# **Enhanced Driver Awareness Detection System**



Critical Design Review Group 5

Project is original without sponsors or external contributors.

Image: The Wide World of Off-Roading (caranddriver.com)

#### **Team Overview**



Gage Libby
B.S. Electrical Engineering
Interest: Off-road

Focus: Sensor Integration, Microcontroller Integration



Josh Weed B.S. Electrical Engineering Interest: Off-road

Focus: Power Distribution, Circuit Protection



Paul Ramos
B.S. Photonic Engineering
Interest: Autocross

Focus: Heads Up Display, Cameras



Scott Jokela B.S. Computer Engineering Interest: Motorcycles

Focus: Software, Video/Data Management, System Control

### **Motivation**

Off-road travel has the potential to be challenging, mentally taxing, and dangerous.

Terrain can be misjudged leading to vehicles becoming stuck or damaged.

Though ill advised, many venture off-road alone.



Image: Lend a Hand: Off Road Hand Signals For Spotting On The Trail (4wheelparts.com)

#### **Solution Vision**

The objective of this project was to provide information to aid in driver decision making when navigating difficult terrain without the use of a spotter or leaving the vehicle.

System will provide live video feed for driver to assist in hazard identification and route selection.

System will have auxiliary sensors for vehicle and environmental awareness.

Designed as a retrofit to vehicles without existing systems.

Will not interfere with existing factory systems.



Project Prototype Jeep Wrangler

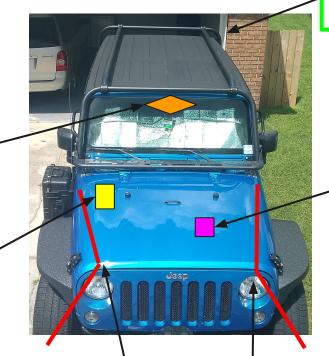


# **Constraints and Standards Impact**

Our design decisions for potential solutions are dictated by the constraints we operate under.

Many standards covered aspects of our project but required purchase. In a commercial setting these could be purchased from groups such as the Society of Automotive Engineers (SAE), International Standards bodies, and the Federal Motor Vehicle Safety Standards (FMVSS) to be used as design resources.

| Constraints Highlights                                             |                                                                                   |                                                        |                                                        |                                    |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------|--|
| Economic                                                           | Time                                                                              | Environmental                                          | Manufacturability                                      | Health/Safety                      |  |
| Self-Funded, Not<br>a commercial<br>venture, limited<br>investment | Competing priorities:<br>Student course load,<br>family, and work<br>requirements | Legal and<br>Responsible<br>location to test<br>system | Tools we have access to, lack thereof  Team Experience | Inability to<br>meet as a<br>group |  |
| Tight Budget                                                       | Limited Amount                                                                    | Harsh<br>Environment<br>Survivable                     | One-off, small scale production                        | COVID<br>Restrictions              |  |


| Highlighted Standards                             |                                              |  |  |  |
|---------------------------------------------------|----------------------------------------------|--|--|--|
| SAE J1292 Wiring FMVSS #101 Controls and Displays |                                              |  |  |  |
| ISO 26262 Automotive Safety Assist                | IEEE/ISO/IEC 29119 Software Testing Standard |  |  |  |
| IP Ratings IEC 60529                              | RoHS Hazardous Substance Exposure            |  |  |  |
| SAE J17557-1, -2, -3 Vehicle Displays, HUD, Power | WEEE 2002/96/EC Waste Disposal               |  |  |  |

### **Solution Actual**

Rear camera Rear proximity sensors

In cabin main control, video display, heads up display

Inside engine bay battery, power distribution hub, circuit protection



Engine bay temperature sensor

Passenger side camera, 160 degree FOV Driver side camera, 160 degree FOV

# **Requirements and Specifications**

Table 1 Requirements and Specifications

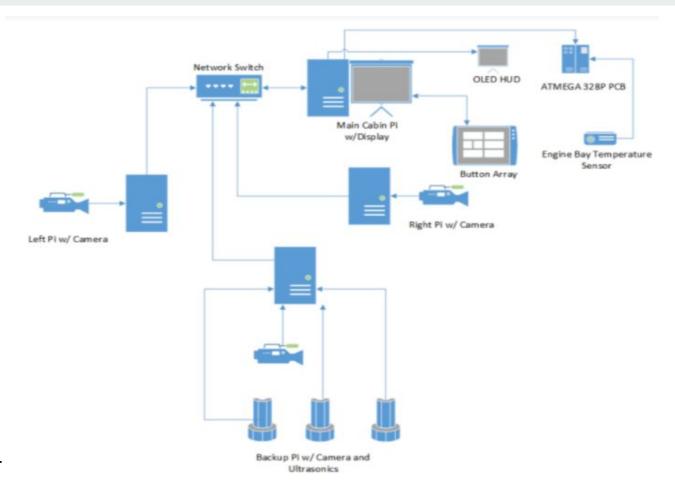
| Project Requirements and Specifications  |                                                                  |                                                                 |                |  |  |
|------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------|--|--|
| Requirement                              | Specification                                                    | Verify                                                          | Result         |  |  |
| Remain in Budget                         | System Cost < \$800                                              | Track Receipts                                                  | \$707.34       |  |  |
| Compact Form Factor                      | System Weight < 10 kg                                            | Weigh Unit                                                      | 6.85 kg        |  |  |
| Separated from Main<br>Electrical System | Disconnect at 12.2 V                                             | Perform Low Voltage<br>Disconnect test                          | Y              |  |  |
| Camera Coverage                          | 1080 P<br>Infared<br>FOV > 180 degrees                           | Mark designated grid<br>and measure angle of<br>camera coverage | 270<br>degrees |  |  |
| Video Display in<br>Cabin                | Real time view by<br>driver, multiple feeds                      | Visual Inspection                                               | Y              |  |  |
| Sensor Function                          | Proximity alerts w/in<br>2', HUD warning,<br>Camera full screen  | Test according to designed procedure                            | Y              |  |  |
| Sensor Function                          | Temperature sensor<br>alerts via HUD if<br>threshold is exceeded | Set temperature<br>threshold, exceed, and<br>examine HUD        | Y              |  |  |
| HUD Interaction                          | HUD is visible to<br>Driver, Lens 2xs<br>magnification           | Visual Inspection,<br>Measure object<br>magnification           | Y > 2xs        |  |  |



Above: Main Cabin



Above: Engine Bay


# System Block Diagram

Rear



Passenger Front

Driver







Components

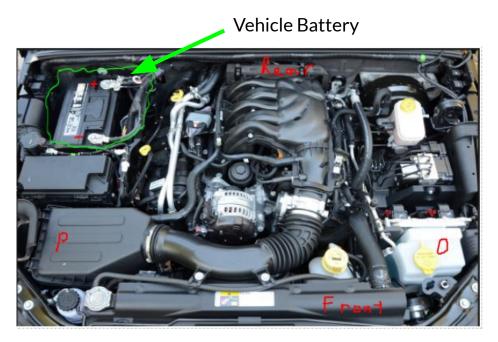






#### **Distribution HUB**




Zoom, Proximity Sensor

# **System Power Distribution**

| System Power Needs       |                                                   |  |
|--------------------------|---------------------------------------------------|--|
| Demand Item              |                                                   |  |
| 5V DC @ 3 Amp Max (4)    | Microcontrollers, Sensors                         |  |
| 7V DC @ 1 Amp Max (1)    | Microcontroller Integration                       |  |
| 12V DC @ 3 Amp Max (1)   | Main Cabin Display Unit                           |  |
| Use external batteries   | Pro: Separate from main<br>Con: Must be charged   |  |
| Use main vehicle battery | Pro: Already present<br>Con: Must be stepped down |  |

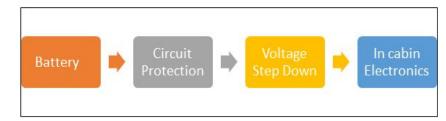
The stock vehicle battery was selected to be used to power this project.

- 1. Charging infrastructure in place
- 2. Ample capacity for use when vehicle is on or off with 600 cold cranking amps, 120 minute reserve capacity and a 70 amp hour rating.
- 3. Less maintenance without a need to charge additional batteries.




60" Wide x 22" Long

#### Implementation:

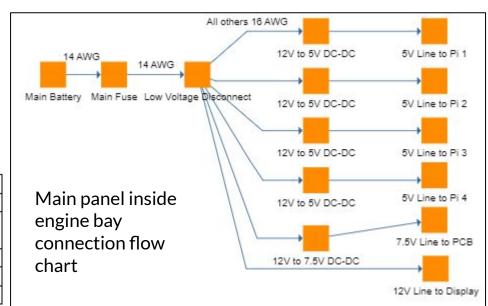

Firewall Pass through, Circuit Breaker

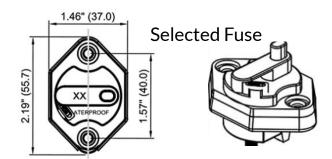




### **Circuit Protection and Power Distribution**

|                               | Circuit                                                                       | Protection Conside                      | rations            |                                                                                        |
|-------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|--------------------|----------------------------------------------------------------------------------------|
| Item                          | Operating<br>Condition                                                        | Realization                             | Location           | Function                                                                               |
| Fuse                          | 20 Amp Fuse                                                                   | Manual Reset<br>Inline Fuse             | Main<br>Panel      | Acts to prevent<br>dangerous over<br>current conditions                                |
| Low<br>Voltage<br>Cutoff      | Isolate once<br>battery drops<br>below 12.2 V<br>(50% charge)                 | Purchased Unit                          | Main<br>Panel      | To prevent<br>draining the main<br>vehicle starting<br>battery                         |
| Reverse<br>Bias<br>Protection | If a reversed polarity is detected, isolate electronics from source           | One-way<br>connectors                   | Main<br>Panel      | To prevent<br>damage to<br>electronics in<br>event battery is<br>reversed              |
| Brown<br>Out                  | Prevent<br>microcontroller<br>operation during<br>under voltage<br>conditions | Built into<br>Raspberry Pi<br>Interface | In Cabin<br>Center | Prevent faulty<br>operating due to<br>difficulty<br>distinguishing<br>between voltages |

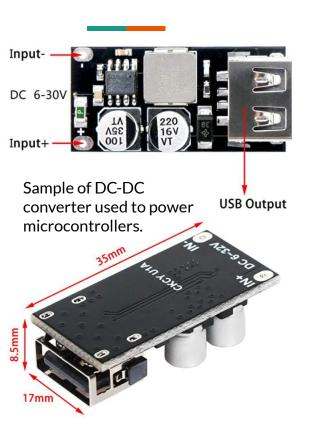




#### Purchase vs. Design

- Time
- Cost
- Efficiency
- Form Factor

# **Circuit Protection and Power Distribution**

| Fuse Selec                         | ction                            |
|------------------------------------|----------------------------------|
| Power Lines from Central Panel     | Trip current > 16 Amp            |
| Raspberry Pi max 3 Amp (x 4) = 12A | Resistive load- fast acting time |
| PCB max 1 Amp (x1) = 1 A           | Manual reset                     |
| Display max 3 Amp (x1) = 3A        | Compact Form Factor              |
| Overall 16 Amp Max Load            | Voltage and Interrupt Rating     |

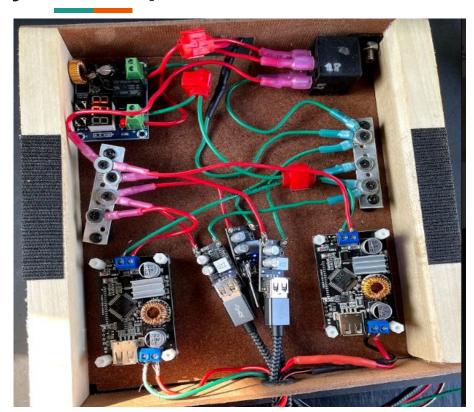







Low Voltage Cutoff @ <12.2 V

#### **Circuit Protection and Power Distribution**




| DC-DC Converters     |                                  |             |                  |  |
|----------------------|----------------------------------|-------------|------------------|--|
| Item                 | Specifications                   | Cost (\$)   | Comments         |  |
| DC Step Down         |                                  |             |                  |  |
| DC Buck Module,      | 6V-32V 30V 24V 12V to            | 13.99       | 1 pack           |  |
| DROK Adjustable Step | 1.5-32V 5V 5A                    | 10013013031 | Unit cost: 13.99 |  |
| Down Voltage         | USB Port                         |             | Supply PCB       |  |
| Regulator            |                                  |             | 1878-1903        |  |
| USB Buck Converter,  | 6-32V 12V 24V to 5V QC           | 11.99       | 4 pack           |  |
| DROK 4pcs DC-DC      | 3.0                              |             | Unit cost: 3.00  |  |
| Step Down Module     | USB Port                         |             | Supply           |  |
|                      | equity emporation 545, et \$1000 |             | Microcontrollers |  |

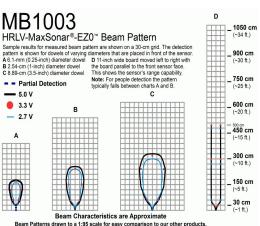
#### Selection Criteria:

- Adjust for 12-15V input to account for on and off states of vehicle battery
- Compact Form Factor
- Output regulated to desired voltage +/- 5% so
   4.75-5.25 V for the 5V case
- USB output for downstream interface

# **System Implementation**






# **Sensor Types**

- Types of sensors being used:
  - Ultrasonic
  - Resistive Temperature Detector (RTD)

### **Ultrasonic sensor**

- Sensor being incorporated 3 x MB 1003.
  - o Cost: \$37.95
  - Manufacturer: Maxbotix
  - Max detection range of the sensor is 16 feet.
  - Beam width is widest at 9 feet.
- Location: Rear bumper.
  - Spacing is about 24 inch between each sensor.
  - Placement considerations inside or outside bumper?
- Detect objects 2 feet from rear.
  - Objects ranging from 2'X2' small end to human size and larger.
- Data from the sensor will be received via 3x different raspberry pi's



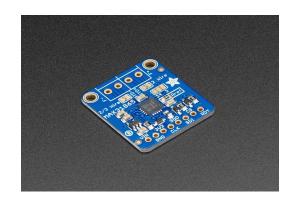


beam Fatterns drawn to a 1.55 scale for easy comparison to our other products.

# **Mounting of the Ultrasonics**

 The wire runs were made using a custom wire harness to make the connections with the raspberry pi's located in side the vehicle.






# **Resistive Temperature Detector**

- Placement in the Engine bay.
- Type of temperature sensor is a Resistive Temperature Detector (RTD).
  - Resistance changes with temperature so will the voltage.
- Our choice is the PT- 1000 3-wire.
  - Manufacturer: Adafruit.
  - o Cost:\$ 14.95.
  - Resistance at 0 C 1000 ohm.
  - o Length: 1 Meter
- Adafruit PT-1000 amplifier Max31865.
  - o Cost:\$ 14.95



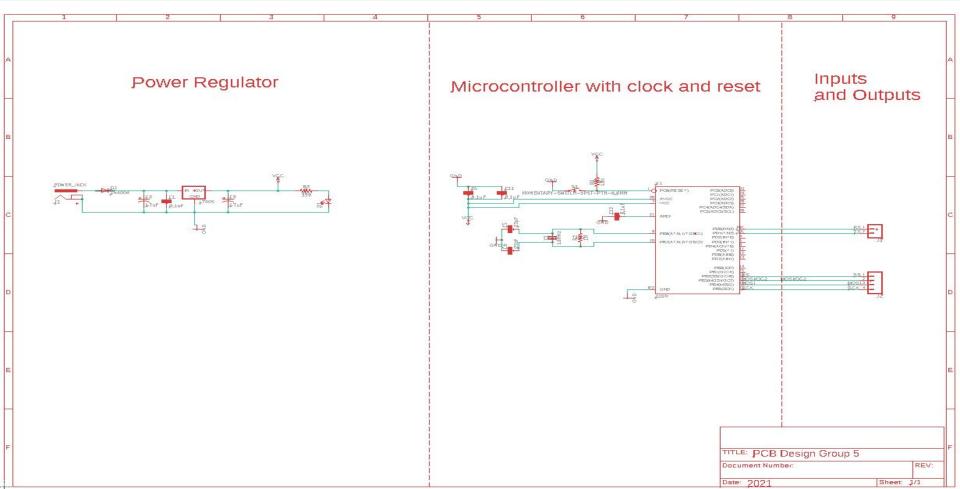
PT-1000



Max31865

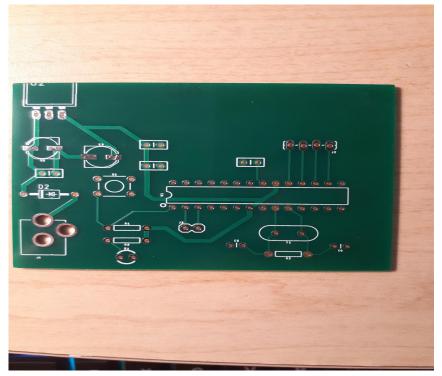
# **Temperature Sensor mounting**

 The temperature sensor was mounted inside the engine bay being passed through a hole in the fire wall.




### Microcontroller

- The development board being used during testing is the Arduino UNO R3.
  - Features 12 digital pins and 2 serial TX/RX and 6 ADC pins.
  - The microcontroller on the UNO is the ATMEGA328P-PU.
- Pins being used.
  - o 1-Reset
  - 2-Tx
  - 3-Rx
  - 9&10 Clock connection

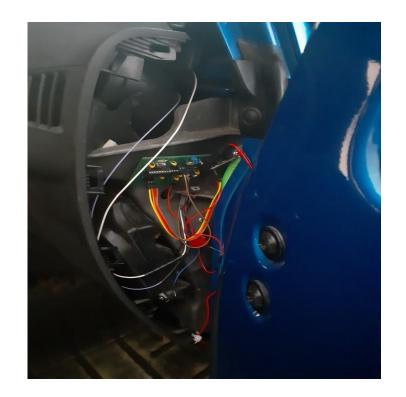

- o 16-SS
- 17-MOSI/OC2
- o 18-MOSI
- 19-SCK

## **PCB Schematic**



# **Board Layout**



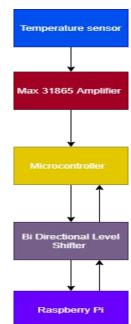



Eagle PCB board layout

Physical PCB

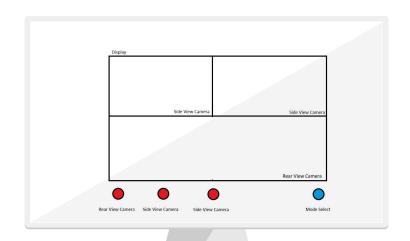
# **PCB Mounting**

• The PCB was mounted inside the door frame next to the dashboard.

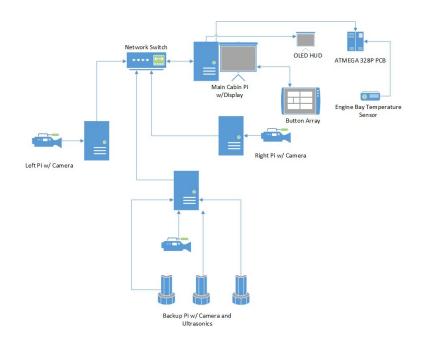



# **Compute Hardware Choice**

- 4 x Raspberry Pi 4 Model B in server/client configuration
  - Each feature a CSI2 (Camera Serial Interface) port we will be taking advantage of
    - Then using CSI to HDMI conversions to extend the length and durability of the camera cable
  - Networking will allow the main cabin Pi to access video feed of client Pi's
  - The Master/Server Pi will handle the logic and communication with the ATMEGA through serial communication, it will also be housed behind our main display
  - The Client Pis will handle connection to the cameras mounted nearby each Pi
  - The Master/Server Pi will be listening for rear Pi
- Sunfounder 7" display
  - Allows for mounting of our Master/Server Pi and connects via HDMI


#### Bi directional Level Shifter

- ATMEGA 328P and Raspberry Pi incorporate different voltages for their logic
  - ATMEGA 328P uses 5 V
  - Raspberry Pi 3 Model B uses 3.3 V
- To allow for intercommunication between the 2 we needed a bi-directional level shifter that changed the logic voltage between 5 V and 3.3 V




# **Software Design**

- Simple controls will make use of button controls
- 2 Modes Street Mode/Off-Road Mode
- Most will be programmed in Python with C implemented for the Atmega



# **Software Design**



### Camera Hardware

- Camera being used 3 x RPi 4B
  - Resolution 1080p
  - o IR 850nm
  - Lens- Fisheye Adjustable 2.35
     Aperture F
  - 160 degree FOV
  - o 30\$
- Mounting locations on the sides and rear of vehicle



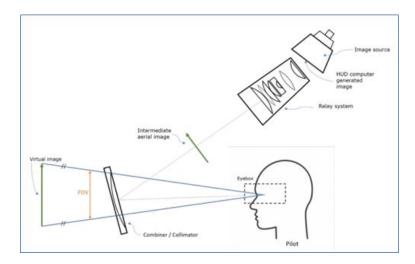
RPi Camera with attached infrared LEDs



#### **Heads Up Display system**

- Effective in catching driver attention
- Convenient
- Cost effective




View of a HUD from inside an airplane from the perspective of a pilot



Full view example of our HUD unit



- Heads up display systems have 2 main parts
  - The Optics Display
  - The Combiner
    - Thin film

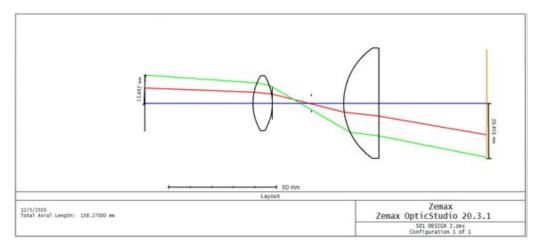


Labeled Heads Up Display System

#### Display for the HUD unit

#### • 1 OLED DISPLAY ER-OLEDM015-1C-PSI

- Resolution 128x128 rgb color
- o Contrast 2000:1
- o Pixel size 0.045mm x 0.194mm
- Unit Size 36mm x 44mm
- o Cost \$16
- Mounted in Heads up Display unit for image projection onto windshield






Full color display example from HUD unit

#### **Optical Design**

- Optics used to expand the image to desired size and project image
- Design based off of Keplerian beam expander
  - o Lens 1 LB1761
  - o Lens 2 LA1401



Zemax Design for HUD unit

#### Parts list /cost table

| Parts List                                       |                                                                                                    |                                   |                  |               |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|------------------|---------------|--|
| Part                                             | Part Description                                                                                   | Quantity                          | Cost per<br>unit | Total<br>Cost |  |
| MLX90614<br>3V-5V<br>Manufacturer-<br>Melexis    | IR Temperature sensor non-<br>contact<br>Works with I2C                                            | 1                                 | \$15.95          | \$15.95       |  |
| Bi-Directional<br>Logic Level<br>Converter       | Convert 5v to 3.3                                                                                  | 1                                 | \$2.95           | \$2.95        |  |
| MB 1003 HRLV                                     | Ultrasonic sensor                                                                                  | 3                                 | \$37.95          | \$113.85      |  |
| PT 1000 3 Wire                                   | Temperature sensor                                                                                 | 1                                 | \$14.95          | \$14.95       |  |
| Max 31865 RTD<br>PT 1000<br>Amplifier            | Amplifier                                                                                          | 1                                 | \$14.95          | \$14.95       |  |
| Raspberry Pi                                     | Manage Video Feeds                                                                                 | 4                                 | \$35             | \$140         |  |
| Fuse                                             | Prevent over current                                                                               | 2                                 | \$12.99          | \$25.98       |  |
| Low Voltage<br>Cutoff                            | Prevent draining vehicle battery                                                                   | 1                                 | \$22.33          | \$22.33       |  |
| 12-15V DC to<br>7.5 V DC                         | PCB                                                                                                | 1                                 | \$13.99          | \$13.99       |  |
| 12-15V DC to<br>5V DC<br>Step Down<br>Conversion | Provide Power to<br>Microcontrollers                                                               | 4                                 | \$2.99           | \$11.96       |  |
| Reverse Polarity<br>Protection<br>Circuit        | Prevent damage in the event<br>battery is hooked up<br>incorrectly, <u>one way</u><br>connectors   | 1                                 | 3.99             | \$3.99        |  |
| Wire                                             | Electrical connections<br>able to handle up to 3 amps<br>over a 15-foot run, 16 amps<br>1-foot run | 2 ft 14<br>AWG<br>60 ft 16<br>AWG | X                | \$20          |  |
| Wire Sheathing                                   | Prevent wire damage                                                                                | 70 ft                             | X                | \$40          |  |
| Connectors                                       | Allow easy assembly and disassembly                                                                | 24                                | X                | \$35          |  |
| Video Display                                    | SunFounder 7                                                                                       | 1                                 | \$60             | \$60          |  |

| Enclosures  | House PCB/ Main Panel/<br>Cameras/ HUD | 6 | Х    | \$80    |
|-------------|----------------------------------------|---|------|---------|
| PCB         | Microcontroller Integration            | 5 | X    | \$17.40 |
| HUD Display | Image display for HUD                  | 1 | \$16 | \$16    |
| Lenses      | For HUD imaging                        | 2 | \$30 | \$60    |

Total Budget spent \$708.87 which is still under the \$800 budget set!

# Thank you!