefulness. As a result, the TPL0202 was not chosen for this project.

Another candidate is the MCP42010, a 10 kΩ dual-potentiometer device produced by
Microchip. The MCP42010 is a 256 tap SPI chip produced in 14-pin PDIP, SOIC, and
TSSOP packages. A significant difference between the MCP42010 and the other
candidates is the lack of EEPROM on the device; while this is not a disqualifying factor, it
is a significant complication as it would force the network to be reprogrammed after each
power cycle. Additionally, the relatively high price of around $1.00 per potentiometer is
one of the highest prices of the potential candidates, which is a significant hurdle
considering hundreds of potentiometers would be required for even a relatively small
network. However, the availability of the device in a PDIP package makes it an attractive
choice for breadboard testing and for early through-hole PCB design, as in the 4-4-3 test
network. Importantly, the MCP42XXX series supports SPI daisy chaining, greatly
simplifying the routing and external hardware and logic required to operate the network.
Consequently, the MCP42010’s PDIP variant was chosen for use in the through-hole PCBs
of the 4-4-3 test network, and the TSSOP variant is a good choice for later surface mount
implementations.

Finally, Analog Devices’ AD5204 was considered. The AD5204 is a 256 tap quad-
potentiometer SPI chip which is available in 10 kΩ, 50 kΩ, and 100 kΩ varieties. The
device is produced in SOIC, TSSOP, and LFCSP packages, complicating breadboard
testing, though the TSSOP is an ideal choice for surface mount layouts. While the
resistance tolerances are 30% versus the standard 20% for most digital potentiometers, this
can be minimized as discussed in the “Potentiometer Considerations” subsection. Because
the AD5204 contains 4 potentiometers per chip instead of 2 and supports daisy chaining,
it requires half of the overall footprint of the MCP42010 at approximately the same cost
per potentiometer. Because this simplifies routing and reduces the overall size of the
network, the AD5204 is a likely choice for the final network’s potentiometers.

Because there is a significant amount of overlap among the potentiometer candidates and
a fairly wide range of factors to consider, it is helpful to summarize both the technical and
logistical considerations of the parts to simplify the decision process and make
comparisons easier. These summaries are provided in Table 3.2 and Table 3.3.

EEL 4914 Senior Design I

32

Device/series Manufacturer Resistances Tolerance Tap counts
MCP44XX Microchip 5 kΩ, 10 kΩ, 50

kΩ, 100 kΩ
±20% 129, 257

MCP43XX Microchip 5 kΩ, 10 kΩ, 50
kΩ, 100 kΩ

±20% 129, 257

MCP42XXX Microchip 10 kΩ, 50 kΩ,
100 kΩ

±20% 256

TPL0202 Texas
Instruments

10 kΩ ±20% 256

AD5204 Analog Devices 10 kΩ, 50 kΩ,
100 kΩ

±30% 256

Table 3.2: Potentiometer Technical Consideration Summary

Device/series Pots. per chip Price per pot. Protocol SPI daisy chaining?
MCP44XX 4 $.30 I2C N/A
MCP43XX 4 $.40 SPI No

MCP42XXX 2 $.86 SPI Yes
TPL0202 2 $.78 SPI No

Table 3.3: Potentiometer Logistical Consideration Summary

The range of values for each device series is provided, where applicable; prices per
potentiometer are based on present prices from Mouser assuming an order of 100
potentiometers. One of the most striking differences is in price between the
MCP43XX/44XX series and the other candidate devices, at a difference of more than 2-
to-1; however, neither device is capable of SPI daisy chaining, indicating there is clearly a
premium on the shift register architecture necessary to allow for daisy chaining. While cost
is a fairly high priority considering the The difference between the top two candidates, the
MCP42XXX series and the AD5204, is minimal; a price difference of only 1 cent separates
the two. However, the higher potentiometer count per chip for the AD5204 more than
offsets the higher tolerances, the effects of which can be minimized. Consequently, the
AD5204 is clearly the best choice once all factors are brought into consideration.

 Digital Potentiometer Controller
The controller for our digital potentiometers, and all other components that need digital
data inputs to function, has a few requirements to be considered ideal. It needs to have a
floating point hardware unit, at least 7 analog inputs with atleast 12 bit ADC (analog to
digital converter) resolution, and SPI (serial peripheral interface) and I2C (inter-integrated
circuit) communication is preferred. It would also require a minimum of 10 GPIO pins,
and a C compiler to handle the programming. Some microcontrollers that are being
considered are the Teensy 3.5 Development Board, the TIVA C Series TM4C1294
Launchpad and the STM32 Nucleo-64 development board with STM32F030R8 MCU.
Each device will be discussed and analyzed in the following paragraphs of this section.

The Teensy 3.5 Development Board would be a solid choice in theory, as it meets all of
the necessary requirements to control our network. It has worked successfully for basic

EEL 4914 Senior Design I

33

prototyping of the overall network as it was readily available to us during prototyping of
the smaller scale network. The Teensy 3.5 Development Board has a 120 MHz ARM
Cortex-M4 with a floating point hardware unit, digital input/output pins with 5 volts DC
tolerance, and twenty five analog inputs with two 13-bit resolution ADCs. The CPU on
board will support C programming language. For communication, the board include three
serial peripheral interface ports and three inter-integrated circuit ports. The development
board also require 3.3 to 6 volts DC to operate, which fits within the bounds of the supply
voltage requirements for the operational amplifiers and digital potentiometers being used.
With a total of 62 digital input/output pins, there will be more than enough pins to work
with if this device is to be implemented. The Teensy 3.5 Development Board is
manufactured by PJRC, and can be obtained on digikey.com. The Teensy 3.5 Development
Board costs $31.25 which is affordable and within our budget.

The TIVA C Series TM4C1294 Launchpad is the second device being considered to
control the entirety of our network. The Launchpad has a 120MHz 32-bit ARM Cortex-
M4 CPU on board that will support C programming language. Other features include
eleven GPIO pins, serial peripheral interface and inter-integrated circuit communication,
eight analog input pins, and two 12-bit resolution analog to digital converters. The device
can use a supply voltage between 3.3 and 5 volts DC to operate which fits within the supply
voltage bounds of all operational amplifiers and digital potentiometers being used in the
network. This is a convenience that is not necessary, but will optimize power distribution
of the network. The TIVA C Series TM4C1294 Launchpad is manufactured by Texas
Instruments and can be ordered online from ti.com. The TIVA C Series TM4C1294
Launchpad costs $19.99, which is also within our budget, but is cheaper than the Teensy
3.5 Development Board. The approximately twelve dollar difference is not significant
enough to value the cost of the TIVA C Series TM4C1294 Launchpad over the Teensy 3.5
Development Board so both controllers are still to be considered.

The final microcontroller being considered is the STM32 Nucleo-64 development board
with STM32F030R8 MCU. On the board is an ARM Cortex M4 32-bit STM32F401RET6
microcontroller, which will suffice as a CPU as it is compatible with C programming
language. The STM32 Nucleo-64 development board also has a floating point hardware
unit and six analog inputs. Seven analog inputs is preferable, but the STM32 Nucleo-64
development board is compatible with Arduino boards which can be used to extend input
availability. The controller also has three serial peripheral interface ports and three inter-
integrated circuit ports which satisfy our digital communication needs. Another included
feature is the 12-bit resolution analog to digital converter. The STM32 Nucleo-64
development board requires 3.3 to 5 volts DC to operate which fits the supply voltage
bounds of the other active components that make up the network. The STM32 Nucleo-64
development board is manufactured by STMicroelectronics can be obtained via online
order from st.com. The price of the STM32 Nucleo-64 development board is a mere $13
when compared to that of the Teensy 3.5 Development Board and the TIVA C Series
TM4C1294 Launchpad, but the price is still not our main concern. Price and
supplier/manufacturer details for each device are provided in Table 3.4.

EEL 4914 Senior Design I

34

Device Manufacturer Price
Teensy 3.5 Development

Board
PJRC $31.25

TIVA C Series TM4C1294
Launchpad

Texas Instruments $19.99

STM32 Nucleo-64
Development Board

STMicroelectronics $13.00

Table 3.4: Comparison of Digital Potentiometer Controller Devices

For essential prototyping of our intermediate network, we decided to implement a Teensy
3.5 Development Board to communicate with the potentiometers using serial peripheral
interface (SPI) communication. This controller provides us with all of the necessary digital
outputs for communication while only using 3.3 volts DC to power the device. These
necessary digital outputs include: a high frequency clock signal, serial communication
output and chip select output. The pin out for the Teensy 3.5 Development Board can be
found in the appendix in Figure X.X. A picture of the physical device can be seen below
in Figure 3.11.

Figure 3.11: Teensy 3.5 Development Board

 Communication Protocols
The long-running universal asynchronous receiver-transmitter (UART) standard has been
of some interest for embedded communications for this project due to its ubiquity and
simplicity. However, while it may be useful for controlling an output indicator or for
bidirectional communication with the network with an external source, it is unlikely to be
useful for communications among the digital devices of the network itself, as these chips
are generally designed for I2C or SPI communication. Thus, UART communication is of
limited utility for this project outside of controlling certain peripherals.

EEL 4914 Senior Design I

35

Inter-Integrated Circuit (I2C) serial communication is a widespread and extremely useful
serial communication protocol for embedded systems and device control. Unlike UART,
which communicates via a single serial line, I2C communication buses contain two lines:
a clock line and a data line. As multiple devices are connected to the same data line, each
command begins with an address so that the correct device responds to the given command.
As multiple devices can be connected in parallel to the same serial data line with
multiplexing inherent in the protocol, I2C is an attractive choice for communications with
the potentiometers and other devices in the network. However, as each device requires its
own slave address, there is a relatively low upper limit on the number of devices which can
be connected to a single data line. Because of the scale of this project, this necessarily
indicates that either additional external multiplexing is necessary on the line or that
multiple data lines must be used. Because most of the potentiometer chips observed only
have two address bits, allowing a total of 4 devices to be operated simultaneously on one
data line, this could potentially mean dozens of separate I2C buses that would need to be
separately activated when necessary, greatly complicating both the training algorithm and
the external hardware for the circuit. Thus, I2C is not a practical choice for controlling
large arrays of devices that do not have a convenient method for assigning unique slave-
device addresses.

Serial-Peripheral Interface (SPI) serial communication is similar to I2C communication,
but with a few key differences. SPI communication uses three wires: a chip select line, a
clock line, and a data line. Chips are activated when their chip select pin is pulled low,
indicating that they should begin reading from the data line. However, unlike with I2C
devices, every device has both a serial input and a serial output pin. If the chip select of the
devices are all connected to the same chip select line from the microcontroller and the serial
output of each device is connected to the serial input pin of the next device in line, it is
possible to “daisy-chain” a significant number of devices together, causing them to
function as an extremely large shift register. Each time a write command is given to the
network, each device writes its contents to the next device in line; this process allows a
single microcontroller to potentially program dozens of chips with a single data line and
no additional external hardware for multiplexing.

Additionally, because each device is only responsible for driving the device after it, there
is no significant risk of data attenuation as the size of the network grows. As long as the
clock and chip select signals can be maintained, the upper limit of daisy-chaining is fairly
arbitrary. Because a single controller can simply output the write commands and data in
the order they appear in the network, from farthest to nearest, there is no significant penalty
to speed compared to another approach such as multiplexed I2C communication. Thus, SPI
is by far the ideal choice for controlling a large array of digital potentiometers due to its
low footprint and reliable operation.

A sample SPI master-slave configuration, similar that which will be used for
communication with the digital potentiometer controller and the potentiometers is shown
in Figure 12. It should be noted that this is a parallel configuration; in a daisy-chain
configuration, the SDOx pin of each slave would be connected to the SDIx pin of the

EEL 4914 Senior Design I

36

following slave, with only a single I/O connection from the SPI master to the first slave’s
SDIx pin.

Figure 3.10 SPI Master Slave Configuration Sample. Reproduction Permission requested
from https://electrosome.com/

 Voltage Isolation for External Communication
Electronic communication networks are based on the transmission of information as an
electrical signal that is propagated through a circuit. In many small-scale communication
networks, the different devices that are attached to the network will at least have their
power supplies tied to a common ground, which facilitates the creation of network circuits.

For TACOCAT’s communication network, the microcontroller device that controls the
low-level procedures for training and prediction operations operates on the same split-rail
power supply as the analog neural network itself. While the microcontroller and other
digital components in the neural network such as the digital potentiometer control circuits
share a common ground connection, the microcontroller is also expected to communicate
with a PC or mobile device that sends user-input data and may receive results or meta-data
for performance analysis. This “user-interface device” is unlikely to be powered by the
same split-rail power supply as the neural network, which has a nominal maximum voltage
of 3.3V between the positive and negative rails.

One way to establish communication links between devices with different ground levels is
to connect two device’s network circuits together through a pair of matching nodes that are
separated by an insulating layer, but able to communicate with each other using a signal
transmission medium that does not require an electrical connection. Assuming that I2C or
an I2C-derived protocol will be used for external communication, the link needs to provide

EEL 4914 Senior Design I

37

at least one bi-directional channel (for serial data) and one unidirectional channel (for the
serial clock). Because the I2C slave device might employ clock-stretching, we will only
consider devices that support bi-directional communication for the clock signal as well as
the data signal.

Optocoupler devices, containing a light-emitting device and a light-dependent resistance,
have been used to perform this type of isolation in the past, but modern digital isolator
designs have largely taken their place. These digital isolators use a variety of
electromagnetic waves or fields to transmit data without a completed electrical circuit.
Table 3.5 shows a comparison of several different digital isolators that are marketed
specifically for use with I2C-based communication links.

Device Manufacturer Min/Max
Supply
Voltage

Maximum
Clock Rate

Isolation
Technology

Price

ADUM1250 Analog
Devices

3.00 - 5.5 V 1 MHz Magnetic
Transformer

$5.55

MAX14933 Maxim 2.25 - 5.5 V 1.7 MHz Not Stated $3.00
ISO1540 Texas

Instruments
3.00 - 5.5 V 1 MHz Capacitive $4.66

SI8400 Silicon Labs 3.00 - 5.5 V 1.7 MHz Radio
Frequency

$3.09

Table 3.5: Comparison of Digital Isolator Devices

The datasheets for all of the devices listed in the comparison table recommend adding a
small capacitor across the power-supply rails on each side of the chip, but no other
additional components are typically required. Considering that the expected clock rate for
external communications is not expected to exceed 1 MHz, all of the devices that were
considered should meet the specifications for maximum clock rate. All devices should also
be compliant with the expected supply voltages of 3.3V on each side of the IC.

There may be other issues related to performance, reliability, and efficiency that
differentiate the devices, but they are not readily apparent from looking at the device
datasheets. Fortunately, because the different devices can easily be substituted for one
another, prototype testing can be conducted conveniently with several different device
models to see if there are any tradeoffs between price and operating characteristics.

 Power Distribution and Regulation
After selecting our microcontroller used for communication with the digital
potentiometers, it occurred to us that we should apply a voltage regulator to protect our
microcontroller and the circuit itself. Based on which operational amplifier is used, we may
have to distribute supply power differently. If the MCP6274 operational amplifier,
TL974IN operational amplifier, or MCP6294IPWR operational amplifier are going to be
used, then the power should be able to run off the same voltage lines that power the digital
potentiometers and microcontroller. Since the required supply voltage is within the bounds
of the supply voltage required for the digital potentiometers and microcontroller this would
be convenient. The TL084 operational amplifiers require a minimum of plus and minus 5
volts DC, which does not match with the voltage required to power the digital

EEL 4914 Senior Design I

38

potentiometers and microcontroller. In this case, a dual power supply voltage regulator
must be implemented to take the –1.66 Volts DC and +1.66 Volts DC lines and boost them
to – 5 Volts DC and + 5 Volts DC. This is an option, but can create issues when designing
the printed circuit board of a singular neuron circuit. Instead of using three voltage planes,
plus and minus 1.66 Volts DC and ground, there would be five. The addition of the plus
and minus 5 Volts DC creates two more voltage bus layers that will be needed.

Since TL084 operational amplifiers are readily available to us, our group decided to do
some breadboard prototyping with these integrated circuits in the mean time. Since a dual
power supply voltage regulator was essential for proper power distribution, the LM317 &
LM337 precision voltage regulator was decided upon for prototyping. This voltage
regulator fits our desired input and output voltage ranges, and is highly affordable. The
voltage regulator is being used as a dual power supply to regulate our bipolar power
configuration. It can be seen in Figure 3.11. A –1.66 V DC to +1.66V DC voltage range
will be applied to the digital potentiometers and the Teensy Development Board to power
the devices. The final components that need power to operate are the TL084 operational
amplifiers mentioned above. For these amplifiers, we will be using -5 V DC to +5 V DC
rail power supplies. Our overall power distribution is routed as follows. Starting with one
-5 V DC bus and one +5 V DC bus from a DC Voltage power supply, wires will be jumped
to the plus and minus rail terminals of each operational amplifier. Then, running the +5 V
DC and -5 V DC in to our dual power supply from the DC voltage power supply. This
converts the plus and minus 5 V DC in to a respective +1.66 V DC and - 1.66 V DC. These
plus and minus 1.66 volts DC voltages are then run in to their own bus which we can
distribute power to the Teensy 3.5 Board and all of the digital potentiometers from.

Figure 3.11: LM317 & LM337 Precision Voltage Regulator

EEL 4914 Senior Design I

39

In the future, different operational amplifiers may be implemented, which will require us
to reroute our power distribution in a simpler fashion. In this case, the amplifiers will be
chosen to match the rail to rail voltage of the digital potentiometers and Teensy 3.5
Development Board. This will make the printed circuit board design much simpler since
there will not be two different voltage planes to be considered. After testing with the TL084
and acquiring promising results, we must make sure that introducing new operational
amplifiers to not degrade previously obtained results. If possible, it would be ideal to
implement operational amplifiers with lesser supply voltage requirements while still
providing the same promising results of our system.

 Programming Languages
The codebase for this project was divided into sections that are run on two separate
platforms for different purposes: one is a simulation/training and user-interface program
group that runs on a minimal PC platform, and the other is firmware that runs on a ARM
microcontroller platform.

Python was chosen as the programming language for the simulation/training software due
to several of its qualities that also make it popular as a language for other research in
machine learning. Python has strong support for vector/matrix math operations, which is
provided by the NumPy library. Python also supports functional programming constructs
such as list comprehensions and lambda functions that simplify the manipulation of large
data sets.

C/C++ was chosen as the programming language group for the implementation of firmware
functionality due to its efficiency and reliability. The option of compiling Python code into
binary files that could be executed on a microcontroller, via the MicroPython project’s
code library, was considered, heavy reliance on a toolchain that is still in the development
stage seemed like too big of a risk to take in the firmware design plan.

The C/C++ toolchain for ARM microcontrollers is mature and comes with few limitations
relative to the C/C++ toolchains for common personal-computer CPU architectures.

 Handwritten Character Data Set
Recognition of handwritten numeric characters in the Modified NIST (MNIST) data set is
a common benchmark for machine-learning algorithms. This data set, described in LeCun
et al., consists of image samples of handwritten numeric characters from ‘0’ to ‘9’ that
were provided by the U.S. National Institute of Standards and Technology. Roughly half
of the samples in the data set were gathered from U.S. Census Bureau employees, and the
remainder of the data set was collected from samples submitted by high school students.

The MNIST set is divided into two distinct subsets, one intended for training and another
for testing. Images were cropped from the original data at a size of 20 x 20 pixels, and these
images were centered in 28 x 28-pixel squares. The images contain 8-bit pixel values
representing grayscale levels ranging from 0 to 255.

In this work, we chose to use the Extended MNIST (EMNIST) data set, which is a close
relative of MNIST, is described in Cohen et al. This dataset follows the same sample
formatting and file structures as MNIST, and while MNIST contains only numeral

EEL 4914 Senior Design I

40

characters, EMNIST contains numeral and alphabetic characters. Like MNIST, EMNIST
is also divided into distinct training and testing subsets.

 Diode Component Selection
Inside the artificial neuron circuit configuration that has been designed for the MLP neural
network, the last activation function stage operational amplifier needs to implement the
sigmoid activation function. This is achieved by utilizing a rectifier diode bridge on the
feedback of the operational amplifier. Diodes are used for waveform manipulation in the
way of voltage rectifiers, clamping and clipping circuits. The purpose of the diodes in this
circuit would be to rectify the weighted and summed inputs from the summing amplifier
circuit and clip the extremes of the output waveform.

To choose an appropriate diode for this application, a range of voltage for which to clip
was first needed. Since the range of output voltages for the multi-layer perceptron needed
is -1.65V to +1.65V, a diode with a 2V turn-on voltage would be enough if the circuit was
designed with diodes both in forward and reverse current directions on the feedback loop
of the activation function operational amplifier. There are several options for types of
diodes to use for this purpose i.e. Zener diodes, rectifier diodes, germanium or silicon
diodes, PN diodes, Schottky diodes, etc.

The first possible type of diode to choose from, Zener diodes. These types of diodes are
typically used for reliable voltage reference applications. They also have a higher turn on
voltage than a regular diode would, somewhere in the range of 5V, which would be too
large for the activation function stage of our neural network circuit design. Furthermore, to
turn on the diode would require it to be reverse biased. This would be inconsequential to
the application, but it would require a different configuration than the one designed in the
circuit schematic of the 2x2 network design.

Schottky diodes would be another option of diodes from which to choose from for the
signal rectification of the activation function operation amplifier circuit. However,
Schottky diodes tend to have a much lower turn-on voltage than that of PN junction diodes.
They have forward voltage somewhere in the range of 0.15V to 0.4V as opposed to a typical
0.6-0.7V forward voltage of a PN junction diode. This would mean that many would be
required to be placed in series for the rectifier bridge of the activation function operation
amplifier circuit and would be less efficient than finding a more appropriate singular diode
with a larger forward voltage for this project’s application.

Small signal diodes offer perhaps the smallest package size while offering a fast switching
rectification with low leakage and high reliability. Specifically, the 1N4148 small signal
diode from ON Semiconductor could be used for the rectifying diode bridge of the
activation function circuit design. It would offer an affordable option with a 1V forward
voltage, despite it having a low acceptable current of 200mA. At around $0.10 per unit, it’s
a good contender for this application as it would over a reasonable 0.2W maximum power
dissipation, and fast signal switching speed. However, rectifier diodes from Vishay
Semiconductor of the 1N400X family would offer a more affordable price per unit, with a
higher power dissipation capability, while having a lower signal switching speed.

The final and most appropriate diode type for the activation function circuit is a rectifier
PN junction diode. This is because of its use of only allowing current to conduct in one

EEL 4914 Senior Design I

41

direction, and typical forward voltage of around 1V. For the activation function circuit, a
1V forward voltage rectifier diode would call for the need of at least 2 identical diodes to
be connected in series in both forward and reverse directions on the feedback loop of the
operational amplifier to achieve positive and negative voltage rectification.

Many rectifier diodes with 1V forward voltage exist in the electronics market, though they
have different maximum forward-bias currents. For this project’s purposes, a 1-ampere
rated rectifier diode would be more than enough considering the low current draw of the
network. The 1N400x family of 1-ampere general-purpose silicon rectifier diodes are
commonly used for AC signal rectification for applications similar to the clipping
performed in this project. Compared to the 3-ampere family counterpart, the 1N540x, they
are less expensive due to their lower heat dissipation requirements and more appropriate
for the much lower expected currents in the activation function’s analog circuit.

Finally, the 1N4001 rectifier diode was chosen for its price trade-off compared to the 3A
counterpart, and its ease of integration with this project’s activation function circuit.
Despite it having a lower switching speed than the small signal diodes of the 1N4148
variety, it is a specification that is traded off for a higher power dissipation ability, since
that is a more concerning specification. A summary of all diodes considered for the
activation function operational amplifier circuit can be found in Table 3.6.

Device Manufacturer Forward
Voltage

Forward
Current

Diode
Type

Starting
Price per

Unit
1N4001 Vishay

Semiconductors
1.1V 1.0A Rectifier $0.07

1N5400 Vishay
Semiconductors

1.2V 3.0A Rectifier $0.10

1N5819 Vishay
Semiconductors

0.55V 1A Schottky
Rectifier

$0.37

1N4733A Micro
Commercial
Components

5.1V 200mA Zener $0.32

1N4148 ON
Semiconductor

1.0V 300mA Signal
Fast-

Switching

$0.10

Table 3.6: Diode Component Selection Technical/Price Comparison

 Shift Register Component Selection
Shift register IC will be used to provide the input data to the input layer of the final MLP
neural network circuit design. This is being done to avoid having a large number of parallel
traces being run from the microcontroller that processes the input image data, to the
synapse circuits of the neurons from the input layer. To overcome this problem, serial-input
serial-output shift registers will be used.

EEL 4914 Senior Design I

42

Serial-input (SI) shift registers benefit from the fact that they can be connected to peripheral
circuits via the serial communication protocols used. In the case of the final circuit design,
SPI serial bus and clock signal from the microcontroller chosen will be used to feed the
input pixel data to the necessary CMOS hex inverter and buffer chips, which will in turn
set the voltage levels of the PB0 and PA0 pins of the digital potentiometers. To integrate
the SI Shift registers, when considering the 25-input final network design, at least 2 16-bit
SI registers or 4 8-bit SI shift registers must be utilized.

There are some technical specifications to be taken into account when choosing the right
shift register for this application. The first of which, is the number of bits desired for the
shift register’s storage register. A larger number of bits allowed in the storage register will
call for a lesser number of chips for the input layer of the neural network, as the number of
chips needed is directly related to the number of input pixels obtained from the input image.
Therefore, careful price consideration for the shift register chip needs to be taken as a lower
total number of chips needed would benefit the cost of the design if it can be done using a
16-bit registers over 8-bit registers.

As previously mentioned, the SI shift register IC is the main shift register type being
considered for this application. This is due to the parallel-input shift register types being
obsolete for the input layer design of the final neural network circuit. The purpose of using
the shift registers for this design is to avoid having a number of parallel input traces to the
input layer of the network equal to the number of inputs from the pixel data. If the input is
of large pixel quantity, it would be more efficient use of PCB space to allow the serial bus
of the SPI interface to feed the input data to the input layer of the network. Having a
parallel-input shift register would defeat this purpose as it would encounter the same
problem with the number of traces. Furthermore, having parallel-input shift register would
mean that the same number of traces would be needed as not having obtained the input data
serially would in the first place, making this option obsolete. Thus, the SI shift register type
is optimal for the input layer.

Next, the communication protocols available to the shift register chip need to be
considered. Ideally, a shift register with SPI communication capabilities would be the
choice for the input layer of the final circuit design, over one with I2C communication. This
is due to the rest of the circuit design utilizing SPI communication buses instead of I2C
busses, as the communication protocol used by the digital potentiometers of choice for the
weights of the synapses use SPI communication. Thus, the data in the serial data bus will
be providing the serial input bits to the chosen shift register IC.

Supply voltage ranges for the shift register is perhaps the most important technical
consideration for choosing the right IC for input layer of the final neural network design.
The voltage range needed for the inputs to the digital potentiometers will be directly
affected by the logic high and logic low levels used by the shift register chip. Several shift
register IC’s use high and low logic levels that are proportional to the supply voltage it is
provided with. This means that carefully choosing one with the right built in hysteresis
between high and low logic levels is needed to find one that will fit the input voltage range
needed of -1.65V to +1.65V to the digital potentiometers.

Certain shift register options in the market have the benefit of including a chip select pin,
which can disable the shift register clock and the storage register clock, placing the serial

EEL 4914 Senior Design I

43

data read in a high impedance state. The serial data input and read pin provides the ability
to read the stored data in the storage register of the chip, which allows for ease of
troubleshooting the device, since reading the data stored can be done in a recirculating
loop. These types of shift registers have four basic modes of operation:

 Hold (no operation performed)
 Write (via serial input)
 Read (via serial output)
 Load (via the serial input data, stored in parallel to the register)

This capability is a reason to be cautious, however, as chips with this configuration can
result in a false clocking of the shift register data via the chip select line, if it goes logic-
low. Typical maximum clock rate should also be taken into account, as the serial data clock
rate would be driven by the clock edges of the microcontroller used to process the input
pixel data. A detailed summary of technical considerations for candidate SISO shift register
chips from different manufacturers can be seen in Table 3.7.

It should be noted that the low and high voltage levels of the devices chosen above are
measured with respect to the ground terminal of the network the device is to be included
in, meaning that the high and low logic levels can be adjusted by supplying the ground and
VCC terminals of the shift register chips with an appropriate voltage level range to match
the range needed for the inputs to the digital potentiometer weights of the input layer.

Device Manufacturer Low Level
Output /

High Level
Output

Storage
Register

Size

Nominal
Supply
Voltage

Starting
Price
per

Unit
TPIC2810 Texas

Instruments
0.3VCC
0.5VCC

8-bit 3V ~
5.5V

$1.56

MC74HC165A ON
Semiconductor

0.1V - 0.4V
1.9V - 5.9V

8-bit 2V ~ 6V $0.099

SN74LS165AD Texas
Instrument

0.2V - 0.4V
2.4V - 3.4V

16-bit 5V $0.74

74HC165D Nexperia 0.1V - 0.4V
5.2V - 5.81V

8-bit 2V ~ 6V $0.37

74HC595 Texas
Instruments

0.002V –
0.4V

1.9V – 5.8V

8-bit 2V ~ 6V $0.15

Table 3.7: Shift Register Component Selection Technical/Price Comparison

 CMOX Hex Inverter Component Selection
The modified design for the input layer of final neural network design, containing the SISO
shift register chip, calls for a way to invert the input digital signals to the PB0 and PA0
pins of the digital potentiometer, such that an appropriate range of weight voltages can be
achieved. To complete this task, there needs to be a complementary voltage to both
aforementioned pins of the digital potentiometer. The use of a CMOS hex inverter will

EEL 4914 Senior Design I

44

allow for the complement of the corresponding digital logic voltage level input to the
neurons of the input layer.

CMOS hex inverters consist of 6 input logic-level input voltages and 6 logic-level inverted
output voltages. There are several important technical considerations for choosing an
appropriate CMOS hex inverter for this application, first of which, is the supply voltage.
To keep a simple and compact PCB and final neural network circuit design, it is desirable
to keep the supply voltage of the peripheral circuit IC’s in the input layer of the neural
network to run off of the same supply voltage line (VCC) as the other components of the
network. This would mean that it would be optimal to try to choose a hex inverter chip
with a supply voltage in the range of about 5V, if it is to be kept at the same rail voltages
as the operation amplifiers in the network, or 3.3V if it is to be kept at the same voltage
level as the digital potentiometers of the network.

CMOS inverter chips are sometimes sold as CMOS gate packages that don’t always include
hex inverters (6 inverter circuits). These are not the ideal IC to select for the application of
this circuit, as it would mean an inefficient use of PCB space. A larger quantity of hex
inverter chips would be needed to complete the task of inverting all the digital logic-level
inputs to the synapses of the input layer. CMOS hex inverters are ensured to include 6 pairs
of input and complementary (inverted) output voltage at logic-level high when the input is
triggered.

The minimum edge rate of the hex inverter chips would be an important technical
specification to consider if the fast switching voltage speed was needed. For example, the
74AC04 hex inverter chip from Fairchild Semiconductor offers a minimum input edge rate
of ~125mV/ns. At the expected edge clock rate of 20MHz, the minimum edge rate of the
chip would certainly be met, and thus, it isn’t going to be a limiting factor for choosing an
appropriate hex inverter for the input layer, as the serial data would meet the requirement.

A survey of available hex inverters is provided in Table 3.8.

Device Manufacturer High Level
Output
Voltage

Nominal Supply
Voltage

Starting
Price per

Unit
74LS04 Renesas 0.4V – 2.7V 4.75V – 5.25V $0.69

CD4069UBE Texas
Instruments

4.95V – 15V 3 – 18V $0.28

74HCT04 Texas
Instruments

0.1V – 4.4V 4.5 – 5.5V $0.44

74AC04 Fairchild
Semiconductor

2.9V – 4.86V -0.5V – 7V $0.19

Table 3.8: CMOS Hex Inverter Technical Considerations Summary

The high output voltage level range of the hex inverter chips is perhaps the most significant
technical consideration for choosing an appropriate component for the synapse circuit.
Since the voltage levels on the PB0 and PA0 pins of the digital potentiometers in the
weighted synapses of the input layer have a minimum voltage level requirement of -1.65V
to +1.65V, the high level output voltage range capability of the hex inverter chip chosen
must take this into account. Upon analysis of the data shown in Table 3.8, the Texas

EEL 4914 Senior Design I

45

Instruments 74HCT04 Hex Inverter IC seems like the most appropriate choice for the input
layer design of the final neural network. This is due to the nominal supply voltage range
being the same as the intended supply voltage of the operational amplifiers used for the
neurons, as well as the high level output voltage range having sufficient enough leeway to
accommodate for the voltage range needed by the digital potentiometers of the synapses.

 Touchscreen Interface Selection
The way that our neural network will receive an input to recognize, is through a touchscreen
input. Users will be able to write a letter on the touchscreen device and the neural network
will be able to decipher what they wrote. This touchscreen interface will be connected to
the Raspberry Pi, which will be converting the image in to a ten by ten-pixel array that
represents the character the user intended the machine to guess. These inputs will then be
fed in to the network for processing. Some touchscreens that are being considered for
selection are the Raspberry Pi 10.1-inch LCD (B) Touchscreen Display Capacitive Touch
Screen Monitor, the Raspberry Pi 7-inch HD IPS Capacitive Touch Screen Display, the 4-
inch Raspberry Pi LCD Resistive Touchscreen Monitor TFT LCD, and the 5-inch
Raspberry Pi LCD Touchscreen Monitor TFT.

The Raspberry Pi 10.1-inch LCD (B) Touchscreen Display has a maximum resolution of
1280x800 and is a touchscreen that is officially supported by Raspberry Pi. This ten inch
touchscreen interface seems to be a perfect size for our project, but the larger size comes
with a larger cost. This interface will definitely feel the best when using, and look the best
overall compare to the other options. Each touchscreen interfaces price will be taken in to
consideration before purchasing.

The Raspberry Pi 7-inch HD IPS Capacitive Touchscreen Display has a 1024x600 pixel
maximum resolution. This will more than satisfy the needs for our neural network. It also
has a USB interface for communication which will handle data and power signal flow. The
seven inch touchscreen seems to also be a considerable choice for a touchscreen that is
supported by Raspberry Pi, and this size should be fine for what we are trying to implement.
The price of this touchscreen is less than that of the ten inch touchscreen interface while
still being big enough to be comfortably drawn on.

The four-inch Raspberry Pi LCD Resistive Touch Screen Monitor TFT LCD is the third
touchscreen interface to be considered for our project. This device has a resolution of only
480x320 when compared to the other two larger touchscreen interfaces, but this is still
more than enough to get the job done. Since we are only considering a ten by ten pixel
input, this should not be a concern. This is by far the cheapest component to select, but four
inches is rather small, even tinier than most smart phones nowadays. This is a possibility,
but probably not the best option when taking user comfort in to account.

The five-inch Raspberry Pi LCD Touchscreen Monitor TFT is the last touchscreen
interface device being considered for use within our project. The five inch touchscreen
display has a maximum resolution of 800x480 which will also provide us plenty of room
to work with. The prices of each touchscreen interface and where to obtain them can be
found below in Table 3.9. Each of the touchscreen devices are manufactured by Raspberry
Pi and are official products.

EEL 4914 Senior Design I

46

Device (Size) Supplier Price
10 inch Newegg.com $209.99
7 inch Digikey.com $79.00
5 inch Wish.com $30.00
4 inch Wish.com $15.00

Table 3.9: Touchscreen Interface Comparison

It is clear to see that as inches are shaved off, the price is significantly lowered. The four-
and five-inch touchscreen interfaces are on sale at the time of this table being created,
which explains why they are such lower cost than that of the seven-inch. The seven-inch
screen seems to be the best choice for a comfortable yet affordable touchscreen input
device. We have not yet implemented the touchscreen interface during prototyping but plan
to add it to the network as we construct the final network. Ideally, users will be able to
draw a character within the English alphabet with a stylus, and the neural network will be
able to output which letter has been drawn.

 Additional Component Considerations
While most attention is directed – rightfully – towards the selection and vetting of
components such as the operational amplifiers and digital potentiometers used in the
network, the level of precision required for this device does not allow for broad
assumptions of ideal behavior and minimal error. While the network’s training algorithm
is extremely forgiving with many sources of error, it may take unreasonably long or fail to
converge with certain training sets if error is too high. One of the largest sources of
potential error is the inverting/non-inverting buffer pair for each input into each layer of
the network. Assuming a worst-case scenario with 5% resistors, it is possible for the
inverting buffer to distort the input signal by up to 10%, or 165 mV on the maximum signal
of 1.65 V. By comparison, a 256-tap potentiometer can adjust a 1.65 V signal – or 3.3 V
from positive to negative – by around 13 mV, or .4%. Thus, the maximum error even with
5% tolerance resistors is equivalent to around 25 potentiometer taps, or 10% of the entire
range of the potentiometer. In a design with multiple layers, this error may accumulate to
the point that the network may no longer be able to converge once other sources of error
are included.

CMOS hex buffers are one component that could be considered for including in the input
layer circuit of the final neural network design’s synapses. Previously, in the intermediate
network design, analog unity-gain operational amplifier buffers were used to reduce the
loading effect of the input voltages to the layers of the neural network. Complementary
CMOS hex buffers could be used in the input layer of the final neural network to provide
the PB0 and PA0 pins of the digital potentiometers with the required voltage ranges for
synapse weight adjustment in training. Since the SIPO shift register that will provide the
logic-level input data voltages to the CMON inverters and buffers, the same logic level
voltage could be applied to the corresponding pin of the digital potentiometer. Thus, it isn’t
absolutely necessary to include the CMOS hex buffer component, since the loading effect
wouldn’t be as great when using these digital components in the input layer. However, if
CMOS line drivers with buffer/inverter pairs in the same IC are made available, they could
prove a more efficient use of PCB space and could be considered for including in the input
layer’s circuit design.

EEL 4914 Senior Design I

47

3.5 Small-Scale Network Design
An intermediate network design is a must when considering a final design of the magnitude
at hand. Being able to design a smaller network that performs the same end goal will be a
tremendous help in designing the final network since we are taking a modular approach to
its construction. The idea in mind is that the smaller scale network will be able to
seamlessly become the larger network after some slight modifications to input size and a
couple other of factors. The goal is to have a smaller scaled network that can easily
transform in to the final neural network by connecting neuron circuits together in such a
way to realize a larger network. Since we are taking a modular approach to the construction
of our network, this should not be too difficult. What may cause difficulty is obtaining the
same results that our smaller scaled network is obtaining while scaling up to an exponential
increase in components.

 Small-Scale Network Design and Functionality
Before the end goal of a neural network that can recognize a hand drawn character in a 5x5
pixel array can be accomplished, an intermediate step needs to be taken. The approach
taken in this project is to construct a simple neural network that can recognize a hand-
drawn pattern in a 2x2 pixel array. These patterns will consist of columns, rows, diagonal
lines, single pixels, and three- or four-pixel patterns. These cases cover every possible
combination of pixel inputs for a 2x2 network. These network dimensions were chosen
because it is scaled down enough to make it feasible to build the constituent subsections
on breadboards. As such, this intermediate network provides the opportunity to take
necessary testing measurements to ensure that the 5x5 network will operate smoothly
before designing and order a printed circuit board to officially train and test the end goal
functionality of the final network. At the same time, it is also large enough to introduce
some problems that may become unmanageable when scaling the network up to the final
5x5 network, such as current and voltage fan-out, power distribution management
problems, digital communication errors, and unwanted signal noise. Any inconsistencies
between the intermediate and final network may be potential problems, so any significant
problems must be addressed before scaling up to a larger network. Minimizing any
inconsistencies is key to have the most seamless process possible when increasing to the
complexity of the final network.

EEL 4914 Senior Design I

48

Figure 3.12: Small-scale prototype assembly.

The design is effectively a scaled down version of what the final network will look like.
Since a modular approach is being taken to constructing the total network, this should not
be too difficult. Each printed circuit board ordered will serve as one complete neuron
circuit, and they will be configured together as necessary to realize the network. The full
smaller scale prototype design can be seen mounted and configured in Figure 3.12.
Depicted are two synapse-neuron circuit boards located in the bottom center, the Teensy
3.5 development board located in the upper middle, power supply input jacks that feed in
to the precision voltage regulator in the top right, and the Raspberry Pi, which feeds inputs
to the Teensy 3.5 development board, at top left.

 Necessary Tests and Measurements
There are many necessary tests and measurements that need to be conducted before an
artificial neural network is brought to life. Every parameter that can be reasonably
controlled must be intentionally chosen and measured to a tee. Some required
measurements include the current and voltage at each node throughout the circuit to allow
for troubleshooting when errors or unanticipated behavior occur. Testing input versus
output transfer functions and voltage levels is also crucial when managing a large network.
For example, if there is a voltage drop between the input and output of the summing
amplifier stage, that is a red flag that the neuron is not functioning properly. Precise control

EEL 4914 Senior Design I

49

over the voltage and current levels in every portion of the device is crucial, as the network
is sensitive to millivolts of noise. While static error can be trained around, dynamic,
random, or intermittent noise issues will cause severe problems for the network and must
be located and eliminated wherever possible. Additionally, since the network’s training
relies solely on the output voltage produced by each neuron, fast and accurate
measurements must be repeatedly made with the ADC; inconsistent measurements will
complicate training and may result in an erroneous solution for the network. Results and
measurements obtained will be properly recorded and documented to ensure proper
functionality as we continue to prototype.

 Small Scale Network Training
Since producing a functional network on breadboards proved extremely difficult, the
design was realized on PCBs. Since this allows for much shorter and stronger connections,
this eliminates the signal loss issues common to the breadboard implementation and allows
a single controller to control the entire network serially and make the necessary ADC
readings for training. Since the SPICE simulation training and physical network training
function in an extremely similar manner, it is not a particularly complicated endeavor to
convert the SPICE training program into a suitable program for training the physical
network, since the dimensions and overall training process are identical. The key difference
is that the controller no longer needs to wait for each individual SPICE simulation to finish;
the speed of the physical network is nearly instantaneous by comparison. Thus, within
reason, a much higher training speed can be achieved. Even if the network struggles to
converge and requires far more training than the simulations to reach a solution, the
superior speed of the physical network more than offsets any difficulties.

 Problems and Concerns for the Final Network
There are several concerns for the functionality of the final network to be constructed.
Maintaining high accuracy results with twenty-five or more inputs is the goal to be
accomplished. There are several different variables that can affect our results accuracy and
overall functionality of the network. One of these variables would be the fan-out of the
system. Fan-out is a term that describes the maximum number of inputs we can feed for
one output. If our current as we pass from individual neuron circuits with a modular
approach diminishes at too quickly of a rate, this will be a problem. When the larger
network is being tested, measurements will be taken to ensure that our current is stabilized
throughout the entire network. This is one of the most crucial concerns for our network
from an analog hardware perspective. Another concern would be voltage dropping across
long traces on the printed circuit boards. This can be a voltage drop up to 15mV, which is
the difference between several digital values on the wipers of the digital potentiometers in
place. These values are highly important since they determine the weight that needs to be
applied to each synapse. If the weight that’s being applied to one synapse is not what it is
intended to be, the results can lose tremendous amounts of accuracy. The printed circuit
board needs to be designed with intentions to avoid long traces and without a clunky spread
of the components. Components should be placed logically to have short traces connect
power to each integrated circuit being used in the design. The integrated circuits that draw
power are the TL084 operational amplifiers and the MCP42010-E/P digital potentiometers.

EEL 4914 Senior Design I

50

This will be solved by cutting one of the PCB layers in to four different rails. Plus and
minus 5 V DC as well as plus and minus 1.66 V DC. This will allow for logical placement
of each integrated circuit to avoid long traces which can cause significant voltage drop.

Besides hardware limitations, another concern is proper implementation of training the
network. While simulations performed to date have indicated the network will function
properly, but there are several things that could go wrong. One constant concern is that,
because the voltage losses across the network’s traces and pathways will be non-negligible,
the training algorithm may not be able handle signal aliasing beyond a certain threshold.
Because the network relies on fairly precise analog voltage levels, relatively small
inconsistencies in the network’s voltage levels can produce a dramatically changed
network output if the training algorithm does not respond properly. While the network is
fairly flexible and is capable of training around these deficiencies when they are relatively
small and consistent, blindly relying on training to deal with poor design is not an
acceptable solution, especially when other sources of error must be factored in. Intuitively,
there is a cumulative limit to the amount of error that the network training can handle before
there is no longer a convergent solution to the training data.

3.6 Top-Level Design
A top-level design for the intermediate neural network needs to be made for testing and
prototyping. The small-scale network’s PCB layout and the circuit schematic of the
artificial neurons and synaptic weights are included in the chapters below. This section of
the document covers essential design steps for intermediate prototyping that will be
conducted.

 Singular Synapse-Neuron Circuit
Starting from scratch, our first goal was to build a singular completed synapse-neuron
circuit, which consists of an “A block” (buffer stage), “4 B blocks” (digital potentiometers)
and a “C block” (neuron output stage) from our block diagram. This circuit will commonly
be referred to as a single neuron throughout the document. The completed circuit of one
neuron consists of a unity gain buffer amplifier that will feed in to four different digital
potentiometers. This part of the circuit is what we refer to as the synapse stage. The output
of each digital potentiometer will then feed into an inverting summing amplifier that will
sum the four voltages acquired from the output of the digital potentiometers. The input
voltages will vary based on the wiper position of the digital potentiometers, which will
change weights based on the input and desired response of the fully trained system. The
output of the summing amplifier stage will feed into the activation stage, which is another
amplifier circuit that gives us a sigmoid response transfer function.

After finding encouraging results from both the hardware network simulations and SPICE
simulations of the device, the decision was made to proceed with a sigmoid function
response, which is amongst a number of commonly used non-linear activation functions
for neural networks. With this summary of the design process and major components and
subsections of the singular synapse-neuron circuit complete, the actual schematics and
board design of the network can be discussed. The activation function also closely
resembles the hyperbolic tangent function which is another commonly used non-linear

EEL 4914 Senior Design I

51

activation function for neural networks. Using this hyperbolic tangent function may also
be viable and will be looked in to as the network construction progresses.

First, a schematic of an individual synapse-neuron circuit has been provided below in
Figure 3.9. In this case, the neuron has been designed with a total of 4 inputs, suitable for
the 4-pixel test network used in this project.

Figure 3.9: Individual Synapse-Neuron Circuit

 Smaller Scale Implementation
Now that we can successfully construct one synapse-neuron circuit, it is time to combine
several of these circuits to create our 2x2 four-pixel recognition neural network. This will
be done by essentially creating two separate layers. One layer will consist of four synapse-
neuron circuits and the other will consist of three synapse-neuron circuits. This will be
referred to as the 4x3 layout. For the initial four pixel network used to test the components
and theory of the project, refer to Figure 3.13 for a schematic created in Eagle PCB Design
Software.

While a 4-pixel network only allows for the classification of extremely simple shapes and
figures, such as lines, dots, and Ls, the number of neurons and synapses in the network is
still sufficient to produce valid feedback on the behavior of the individual components and
the network as a whole. If it were practical to use a smaller network, this most likely would
have been done; however, the network dimensions cannot reasonably be reduced below 4
inputs without effectively turning it into a simple switchboard for 1 or 2 pixels, at which
point the design could simply be implemented with a few logic gates.

EEL 4914 Senior Design I

52

Since the PCBs are designed in a modular fashion, the number of layers for this network
can easily be varied. The default layout being targeted is a 4x3 layout to observe the
behavior of a multi-layer network without excess cost; layers can easily be added or
removed to the design to observe the changes in network behavior, since the process is as
simple as connecting or disconnecting one of the PCBs. This provides tons of flexibility
when considering the potential size of our final network.

Figure 3.13 shows the layout of our four to three-layer intermediate network. You can see
the four initial input buffers in the top left. These input buffers consist of two unity gain

Figure 3.13: Four to Three Layer Neural Network

EEL 4914 Senior Design I

53

buffer amplifiers, one inverting buffer amplifiers and one non-inverting buffer amplifier.
The outputs of the inverting buffer amplifier are fed in to the PB pins of the digital
potentiometers, while the outputs of the non-inverting buffer amplifiers are fed in to the
PA pins of the digital potentiometers. Setting these two voltage levels lets us control the
voltage output of the wiper pin by changing the wiper position of the chip using serial
communication from the Teensy 3.5 Development Board. The outputs of four wipers (two
digital potentiometer chips) are then fed across 10kΩ resistors and summed at the negative
input of our summing amplifier stage. This can be seen in the long middle column of the
schematic that consists of four individual neuron circuits. The output of our summing
amplifier stage is then fed into the activation stage which consists of the operational
amplifier circuits that have a clipping diode bridge in parallel with a 100kΩ feedback
resistor on the output terminal. The neuron outputs are finally fed into another set of input
buffers that will regulate the current output. This makes up the four-neuron layer of our
intermediate network.

The four-neuron layer feeds in to a three-neuron layer which is shown in the right side
column of the schematic provided. This is done by feeding the new input buffers into the
respective PA and PB pins of the following layers digital potentiometers. After this
connection is made, the same process described above is completed again, but with only
three synapse-neuron circuits instead of four. After this circuit was assembled and desired
output responses of each neuron were obtained, we just needed to train the circuit using
software so that it can adjust the weights of each digital potentiometer’s wiper output based
on the given pixel inputs to give an accurate response of what was inputted. Now that we
have a proper schematic resembling our breadboard prototyping, we will design and order
printed circuit boards, solder components and continue to test the network. Being able to
test with PCBs opposed to breadboard prototyping allows us to bypass tedious
troubleshooting with the breadboard. We can now swap out components quickly to ensure
consistency between circuit boards and functionality of the overall network.

 Small-Scale PCB Design
The creation of the initial 4-pixel test network was the first foray into PCB design for this
project. While breadboarding was practical when dealing with individual neurons and very
small partial networks, it became unmanageable when scaled up to the size of even a small
network. Because a PCB is unavoidable for the final network, the 4-pixel test network was
an ideal opportunity to begin producing PCB layouts as practice for the eventual production
of the final 25-pixel network’s layout.

In accordance with the discussions and guidelines laid out in Section 6.5 and throughout
Chapter 8, a board layout with 4 inputs and 4 outputs was selected. This allowed for an
arbitrary number of layers to be added or removed from the network for testing purposes
and allowed for the implementation of an “unclassifiable” output neuron in addition to the
“diagonal”, “horizontal”, and “vertical” output neurons used to classify line directions in
the 4-pixel input. As shown in Figure 3.14, the board features a compact design with two
sets of pins and streamlined analog signal pathways.

Since this design is intended to be a transitional step between breadboard testing and a full-
sized character recognition network, the decision was made to utilize through-hole parts
for this step, though surface mount components will be used for the final network design.

EEL 4914 Senior Design I

54

While this increases the footprint of the device by a factor of around three, it allows for
easier component placement and handling and permits the re-use of parts from earlier
prototyping stages. Since the purpose of these boards is primarily to eliminate the noise
and interference issues that plagued breadboard prototyping, the ability to adjust, replace,
or remove various components is key to this design. Through the use of DIP sockets,
integrated chips with identical pinouts can readily be swapped out.

Because component swapping is so easy, it is extremely useful to observe the behavior and
function of various components in a network application. While it is possible to test
components by themselves or in a simple individual neuron, the true test of a device’s
behavior is in a network application. For example, while an amplifier may appear to be fine
when tested in a single neuron, propagation errors may occur when multiple neurons are
run in series and parallel, as in a standard network. The ability to swap components out of
an already-functioning network allows for rapid component testing and eliminates the need
for guesswork or trial-and-error testing of components. This is especially key when dealing
with fairly expensive parts, such as potentiometers; purchasing a hundred devices for a
full-size network only to discover they do not function in a large network application is an
unacceptable risk and an unnecessary budget violation.

Figure 3.14: 4-pixel network layer PCB with voltage planes omitted

EEL 4914 Senior Design I

55

The EAGLE PCB layout utilized for this initial test network is shown in Figure 3.14, with
voltage planes (bordered by dashed red and blue lines) left unfilled for clarity. Voltage
planes are used for the voltage rails of the circuit where possible, and trace widths are
maximized within reason to minimize signal attenuation. Small voltage drops over long
traces are another concern that will only show in practical application, and must be
accounted for. Minimization of these trace lengths has been implemented in the design to
avoid any significant voltage drops that could disrupt obtaining clear results. The four
inputs to the circuit are provided via the top left row of four pins, and the four output signals
can be read from either the top right row or bottom center row of pins. The remaining pins
are used to carry the voltage rails and SPI signals. In the third and final layer, the rightmost
two potentiometers and rightmost neuron are omitted to produce a 4-input, 3-output layer.
This design is subject to change as more tests will be completed to determine the designs
functionality.

EEL 4914 Senior Design I

56

4 Related Standards and Real-World Design Constraints
This chapter describes how implementation details of the TACOCAT project are affected
by two domains of real-world design rules: Related Standards and Real-World Design
Constraints. All major projects, especially those with intent to be distributed,

4.1 Related Standards
This section describes technology standards that are relevant to the TACOCAT project.
Since this device relies heavily on software-based theory and on digital communication,
most of the applicable standards are related to software and firmware.

 Serial Peripheral Interface (SPI)
Serial Peripheral Interface, or SPI for short, is a widely used communication protocol in
embedded systems. It was first developed by Motorola in the 1980s, and today, it is a
widely accepted standard, not enforced by any major institution. A SPI consists of a master
device, that is the generator of a serial clock and serial data stream, and at least 1 (possibly
many) slave devices that share these serial clock and data buses.

For TACOCAT, the microcontroller chosen for adjusting the weights of the synapses of
the neural networks being trained, is the master device responsible for regulating the timing
and transfer of serial data using this communication protocol. All the peripheral devices,
like the digital potentiometers, serial shift registers, and hex inverters would be the slaves.

4.1.1.1 Impact of SPI on Design
The effect of SPI on this project is difficult to understate. While SPI, I2C, and other
hardware communication protocols generally rely on parallel devices and device
addressing, a special case of SPI does away with this characteristic. In certain devices,
device RAM is implemented using a shift register along the SPI data pathway instead of a
standard register. While the difference may seem subtle, this allows data to be moved
serially from one device to another along the same pathway. Since each device only
supplies the device in front of it, the length of an SPI daisy-chain is theoretically arbitrary,
and only practically constrained by clock and chip select attenuation.

The ability to create arbitrarily long serial communication paths is the linchpin to the
function of this project. Since network sizes vary by orders of magnitude, the number of
digital devices can vary from less than a dozen to several hundred. Parallel signaling to
hundreds of digital devices is an unreasonably difficult task, as external multiplexing
hardware would be required to manage so many devices. Even with multiplexing, a
significant number of additional controller pins would be required to operate the
multiplexer. In contrast, the SPI daisy-chain approach requires a total of three data lines –
clock, chip select, and data – regardless of the length of the chain. As a result, standardized
control software can easily be created, and the number of pins required is constant
regardless of network dimensions. Additionally, since there is no longer a need for dozens
or hundreds of chip-select lines in parallel, routing becomes dramatically easier and allows
for much more efficient component placement.

EEL 4914 Senior Design I

57

 I2C-bus Communication
The Inter-Integrated-Circuit (I2C or I2C) communication bus is a two-wire serial
communication protocol that was developed by Philips Semiconductors (now NXP
Semiconductors) and originally released in 1982 (NXP document UM10204). The protocol
became a de-facto standard in the embedded systems industry, and the first formal
specification document for the protocol and related hardware was published in 1992.

The standard is currently described in the 6th revision of the formal specification document
that is published by NXP Semiconductors as document UM10204, “I2C-bus specification
and user manual.” Among other topics, the specification document describes the standard
specifications for the following aspects of I2C:

 Master/slave device organization for I2C busses, including multi-master systems
 Clock and data signal timing
 Communication procedures using affirmative and negative acknowledgements
 Device-address allocation and format
 Communication control mechanisms, including clock-stretching and multi-master

arbitration

The standard specifications also include specific guidelines for maximum data
transmission rates depending on the mode of operation for an I2C bus, which are shown in
Table 4.1.

Mode Maximum Data Rate

Standard 100 kbit/s
Fast 400 kbit/s
Fast+ 1 Mbit/s
High-speed 3.4 Mbit/s
Ultra-fast 5 Mbit/s

(unidirectional only)
Table 4.1: Maximum data rate by I2C operation mode

Previous I2C documents specified that I2C-bus technology was protected under patents
held by Philips Semiconductors and that any manufacturers wishing to implement I2C
protocols on an IC device were required to obtain a license from Philips (Philips document
AN10216). However, this is no longer mentioned in the current I2C standard
specifications.

 Federal Regulations for Radio Frequency Devices
Standards for radio-frequency devices are specified in Title 47, Chapter I, Subchapter A,
Part 15 of the U.S. Federal Code. While the TACOCAT project does not involve any
intentional emission of radio-frequency signals, any device manufactured using
TACOCAT technology would still need to conform to the standards for unintentional
radiators of radio-frequency signals that are described in this part of the Federal Code,
which is administered by the Federal Communications Commission. Title 47, Chapter I,
Subchapter A of the Federal Code may also be referred to as the “FCC Rules.”

EEL 4914 Senior Design I

58

4.1.3.1 Device Classification
According to section 15.3 of the code, TACOCAT technology would most likely be
evaluated as a Class B digital device: “A digital device that is marketed for use in a
residential environment notwithstanding use in commercial, business and industrial
environments. Examples of such devices include, but are not limited to, personal
computers, calculators, and similar electronic devices that are marketed for use by the
general public.” Depending on the application, TACOCAT technology might also be
evaluated under the criteria for a Class A digital device: “A digital device that is marketed
for use in a commercial, industrial or business environment, exclusive of a device which is
marketed for use by the general public or is intended to be used in the home.”

Additionally, TACOCAT would be considered an “unintentional radiator” of radio-
frequency signals, which is described in 15.3(z) as a device that intentionally generates
radio-frequency energy for its own internal purposes but does not intentionally broadcast
radio-frequency signals. Radio-frequency signals seem to be described in Section 15.3(k)
as “signals or pulses at a rate in excess of 9,000 pulses (cycles) per second.”

4.1.3.2 Information Provided to the User
Section 15.105 of the code specifies that the device must include a statement indicating
compliance with part 15 of the FCC Rules in the device’s user manual. Boilerplate text is
provided for both Class A and Class B digital devices. For Class A devices, the suggested
statement is:

Note: This equipment has been tested and found to comply with the limits for a Class A
digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference when the equipment is operated in a
commercial environment. This equipment generates, uses, and can radiate radio frequency
energy and, if not installed and used in accordance with the instruction manual, may cause
harmful interference to radio communications. Operation of this equipment in a residential
area is likely to cause harmful interference in which case the user will be required to correct
the interference at his own expense.

4.1.3.3 Limits for RF Signals Conducted into AC Power Lines
Section 15.107 of the code describes voltage limits for RF signal that is unintentionally
conducted back into the AC power lines that Class A or B digital devices would be
connected to. Different relative voltage levels are listed (in dBμV) depending on the
frequency of the RF signal.

Table 4.2 shows the limits that are given for Class A and Class B digital devices in Section
15.107 of the FCC Rules. Limit ranges that are marked with an asterisk (*) reflect that the
prescribed relative voltage levels decrease with the logarithm of the frequency.

While power supply design is not within the scope of the TACOCAT prototype
development process that is described in this document, it is reasonable to assume that as
the technology matures and is implemented commercially, these limits would need to be
evaluated.

In its current design iteration, TACOCAT’s MCU clock frequency of 120 MHz is well
above the maximum frequency of 30 MHz that this section concerns. However, with an
SPI communication network operating in the 4.0 – 5.7 MHz range and an I2C bus designed

EEL 4914 Senior Design I

59

to operate at 0.40 MHz, the prototype does have some systems that could present problems
with RF signal leakage into the AC supply lines.

Digital
Device Type

Frequency of emission
(MHz)

Conducted limit (dBμV)

Quasi-peak Average

Class A 0.15 - 0.50 79 66

0.5 - 30.0 73 60

0.15 - 0.50 79 66

Class B 0.15 - 0.50 66 to 56* 56 to 46*

0.5 – 5.0 56 46

5.0 – 30.0 60 50
Table 4.2: Limits for RF signal conducted into AC power lines. Adapted from tables
provided in FCC Rules Section 15.107.

It is also specified in this section that devices operating solely on battery power are exempt
from these measurements. It is unclear if devices that operate primarily on rechargeable
batteries but can also be powered by a charging device (such as mobile phones or tablets)
would also be exempt from these regulations.

4.1.3.4 Intentional RF Radiation in Peripheral Devices
The TACOCAT prototype is likely to incidentally include some peripheral communication
devices that are designed to transmit and receive RF signals. A primary example would be
that most of the mini-PC or mobile computing devices that would be candidates for user
interface implementation will include wireless communication modules for wireless
internet or Bluetooth protocols (typically operating at 2.4 GHz or 5 GHz).

In order to provide a reasonable level of assurance that these communication devices would
comply with the specifications found in the FCC Rules, any mini-PC or mobile computing
devices used for the TACOCAT user interface should include documentation stating their
compliance with the FCC Rules. For commercial production, independent testing would
still be required for the completed TACOCAT device, but the chance of peripheral
components failing to comply with federal regulations would hopefully be minimized.

 U.S. Food and Drug Administration: Proposed Regulatory Framework
for Modifications to Artificial Intelligence/Machine Learning-Based
Software as a Medical Device

As artificial intelligence and machine learning technologies have only recently made
significant entries into the marketplace of safety-critical devices, there are few examples
of formal standards regarding the safety of AI/ML-based devices. In a discussion paper
released in 2019, titled Proposed Regulatory Framework for Modifications to Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) -
Discussion Paper and Request for Feedback, the U.S. Food and Drug Administration
(FDA) has described a hypothetical system for evaluating the safety of proposed updates

EEL 4914 Senior Design I

60

to Artificial Intelligence/Machine Learning (AI/ML)-based medical devices, including
software-based “devices” such as mobile computing device apps.

While the handwritten-character recognition function performed by the prototype
TACOCAT device described in this document is unlikely to be useful in medical
applications, due to the universal approximation potential of the MLP architecture, future
iterations of the TACOCAT technology could conceivably be used for other recognition
tasks, such as identification of skin cancer in a photograph image, real-time detection of
cardiac arrest in EKG monitor signals from at-risk patients, or intelligent control of blood
sugar in a wearable insulin pump device.

Some guidelines discussed for the proposed safety standards in the FDA paper are general
enough that they could be used for safety standards in other safety-critical domains, such
as autonomous vehicle control. It seems reasonable to expect that standardized safety
guidelines and certification will soon play a very important role in the design of safety-
critical AI/ML-based devices.

4.1.4.1 Model for Best Practices in SaMD Development
While the FDA’s discussion about proposed safety standards for development of Software
as a Medical Device (SaMD) focuses primarily on the development of guidelines for
improvements to existing devices, it also outlines a holistic model that describes best
practices for development based on the Total Product Life Cycle (TPLC) of AI/ML-based
SaMDs. Parts of the model, depicted in Figure 4.1, are also general enough to be extended
to other types of safety-critical AI/ML-based systems.

The FDA discussion points out that the TPLC approach is particularly important when
working with artificial intelligence and machine learning technologies due to their abilities
to adapt over time. Conventional software typically has a static code base that is only
changed when developers release an updated version, but many machine learning
algorithms are designed to adapt over time based on prior results. Regulatory bodies need
to account for the possible future states of these algorithms and not just the state of the
software at the time of its release.

The development model also maintains a holistic perspective by considering the
development organization’s “culture of quality and organizational excellence” in addition
to auditing more concrete aspects of the organization such as its methods for management
and maintenance of data sets, its training/tuning methods, and its validation and clinical
evaluation processes.

As part of the TPLC approach, the model also accounts for the review and certification
processes required for the release of new or updated technology, as well as tracking
performance and evaluating changes in devices that have been released into production.
Along with changes to the software algorithm, the device’s effectiveness can change if it
is exposed to new input data or if it is used for purposes that it was not originally intended
to be used for. These changes are considered in greater detail in other sections of the FDA
discussion document, especially in the context of deciding the extent to which product
changes need to be regulated.

EEL 4914 Senior Design I

61

Figure 4.1: FDA’s proposed model for AI/ML-based SaMD development. Reproduced
with permission of U.S. Government from discussion paper at: https://www.fda.gov
/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-
learning-software-medical-device

4.1.4.2 Assessment of Product Modifications
The main purpose of the FDA discussion paper is to propose specifications for a new
standard that could be used to regulate proposed changes to existing AI/ML-based SaMDs.
The document discusses methods for classifying different types of proposed changes,
evaluates the degree to which different changes should be scrutinized, and describes formal
procedures for the approval of device modifications.

4.1.4.2.1 Classifications for Device Modification
The document proposes the classification of device modifications into three different
categories:

 Performance: Device modifications for the purpose of increasing performance.
 Inputs: Modifications to the device’s intended input data set.
 Intended Use: Modifications to the device’s intended uses.

It is specifically noted that these categories are not mutually exclusive, but most proposed
modifications can primarily be described using one of these classifications. The
Performance classification encompasses modifications that only effect performance and do
not change the way that the device is used. Modifications in the Inputs category are made

EEL 4914 Senior Design I

62

for the purpose of allowing the device to consider different kinds of inputs. These new
inputs could relate to training and validation data or to operational input data.
Modifications in the Intended Use category include the addition of completely new roles
for an existing device (such as the addition of stroke detection to a device that is meant to
detect cardiac arrest) or the degree to which devices are used in existing roles (such as
converting an application that notifies doctors of possible tumor detection in a CT scan into
an application that directly diagnoses tumors in CT scan images).

4.1.4.3 Proposed Framework for FDA Approval of SaMD Modifications
The discussion paper describes a series of “premarket certification” steps that
manufacturers would be asked to complete prior to making changes to an existing AI/ML-
based SaMD. At the core of the approval process is the requirement for manufacturers to
submit a modification plan that gives a detailed explanation of the SaMD Pre-
Specifications (SPS) and Algorithm Change Protocol (ACP). The SPS describes the
proposed changes to the device in terms of the three classifications listed in the previous
subsection. The ACP describes the specific methods that the manufacturer plans to use in
order to change the SaMD in a safe, controlled manner. Figure 4.2 shows the decision flow
for the approval process proposed in the discussion document.

Figure 4.2: FDA's proposed approval process for SaMD modifications, to be considered in
conjunction with discussion text. Reproduced with permission of U.S. Government from
discussion paper at: https://www.fda.gov/medical-devices/software-medical-device-
samd/artificial-intelligence-and-machine-learning-software-medical-device

EEL 4914 Senior Design I

63

The document provides detailed rationale for the evaluation of different SPS/ACP
combinations, including the degree of scrutiny that required from various subgroups within
the FDA and the amount of additional input/documentation that could be requested from
the manufacturer.

4.1.4.4 Relevance to TACOCAT Project
While the TACOCAT prototype is not currently intended for any type of use as a medical
device, the guidelines for safety certification standards proposed in the FDA discussion
paper offer some key insights that can inform the TACOCAT design process. The most
valuable insight is that the creation of effective AI/ML-based devices depends on the
establishment of a development team that is rooted firmly in a “culture of quality and
organizational excellence.” The best way to ensure the effectiveness of the team’s
development methods is to build them on this solid cultural foundation.

In more practical terms, the FDA’s discussion of proposed standards points out the primary
objectives of the AI/ML-based development process: data selection/management,
training/tuning, and validation. While any developer working in the AI/ML domain is
bound to include these processes in the course of developing a new product, it is certainly
helpful to have them clearly enumerated along with an explanation of how they should
interact with one another during the development cycle.

Finally, while modifications to the TACOCAT prototype design are not likely to be subject
to the approval of any official regulatory body concerning product safety, it is helpful to
have a framework that can be used in order to consider the effects of any changes that
might be made to the prototype during the course of its development. For example, while
it might be tempting to modify the layout of a working prototype’s input layer in order to
expand the set of possible inputs, the risk of damaging a working prototype before it can
be presented for evaluation by instructors could be a serious mistake for a Senior Design
development group.

4.2 Real-World Design Constraints
There are constraints placed upon the team members and the overall development of
TACOCAT that do not pertain to those resulting in the physical laws and objectives of the
main project. Some of these constraints stem from real-world causes, which can be seen
below in the economic, time, and safety constraints considered.

 Economic Constraints
First, the economic constraints present in constructing a hardware implemented neural
network using analog and digital circuitry as opposed to simulating it in software is
discussed. Physical neural networks in the industry typically use nanostructures, like
memristor arrays, to implement the adjustable weights of a neuron in the synapse of a
network layer. These highly scalable devices, however useful for this application they may
be, are incredibly expensive and range from $89 to $300 for a 1x16 discrete memristor
device array. While one could argue for using these to achieve a smaller area design, the
high cost of building the weights of each neuron’s synapse with these devices will start to
get expensive very quickly. With just the prototype board, 2 of the 16 discrete device arrays
will be needed, which will cost about $600 for the prototype board. This would make

EEL 4914 Senior Design I

64

funding an issue when just getting started with the project. It is not a good idea to spend
tons of money on a prototype when you don’t know if it will function properly yet.

Even more concerning to the economic constraints of the project is the scale of the final
implemented network. There is an exponential increase in the cost of the devices needed
to realize a larger network. A 25-input neural network hardware MLP with the described
design will already require a large quantity of digital potentiometers, which is the most
expensive component needed to realize this design. If we were to increase the size of the
network to a larger number of input-pixels to have a wider range of recognizable characters,
the need for more digital potentiometers to weigh these input pixel data would drive the
cost of the project up rapidly by about a factor of 5 if the project were scaled to obtain
inputs for a 8x8 pixel image.

Lastly, the number of PCB’s used to implement each “module” of the neural network will
increase the cost of the total project. Thus far, a 4-input neuron module will be soldered
per PCB, and then each of these will be interconnected using jumpers from breakout pins
included on the boards. If the size of basic module used to physically realize and solder
this network were increased, the cost of printing each of the PCB would increase as the
total area needed would be greater.

 Time Constraints
Time constraints that are placed on the TACOCAT project affect the overall project’s
specifications more perhaps than any other design constraint. All of the authors need to
complete the milestones required by the ABET program in the University of Central
Florida, which impose necessary timeline for completion of project milestones. This means
that any added feature for this design that would otherwise largely extend the deadline for
these milestones beyond the required date would cause any one of the authors to possibly
delay graduation if there are any failure to meet these deadlines. This would cause not only
a delay in proceeding to a career in their respective fields of study and interest, but it would
also mean they would also jeopardize their academic performance in the form of their grade
point average. While failure to meet these requirements is highly unlikely, the seriousness
and possibility shouldn’t be taken lightly and need to be kept in mind in the process of
designing the scope of this project.

There are several ways that the risk of time constraints putting a halt to the overall
development and completion of this project can be mitigated. First and most important of
all, is proper and skilled guidance from experienced university faculty. This team of
engineering students is under the mentorship of Dr. Chung Yong Chan throughout the
development and execution of this project. His highly diversified and extensive technical
background in guiding students through the senior design process will help prevent
unnecessary mistakes and possible delays from occurring. His mentorship and guidance
will help the authors set realistic milestones that will be held in high regard for completing
the project in a timely manner while achieving all the required ABET and design
specifications.

 Safety Constraints
Safety is of paramount importance when handling electronic devices. While
microelectronic circuits don’t have the same potential dangers as projects with higher

EEL 4914 Senior Design I

65

power dissipating devices would have, safety precautions and concerns must be considered
throughout the design process and while implementing the final design of TACOCAT.

Improper handling of electronic micro-chips and power supplies is a possible source of
safety breach as the dissipation of heat is a possible source of bodily injury that either an
observer or one of the authors could suffer if proper precautions are not taken. Thus, proper
reading of data sheets of each components used must be done carefully to not bias power
rails incorrectly and possibly cause the breakdown of devices to occur. Furthermore, proper
handling of power supply units while prototyping TACOCAT need to be taken to ensure
that no possibility of electrical shock could occur.

EEL 4914 Senior Design I

66

5 Final Network Design
The final network design will be a scaled-up version of our intermediate design. The
multilayer perceptron network will take twenty-five inputs opposed to four. This is taking
it from a 2x2 pixel recognition network, to a 5x5 pixel recognition network. Scaling higher
is a possibility but it is intelligent to work our way up. Once the four-pixel network is
functional, the twenty-five-pixel network will be tackled. If the twenty-five-pixel network
is completed well before the due date of the project, a larger network may be attempted.
With this being said, a larger network will only be constructed when proper testing has
taken place to ensure its functionality. Desired simulation results are apparent, but there
may be obstacles.

Simulation results thus far are enticing, but this doesn’t mean it will be a seamless process
when attempting to train the final network and get immediate success. Troubleshooting is
an expected process with building any network, let alone a hardware neural network. Fan-
out also may become an issue, but this will need to be tested as the network is being
constructed. The final network is constructed of individual synapse-neuron circuits that
consist of the stages described below. Each stage is important and will be tested to ensure
success. The stages make up a singular synapse-neuron circuit, and the synapse-neuron
circuits are used to realize the overall network.

5.1 Synapse Circuit Design
The synapse circuit is the first circuit encountered when following the signal path in the
schematic of a fully constructed individual neuron circuit. The synapse circuit handles each
input to the neuron, buffering and providing complimentary input signals before supplying
these signal pairs to the synapse’s digital potentiometers. The potentiometers weight each
of the inputs based on the values dictated by the training algorithm for the network.
Weighting the inputs is achieved by using the potentiometers as voltage dividers and
adjusting the wiper positions of the potentiometers, altering the voltage level at the wiper
of each potentiometer. These output voltages are then fed in to the summing amplifier
stage.

The circuitry of the synapse stage is relatively simple. The decision was made to use simple
inverting and non-inverting buffer pairs to provide reliable current and voltage input into
the digital potentiometers. While two inverting buffers could be used in series to produce
the inverted and non-inverted versions of the signal, inverting amplifiers require two
resistors, while unity-gain non-inverting buffers require none. Since perfect components
are not available, this unnecessarily increases the component count while simultaneously
introducing signal aliasing, so a complimentary pair of inverting and non-inverting buffers
is used.

The chosen buffer setup is depicted in Figure 5.1. Since the input is isolated from the
neuron and synapse hardware, the input signals are protected against excess current draw,
which may cause distortion or damage any supply hardware or previous network layers in
extreme cases, as a single amplifier could otherwise potentially be responsible for
supplying dozens of synapses.

EEL 4914 Senior Design I

67

Figure 5.1: Complimentary input buffer pair schematic

The setup provided above is the least hardware-intensive implementation possible; a total
of only four discrete components is necessary to buffer a single input. There are no
reasonable alternatives to this design, as other implementations either sacrifice input
safeguards or introduce redundant sources of error to the network.

Once these voltages are buffered, they are supplied to each end of a potentiometer,
producing a voltage gradient across the device; the wiper of the potentiometer is then
moved as desired along the device, allowing the desired voltage level to be chosen. This
effectively allows the input signal voltage to be multiplied by any value between -1 and 1,
with precision limited by the number of taps on the device.

5.2 Summing Amplifier Design
The summing amplifier circuit stage occurs immediately after the weighted input synapse
circuit stage. The summing amplifier stage’s purpose is to collect the outputs of the
preceding digital potentiometers and sum their output voltages. Each output of the digital
potentiometer is connected to the summing stage via a 10 kΩ resistor which feeds into the
summing line of the summing amplifier. The summing amplifier operates in an inverting
amplifier configuration, so the positive input bias terminal of the operation amplifier is
connected to ground. In the example provided in Figure 5.2, there are four synapses being
fed into the neuron; the output of each potentiometer’s wiper functions as the input voltage
for each branch of the summing amplifier. Each input line is connected across a 10kΩ
resistor; with this value, the maximum current provided from any given input should be
well under 1 mA. A 100 kΩ feedback resistor was chosen to set the gain to approximately

EEL 4914 Senior Design I

68

ten times the input; this ensures that there is more than enough responsiveness to a single
input, though such a high gain can have drawbacks, as discussed later in Chapter 8.

Figure 5.2: Inverting Summing Amplifier Stage

The LT Spice schematic shown in Figure 5.2 depicts the synapses and summing amplifier
stage of a 4-input neuron. The four synapse inputs are tied together to a common voltage
source, though each potentiometer is independently adjustable, allowing for different
combinations to be provided to the summing amplifier. This configuration allows for
thorough testing of a given neuron, as it allows the full range of possible input voltage
combinations to be observed simply by adjusting each potentiometer.

5.3 Activation Function Circuit Design
The activation function stage is one of the most crucial portions of the neuron circuit, as it
is the stage which produces the actual output function and can vary wildly depending upon
the chosen configuration and component values. It is responsible for creating a transfer
function between the input and output that resembles a particular function – in this case, a
sigmoid function. The importance of the sigmoid function is that it is especially useful for
network models that need to predict probability, which is a very common neural network

EEL 4914 Senior Design I

69

application and is effectively the underlying function of a network, regardless of
application.

The circuit design for the activation function is a bit more complex than the previous
building blocks of the overall neuron circuit. It is, yet again, another inverting amplifier
circuit, though with a few important modifications. The activation stage was built as an
inverting amplifier so that the transfer function between the input of the summing amplifier
stage and output of the activation function stage goes through two inverting stages,
resulting in a positive output given a positive input.

In this case, the positive terminal of the operational amplifier is connected to ground, as
usual, and the input to the stage into the the negative terminal is provided from the output
of the summing amplifier stage and is fed across a 20 kΩ input resistor. This resistor value
was chosen to minimize the input current to the activation stage to a current value well
below 1 mA while avoiding distortion caused by the input bias and offset currents of the
amplifier.

As in a standard inverting amplifier, the output of the activation stage is fed back to the
negative input terminal; however, this is where the similarities end. This feedback is
provided across both a diode-clipped resistor and an independent resistor in series with the
voltage clipper. The independent series resistor is a 3.3 kΩ resistor, while the voltage
clipper resistor is a 100 kΩ resistor in parallel with two sets of diodes, one in each
direction, as shown in Figure 5.3.

Figure 5.3: Activation Amplifier Schematic

Each series diode configuration consists of two diodes in series that are facing the same
way, with the polarity of each branch opposing other. This is so that one pair of diodes is
set to clip positive voltage and the other pair of diodes is set to clip negative voltage. Once
the output of the activation stage reaches a certain point, the voltage across the 100 kΩ

EEL 4914 Senior Design I

70

resistor can no longer increase, resulting in a stable current draw through the feedback of
the amplifier. Given this constant current, the maximum output amplitude can then be
chosen by selecting the corresponding series resistor value.

5.4 Neuron-Output Buffer Design
Finally, the output signal provided by the activation stage is fed into another unity-gain
non-inverting buffer to avoid output distortion. While this is redundant for most hidden
layers due to the input buffers on each successive stage, it is necessary to buffer the outputs
of the last layer of any network, as additional current draw induced when performing ADD
measurements or supplying LED or LCD indicators may result in erroneously low-
magnitude output voltages.

Depending on the current draw of the output setup, whether it be effectively zero, as with
comparators as described in Section 5.5, or fairly high, as in a fairly complicated LED
network, output buffering may not be necessary. Since the activation function supplies its
output directly from the output terminal of the neuron, it is possible to draw current from
the activation function without affecting its output voltage. However, amplifiers cannot be
presumed to maintain a perfectly constant output voltage regardless of current draw, so
attention must be paid to the characteristics of the amplifier used in the network.

While elimination of the output buffer would reduce the amplifier count to two, allowing
two neurons to be fit into a single 4-amplifier chip like the TL084, other concerns arise.
Predominantly, if high current is being drawn from multiple amplifiers on a single chip,
the power dissipation may become unreasonably high in the device, especially if the supply
voltages are significantly higher than the output voltages of the amplifiers. Additionally,
some amplifier chips are prone to crosstalk; while this is not typically a significant factor
in most chips, certain amplifiers under particular conditions can generate non-negligible
amounts of interference among themselves within a single chip, resulting in mutual output
distortion.

5.5 Output Comparator Design
Standard software-based neural networks often deal with extremely high value precision,
calculating to multiple decimal places when processing the values at each hidden layer and
output node. In many networks, where each output is a different value – for instance,
predicted temperature, humidity, wind speed, and so forth – each output value is free to be
as precise as it can be, with no meaningful effect on the other values. However, when
dealing with network applications like handwriting interpretation, there is a limit to the
acceptability of this behavior. For instance, if the network is struggling to differentiate
between “F” and “P”, it is not an acceptable response for the network to simply output a
value of .5 for F and .5 for P, or something near these values. A user likely expects the
network to either make a definitive guess or to indicate it does not have confidence in its
response. While this is easy to solve in a software-based network in a few lines of code,
such as simply selecting the highest output value and flagging it for low confidence if it is
below a given threshold, it is somewhat more complicated to handle when dealing with
physical circuitry.

There are a few solutions to this problem which vary in suitability depending upon the
context of their use and the network they are applied to. The first approach is to simply use

EEL 4914 Senior Design I

71

a positive and negative reference voltage via a divider and supply these voltages to a pair
of comparators; by attaching LEDs to the outputs of each of these comparators, one will
be able to determine if the network is confident that it is or is not a given character. This
solution is somewhat arbitrary, which can be viewed as a positive or a negative. Because
the voltage reference level can be changed at will, the desired confidence level of the circuit
can be tweaked. This can, of course, be a strong positive when high confidence is required
or expected; however, in cases where networks produce weak but accurate calculations,
one may never see an output despite the network consistently producing correct outputs.

Another solution to this problem is to add another output to the desired network. This
neuron can be used as an “unclassifiable” output, which should be indicated whenever the
network is unable to match another output to an acceptable degree of confidence. For
instance, in the 4-pixel test network, it would be unreasonable to expect the network to
guess “diagonal”, “horizontal”, or “vertical” if it were given a blank or completely filled
in sample; doing so may result in a higher rate of misclassification, especially if the network
is given grayscale inputs instead of binary black-or-white inputs. Using a fourth neuron, an
“unclassifiable” output can be used as the default state of the network. In an ideally trained
network, this output should always be enabled unless the network is highly confident in its
classification of a signal using the other discrete outputs. This allows new, ambiguous, or
invalid inputs to the network to safely be disposed of by default instead of forcing the
network to attempt a solution. This is especially important when using noisy grayscale
datasets. If a “horizontal” flagged training image is somewhat slanted, it may produce an
ambiguous solution between horizontal and diagonal in the network and make training
extremely tedious as the network repeatedly fails to classify either the specific image or
other images as the neuron weights are constantly pulled back and forth in an attempt to
converge. While such a sample can always simply be ejected from the training data, it is
much more useful to simply reclassify the image as “unclassifiable” in the dataset,
providing the network an example of an ambiguous input and better equipping it to handle
novel instances of such inputs in the future when handling live data.

These solutions, of course, can be used in tandem. Through use of a potentiometer, it is
possible to allow the reference voltages to be dynamically adjusted for each neuron. For
instance, if the network’s neurons are capable of outputs of -1 to 1, the unclassifiable output
may produce “1” with an invalid sample and “.7” while raising a “.7” on another output
when handling a valid input. To handle situations where the network could potentially
indicate confident outputs on two neurons, the voltage reference levels for each neuron can
be handled individually to account for the quirks of each unique training solution for a
network. This has the added consequence of allowing the network to be retrained and
reorganized on a whim, allowing the hardware of the network to be tailored to the training
solution of the network instead of forcing the opposite, allowing for much more dynamic
and meaningful network outputs.

5.6 Modified Input Layer Design
The multi-layer perceptron neural network design for the 2-pixel network contains a 4-
neuron input layer with a synapse circuit design consisting of a buffer and inverter
operational amplifier circuit pair, that provides the complementary PB0 and PA0 voltages
to the digital potentiometers for weight adjustment. These inputs for the 4-Pixel network

EEL 4914 Senior Design I

72

are treated as the digital bits corresponding to the image data taken as input to the trained
network. These digital inputs to the network are done in parallel from the signal processor
used in the microcontroller.

It is easy to see that as the inputs to the network are incremented, the number of parallel
pixel data inputs to the synapse and neurons of the input layer will rapidly increase to an
unpractical number of parallel inputs to the input layer. There needs to be a more practical
approach to designing the inputs to the synapses of the input layer of the network to avoid
unnecessary current draw from the microcontroller, as well as a large amount of traces
needed to the input layer.

A practical and efficient approach to planning the digital image pixel data to the input layer
is utilizing a shift register IC. This is done by connecting a shift register chip to the signal
processing microcontroller of the design. The serial data bits will be fed to the input layer’s
synapse circuit using serial communication protocols, either I2C or SPI, utilizing the
frequency of the microcontroller’s clock. Each high or low voltage level corresponding to
the pixel data will be provided to the synapse circuit containing a buffered and inverted
version of the signal to provide the range of weighted inputs to the neuron. Having the
digital pixel input data fed to the synapse circuits serially avoids the need for multiple
parallel traces to the neurons in the input layer, as a single serial trace line will be connected
to all the PB0 and PA0 pins of the digital potentiometers after being buffered and inverted.

To achieve the buffering and inversion of the output pixel data from the shift register, the
use of a hex inverting and non-inverting chips must be used to provide the voltage weight
range of the digital potentiometers as opposed to the operational amplifier buffer and
inverter circuit designs used for the 4-Pixel prototype network. This is due to the input data
to the synapse circuits of the input layer being provided digitally by the serial output of the
shift register IC. This was unnecessary for the intermediate design, as the analog voltage
levels being provided by the voltage regulators LM337 and LM317 were analog in nature
and did not require the need for logic-level inversion and buffering. A hex inverter and
non-inverter CMOS chip will allow for logic-level conversion of the shift register’s output
to maintain the voltage level desired, and needed, to allow for proper weight ranges that
the neural network multi-layer perceptron design needs when being trained for character
recognition, which is the intended application of the final network’s design. Thus, the final
design of the input layer will be made up of the shift register IC, providing input to a
modified synapse circuit consisting of hex inverter/buffer pairs that will supply voltage
ranges for the weights of the digital potentiometers.

Below, in Figure 5.3, an updated block diagram of the 25-input neural network design can
be seen, along with a table of descriptions of the blocks included in Figure 5.3. This
diagram is generally accurate for all of the networks developed for this project, regardless
of dimensions, as full interconnectivity and multi-layer networks are hallmarks of the
chosen network architecture for this project. The number of B blocks per C block is always
equal to the number of inputs to the network, and the number of A blocks is always equal
to the number of C blocks; thus, each neuron on a given layer looks the same as and is
connected identically to all of the other neurons on the same layer. The only variation is in
the algorithm-determined weighting of each potentiometer feeding each neuron.

EEL 4914 Senior Design I

73

Figure 5.4 Modified Input Layer Block Diagram

Block Name Function

A Line Driver
B Adjustable Synaptic Weight
C Artificial Neuron

Table 5.1: Modified Input Layer Block Descriptions

Figure 5.3 and Figure 5.3 provide the general arrangement of each network layer. Each line
driver block consists of a non-inverting buffer to buffer the output of each neuron. Each
adjustable synaptic weight block consists of an inverting and non-inverting buffer pair and
a digital potentiometer; each potentiometer is fed the original input signal on one end of
the device and the inverted signal on the other. The output of each potentiometer is then
supplied to each artificial neuron block, where it is summed via the summing amplifier
stage of each neuron. Finally, the activation stage of the neurons produce the final output
signals, which are then fed to the corresponding line driver blocks. The signals are then
buffered by these line driver blocks and either passed forward to each of the inverting/non-
inverting buffer pairs in the following layer or supplied to the final output handling section
of the network, which may be hardware-based (LEDs, comparators, etc.) or software-based
(a digital readout of ADC values, a message indicating the highest value, etc.).

EEL 4914 Senior Design I

74

6 Software Design
The following sections provide a description of the design process for the integrated
software/firmware system that was created for the purposes of planning, testing, and
implementing the TACOCAT hardware-based neural network.

6.1 Background
There is no single characteristic way to design, train, or model an artificial neural network.
Some networks are fully connected, while others are only partially connected; some are
many layers deep, while others have only a single hidden layer. There are numerous
activation functions and training algorithms that can be used, and there are a variety of
possible methods of modeling such implementations. Since a static approach must be
chosen early on to allow for a discrete hardware implementation to be built, it is necessary
to weigh the performance and suitability of the many different categories of network
architecture and algorithm to find the best candidate for translation into a physical device.

 Neural Network Architecture
Before starting work on the design process, it was necessary to determine what kind of
neural-network architectures would be able to successfully perform the classification tasks
that are described in the project specifications. The two main families of ANN architectures
that were considered were the multi-layer perceptron (MLP) and convolutional neural
network (CNN). Several different CNN-based designs have shown exceptional
performance in image recognition tasks, but these networks tend to be large, and the
convolutional layer schemes included in these networks were expected to require a more-
complex hardware design.

 Training Algorithm
The typical training algorithm used with MLP networks is gradient descent through
backpropagation. This algorithm requires the outputs of each neuron layer to be known,
and the algorithm is applied one layer at a time, starting with the last layer and moving
backwards through the network to the input layer (hence “backpropagation”).

In order to use this training algorithm, we must define a “loss function” that relates the
output values of the neurons in a given layer to the expected output values. Once we have
determined the loss for a layer of neurons during a given training iteration, we can take the
gradient of the loss function and multiply it by a scalar “learning rate” coefficient to
calculate an estimated set of synaptic weight adjustments for the neuron layer. The object
of this process is to find a set of weight parameters that will minimize the loss for each
layer.

Once the output values of the final layer have been compared to the expected values and
the backpropagation album has been applied, an expected set of output values from the
second-to-last layer can be inferred, and the process is repeated until the gradient descent
calculations have been applied to the network’s input layer.

There are some known shortcomings of this training algorithm. Where a multi-dimensional
“error surface” can be described by the network’s loss function, classification problems

EEL 4914 Senior Design I

75

will sometimes have error surfaces that have local minima as well as saddle points. Non-
linear activation functions are thought to mitigate the difficulties caused by these issues.

 Existing Software Models
There are a variety of open-source and commercially available software libraries and
frameworks (e.g. Torch, TensorFlow, Keras, Caffe) that allow researchers to design and
test software-based neural networks of arbitrary sizes, using a wide range of training
algorithms and other parameters.

One option that was considered was the use of a ready-made framework in order to evaluate
different network topologies and hyperparameter values in preparation for the hardware
design phase. However, the main drawback of this approach was that any complex training
algorithms that a framework might offer could be very difficult to implement in a lower-
level embedded programming language without already having understood and written the
code in a higher-level language.

6.2 Design Overview
There are three separate software projects that are being used to implement the hardware-
based neural network. First, a software-based neural-network model is used to simulate the
expected behavior of the network. This same model can also be used to train the hardware-
based network. Second, the training and I/O interface controls for the network are
implemented in an embedded software program that is designed to be run on a
microcontroller. Finally, a user interface (running on a minimal PC platform) needs to be
created in order to apply real-world inputs to the hardware-based neural network.

Python 3 was chosen as the development language for the software model/simulation
component of the project. The microcontroller firmware is written in C/C++. Arduino
libraries were used for prototyping and testing, although the production version of the
firmware may instead use function libraries that are provided by the MCU manufacturer.
The graphical user interface (GUI) component of the project will be implemented in Python
and run on a mobile-touchscreen device with a Linux operating system.

6.3 Development Tools
As is generally the case, a range of development environments were available for both the
software and firmware used in this project. Since both Python and C programming are
utilized both on the network controller and on the host computer, it is not reasonable to
attempt to handle everything using a single development environment. Consequently, the
various development tools and environments used in this project are briefly described in
the following subsections.

 Python Development Environment
The software model was written in Python 3, and version 3.7.3 of the Python interpreter
was used for development. The interpreter was run inside a Conda environment that was
managed using Anaconda.

Microsoft Visual Studio Code was used as a code editor and debugging environment for
Python modules.

EEL 4914 Senior Design I

76

 Firmware Development Environment
For the small-scale prototype network, firmware development was carried out in the
Arduino IDE software with the Teensyduino extension package. The Arduino IDE offers
convenient integration with the Arduino code library and with the toolchains that are
required to compile, program, and run software on various microcontroller platforms.

One shortcoming of the Arduino IDE is that it does not include a debugger. Any debugging
is typically carried out using “print” statements and monitoring program output through a
PC-to-MCU serial connection.

After completion of the small-scale prototype network, we plan to move development to
an integrated development environment that supports hardware-based debugging of ARM
devices.

 Version Control
Git is being employed for version control in the TACOCAT codebase. While the Python
code and C/C++ firmware code are being developed in separate repositories these
repositories can be grouped together as submodules in a “wrapper” repository that will act
as a central store for the overall project codebase. Hosting for remote Git repositories has
been generously provided at no charge by GitHub.

While Git is sometimes avoided for firmware development processes due to its historical
lack of support for tracking changes in binary data files, due to all of our project work files
being encoded as text, we do not expect this to cause any issues in the course of firmware
development for TACOCAT.

6.4 Neural Network Software Model Design
Since the overwhelming majority of neural networks at present are entirely software-based,
software simulation of the networks being designed is an obvious first step. However,
simple software network simulation is not enough; simulations of the physical behavior of
the hardware must also be performed to predict and verify the behavior of the circuit once
its physical implementation is brought to reality. The following subsections dictate the
reasoning and design process behind the software simulations used for this project.

 Software Architecture for Simulation
It is fairly straightforward to implement mathematical models for MLPs, and because the
MLP-based models have shown relatively good performance in handwriting recognition
tasks, the MLP was chosen as a starting point for software simulations.

Instead of taking the very-high-level approach of using a ready-made machine-learning
framework, we decided to compromise by writing our simulation logic from scratch in
Python, which is a high-level language that offers powerful libraries for tensor mathematics
and data manipulation. At this level of abstraction, all of the atomic mathematical
operations for the software model had to be expressed in code, but the code itself is fairly
brief and easy to understand.

The simulation software, as shown in Figure 6.1, was divided into several Python modules:
a dataloader module for loading training/validation data, a SPICE extension module for

EEL 4914 Senior Design I

77

simulating neural network “think” operations in hardware, and a core module that contains
the construction, training, and validation logic for the neural network.

Figure 6.1: Block diagram of software architecture for simulation using SPICE hardware
model

6.4.1.1 Dataloader
The dataloader module uses the Mlxtend library (Raschka) to load training/validation data
from files that adhere to the formatting used in the MNIST dataset. This module also
performs interpolation operations to compress data images from the standard size of 28 x
28 pixels to a square size of a smaller specified width, and it performs a thresholding
operation to convert pixels from grayscale to black and white, as shown in Figure 6.2.

In a sense, this thresholding operation is implementing an input-layer activation function.
This was considered as a possible area of concern, as one of the main objectives of this
project is to build a hardware-based neural network. However, because the equivalent
activation function for the input layer would be a hard-sigmoid function, the software
operation to calculate the function’s output is a simple comparison between the input value
and the threshold. This function could also be implemented in hardware using a circuit as
simple as a single transistor. If high accuracy were required, a comparator circuit could
also be used to implement the comparison operation in hardware.

EEL 4914 Senior Design I

78

Figure 6.2: Original EMNIST sample images (top), Black/white threshold operation
applied to images (center), Black and white images compressed/downsampled (bottom)

6.4.1.2 Simulation of Network Training and Prediction Operations
Hardware simulation via SPICE was implemented using LTspice, which is a SPICE
simulation software provided free-of-charge by Analog Devices, Inc. In order to integrate
SPICE simulations into the software simulation model, a Python module was created to
generate SPICE netlists based on the weight and input values described by the state of the
software-model network, run LTspice simulations of the netlists, and parse the output from
LTspice into a data structure that can be returned to the core module, which will then update
the state of the software-model network.

By updating the SPICE hardware model’s netlist after each training iteration and using the
simulated output values of the hardware neuron models based on the updated weight
values, the hardware network training is effectively emulated in the software simulation.

The SPICE connection module has also been programmed to consider parameters for
digital-pot weight resolution and digital-pot tolerance. By conducting simulations with
various digital-pot parameters, we were able to estimate the levels of tolerance and
resolution that would be required to achieve convergence and reasonably low error rates in
the neural-network training process. Because digital-pot resolution is a major factor in the
cost of the IC components (for every bit of resolution that is added, the number of “taps”
in the resistance chain is doubled), this should prove to be very useful, as it appears that
with insufficient pot resolution, the network training process might fail to converge to an
optimized set of weight values.

6.4.1.3 Additional Applications for SPICE Connection Module
The SPICE connection module was designed to be somewhat generalized so that it could
also be used for testing simulated circuit behavior aside from the roles that it plays in the

EEL 4914 Senior Design I

79

integrated testing of neural network training and classification/prediction. Figure 6.3 shows
the output obtained from the SPICE connection model in conjunction with an activation
function test-fixture script.

Figure 6.3: Plot of sigmoid activation function behavior based on integrated Python/SPICE
model

6.4.1.4 Core
The core module contains definitions for a NeuronLayer class, with member variables to
store metadata regarding the neuron layer’s number of synaptic inputs and its neuron count
along with a reference to a stored array of synaptic input weights, as well as a
NeuralNetwork class, which contains a collection of references to NeuronLayer objects
along with methods for training and validating the neural network model.

This module also maintains collections of metrics related to training, testing, and validation
and includes methods that can create graphs and charts to visualize this data (examples
shown in Figure 6.4).

The core module was specifically designed to separate the implementation of the network
components in the NeuronLayer class from the training and validation algorithms that
belong to the NeuralNetwork class. By encapsulating the properties of these separate
classes, the core module can remain flexible enough to work with multiple different
NeuronLayer implementations. In fact, the same training and validation algorithms are
used for software-model based simulations, SPICE hardware-model based simulations, and
the actual hardware implementation of the neural network (connected via the MCU).

EEL 4914 Senior Design I

80

Figure 6.4: Results of software simulation for 10 x 10-pixel EMNIST recognition with 3
input classes

Python offers a broad range of interfacing libraries that also make this flexibility easy to
maintain. Python’s libraries for issuing operating-system commands and parsing text-file
based inputs and outputs simplified the implementation of the SPICE-model connection,
and Python also has a number of libraries that allow communication using lower-level
protocols that are commonly supported by integrated circuits, such as SPI, I2C, and UART.

EEL 4914 Senior Design I

81

6.5 Firmware Design
A block diagram for the conceptual layout showing the integration of the firmware modules
with the software modules is shown in Figure 6.5. One of the goals for the overall design
of the integrated software/firmware system was to use consistent interfaces in similar
modules. By maintaining similar interfaces between the SPICE connection module and the
firmware library, we are able to simply “plug in” the firmware library connectors to the
same Core-module methods that interact with the SPICE connection module as shown in
Figure 6.1. This ability to easily re-use code is one of the major benefits of the object-
oriented software design paradigm that is employed in this project.

Figure 6.5: Block diagram of software/firmware architecture for hardware neural network
implementation

The firmware operations that are required for the project can generally be divided into the
following categories:

 Initialize circuit training process
 Adjust synaptic weight values
 Configure and activate data input signals
 Measure neuron outputs

All of the operations listed above depend on serial communication with the Python-based
software model, and the function for adjusting synaptic weight values requires an
additional communication interface with the digital potentiometer ICs. Functions for

EEL 4914 Senior Design I

82

transmitting and receiving data are imported from a publicly available library called
SMBus2, which was designed for the SMBus protocol that is a subset of I2C. Any calls to
the communication library functions are also wrapped in higher-level functions that act as
interfaces that separate the implementation of the serial communication processes from the
firmware’s central program logic.

6.6 Software/Firmware Communication Protocol
In order to coordinate the operations of the software and firmware programs, a
communication link is required. In terms of a multi-layered communication network
model, this section will describe a protocol that is implemented at layer 2 (sometimes called
the data link layer), the layer directly above the physical layer.

 Assumptions about Physical Layer
While one major design objective for this communication protocol is that it should not be
overly dependent on the designs of its adjacent layers, some assumptions were made about
the physical layer. It is assumed that the physical-layer protocol will be designed for
sending and receiving data in groups of bytes, and it is also assumed that the physical-layer
protocol does not implement any sort of error-detection or error-correction mechanisms.

It is also assumed that the communication channel may be only half-duplex and that a
master-slave communication scheme is implemented, where the master device is primarily
in control of network communications. In TACOCAT’s case, the software modules control
the master communication device, and the firmware modules control the slave device.

A typical microcontroller serial communication device should have a buffer size of 32
bytes, so it is assumed that the data frame size should be 32 bytes or less.

 Command Codes
In very simple communication networks, all data messages may occur in the same context.
For example, a network consisting of a temperature sensor and a microcontroller may only
carry one type of message: temperature data that is sent from the sensor to the MCU.
However, in TACOCAT’s inter-device network, messages can be sent in several different
contexts.

A system of command codes is implemented so that the master device can describe each
message’s context to the slave device. The slave device can then configure its response
appropriately for the message context. Command codes are sized at one byte so that they
can be sent quickly. The number of commands for this protocol are expected to be far less
than the 256-command capacity for the byte data-type.

Table 6.1 shows the commands that are implemented in TACOCAT’s software/firmware
communication protocol. While the numeric values of the codes can be stored in a shared
file that is accessible by both the software and firmware packages, the meanings of the
codes and the required response behaviors must be implemented manually in each relevant
code package.

EEL 4914 Senior Design I

83

Command Code (hex value)

Initialize network 0x01

Set synapse weights 0x02

Set data input values 0x03

Read neuron outputs 0x04

Table 6.1: Communication Protocol Command Codes

 Error Detection
Because the TACOCAT device performs calculations during the training process that rely
completely on the data that is being sent over the communication link, some error detection
and error correction policies are implemented in the inter-device communication protocol
to ensure data integrity.

Cyclic redundancy checking offers high rates of error detection using a binary polynomial-
division algorithm that can be implemented efficiently on CPU/MCU hardware. (Koopman
and Chakravarty) compares the performance of different CRC polynomials of various
lengths and emphasizes that the performance of any given CRC polynomial depends on
the bit length of the data frame to which it is applied.

Koopman and Chakravarty found that the CRC-8-ATM polynomial (shown in Equation
7.1) can have good performance for data frames that are less than 247 bits in length. This
polynomial is employed in the SMBUS protocol, which is designed to handle data frames
of 35 bytes or less. In (Maxino), tests showed that for data frames of less than 247 bits, the
probability of failure for the CRC-8-ATM algorithm was less than 10-8.

(6.1)

𝑥 + 𝑥 + 𝑥 + 1

 Communication Sequences and Error Correction
Communication operations between the software and firmware packages can be
characterized by one of the two following communication modes: the master device
requests data from the slave device, or the master device writes data to the slave device.
Command codes 0x01 and 0x04 fall under the category of “data requests”, and command
codes 0x02 and 0x03 fall under the category of “data writes”.

The Request and Write modes both begin with a command data frame (depicted in Figure
6.7) that contains the command code and an expected number of bytes to be transmitted.
When the slave device receives this frame, it configures its program state so that it will be
ready to begin the transmission type specified by the command code and then sends a
single-byte acknowledgement message.

EEL 4914 Senior Design I

84

Figure 6.6: Communication sequence example for a "Set synapse weights" command

Command Code Block Size
1 1

Figure 6.7: Command data frame (segment sizes in bytes)

The transmitting device (the slave in a “data request” command or the master in a “data
write” command) will then send a sequential block-transmission data frame (depicted in
Figure 6.8) that contains a header, a data payload, and a checksum. The header in this frame
is a single byte that specifies the byte-length of the data payload segment, and the checksum
is calculated with respect to the bytes in the data payload. Considering a maximum frame
length of 32 bytes, with the first and last bytes reserved for the header and checksum, the
maximum data payload size is 30 bytes. With a guaranteed payload size of 240 bits or less,
good error-detection performance can be expected from the CRC-8-ATM algorithm.

EEL 4914 Senior Design I

85

Header Payload Checksum

1 1-30 1

Figure 6.8: Sequential block-transmission data frame (segment sizes in bytes)

As the receiving device reads the incoming bytes, it will calculate the checksum of the data
payload, and when all bytes have been received, it will compare the calculated checksum
to the checksum that was received at the end of the data frame.

If the checksum is correct, the receiving device will send a single-byte acknowledgement
that represents the sequence number of the next byte that it expects. If the transmitting
device has more data to send, it will send another data frame, and the process will be
repeated.

An example of a checksum error sequence is shown in Figure 6.9. If the checksum is not

Figure 6.9: Stop-and-wait error correction in a TACOCAT external-communication
sequence

EEL 4914 Senior Design I

86

correct, the receiving device will discard the data from the frame and send a single-byte
negative acknowledgement that represents the sequence number of the first data byte in the
previous frame. The transmitting device should then re-send the previous data frame, and
the process will be repeated from that point.

 Timeouts
In addition to bit-errors in the data transmissions, the possibility of data timeouts should
also be considered. Timeout procedures vary between sending and receiving devices, but
for either case, a timeout period and a maximum number of re-try attempts should be
specified as program parameters in the firmware and software code implementations of the
communication protocol.

If a receiving device does not receive an expected data frame, it can continue to send a
single-byte acknowledgement representing the sequence number of the next byte that it
expects to receive until the maximum number of attempts is reached, at which point some
action might be performed to notify the user of an error condition.

Similarly, if a sending device does not receive an expected acknowledgement byte, it can
continue to re-send the previous data frame until the maximum number of attempts is
reached. At this point, it can also try re-sending its previous command frame until the
appropriate acknowledgement is received or a maximum number of attempts is reached.
This requires a logical block in the receiving device that aborts a receiving operation if a
command frame is received when a data frame is expected. If these attempts all fail, the
sending device might notify the user of an error condition.

6.7 User Interface Design
The user interface components that are implemented in software are mainly concerned with
gathering handwritten-character input data from a user for testing/demonstration purposes.
A camera was considered for this purpose, but a digital touchscreen interface was chosen
instead as it seemed to be a likely source of real-world input for similar hardware-based
neural networks in mobile devices. Image data from the digital touchscreen interface can
also be fit into the appropriate number of pixel inputs for the given network with minimal
processing required in the software. A mockup of the user’s view for the touchscreen
interface is shown in Figure 6.10

Because of the wide availability of phone and tablet devices that integrate touchscreen
inputs with web-browsing capabilities, an Android device running a JavaScript-based web
application based on a framework such as React or Angular was strongly considered.
However, the steep learning curve for mobile app development frameworks and the
complexities of creating a direct interface between a microcontroller device and a
JavaScript-based web application appeared to be significant enough to steer the design
process away from this approach.

Instead of a web-application implementation for the user interface, we have chosen to focus
on a graphical Python-based interface that uses a peripheral touchscreen device for input
and display purposes. The freely-available Tkinter package for Python offers an interface

EEL 4914 Senior Design I

87

Figure 6.10: Mockup of the graphical user interface on a touchscreen device

between Python and the Tk graphical user interface library, which was originally developed
for the Tcl scripting language. The PyGObject package also allows access to the GTK
graphical library via Python code.

Along with a Python library to handle the generation of graphical output for the user
interface, we plan to use the native support for touchscreen control input that is included
with Linux distributions such as Ubuntu. Integrating these two components will allow our
application to display information to and gather information from the user.

EEL 4914 Senior Design I

88

7 System Fabrication
A significant amount of component testing, network prototyping, and equipment
optimization was performed during the breadboard testing phase. While breadboarding is
extremely useful for such activities, it becomes impractical to produce any significant
circuit beyond a few neurons due to the inherent variability of the breadboard connections
and the dozens of jumpers and through-hole components used. Because any network
implemented as in this project is extremely sensitive to more than a few millivolts of signal
distortion, breadboarding is not an acceptable long-term solution to network
implementation.

The obvious solution to this shortfall is the use of carefully designed printed circuit boards
(PCBs). Through intelligent PCB design, jumpers and leads that were once several inches
long can be efficiently reduced to a few millimeters, and components can be placed and
oriented at will to reduce the footprint and complexity of the design. While there are a few
limitations and considerations that must be taken into account during PCB design, the
overall result is a significantly more reliable, compact, and portable device.

7.1 PCB Design Software
PCB design is largely accomplished through the use of semi-automated design programs
which allow the user to lay down a device’s schematic and realize the equivalent PCB
layout. A great multitude of design programs are available for schematic capture and board
design, ranging in functionality from barebones PCB design tools to software suites with
schematic capture, automated trace routing, and 3D board visualization. Predictably, these
programs range wildly in price from being completely free with or without an educational
license, such as Autodesk’s EAGLE, to costing nearly $10,000, as in the case of Altium’s
Altium Designer software.

Because of the availability of educational licenses, relative ease of use, and familiarity due
to use in previous coursework, EAGLE was selected for use in this project. EAGLE
provides linked schematic capture and board design, allowing for on-demand updates to
device schematics to be translated onto a board layout, streamlining the board design
process. The availability of custom package, symbol, and footprint generation in EAGLE
allows for the creation of new hardware symbols and layouts when a custom design is
necessary, or a pre-designed component symbol is either inaccurate or unavailable. The
“ratsnest” command and autoroute tool both greatly reduce the time required to lay out the
board traces by displaying the most efficient connection routes as airwires, as shown in
Figure 8.1, and by automatically routing PCBs between these points, respectively. As
components are shuffled around on the board layout, the ratsnest command will
automatically recalculate the most efficient routing connections in order to minimize trace
length and connection overlap. Use of the autoroute function will automatically lay traces
in accordance with these airwires; several different solutions will be presented
simultaneously, with each solution prioritizing different trace directions and different
layers. As a result, it is possible to produce clean, useful board layouts and save significant
amounts of time and effort when dealing with less complicated designs. Because autoroute

EEL 4914 Senior Design I

89

is not able to automatically create voltage planes and can often produce unnecessarily long
or complex routes for certain traces, autoroute should be judiciously and supplement
manual routing and board design.

Figure 7.1: A 4-input, 4-output layer board with airwires displayed

7.2 PCB Design Philosophy
Early in the design process, it quickly became apparent that, while single-board
implementation of the network was possible, it would be difficult, if not impossible, to
produce a two-layer PCB design for a single-board neural network. The primary factor in
this difficulty is the high level of interconnectivity between each layer of the network; each
neuron must provide two connections, an inverted and noninverted signal, to the input of
every neuron in the next layer. For instance, with 10 neurons in two adjacent layers, a total
of 200 logic connections between each layer are required, along with 100 potentiometers
to receive these signals. Because there are already numerous other connections present on
the board, such as the analog and digital rails, SPI connections to the potentiometers, and
amplifier circuit resistor traces, it quickly becomes impractical to produce a single two-
layer PCB for the entire network, even when dealing with smaller networks as in the case
of the 4-pixel test network. While a DAC implementation as discussed previously would
eliminate this problem, it would produce problems of its own by dramatically increasing
the amount of digital logic lines entangled in the analog-heavy board and would require
constant handling by the microprocessor to update the output of each DAC on the circuit
every time inputs were changed.

EEL 4914 Senior Design I

90

Another consequence of using a single PCB implementation is a significant reduction in
versatility. Because all the connections are static within the board, it is unreasonable to
attempt to modify the dimensions of the network, especially when using surface mounted
parts. While it would be possible to reduce the size of a layer, it would be impossible to
increase the size of the layer beyond whatever limit was present on the board. For instance,
the least-effort method to reduce the size of a layer would be to remove the potentiometers
on the following layer that relied upon the output of the neuron being removed and jumper
the data in and data out pins together for each potentiometer removed. However, this would
not only require a potentiometer to be removed from every neuron on the following layer
but would leave excess hardware on the board. Similarly, it would be very difficult to
remove layers from the network and would be impossible to add additional layers to the
board.

A third problem with a single-board implementation is the difficulty of obtaining output
measurements from each neuron, especially when needed for ADC data for training
purposes. Because the microcontroller’s training algorithm requires ADC voltage
conversions from the output of every neuron in the network, the output of every neuron
must be routed to a location accessible to the ADC. Because it is not reasonable to attempt
to measure output voltages from multiple locations across the board, it is necessary to route
these connections to a single location for multiplexing. However, due to the previously
mentioned high density of connections on and large size of full-network boards, traces must
be run from each neuron’s output to a central location, requiring unacceptably long traces
to be routed across the board.

These factors point to the need for a more versatile, modular design. While the most
obvious answer to this problem may be to simply use one neuron per board with plenty of
input and output pins, allowing for completely arbitrary network dimensions, this requires
that every single connection to and from the neuron, both analog and digital, be repeatedly
jumped from board to board. Because the SPI daisy-chain configuration can potentially
involve dozens of devices in series, and because the calibration of the network relies on
very precise voltage readouts, there is far too high a risk of signal attenuation and
corruption to employ this approach. An intermediate – and more feasible – method of
modular implementation is to create individual boards for each layer of the network. This
approach allows for the easy addition, removal, or adjustment of layers simply by
exchanging the boards, especially if a standard “format” of board is used. For instance, if
a 4-neuron layer board is used as the standard format of the network, a 4-4, 4-4-4, and 4-
4-4-4 neuron network could all be fabricated simply by connecting successive boards in
series with the previous layers. Not only can layers be added and removed as desired, but
the layers can easily be reduced in dimension as needed by omitting components. Because
the only jumpers required in this case would be across the serial input and serial output SPI
pins of the missing potentiometers, both the issue of excessive jumpers with the individual-
neuron implementation and the issue of superfluous hardware and lack of modifiability of
the single-board implementation.

EEL 4914 Senior Design I

91

Additionally, boards can be created with non-equal numbers of inputs and neurons. For
example, if a 4-8 network with 8 inputs is desired, this network can be achieved using a
single 8-input, 4-output board design. One of these boards can form the first layer; to
produce the output layer, one can simply populate two of the boards with only half of their
potentiometers, producing 4-input, 4-output boards. By placing these boards in parallel,
one can produce a 4-input, 8-output layer. If an additional 4-input, 4-output layer hidden
layer is desired between these two layers, it is very easy to simply half-populate another
board and connect it between these two layers. Similarly, if an 8-input, 8-output layer is
desired, two of the 8-input, 4-input boards can be placed in parallel. Thus, the maximum
size of a layer is constrained by the number of inputs available on a single board.

Due to this high degree of flexibility, it is possible to realize a very wide range of network
dimensions and implementations using the same small pool of hardware. Networks with
large numbers of inputs that would be otherwise impossible to accomplish on a single two-
layer board can be achieved via parallel operation as described previously. However, width
is not the only dimension that benefits from this approach. Because neural networks benefit
more from increased depth than increased width, a network’s width has a strong impact on
the accuracy of its outputs and on its convergence time during training. Depending on the
difficulty of the task, such as differentiating between capital P and capital F, a shallow
network may completely fail to converge regardless of training duration. Thus, network
hardware that is otherwise unsalvageable for use in a certain application can be successfully
used and reused in more complex applications simply through addition of hidden layers to
the network.

7.3 PCB Design Limitations
A number of PCB design limitations were observed for this project, especially due to the
use of multiple copies of the same PCB design. The first and most stringent limitation
observed was the requirement that any and all PCBs used be designed with a maximum of
two layers. While single- and two-layer PCBs are fairly straightforward to manufacture,
boards with higher layer counts become exponentially more expensive to produce, as
multiple layers of substrate are required. Because this project is self-funded and is already
utilizing multiple boards, it is entirely reasonable to simply reduce the complexity of the
boards as needed to maintain reasonable two-layer designs.

Another limitation for this project is the physical size of the boards. Because numerous
boards are required for this project and board cost is closely related to the total area of the
board, it is well worth the effort to minimize the dimensions of the board to as high a degree
as reasonably possible. However, care must be taken not to take this design compression
to an excessive degree, especially since board population in this project is performed by
hand. While board size is not a particularly stringent limitation for this project when dealing
exclusively with surface mount components, the through-hole versions of the components
used in this project are, on average, approximately three times larger on average than their
surface mount counterparts. While the use of through-hole components dramatically
improves the ease of assembly, there must be enough space between component pads to
avoid undesired contact between components after soldering.

EEL 4914 Senior Design I

92

7.4 PCB Design Preferences and Practices
While the design limitations for the PCB needed to be observed, several other practices
were observed to improve the functionality and ease of use of the boards and decrease the
likelihood of interference or signal aliasing.

 Voltage Planes
The first design practice was the creation of a ground plane on the second layer of each
board. While single traces can be used to route ground signals as with any other signal, this
is generally a bad idea due to the non-zero resistance of traces. Because high currents
through these traces can potentially produce significant voltages on device pins that should
nominally be grounded, multiple devices that should all be grounded can operate at
different ground levels, dramatically increasing the risk of noise or interference on the
network, especially when this occurs with voltage rails. This can be counteracted through
use of a ground plane, which fills the unused board space on one layer of the PCB with
copper and ties it to every ground signal on the board with vias. This is extremely helpful
in simplifying routing and is unquestionably useful when using through-hole components,
as the vias of the components themselves can be used to bring the desired pins to ground.

 Via Minimization
While vias are useful in combination with voltage planes, they should generally be
minimized. Vias often have higher resistance than comparable lengths of trace, so
repeatedly jumping between layers of the board with vias can potentially introduce
significant resistance to the trace and provide more opportunities for noise to interfere with
the carried signal, especially when handling high frequency signals such as the SPI clock
and data lines. While not as applicable to this project due to its small scope, devices should
have the number of vias minimized to speed up production and reduce costs, especially
when dealing with mass-produced products.

 Efficient Component Spacing
Another design consideration is component spacing. While every attempt should be made
to minimize unused board space, especially on commercial products, care must be taken
when considering the device must actually be populated and does not magically complete
itself. Normally, the only major thought that must be given to this factor is when dealing
with high-density surface mount components, as the limitations of the pick-and-place
machine being used for assembly must be respected. However, in the case of the boards
used in this project, population is performed by hand. High-density component layouts are
not practical to deal with, especially when using small components (below 0603), as
beyond this point the silkscreen quickly becomes unreadable. Similar care must be given
when designing the layout of through-hole components, as each of these components must
be manually soldered instead of cleanly mounted using a solder screen. Since there is
inherent variation when individually soldering so many connections, it is well worth the
effort to ensure there is a reasonable margin between pins and devices to avoid undesired
contact between solder joints.

EEL 4914 Senior Design I

93

 Input and Output Pin Alignment
A final consideration specific to this project is the alignment of the input and output pins
of each board. In Figure 8.1 above, shows the PCB schematic (ground layer omitted for
clarity) of the 4-input, 4-output board used in the 4-pixel test network; three sets of four
pins are visible on the upper left and upper right side of the board. Starting at the top, the
first row of pins, offset from the next two rows, holds the four network inputs to the layer.
The next row of pins holds the four power rails for the circuit: +5 V, +1.65 V, -1.65 V, and
-5 V. The final row of pins holds the ground rail and the three SPI lines: clock, data, and
chip select. Since all communication used in this project is serial, it is very straightforward
to simply connect the SPI communication lines in series between each board. Because these
pins are located next to the edges of the board and correspond to the pins on the opposite
end, each layer can be daisy-chained together using very short jumpers, minimizing any
voltage drop or signal interference that would otherwise occur. This also provides a much
more intuitive visual display of the circuit, as each layer has its own discrete board and can
clearly be seen in the order the network operates.

7.5 PCB Schematics
Because this project relies on multiple boards and does not have finalized dimensions,
multiple board layouts and schematics will be used throughout the project. However, an
early iteration of the 4-input, 4-output PCB used for the layers of the 4-pixel test network
can be used as an example, as it is a fairly simple layout which, while fairly reflective of
the given design preferences and practices, can be improved in a number of ways. The
design shown in Figures 8.2 and 8.3 was produced through manual placement of
components and the use of ratsnest to minimize trace length and connection overlap; the
routes were then completely generated through use of the autoroute function.

The autoroute tool was run using the “high effort” option, which generated many more
unique solutions than normal, allowing the most ideal routing layout to be selected.
Because voltage planes are not generated when using the autoroute function and are often
necessary – especially when using ground planes – to avoid noise generation and signal
distortion, a routing solution which prioritized the top layer was chosen to allow for the
creation of an as-intact-as-possible ground plane on the bottom layer of the board.

While the autoroute tool can save enormous amounts of time, attention must be paid to the
details of each solution. Heavy use with complicated designs can result in extremely long
and inefficient traces, increasing losses and taking up unnecessary amounts of space on the
board. However, the autoroute tool can be used as inspiration for a final layout; problem
traces can simply be deleted and run manually, or existing traces can be adjusted in such a
way to allow for better trace routing.

As shown in Figure 7.2, circuit components were laid out manually with a flow similar to
that of the schematic to improve both the routing and the appearance of the circuit. As
previously mentioned, the autoroute tool was used to produce a top-biased routing strategy
to allow for the creation of a large, intact ground plane. By maximizing the number oftraces
on the first layer (red) and minimizing the number of traces on the second layer (blue), the
risk of ground loops or other noise-generating phenomena can be significantly

EEL 4914 Senior Design I

94

Figure 7.2: 4-input, 4-output test network layer PCB design

reduced. As shown in Figure 7.3, the ground plane is nearly completely intact, with only a
few small sections of the bottom layer isolated from the ground plane.

The ground plane can be easily generated on the second layer via the polygon tool. By
creating a polygon surrounding the entire second layer of the board and naming it “GND”,
the name of the ground signal in EAGLE, the ratsnest command can be used to
automatically remove any ground traces on the board, fill in the second layer with a copper
pour, and connect any ground pins directly to the ground plane. Because all of the
components used in this design are through-hole, voltage planes are immensely helpful in
reducing the number of traces and vias on the board, especially when a commonly used
voltage level, such as ground, can be made accessible across the entire board. One can note
that the number of vias (excluding the through-hole component connections) is very low,
with only around half a dozen appearing on the board; a natural consequence of eliminating
any ground traces from the board is that any traces that would have otherwise required vias
to cross can simply be routed straight to their destination on the first or second layer instead
of requiring multiple jumps back and forth between the two.

One shortcoming of this design is the fairly substantial amount of unused space on the
upper right and lower portions of the board. While this could largely be resolved by
widening the board and moving the input buffers from the top left to the left side of the
design, this would result in a board over twice as long as it is tall, resulting in more fragile
boards and unnecessarily long arrangements when daisy-chaining multiple layers. As a
consequence of increased length, the length of the signal traces along the network would
become non-negligible and would introduce significant voltage losses across the network.

EEL 4914 Senior Design I

95

Having smaller boards to work with provides us convenience since we are taking a modular
approach to configuring the network.

Figure 7.3: 4-input, 4-output PCB design with ground layer

Arranging the potentiometers and neuron infrastructure in series, as shown in Figure 7.2
and Figure 7.3, is effectively non-negotiable, as such a linear configuration minimizes trace
length and avoids the need for more than a handful of additional vias in the entire board.
This board also demonstrates the importance of selecting ratios of inputs to outputs that
match well not only from a logic standpoint but from a physical one; since the footprint of
the synapse hardware for each neuron is roughly equivalent in size, the layout of the board
is dramatically simplified and does not require complicated routing or enormous swaths of
unused space.

This board serves as an excellent example of both the benefits and shortcomings of the
autoroute function. There is a significant number of components on the board despite its
relatively simple nature, and many require connection to a large number of other
components. While many of the traces are quite short owing to the thoughtful component
arrangement on the board, it is still tedious to manually route so many connections.
However, there are drawbacks to autoroute usage. One may note that the second row of
pins on the right side of the board, carrying the positive and negative analog and digital
voltage rails, feature extremely long traces all the way down the right side of the board,
across the bottom, and back up the left side. While this does not have a significant impact
on the digital signals, which are routed similarly, this is a significant issue when dealing
with voltage supplies and analog signals. Because the autorouting solution for these voltage
rails was to route these traces through the relevant devices before terminating the

EEL 4914 Senior Design I

96

connections on the other side of the board, there will inevitably be non-negligible voltage
drop due to the devices’ current draw across these traces. A better solution would be the
inclusion of an additional, much wider trace directly across the board to aid in power
transmission, or, much more preferably, the use of small voltage planes on the otherwise
unused upper layer of the PCB to eliminate many of the traces entirely.

Figure 7.4: Second iteration of initial 4-input 4-output board

One can note in Figure 7.4 that a number of these problems have been addressed. By
adjusting the component spacing and orientation – specifically, compressing the buffer
hardware and rotating the neuron hardware 90 degrees – a significant reduction in board
dimensions, excess trace length, and unused space results. While a few long traces still
occur, predominantly when handling the output signals from the network, the overall result
is a decrease in trace length for much of the analog signal pathways. While the number of
vias has increased slightly, this is an acceptable tradeoff considering the substantial
improvements in several other regards. Further inclusion of partial voltage planes on the
unused areas of the top layer to handle the relevant signals, enhancing conductivity across
the board and further reducing the number of traces present.

EEL 4914 Senior Design I

97

Figure 7.5: Final iteration of 4-input 4-output board

Finally, Figure 8.5 shows the final iteration of the PCB design. Heavy use is made of
voltage planes on both the top and bottom layers of the board, and traces are shortened
through the strategic use of vias and with 45 degree angles. While the number of vias is
significantly higher than in earlier iterations, their use in this case allows for both shorter
connections and significantly thicker traces, minimizing voltage loss across the board.
Additionally, the use of vias in certain chokepoints encourages the integrity of the voltage
planes, minimizing the amount of empty space; comparing Figures 8.4 and 8.5 clearly
showcases this reduction.

After some discussion, the decision was made to include a second set of output pins at the
bottom of the board to allow for easier access for ADC readings when training the network.
Since the other set of pins would otherwise be taken by the following board when daisy
chaining the network’s layers, inclusion of another output pin set eliminates the need for
additional hardware, such as breadboards, to allow for the ADC connections to be made.
This simplifies the circuit board in a way that makes a modular approach to constructing a
larger network much easier. This approach will allow us to seamlessly combine multiple
synapse-neuron circuits to realize our final network.

EEL 4914 Senior Design I

98

8 Prototype System Testing
Prototype testing is an important part of getting every major project to operate properly.
This section will discuss how different tests were conducted throughout the construction
of the artificial neural network. This led us in the right direction to implement solutions for
any issues that occur when creating the network. There is no final functional network
without necessary prototype system testing, and it is important to make sure hardware
implementations of theoretical testing match the theoretical results.

8.1 Prototype Hardware Testing
Conducting tests of our hardware prototype in a logical fashion to ensure accurate
functionality was a huge part of getting our project to operate. Every voltage and current
level needed to be within certain boundaries. To make certain they were, we measured
almost every part of our circuit to see that our physical circuit was lining up with our
expectations based on schematic simulations. The following subsections outline the
different tests that were conducted to confirm that several key circuits in the neural network
would function as expected.

 Individual Neuron Prototype Testing
Prototype hardware testing is a tedious but extremely necessary process in constructing a
functional analog neural network. Starting from ground zero, every output of every circuit
had to be tested along with several different significant currents drawn throughout an
individual neuron circuit. Our most initial prototype of a full individual neuron actually
used analog potentiometers to weight the four inputs that feed in to the inverting summing
amplifier stage. We created the circuit based on an existing project that actually used
memristors as synapse weighting devices. After doing some tests with the circuit based on
a previous implementation of an analog neural network, we made some modifications that
better fit a circuit using potentiometers as synapse weighting devices. We got some exciting
results initially, but knew we needed to spend some time redesigning the circuit for our
network. The first test we conducted was to look at the transfer function obtained between
the input of the summing stage and the output of the activation stage. Results of the sigmoid
response on an oscilloscope using an x-y plot from our initial individual neuron circuit are
shown below in Figure 8.1. The sigmoid response is apparent, but the output waveform is
significantly different from the expected waveform. Further design work would be required
to produce the desired activation function behavior.

Because the original neuron hardware was designed to handle memristor junctions, a
significant amount of excess hardware was present in the neuron design to allow for
intermittent high current draw for programming purposes. After the first attempt at an
individual neuron circuit, the circuit was modified by removing several components and
designing simple input buffer circuits. Components removed included a basic current
mirroring transistor configuration that was used to regulate currents for the memristors that
was no longer necessary and several neuron amplifier stages that were consolidated into
the two stages used for this project’s design. Additionally, due to the potential variability
and poor scalability of an analog potentiometer implementation, a digital potentiometer
implementation was chosen, as they are controllable with a microcontroller, allowing for

EEL 4914 Senior Design I

99

greater precision and responsiveness when making weighting adjustments. These changes
provided a much more reliable sigmoid response to work with.

After constructing the new neuron circuit, it was possible to gather a new response curve,
given in Figure 8.2, from the oscilloscope. This was the much cleaner sigmoid response
that was sought after; one can see how much cleaner the response is, as the implementation
now uses much higher resistance digital potentiometers instead of the lower impedance
analog potentiometers originally used, avoiding thermal drift as the devices heat up due to
high current draw. Not only was the sigmoid response function at this stage thoroughly
tested during prototyping, but the output of the summing amplifier stage was tested to make
sure the input voltages were being summed properly, since the activation function is wholly
dependent upon the output of the summing stage. Additionally, the voltage levels on each
of the digital potentiometers’ wiper pins were probed to verify that they were scaling with
respect to the 8-bit digital value assigned to the wiper’s position.

Figure 8.1: Initial Neuron Circuit Sigmoid Response

Figure 8.1, again, shows the sigmoid response using the initial current-driving design.
While the waveform looks approximately like the expected shape for the upper half of the
trace, an unanticipated additional hump occurs below this point before the voltage abruptly
runs into a hard stop. There is also a substantial offset visible, as the vertical portion of the
trace should be centered, but is instead off by an entire division to the right.

EEL 4914 Senior Design I

100

Figure 8.2: Modified Neuron Circuit Sigmoid Response

By comparison, Figure 8.2 shows the resulting sigmoid response with a digital
potentiometer once the current-driving hardware had been abandoned. The difference is
night and day; the vertical portion of the sigmoid is perfectly centered, with an almost
perfectly symmetrical waveform on both the x and y axis of the plot. While the slope is
quite steep in comparison, this can be adjusted by changing the values of the resistors used
in the activation function. One thing to consider is that the above response results from
tying all 4 inputs to a common input, effectively multiplying the slope of the sigmoid by 4;
the effective response to a single input is somewhat less extreme, as shown in Figure 8.2.

While the sigmoid response generated by the modified circuit is far cleaner and much more
symmetrical than the original response, the slope of the response is much less ideal than
the first circuit, as the overwhelming majority of the range is not used for intermediate
values. With a 256-tap potentiometer, for instance, a value of 128 should be approximately
0 V of output. However, with such a steep slope, a maximum output magnitude of 1.65 V
(or the equivalent value chosen for a given network) will quickly be reached within about
20 taps in either direction of 128. While this results in a very responsive network, it
ultimately wastes more than 80% of the taps of the potentiometer, as the difference between
156 and 256 is effectively zero, as is the case between 0 and 100. While this may not be a
significant problem in smaller networks with simple logic conditions, a large network
intended for handwriting recognition or outcome prediction may fail to reach a final state
any better than random guessing, as there will simply not be enough signal fidelity between
neurons to produce the necessary outputs, especially when dealing with large layer counts.

EEL 4914 Senior Design I

101

Although the response produced by a neuron should ideally be unchanged when using
different operational amplifiers, there is, in reality, a surprisingly high degree of variability
in neuron response behavior when changing amplifiers, even when the same components
are otherwise used.

Since the TL084 was the amplifier used for the majority of prototype evaluation, it was
chosen as the initial platform for sigmoid response tuning. The response of the neuron is
heavily dependent upon three neurons, each of which controls a different aspect of the
device’s response. These resistors are the summing amplifier feedback resistor, the diode
clipper resistor, and the activation function output resistor. The summing amplifier
feedback resistor controls the overall slope of the sigmoid response, while the diode clipper
resistor controls the slope of the response of the sigmoid when the output magnitude is less
than about 50% of its maximum value. The activation function output resistor controls the
maximum output voltage magnitude of the neuron.

Because the relatively steep slope of the sigmoid response was the primary cause for
concern, reducing the values of the feedback and diode clipper resistors was the most
obvious approach. As the activation function is reliant upon the output of the summing
amplifier, it makes little sense to only adjust the diode clipper resistance, as the steep slope
of the summing amplifier’s response would simply overwhelm whatever reduction was
effected in the activation function. Consequently, the two resistors must be adjusted in
tandem to avoid excess gain on either stage. However, a single input, given all other inputs
are zero, should be able to drive the neuron to a maximum or minimum output by itself;
otherwise, if a single signal path is necessary to produce the proper output for the network,
it may attenuate and be lost by the time it reaches the output stage.

An additional adjustment was made in the form of changing the diodes used in the neuron.
Because the 1n4001 diodes used in the initial prototypes are a relatively old component,
1n4148s were used in their place to observe their suitability for this application. Since the
two diodes do not have identical forward bias voltages, additional tuning was necessary to
maintain the proper output voltages.

Component Initial value Tuned value
Neuron amplifier TL084 TL084
Clipping diodes 1n4148 1n4148

Summing feedback resistor 100 kΩ 39 kΩ
Diode clipper resistor 100 kΩ 10 kΩ

Activation output resistor 3.3 kΩ 4.3 kΩ
Table 8.1: TL084-based neuron resistance values

The initial and tuned components and resistances are given in Table 8.1. Given feed-in
resistors with values of 10 kΩ, the initial summing amplifier feedback resistance of 100
kΩ corresponds to a gain of 10. Since this results in a maximum output from the summing
stage with a single input at 10% of its maximum value, this is far too responsive for larger
networks. Reducing the gain to 3 or 4 was found to be the best-functioning range of values,
as lowering the gain beyond this point resulted in an entirely linear response from the
neuron, which results in signal attenuation from layer to layer as the output is no longer
able to reach a maximum value. Similarly, the activation function amplifier functions as an

EEL 4914 Senior Design I

102

inverting amplifier at low current levels, so the gain is controlled by the diode clipper
resistor and activation output resistor in series. Since the feed-in resistor of the activation
amplifier is 20 kΩ, the total resistance of these two resistors in series results in a gain of
around two thirds; overall, this results in a gain of around 2 to 2.7, given the gain range of
the summing amplifier described previously. This results in a neuron response with a much
more gradual response while preserving healthy margins at the extreme ends of the
potentiometer. Using 1n4148s, which have lower forward bias voltages than the 1n4001s,
the activation output resistance must increase to approximately 4.3 kΩ to maintain the
proper output magnitude. Initially, three 1n4148s in series were used to produce a clipping
voltage close to that of the 2 1n4001s in series, but this was reduced to 2 during tuning,
resulting in a more favorable output.

Figure 8.3: Original and tuned TL084-based sigmoid responses

Figure 8.3 shows the original and tuned sigmoid responses of the TL084-based neuron.
The difference between the two responses is obvious; while the original function uses
perhaps 25% of its range, the tuned response uses roughly 70% of its range. This effectively
triples the precision of the synapse, as almost three times as many taps can be used between
the two extremes of the output. Additionally, the reduction in output magnitude from a
maximum overall gain of 1.33 to unity gain prevents cumulative signal distortion.

One consequence of this tuning is the introduction of an offset in the positive and negative
extremes of the sigmoid; while the overall shape of the sigmoid is dramatically better, the
voltage levels of the positive and negative halves of the sigmoid are no longer consistent.
This is predominantly due to the inherent behavior of the TL084, as it is not a rail-to-rail
amplifier and thus is not guaranteed to have equal maximum and minimum output voltage
magnitudes. The TL084s tend to exhibit some play in their maximum output magnitudes;
while pushing them with much higher voltages often results in the high and low values
becoming roughly identical, the lower slope of the summing amplifier and lower gain of
the neuron overall result in some inconsistency between the two.

EEL 4914 Senior Design I

103

Component Initial value Tuned value
Neuron amplifier MCP6274 MCP6274
Clipping diodes 1n4148 1n4148

Summing feedback resistor 100 kΩ 15 kΩ
Diode clipper resistor 100 kΩ 10 kΩ

Activation output resistor 3.3 kΩ 9.1 kΩ
Table 8.2: MCP6274-based neuron resistance values

Figure 8.4: Original and tuned MCP6274-based sigmoid responses

Since rail-to-rail amplifiers offer a significant number of benefits, a neuron design based
around the MCP6274 rail-to-rail amplifier was also produced. As with the TL084-based
neuron, the MCP6274 neuron required a significant amount of tuning. Because the
MCP6274 can operate at 3.3V and is a rail-to-rail amplifier, tuning the output voltage is
not as involved a process as with the TL084. While the rail-to-rail nature of the device
eliminates the voltage offset observed in the tuned TL084, it also makes it much more
difficult to produce the rounded corners found in an ideal sigmoid function. The summing
amplifier gain must be significantly lower, at around 1.5, and the activation function gain
must be higher, at around .95, to produce a proper response, as there is no longer any
overhead in the output of each stage as there was when using 5 V supply rails for the
TL084. These tuning decisions are reflected in Table 8.2, while the results of these changes
are provided in Figure 8.4.

Another factor under consideration is the frequency behavior of each neuron. While there
are no time constants in an ideal system, as the hardware is purely resistive, the amplifiers
themselves are not capable of instantaneous response, especially when multiple stages are
cascaded, as in the neurons. As such, there is an upper limit to the effective frequency that

EEL 4914 Senior Design I

104

each neuron can be operated at; this frequency limit is largely dependent upon the amplifier
used for the buffer and neuron hardware.

Figure 8.5: TL084-based neuron response at 20 kHz

In Figure 8.5 above, the response of a tuned neuron to a single 3.3 Vpp 20 kHz sinusoidal
input is provided. Comparing this result with the tuned output from Figure 8.3, it is clear
that a hysteresis appears as the operating frequency of the neuron increases. Since deviation
of more than 10 millivolts can result in signal corruption, it is not wise to operate the device
near its upper limit. In the case of the tuned TL084-based neuron, output noise began to
appear at around 8 kHz, with obvious hysteresis effects beginning around 15 kHz;
consequently, limiting operation to 5 kHz allows plenty of room for error without
sacrificing too much time during training operations.

Since the inputs of the network can be changed rapidly between high and low voltages,
sinusoidal inputs are not necessarily the most realistic input to test frequency response
behavior with. While a square wave input approximates these inputs more closely, it should
not be taken as a definitive limitation on the operating frequency of the neurons. The output
of each neuron must be read via ADC; as the number of neurons increases, the amount of
time required to measure each neuron output also increases. While it is tempting to assume
that a smaller network can simply be run at higher frequencies than smaller networks, the
rise and settling time of the neurons must be considered. Performing ADC readings too
early in the cycle will result in inconsistent and variable measurements dependent upon the
input combination used, while using too much margin for output settling unnecessarily

EEL 4914 Senior Design I

105

slows down training. Since there are multiple stages cascaded and signal propagation takes
progressively longer as more layers are added to the network, there is no simple formula
for the behavior of a given network. Each network must be evaluated based upon its
dimensions and amplifier technology, and basic experimentation must be performed before
the maximum operating frequency can be determined.

 Four-Neuron Prototype Testing
The four-pixel input neural network prototype consists of four inputs instead of the full
twenty-five, as it is far easier to debug and modify a smaller network. There are seven fully
constructed individual neuron circuits in this intermediate prototype; initially, a total of
eleven neurons was constructed on breadboards, and several tests were performed on each
circuit to verify that multiple neurons could be produced within the desired current and
voltage bounds.

The first test measurements that were taken were the precision voltage regulator outputs.
Since the digital and analog components do not operate on the same voltage levels, the ±5
V used to power the operational amplifiers must be reduced to ±1.65 V to power the digital
portions of the network. After testing the regulator voltages, the voltage levels on each
potentiometer and amplifier was recorded; this was necessary to ensure each component is
being powered correctly, since both the amplifiers and the potentiometers are sensitive to
incorrect supply voltages and a single broken connection can ruin the network.

After verifying proper voltage supplies to the network components, the behavior of the
input signal buffer pairs was checked to ensure that the proper signals were being supplied
to each device. Finally, using an oscilloscope, the output voltages from the wiper of each
digital potentiometer were measured when supplying the maximum input to each neuron’s
inputs to determine whether or not the output voltages were properly scaling with the n be
control signals. This process was performed by using the Teensy to sweep the
potentiometers’ wiper positions between 0 to 255 bits while observing the output of each
potentiometer using an oscilloscope or DMM.

After potentiometer behavior was verified, the final step was to observe the functionality
of the summing amplifier and sigmoid activation stages. Both the input and feedback
currents of both stages were measured; these currents are significant because it is necessary
to maintain currents that are both low enough to minimize power consumption and high
enough to avoid aliasing due to the amplifiers’ bias and offset currents. The resulting
current readings from each neuron can be seen in the two following tables, Table 8.3 and
Table 8.4.

A noticeable degree of variability is present among the neurons tested. While the neurons
are, as a whole, fairly similar, the differences present within the set demonstrates the
difficulty in creating identical neurons, even when the same values and lot of components
is used in each neuron. However, since the training algorithm is quite flexible, it is able to
work around reasonably low levels of variability.

EEL 4914 Senior Design I

106

Neuron

Input Current to
Summing
Amplifier

Feedback
Current on
Summing
Amplifier

Summing
Amp Input

Bias
Current

1 -47uA to +56uA -56uA to +50uA 0.0065uA
2 -50uA to +56.5uA -54uA to +48uA 0.006uA
3 -50uA to +57.5uA -55uA to +48uA 0.0055uA
4 -49uA to +58uA -56uA to +46uA 0.006uA
5 -49uA to +51.2uA -53uA to +49uA 0.0056uA
6 -46uA to +47uA -50uA to +50uA 0.0045uA
7 -59uA to +52uA -51uA to +57uA Negligible
8 -59uA to +52uA -50uA to +57uA Negligible
9 -50uA to +59uA -58uA to +49uA Negligible

10 -54uA to +61uA -40uA to +69uA Negligible
11 -58uA to +52uA -59uA to +57uA 0.008uA

Table 8.3: Summing Stage Current Measurements

Neuron

Input Current to
Activation Stage

Feedback Current on
Activation Stage

1 -0.173mA to +0.204mA -0.210mA to +0.171mA
2 -0.201mA to +-0.176mA -0.202mA to +0.179mA
3 -0.216mA to +0.168mA -0.217mA to +0.171mA
4 -0.216mA to +0.159mA -0.217mA to +0.159mA
5 -0.180mA to +0.180mA -0.180mA to + 0.179mA
6 -0.196mA to +0.182mA -0.204mA to +0.182mA
7 -0.179mA to +0.211mA -0.180mA to +0.203mA
8 -0.179mA to 0.211mA -0.180mA to 0.206mA
9 -0.215mA to +0.182mA -0.216mA to +0.183mA

10 -0.127mA to +0.273mA -0.162mA to +0.272mA
11 -0.178mA to +0.205mA -0.179mA to +0.204mA

Table 8.4: Activation Stage Current Measurements

After acquiring these readings along with the sigmoid response of each individual neuron
via X-Y plots similar to those in Figures 8.3 and 8.4, the project was ready to progress to
the construction of a slightly larger network. At this point, the next step was to construct a
very basic four-to-one neuron network and make sure that the desired sigmoid responses
and current readings were still being generated by each summing and activation stage’s
inputs and feedbacks, which was the case, as anticipated. Results of this testing can be seen
in Figure 8.6 in the following section.

Following these intermediate steps, the completed four pixel input network was assembled.
The four pixel input network is simply a scaled down version of the final design, and will
provide insight into which design implementations work well, and which do not. Since the
number of components is relatively limited by comparison, it is much easier to adjust the
components and devices used in the network, as described later in this chapter.

EEL 4914 Senior Design I

107

8.2 Software/Hardware Integration Testing
After the hardware components comprising the neural network’s neurons and synapses had
passed unit testing and the TACOCAT software and firmware packages had been unit
tested and validated, a subsection of the four-pixel prototype network was fabricated using
solderless breadboards and connected to the MCU and Raspberry Pi mini-PC hardware for
integrated system testing.

The circuit, shown in Figure 8.6:, consisted of a 5-neuron network, with a first layer
consisting of 4 neurons and 4 synaptic inputs per neuron, and a second layer consisting of
1 neuron with 4 synaptic inputs. The Teensy 3.5 MCU was connected to the SPI bus of the
neural network’s digital potentiometer array, and each neuron’s non-inverted output was
connected to a separate ADC input channel on the MCU.

A Raspberry Pi 3B+ mini-PC hosted the TACOCAT software package, and it was
connected to the Teensy MCU via an I2C interface. An Analog Devices AD1250 digital
isolator IC was used to connect the mini-PC and the MCU, which did not share a common
ground level. The Raspberry Pi mini-PC was operated remotely over ethernet via an RDP
connection from a laptop PC running Windows 10.

Since the breadboards suffered from noise problems and tenuous connections, especially
between digital components, the size of the tested network was limited. However, this
testing still produced useful feedback on the behavior of the potentiometers and the SPI
signals and proved that the SPI daisy chain approach would work.

Figure 8.6: Network prototype circuit for software/hardware integration testing

EEL 4914 Senior Design I

108

The +/- 5V supply rails were powered by a laboratory bench power supply, and the primary
side of a commercially available LM317/LM337-based split-rail voltage regulator unit was
connected to these rails in order to power the separate +/- 1.65 V supply rails.

The objective of the integration testing procedure was to ensure that the following
software/hardware interfaces and control systems worked properly:

 Software commands transmitted to the MCU over the I2C interface can be used to
read and modify the state of the neural network.

 The MCU can send updated synaptic weight values to the digital potentiometers
during an appropriate timeframe so that weights will be set for the next recognition
task.

 The MCU’s onboard ADC can read the network’s neuron-output voltages and
transmit them back to the software package.

A Python script was written to implement the test procedures using the existing software
and firmware modules that were developed for the TACOCAT system. For this test, all of
the inputs to the neural network’s first layer were set to their maximum values. Neuron
activation was gradually increased by sequentially incrementing each neuron’s synaptic
weights from 0 (full negative weight) to 255 (full positive weight), for a total of 1024
discrete activation input levels. This input sweep was applied to the first layer before being
applied to the second layer.

At each one of the 1024 synaptic weights for each neuron’s input sweep, an ADC sample
was taken using the MCU to measure the neuron’s output voltage, and the 13-bit ADC
measurement value was transmitted back to the mini-PC. These data points were logged
for later graphical analysis.

Initially, results were inconsistent and appeared to be incorrect. The major cause of this
issue seemed to be a lack of sufficient delay after adjusting the digital potentiometer’s
wiper values before taking a sample reading of the neurons’ output voltages. After adding
a 20 µs delay between the weight-update and output-sampling operations, results became
much more consistent. Plots of total synaptic weight value vs. neuron output level for each
neuron in the test network are shown in Figure 8.7:.

The test results indicate that all of the hardware/software integration interfaces were
operating as expected. Further testing and validation will be needed to obtain quantitative
data regarding reliability and accuracy of these systems, but these preliminary results
indicate that the TACOCAT system components did not have any major operational errors.

A secondary objective of integration testing was to develop a test platform that could be
re-used for validation of circuit board assemblies during the next phase of the prototyping
process. This validation logic may also be included in the final TACOCAT
software/firmware package’s initialization and self-checking diagnostic routines.

EEL 4914 Senior Design I

109

Figure 8.7: Software/hardware integration test results

8.3 Four Pixel Network Op. Amp Testing
Part of validating the design of the four-pixel network’s design, is to ensure that the
operational amplifier components used in the neuron and synapse circuits perform well
with respect to the desired design specifications. One of which, is power consumption. To
maintain a low power consumption throughout the entire network, low rail voltages and
efficient use of supply drain current must be taken into consideration. This is the main
concern when performing tests of these operational amplifier components and the
following tests that were performed.

Firstly, the rail voltages of the operational amplifiers that were chosen for the prototype
design, the TL084 Quad op. amp. chips require a +5V to -5V minimum VCC rail voltages.
Other components in the neural network circuit only require a +1.65V to -1.65V rail
voltages, like the digital potentiometers and the Teensy 3.5, which only needs to have 3.3V
VCC. To simplify the overall design of the circuit, and consume less power, an operational
amplifier chip needs to be chosen with the same rail voltages, preferably one with bipolar
rail to rail voltages run at +/- 1.65V. Furthermore, simplifying the supply voltages of the
final neural network, allows for a reduction in complexity of the PCB layout of the 4-
neuron modular PCB design. There would no longer be a need for divided voltage planes
and vias for the TL084 op. amps, as the newly chosen op amps could use the same +1.65V
to -1.65V rails or planes of the PCB.

Two primary operation amplifiers in the market were chosen to be used for tests in a
prototype 2-neuron circuit with 4 synaptic weights each, the TL974 and MCP6274 Output
Rail-To-Rail Very-Low-Noise Operational Amplifiers. The circuit components that
remained from the previous prototype design include the MCP42010 digital potentiometers
for the synaptic weights, and the 1N4001 rectifier diodes for the sigmoid activation

EEL 4914 Senior Design I

110

function circuit of the neuron. This is to ensure that only the amplifiers are being modified
in the circuit, and that a change in results will only be tied to the change in amplifiers.

The primary tests considered for the performance of each amplifier, was the sigmoid
response of each neuron, as this was most significant response to test. As changing the ratio
of input voltages to the summing amplifier circuit, to the output voltage of the sigmoid
activation function circuit as a result from lowering the rail voltages, could alter the training
time and performance of the final network’s design. Aside from the performance of the
sigmoid response of the neuron, the viability of using these amplifiers as buffers and
inverters for the input synapse circuits needs to be tested for true voltage polarity inversion
and buffering.

The first operational amplifier in contention is the TL974 operational amplifier. It offers
potential operation at low rail-to-rail voltages, as low as +/-1.35V and features very low
noise and low distortion. However, the functional block diagram of the data sheet reveals
that it is a BJT differential input amplifiers. This would suggest a larger current draw at the
input terminal of the amplifier, and a much higher temperature variance than a JFET input
amplifier would have. To validate the sigmoid response of the circuit, the response was
measured using the same +1.65V to -1.65V rail voltages supplied to all components, while
removing the LM317 and LM337 regulator pairs that were used for the previous prototype
circuit configuration. The resulting sigmoid response, at the extremes of the inputs to the
summing amplifiers can be seen in Figures 8.7a and 8.7b.

As shown from the oscilloscope image of the sigmoid response, the performance of the
voltage extremes in the sigmoid response of the circuit is largely degrades in resolution,
and noisier. This can be explained by the fact that a much higher input bias current in
necessary to drive the inputs of this operational amplifier. Only voltage ranges in the input
of the summing amplifier and the output of the sigmoid circuit can be seen in the range of
-700mV to + 700mV.

To validate the performance of the input synapse circuit’s drivers, the inverting and buffer
op. amp. circuits, a simple circuit consisting of just the TL974 op. amp. chip, supply
voltages of +/-1.65V from a DC power supply, and wires and high-power tolerance
resistors were used to build the buffer and inverter circuits. A largely varying output
voltage at the outputs of these circuits were observed. Finally, the input voltages at the
inverting and non-inverting terminals of the operation amplifier were measured to ensure
an adequate open-loop performance was obtained from these op. amps. Voltages in the
range of 600mV were seen at the inverting terminal while voltages in the range of 700mV
were measured in the non-inverting terminal. When taking the very large open-loop gain
of an op. amp into account, this can explain the poor circuit driver performance of the
synapse circuit, and ultimately prove a poor choice for the final neural network design.

Next operational amplifier considered for the final network design, the MCP6274 low
noise, 0.9V/us slew rate, low rail-to-rail voltage supply, Quad JFET operational amplifier

EEL 4914 Senior Design I

111

Figure 8.5: Sigmoid response using TL974 op amps shown at their maximum (a) and
minimum (b) amplitudes with respect to the weighted and summed inputs

was used for similar tests. First and foremost, the most significant difference from this
amplifier when compared to the TL974, is the fact that it offers a JFET differential input
to the op amp. This means that a much lower power dissipation in the op amp, as the input
bias current of it’s internal circuit would demand a current draw from input terminals of
about +/-1 pA range. When compared to the TL974, which offers an input bias current of
1000nA (when operated in +/-2.5V range according to the data sheet), the difference is
obviously orders of magnitude. Even at these small current magnitudes, the large number
of these op amps that would be needed for the final network design would quickly add up
to a much higher power consumption.

The performance of the sigmoid response using these operational amplifiers was tested
using the same testing procedure described above, for the TL974 op amp. The transfer of
the input voltages to the transfer function versus the output voltages of the sigmoid

EEL 4914 Senior Design I

112

activation function circuit can be seen in the oscilloscope images taken and shown in Figure
8.8a and 8.8b, below.

An adequate +1.65V to -1.65V range of output voltages in the sigmoid response can be
seen while using these MCP6274 op amps. One concerning result from this test, is the lack
of vertical portion of the sigmoid response. To yield a proper sigmoid curve, further tests
need to be performed when changing the ratio of resistors to provide a smaller/larger
feedback in the summing amplifier circuits and the activation function circuits. However,
the MCP6274 shows promising results for the final network design and will be used in
following experimentation for adjusting the resistors of the summing activation function
circuits of the 4-pixel network and final network design.

Figure 8.6 Sigmoid Response using the MCP6274 op amps shown at their maximum (a)
and minimum (b) amplitudes with respect to the weighted and summed inputs

EEL 4914 Senior Design I

113

8.4 End-to-End Testing of Four-Pixel Network Prototype
Following the unit testing of a breadboarded version of the four-pixel network hardware,
the decision was made to design and order printed circuit boards for the fabrication of a
working small-scale network prototype. Using a modular design approach, each circuit
board represents an individual layer in the network, allowing layers to be added or removed
without any additional PCB design work, provided that each layer contains no more than
four neurons, each with a maximum of four synaptic inputs.

The goal for complete end-to-end testing of the four-pixel prototype network was to train
the network to an accuracy rate of 100% for recognition of the binarized/black-and-white
four-pixel line orientation data set. Validation was conducted by stimulating the network’s
input synapses and measuring the voltage at each output-layer neuron.

 Hardware Configuration
The four-pixel network prototype, designed as described in previous chapters, was
mounted semi-permanently to a wooden panel (see photograph in Figure 3.12). Two
custom PCBs represented the hidden layer and output layer of the neural network. A
Teensy 3.5 MCU was used for circuit-level control of the network training operations
according to instructions provided by a Raspberry Pi 3 Model B+ mini-PC. The MCU and
mini-PC modules shared an I2C-based data link with galvanic isolation provided by an
Analog Devices ADuM1250 digital isolator IC.

The network was powered by a regulated DC bench power supply, which provided a split-
rail supply at +/- 5V. An onboard combination LM317/LM337 regulator circuit was used
in conjunction with additional 3.3V regulation on the Teensy MCU to create additional
split-rail supply lines at +/- 1.65V.

The Raspberry Pi mini-pc was controlled using VNC-based remote access from a Windows
10 laptop via ethernet connection. The mini-pc unit’s ethernet jack is galvanically isolated
to eliminate any problems caused by mismatched ground levels between the two ethernet
controllers.

 Software/Firmware Configuration
The mini-pc was loaded with the Python-based neural network model and training control
modules that are described in section 6.4. The MCU was programmed with the firmware
package that is described in section 6.5.

 Testing Procedure
The Python-based training algorithm was run using the binarized four-pixel line orientation
data set, which consists of six samples (representing all possible 4-pixel images that contain
exactly two white pixels and two black pixels). Each image can be classified according to
the spatial orientation of a line connecting two pixels with the same activation state. The
three image classes are labeled “Vertical”, “Horizontal”, and “Diagonal”.

The training algorithm was configured to run for 200 training epochs. At the end of each
training session, the network’s trained state was validated using the full data set. Due to

EEL 4914 Senior Design I

114

the small size of the binarized four-pixel data set, cross-validation techniques were not
found to be applicable.

 Test Results
In initial runs of the training algorithm, the network failed to converge. Even after long
training runs of up to 20,000 epochs, the accuracy of the network appeared to oscillate
randomly. Upon analyzing the training model and comparing it to the hardware design, a
discrepancy was found in the input-layer voltages that correspond to the training data’s
input values. The initial configuration of the prototype device was using high and low
logical voltage values to represent the binary input values 1 and 0, but because the network
is designed to represent positive and negative weights, the high and low logic voltages of
+1.65V and -1.65V actually represent input values of +1 and -1.

In order to represent the intended binary input values of 1 and 0 as they appear in the
software training model, two simple modifications were made to the prototype’s hardware
and firmware. First, each input-driver pin on the Teensy MCU was connected to the 0V
ground supply line via individual 3.2 kΩ resistors. Second, the firmware’s input-driving
function was modified to place each input-driver pin in a high-impedance/floating state
whenever it is set to the binary 0 value by the training software. When the pin is set to a
high-impedance state, the attached resistor pulls the pin’s voltage to 0V.

After making these modifications, performing some minor firmware debugging, and
testing a small number of different pseudorandom initial synaptic weight sets, the prototype
was successfully trained to 100% accuracy and validated using the full four-pixel binary
training data set. A graph depicting changes in network accuracy during the training
process is shown in Figure 8.7, and validation results showing the Teensy ADC-based
voltage output readings for each input sample are provided in Table 8.5.

Figure 8.7: Accuracy percentage by training epoch for four-pixel network prototype.

EEL 4914 Senior Design I

115

Input Sample
ADC Readings of Neuron Output Voltages

(scaled from -1.0 to 1.0)

Vertical Horizontal Diagonal

 0.73068001 -0.72677329 -0.740691

-0.26114028 -0.49578806 -0.88621658

-1.0 1.0 -0.98559394

-0.90282017 0.52264681 -0.93505067

-0.85642779 -0.99511659 1.0

-1.0 -0.89720425 0.83347577

Table 8.5: Prediction results from four-pixel prototype network test. The network’s
prediction is indicated by the output neuron with the highest voltage.

ADC readings from the Teensy MCU were confirmed manually by measuring output
voltages with a digital multimeter. The MCU’s 13-bit unsigned ADC output was scaled to
a range of -1.0 to 1.0 for readability. These numbers translate to a voltage range of -1.65V
to 1.65V.

 Conclusions
Once the debugging was completed, the prototype exhibited training and prediction results
that were comparable to those found in the software model. This is a positive indication
that the foundational design for the final TACOCAT network is working properly. While
the training software was set to run for 200 epochs, the network first reached 100%
prediction accuracy in less than 150 epochs.

Most input samples showed a substantial voltage difference between the maximum output
level and the next lowest voltage level, which is favorable for use with an analog
comparator/LED-based visual output interface module. The smallest of these differences
in the test results occurred in the second test sample shown in Table 8.5. The difference in

EEL 4914 Senior Design I

116

the ADC values of -0.26114 and -0.49579 translates to a voltage difference of
approximately 37.9 mV. This voltage difference is an order of magnitude larger than the
hysteresis voltage levels used in typical comparator ICs, so it seems unlikely to cause
problems in the LED/comparator output section.

After completing these tests, plans have been made to enhance the training logic in the
TACOCAT software package by considering not only the accuracy of the network’s
predictions, but the minimum difference between its prediction output levels, which
corresponds to the certainty of the network’s predictions. Subsequent testing has shown
that it is possible for the network to achieve minimum distances approaching the full output
voltage range in less than 200 epochs, so in the case of the four-pixel test network, training
for this additional criterion does not seem to incur any real additional costs.

After noticing that different starting weights created distinctly different training patterns,
plans have also been made to include an “outer loop” in the training algorithm that can re-
train the network using multiple sets of starting weights. By using the best results from
training sessions with different starting weights, the network may be able to achieve higher
levels of accuracy and prediction certainty than it would by only using the results from a
single set of starting weights. While training with a single starting-weight set appeared to
be sufficient for the four-pixel network, it might be a significant limitation on the training
process for the large-scale TACOCAT prototype, which will be performing a much more
complicated recognition task.

EEL 4914 Senior Design I

117

9 Administrative Content
To manage sustained progress and ensure creating a functional artificial neural network
that is affordable, some administrative content needs to be considered. In this chapter our
overall project budget and timeline for completion will be discussed. A project budget is
essential for any major design project and will keep track of all costs. The project
milestones exist as a guideline for goals to reach and a reminder to stay on track. This
project will be developed over an approximate six month period and will be documented
accordingly to keep a steady pace.

9.1 Project Budget
At present, this project is entirely self-funded by its participants. The current goal of this
project is to build a 4-pixel (2x2) test network designed for basic pattern recognition, then
use the results and behavior of this network to improve and up-scale the design to a 25-
pixel (5x5) network for basic handwriting recognition. Because the costs of the network
increase exponentially with the size of the network, a reasonable limit must be placed on
the dimensions of the input image and on the width of each layer in the network. Since, as
previously discussed, certain networks have more to gain from increased depth than width,
it is possible to reduce the total costs of the network while simultaneously improving
performance by using multiple smaller layers instead of a few wide ones. This becomes
increasingly important as the number of inputs increases, as each neuron in the first hidden
layer requires synapse hardware between it and the input layer. To put this into perspective,
the difference between a 10-neuron layer and a 4-neuron layer for the first hidden layer of
a 25-input network is 150 potentiometers, which, at $2 per 2-potentiometer MCP42010
chip, is a reduction in price of approximately $150. Even if two additional 4-neuron layers
are connected in series with this first layer, a net reduction of 118 potentiometers or $118
results, more than enough to offset the cost of the additional boards and neuron components
despite the overall neuron count increasing relative to the single 10-neuron layer
implementation.

Because the overall dimensions of the final network will depend upon the performance of
the 4-pixel test network, it is difficult to produce an error-proof budget for the project.
However, by taking advantage of the cost-saving measures discussed previously, it is
possible to reconfigure the network to maximize the possible performance from limited
hardware. With these considerations in mind, the project budget provided in Table 9.1
results. Again, it should be noted that this is merely a rough estimation of the project budget
management and is subject to change as time goes on.

EEL 4914 Senior Design I

118

Budget item Allocated funds Comments
Prototyping development

boards
$50 Already acquired

PCBs $150 Assuming 2 total networks
Network microcontrollers $50

Potentiometers $250 Assuming MCP42010 use
Operational amplifiers $75 Assuming TL084 use

Buffer and neuron
feedback resistors

$25 Assuming 5% .25W axials

Activation clipping diodes $25 Assuming 1N4001 use
Sample collection

camera/pad
$100 Dependent upon method

Total $725
Table 9.1: Estimated project budget item breakdown

The first set of items provided for is the group of prototyping development boards needed
for the network. While the ideal end result will be total integration of the training
microcontroller into a custom PCB, the complexity of the later networks may be so big that
this is not a practical goal. Regardless, some kind of development board is necessary for
both performing the necessary ADC readings and training and for supplying the numerous
voltage supplies and signal inputs to the network.

The next budget item listed is the allocation for the project’s PCBs. While the manufacturer
used for this project, JLCPCB, is able to produce modestly sized 2-layer PCBs at less than
$1 per board before shipping, this price increases sharply when dealing with 4-layer boards,
as may be the case for the final network. Because the cost is potentially $10 to $20 per
board in this situation, a healthy amount of breathing room has been provided. If 2-layer
PCBs are practical for the final network, this budget should be more than sufficient.

The third item listed is the network microcontroller provision. While the network is
currently being handled by development boards and external computers, these processors
will need to be re-purchased and integrated along with the necessary external hardware.
Although the processors are not particularly expensive, more than one may need to be
purchased along with additional components, so an allocation similar to that of the
development boards has been provided.

The next item, the potentiometers, is by far the largest single item on the budget. While the
potentiometers themselves are not ridiculously expensive, the comparisons provided in
Chapter 3 produce a price point of around $.80 to $1 per potentiometer. A 100-3 network
would require one potentiometer per connection, or 300 potentiometers, which would
quickly run over budget if any problems were encountered; as a result, the maximum
network size that can be achieved by this project is limited by budget.

The operational amplifiers for this project, by contrast, have a much smaller allocation.
Assuming a quad-potentiometer chip is used, only one chip is required per neuron, along
with one chip for every two inputs. At $.50 to $.60 per chip for the TL084, for instance,

EEL 4914 Senior Design I

119

this amounts to a cost of only $25 to $30 for a 100-input network, or around 10% of the
price of the potentiometers. A fair amount of room has been provided beyond this level in
the event that more expensive amplifiers or a different, more hardware-intensive network
implementation is chosen.

The next two items are the external resistors and diodes for the buffers and neuron
architecture. The number of resistors is relatively low and dictated by a number of factors,
and the number of diodes is always four times more than the number of neurons. While the
overall price for these components is quite low, at around $.02 per resistor and $.20 to $.30
per diode, the resistor values and diodes used are subject to change as the performance of
the network is evaluated. Consequently, the budget has been set up under the assumption
that additional purchases will need to be made.

Finally, the sample collection device is the least certain section of this budget. Because
sample collection can only be integrated once the complexity and design of the final
network have been evaluated, it is difficult to ascertain how complicated the setup will be,
which kind of device will be preferable, or what the total cost of implementation will be.
A tentative price of $100 has been attached to this task, though this is by no means a
certainty.

Though it is not yet certain, this rough price outline is enough knowledge to get started
with the project. Our budget should not be a limiting factor when designing the network
and will be closely monitored as progression is made. Choices will be made to maximize
performance while minimizing cost in the most efficient manner possible.

9.2 Project Milestones
The milestones listed here are general estimates based upon both our current progress and
general rate of progress to date. These goals are somewhat pessimistic, as adequate room
must be left for unanticipated complications, setbacks, or delays. It is reasonable to assume
that the given milestones will, on average, be met slightly ahead of time, but that milestones
may not necessarily be met in order or always be met on schedule. As a significant amount
of research has already been performed prior to the beginning of this project, a fairly
substantial amount of prototyping of the constituent portions of the network and testing of
the individual neuron and synapse devices has already been completed. Since the network’s
neurons and synapses have already been successfully tested both individually and in
combination, the first significant step is to construct a basic 4-input network and attempt
to train it to perform basic pattern identification using the prototyping and component
testing data. Once this test network is completed and trained, the most significant hurdle
of this project will be passed, as increasing the size of the network once a functioning
network has been produced is predominantly a logistics problem rather than a technical
one. Using the test network as a starting point, immediately following goals are to
streamline the training algorithm and correct any chronic identification errors, potentially
build a larger intermediate network to scale up and test the efficacy of troubleshooting and
design the final network’s PCB and peripheral hardware. While the current final goal is to
produce a 25-input, multi-layer network capable of differentiating between several

EEL 4914 Senior Design I

120

different letters at a time given a 5x5 input, the number of inputs and outputs in the final
network may increase or decrease as the difficulty and complexity of the project is
assessed. A rough schedule of milestones throughout both semesters of this project is given
in Table 9.2 and Table 9.3.

Date Goal Comments Status

September
30

4-pixel test network
built on breadboards

 Met, ahead of
schedule

October 15 Complete initial training
algorithm for 4-pixel
test network; integrate
microcontroller into
network to prepare for
training

2 weeks to modify
training algorithm to be
compatible with
physical network

Milestone skipped
in favor of PCB
implementation

October 31 4-pixel network trained
and evaluated; 60-page
draft completed

2 weeks for
troubleshooting and
adjusting algorithm

Milestone skipped
in favor of PCB
implementation

November
15

Finished refining
algorithm; potentially
construct intermediate
network if necessary;
100-page draft
completed

Additional 2 weeks for
algorithm streamlining
or ordering parts if
necessary

Met on schedule;
4-pixel PCB-based
network
substituted for
intermediate
network

November
21

Intermediate network
trained and evaluated

May not be performed
depending on 4-pixel
network performance

Met on schedule;
merged with 4-
pixel network
milestones

December 2 Finalize part list that
will be used for first
iteration of final design;
final documentation
completed and
submitted

Parts list dependent
upon performance of
prototype networks

Met on schedule

Table 9.2: Senior Design I milestones

It should be noted that the milestones for the 4-pixel and intermediate network were
adjusted or skipped after the results of breadboard testing. The inconsistent and error-prone
nature of breadboard testing resulted in intolerable difficulties in network evaluation, so
the 4-pixel breadboard network and intermediate PCB network goals were merged to allow
for meaningful data to be recorded. Consequently, the intermediate network in these
milestones is effectively the PCB implementation of the 4-pixel network, while the original
4-pixel network is the original breadboard implementation.

EEL 4914 Senior Design I

121

Date Goal Comments Status

January 15 Network hardware
component of PCB
design complete
(neurons, synapses)

6 weeks including winter
break to collect footprints
and design PCB network
layout

Begun, ahead of
schedule

January 21 Power, microcontroller,
communication
components of PCB
finished

Additional week to finish
layout of peripherals and
power

Begun, ahead of
schedule

February 7 First iteration PCB
ordered and populated

1-2 weeks to obtain and
build

Not yet started

February 14 First iteration training
completed

1 week due to
streamlining from earlier
networks

Not yet started

February 21 PCB updated and re-
ordered if necessary

Additional week to
troubleshoot and update
design

Not yet started

March 7 Corrected PCB obtained,
built, and retrained

2 weeks to obtain
PCB/parts and
retrain/troubleshoot

Not yet started

March 21 Finalized training and
hardware

 Not yet started

March 31 Complete integration of
sample reader

Dependent upon overall
progress and chosen
method of reading new
samples

Not yet started

April 15 Network organized and
completed

2 weeks to neaten up
setup and smooth any
remaining issues

Not yet started

Table 9.3: Senior Design II milestones

A significant amount of progress towards the milestones listed in Table 10.3 has already
been made due to the earlier-than-expected PCB implementation process used to substitute
the intermediate network. As such, most of these milestones will likely be met far ahead of
schedule, allowing for additional troubleshooting and design revisions. This is ideal as we
will be able to work more comfortably within the deadline of the project.

EEL 4914 Senior Design I

122

10 Appendices
10.1 Appendix A: Copyright Permissions

EEL 4914 Senior Design I

123

EEL 4914 Senior Design I

124

EEL 4914 Senior Design I

125

Permission Request for titanium dioxide memristor diagram from https://www.elprocus.com/

Permission Request for Teensy 3.6 Development Board image from https://www.adafruit.com/

EEL 4914 Senior Design I

126

Permission Request for MCP42XXX digital potentiometer pin out image from https://www.microchip.com/

EEL 4914 Senior Design I

127

10.2 Appendix B: Component Information

Figure A1.1: MCP42010 Digital Potentiometer Pin Out

Figure A1.2: Teensy 3.5 Board Pin Out

EEL 4914 Senior Design I

128

10.3 Appendix C: References
Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). EMNIST: Extending MNIST
to handwritten letters. Proceedings of the International Joint Conference on Neural
Networks, 2017-May, 2921–2926. https://doi.org/10.1109/IJCNN.2017.7966217

Koopman, P., & Chakravarty, T. (2004). Cyclic Redundancy Code (CRC) polynomial
selection for embedded networks. Proceedings of the International Conference on
Dependable Systems and Networks, 145–154. https://doi.org/10.1109/dsn.2004.1311885

LeCun, Y., Bottou, L., Bengio, Y., & P. Haffner. (1998). Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Maxino, T. C. (2006). The Effectiveness of Checksums for Embedded Networks. Ieee
Transactions on Dependable and Secure Computing, 6(May), 59–72.

Mikhaylov, Alexey & Morozov, O. & Ovchinnikov, P. & Antonov, I. & Belov, A. &
Korolev, Dmitry & Koryazhkina, M. & Sharapov, Alexander & Gryaznov, Evgeny &
Gorshkov, O.N. & Kazantsev, Victor. (2017). Towards Hardware Implementation of
Double-Layer Perceptron Based on Metal-Oxide Memristive Nanostructures.

Nicholson, Chris. “Spiking Neural Networks.” Skymind, 2019, skymind.ai/wiki/spiking-
neural-network-snn.

Pfeiffer, Michael, and Thomas Pfeil. “Going Deeper in Spiking Neural Networks: VGG
and Residual Architectures.” Frontiers, Frontiers, 25 Jan. 2019,
www.frontiersin.org/articles/10.3389/fnins.2019.00095/full.

Rajput, Abhishek. “Introduction to ANN: Set 4 (Network Architectures).” GeeksforGeeks,
17 July 2018, www.geeksforgeeks.org/introduction-to-ann-set-4-network-architectures/.

Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and
extensions to Python’s scientific computing stack. Journal of Open Source Software, 3(24),
638. https://doi.org/10.21105/joss.00638.

Soni, Devin. “Spiking Neural Networks, the Next Generation of Machine Learning.”
Medium, Towards Data Science, 16 July 2019, towardsdatascience.com/spiking-neural-
networks-the-next-generation-of-machine-learning-84e167f4eb2b.

Stewart, Matthew. “Intermediate Topics in Neural Networks.” Medium, Towards Data
Science, 27 June 2019, towardsdatascience.com/comprehensive-introduction-to-neural-
network-architecture-c08c6d8e5d98.

Tisan, Alin & Oniga, Stefan & Gavrincea, Ciprian, “Hardware implementation of a MLP
network with on-chip learning”, (2006), 5th WSEAS Int. Conf. on Data Networks,
Communications & Computers.

Zyarah, A. & Ramesh, A. & Merkel, C. & Kudithipudi, D., "Optimized hardware
framework of MLP with random hidden layers for classification applications," Proc. SPIE
9850, Machine Intelligence and Bio-inspired Computation: Theory and Applications X,
985007 (12 May 2016); https://doi.org/10.1117/12.2225498

