Enhanced Driver Awareness Detection System

Critical Design Review Group 5

Project is original without sponsors or external contributors.

Image: The Wide World of Off-Roading (caranddriver.com)

Team Overview

Gage Libby
B.S. Electrical Engineering
Interest: Off-road

Focus: Sensor Integration, Microcontroller Integration

Josh Weed B.S. Electrical Engineering Interest: Off-road

Focus: Power Distribution, Circuit Protection

Paul Ramos
B.S. Photonic Engineering
Interest: Autocross

Focus: Heads Up Display, Cameras

Scott Jokela B.S. Computer Engineering Interest: Motorcycles

Focus: Software, Video/Data Management, System Control

Motivation

Off-road travel has the potential to be challenging, mentally taxing, and dangerous.

Terrain can be misjudged leading to vehicles becoming stuck or damaged.

Though ill advised, many venture off-road alone.

Image: Lend a Hand: Off Road Hand Signals For Spotting On The Trail (4wheelparts.com)

Solution Vision

The objective of this project is to provide information to aid in driver decision making when navigating difficult terrain without the use of a spotter or leaving the vehicle.

System will provide live video feed for driver to assist in hazard identification and route selection.

System will have auxiliary sensors for vehicle and environmental awareness.

Designed as a retrofit to vehicles without existing systems.

Will not interfere with existing factory systems.

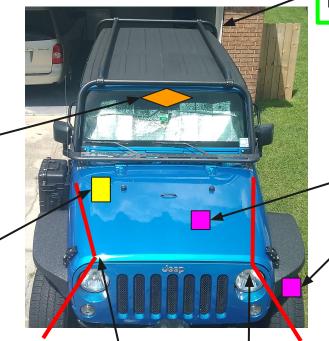
Project Prototype Jeep Wrangler

Constraints and Standards Impact

Our design decisions for potential solutions are dictated by the constraints we operate under.

Many standards covered aspects of our project but required purchase. In a commercial setting these could be purchased from groups such as the Society of Automotive Engineers (SAE), International Standards bodies, and the Federal Motor Vehicle Safety Standards (FMVSS) to be used as design resources.

Constraints Highlights					
Economic	Time	Environmental	Manufacturability	Health/Safety	
Self-Funded, Not a commercial venture, limited investment	Competing priorities: Student course load, family, and work requirements	Legal and Responsible location to test system	Tools we have access to, lack thereof Team Experience	Inability to meet as a group	
Tight Budget	Limited Amount	Harsh Environment Survivable	One-off, small scale production	COVID Restrictions	


Highlighted Standards				
SAE J1292 Wiring FMVSS #101 Controls and Displays				
ISO 26262 Automotive Safety Assist	IEEE/ISO/IEC 29119 Software Testing Standard			
IP Ratings IEC 60529	RoHS Hazardous Substance Exposure			
SAE J17557-1, -2, -3 Vehicle Displays, HUD, Power	WEEE 2002/96/EC Waste Disposal			

Solution Actual

Rear camera Rear proximity sensors

In cabin main control, video display, heads up display

Inside engine bay battery, power distribution hub, circuit protection

Engine bay temperature sensor

Wheel well tire temperature sensor

Passenger side camera, 160 degree FOV

Driver side camera, 160 degree FOV

Requirements and Specifications

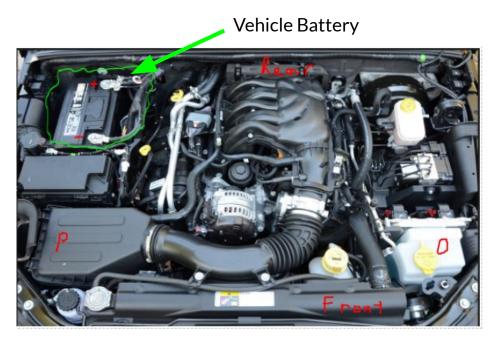
Project Requirements and Specifications				
Requirement	Specification	Verify		
Remain in Budget	System Cost < \$800	Track Receipts		
Compact Form Factor	System Weight < 10kg	Weigh Unit		
Separated from Main Electrical System	Disconnect at 12.2 V	Perform Low Voltage Disconnect test procedure		
Camera Coverage	1080 P Infared FOV > 150 degrees	Mark designated grid and test camera view according to designed procedure		
Video Display in Cabin	Real time view by driver	Visual Inspection		
Sensor Accuracy	Proximity within +/- 6" Temperature +/- 2.5 degrees F	Test according to designed procedure		
HUD Interaction	HUD is visible to Driver	Visual Inspection		

Above: Main Cabin

Above: Engine Bay

System Block Diagram

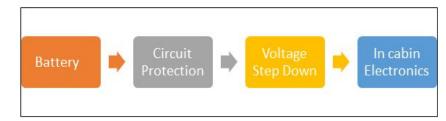
Rear


Left side of vehicle Front of vehicle Right side of vehicle All Sensors Location on vehicle connected via Raspberry pi RTD Temperature powered by Sensor Car Battery Raspberry PI Cameras PCB/Bi directional Red Lines Level shifter power Circuit Protection Proximity Sensors Black lines data **Driver Side Camera** Raspberry Pi 1 Raspberry Pi 2 Passenger Side (Outside) Camera (Outside) Raspberry Pi's Master Pi IR Tire Temperature Raspberry Pi 3 Sensor Temperature PCB Rear Camera Rear of vehicle (Outside)

System Power Distribution

System Power Needs		
Demand Item		
5V DC @ 3 Amp Max (4)	Microcontrollers, Sensors	
7V DC @ 1 Amp Max (1)	Microcontroller Integration	
12V DC @ 3 Amp Max (1)	Main Cabin Display Unit	
Use external batteries	Pro: Separate from main Con: Must be charged	
Use main vehicle battery	Pro: Already present Con: Must be stepped down	

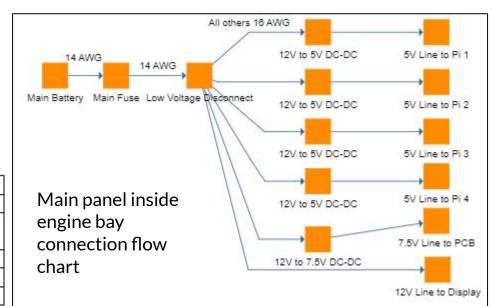
The stock vehicle battery was selected to be used to power this project.

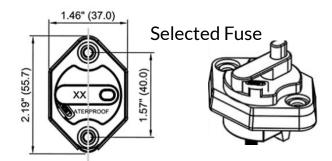

- 1. Charging infrastructure in place
- 2. Ample capacity for use when vehicle is on or off with 600 cold cranking amps, 120 minute reserve capacity and a 70 amp hour rating.
- 3. Less maintenance without a need to charge additional batteries.

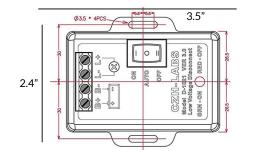
60" Wide x 22" Long

Circuit Protection and Power Distribution

	Circuit	Protection Conside	rations	
Item	Operating Condition	Realization	Location	Function
Fuse	20 Amp Fuse	Manual Reset Inline Fuse	Main Panel	Acts to prevent dangerous over current conditions
Low Voltage Cutoff	Isolate once battery drops below 12.2 V (50% charge)	Purchased Unit	Main Panel	To prevent draining the main vehicle starting battery
Reverse Bias Protection	If a reversed polarity is detected, isolate electronics from source	One-way connectors	Main Panel	To prevent damage to electronics in event battery is reversed
Brown Out	Prevent microcontroller operation during under voltage conditions	Built into Raspberry Pi Interface	In Cabin Center	Prevent faulty operating due to difficulty distinguishing between voltages

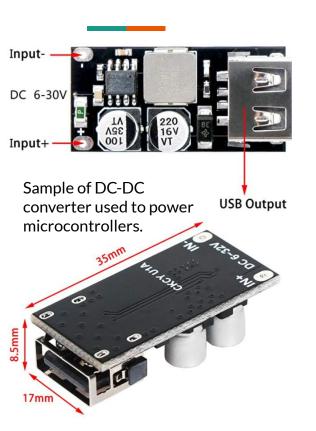



Purchase vs. Design


- Time
- Cost
- Efficiency
- Form Factor

Circuit Protection and Power Distribution

Fuse Selec	ction
Power Lines from Central Panel	Trip current > 16 Amp
Raspberry Pi max 3 Amp (x 4) = 12A	Resistive load- fast acting time
PCB max 1 Amp (x1) = 1 A	Manual reset
Display max 3 Amp (x1) = 3A	Compact Form Factor
Overall 16 Amp Max Load	Voltage and Interrupt Rating

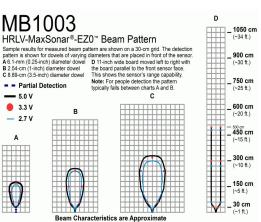


Circuit Protection and Power Distribution

DC-DC Converters				
Item	Specifications	Cost (\$)	Comments	
DC Step Down				
DC Buck Module,	6V-32V 30V 24V 12V to	13.99	1 pack	
DROK Adjustable Step	1.5-32V 5V 5A	10013013031	Unit cost: 13.99	
Down Voltage	USB Port		Supply PCB	
Regulator			1404.1403	
USB Buck Converter,	6-32V 12V 24V to 5V QC	11.99	4 pack	
DROK 4pcs DC-DC	3.0		Unit cost: 3.00	
Step Down Module	USB Port		Supply	
**************************************	equity engaged 55 54 57 50 00		Microcontrollers	

Selection Criteria:

- Adjust for 12-15V input to account for on and off states of vehicle battery
- Compact Form Factor
- Output regulated to desired voltage +/- 5% so
 4.75-5.25 V for the 5V case
- USB output for downstream interface


Sensor Types

- Types of sensors being used:
 - Ultrasonic
 - Infrared
 - Resistive Temperature Detector (RTD)

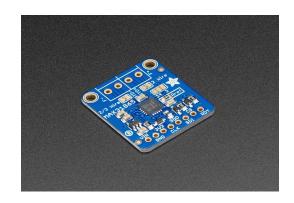
Ultrasonic sensor

- Sensor being incorporated 3 x MB 1003.
 - Cost: \$37.95
 - Manufacturer: Maxbotix
 - Max detection range of the sensor is 16 feet.
 - Beam width is widest at 9 feet.
- Location: Rear bumper.
 - Spacing is about 24 inch between each sensor.
 - Placement considerations inside or outside bumper?
- Detect objects 3 feet from rear.
 - Objects ranging from 2'X2' small end to human size and larger.
- Data from the sensor will be received via 3x different raspberry pi's

Beam Patterns drawn to a 1:95 scale for easy comparison to our other products.

IR Temperature sensor

- Placement will be in the tire wheel well to measure tire temperature.
- Our choice is the MLX90614.
 - Manufacturer: Melexis
 - o Cost:\$15.95
 - Temperature range -94F to 716F.
- Information will be gathered via the Raspberry pi



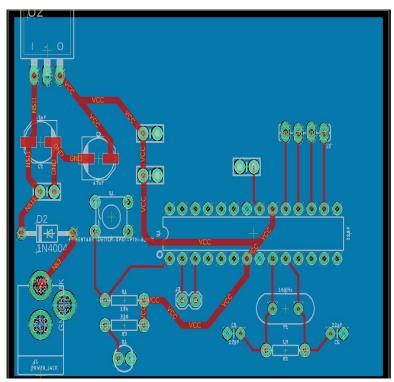
Resistive Temperature Detector

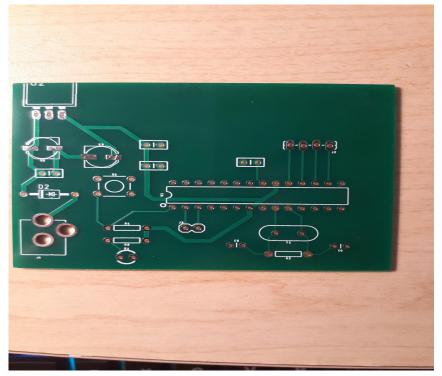
- Placement in the Engine bay.
- Type of temperature sensor is a Resistive Temperature Detector (RTD).
 - Resistance changes with temperature so will the voltage.
- Our choice is the PT- 1000 3-wire.
 - Manufacturer: Adafruit.
 - o Cost:\$ 14.95.
 - Resistance at 0 C 1000 ohm.
 - o Length: 1 Meter
- Adafruit PT-1000 amplifier Max31865.
 - o Cost:\$ 14.95

PT-1000

Max31865

Microcontroller

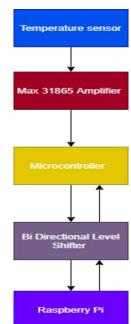

- The development board being used during testing is the Arduino UNO R3.
 - Features 12 digital pins and 2 serial TX/RX and 6 ADC pins.
 - The microcontroller on the UNO is the ATMEGA328P-PU.
- Pins being used.
 - o 1-Reset
 - 2-Tx
 - 3-Rx
 - 9&10 Clock connection


- o 16-SS
- 17-MOSI/OC2
- o 18-MOSI
- 19-SCK

PCB Schematic

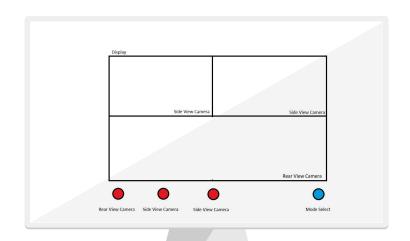
Board Layout

Eagle PCB board layout


Physical PCB

Compute Hardware Choice

- 4 x Raspberry Pi 4 Model B in a cluster configuration (1 Master Pi, 3 Slave Pis)
 - Each feature a CSI2 (Camera Serial Interface) port we will be taking advantage of
 - Then using CSI to HDMI conversions to extend the length and durability of the camera cable
 - Clustering will allow the network of Pi's to access other IO
 - The Master Pi will handle the logic and communication with the ATMEGA through serial communication, it will also be housed behind our main display
 - The Slave Pis will handle connection to the cameras mounted nearby each Pi
- Sunfounder 7" display
 - Allows for mounting of our Master Pi and connects via HDMI


Bi directional Level Shifter

- ATMEGA 328P and Raspberry Pi incorporate different voltages for their logic
 - ATMEGA 328P uses 5 V
 - Raspberry Pi 3 Model B uses 3.3 V
- To allow for intercommunication between the 2 we needed a bi-directional level shifter that changed the logic voltage between 5 V and 3.3 V

Software Design

- Simple controls will make use of button controls
- 2 Modes Street Mode/Off-Road Mode
- Most will be programmed in Python with C implemented for the Atmega

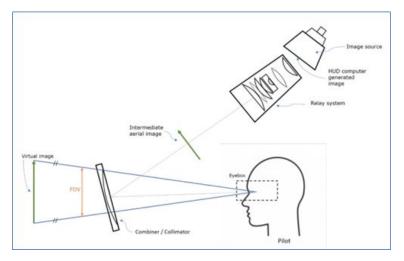
Camera Hardware

- Camera being used 3 x RPi 4B
 - Resolution 1080p
 - o IR 850nm
 - Lens- Fisheye Adjustable 2.35
 Aperture F
 - 160 degree FOV
 - o 30\$
- Mounting locations on the sides and rear of vehicle

RPi Camera with attached infrared LEDs

Heads Up Display system

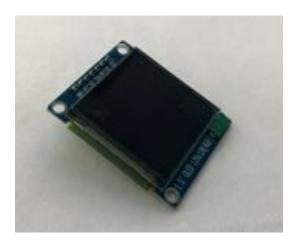
- Effective in catching driver attention
- Convenient
- Cost effective



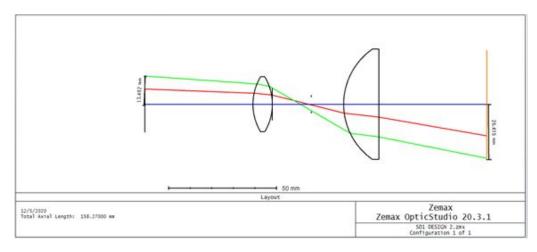
View of a HUD from inside an airplane from the perspective of a pilot

Heads up Display Parts

- Heads up display systems have 2 main parts
 - The Optics Display
 - The Combiner
 - Thin film



Labeled Heads Up Display System

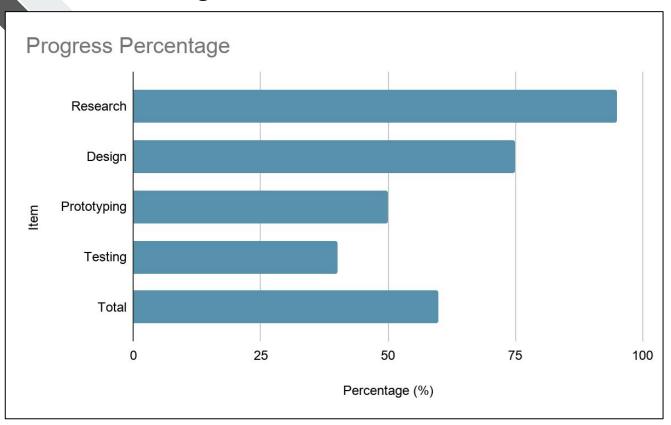

• 1 OLED DISPLAY ER-OLEDM015-1C-PSI

- Resolution 128x128 rgb color
- o Contrast 2000:1
- o Pixel size 0.045mm x 0.194mm
- o Unit Size 36mm x 44mm
- o Cost \$16
- Mounted in Heads up Display unit for image projection onto windshield

Optical Design

- Optics used to expand the image to desired size and project image
- Design based off of Keplerian beam expander
 - o Lens 1 LB1761
 - Lens 2 LA1401

Zemax Design for HUD unit


Parts list /cost table

Parts List					
Part	Part Description	Quantity	Cost per unit	Total Cost	
MLX90614 3V-5V Manufacturer- Melexis	IR Temperature sensor non- contact Works with I2C	1	\$15.95	\$15.95	
Bi-Directional Logic Level Converter	Convert 5v to 3.3	1	\$2.95	\$2.95	
MB 1003 HRLV	Ultrasonic sensor	3	\$37.95	\$113.85	
PT 1000 3 Wire	Temperature sensor	1	\$14.95	\$14.95	
Max 31865 RTD PT 1000 Amplifier	Amplifier	1	\$14.95	\$14.95	
Raspberry Pi	Manage Video Feeds	4	\$35	\$140	
Fuse	Prevent over current	2	\$12.99	\$25.98	
Low Voltage Cutoff	Prevent draining vehicle battery	1	\$22.33	\$22.33	
12-15V DC to 7.5 V DC	PCB	1	\$13.99	\$13.99	
12-15V DC to 5V DC Step Down Conversion	Provide Power to Microcontrollers	4	\$2.99	\$11.96	
Reverse Polarity Protection Circuit	Prevent damage in the event battery is hooked up incorrectly, <u>one way</u> connectors	1	3.99	\$3.99	
Wire	Electrical connections able to handle up to 3 amps over a 15-foot run, 16 amps 1-foot run	2 ft 14 AWG 60 ft 16 AWG	X	\$20	
Wire Sheathing	Prevent wire damage	70 ft	X	\$40	
Connectors	Allow easy assembly and disassembly	24	X	\$35	
Video Display	SunFounder 7	1	\$60	\$60	

Enclosures	House PCB/ Main Panel/ Cameras/ HUD	6	Х	\$80
PCB	Microcontroller Integration	5	X	\$17.40
HUD Display	Image display for HUD	1	\$16	\$16
Lenses	For HUD imaging	2	\$30	\$60

Total Budget spent \$708.87 which is still under the \$800 budget set!

Progress Chart

Thank you!