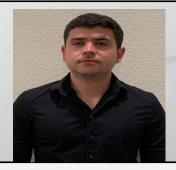


Smarter-Portable Water Bacterial Detector


Group 11

ETHAN SHEPHERD - PSE

DYLAN BRANCATO - PSE

PASCUAL SIRACUSA - EE

Project Description & Motivation

- Provide a simple testing method for bacteria in water
- Millions lack access to safe drinking water
- Existing testing methods are impractical
- Utilizes fluorescence spectroscopy to detect bacteria with a staining process
 - Typical staining process has limitations
 - Utilizing DAPI stain
- MCU for data analysis
- Aims to comply with EPA drinking water quality standards

Overall Project Goals & Objectives

Goals Table

Basic Goals

Identify presence and approximate concentration of bacteria in water

Detect DAPI stained bacteria

Portable device

Advanced Goals

Attach a UV cleaning light that activates based on spectrometer results

Energy efficient system, multiple hours battery life

Stretch Goals

Detect multiple fluorophores

User-friendly UI

Objectives Table

Excitation Light

At least 1mW of power to ensure fluorescence

Testing various concentration with power meter

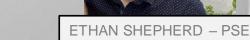
Spectrometry and Detection

Diffraction separating wavelengths by approximately 6 mm

Send sterilization information based on results.

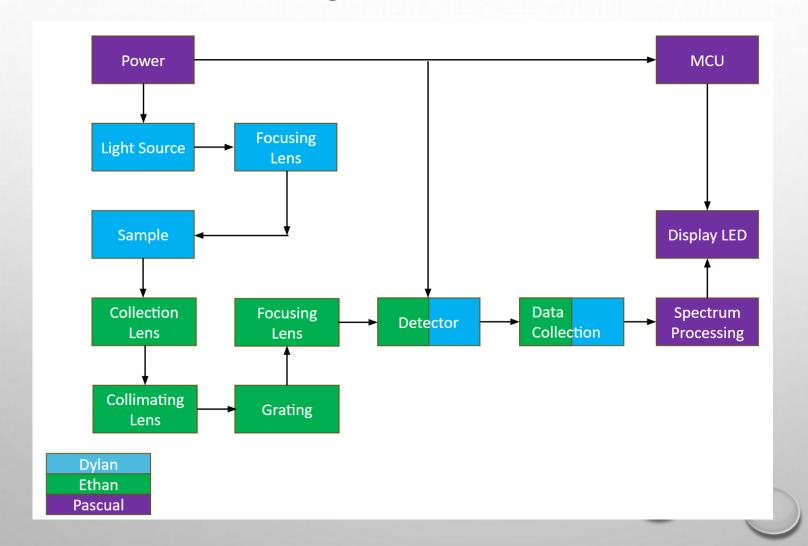
Processing Algorithm to interpolate concentrations.

Portability


Weight of 8 pounds

Rechargeable within 1 hour

Able to power for 2 hours.



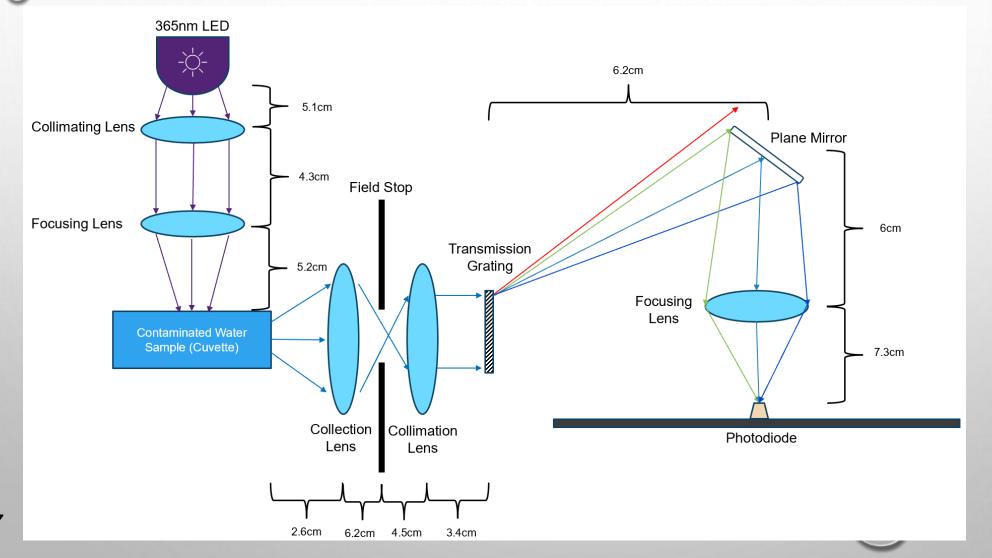
Requirements and Specifications

Component	Parameter	Specification
Excitation Source	Power	2mW
Excitation Source	Wavelength	365nm
Water Sample	Sample Volume	3.5ml
Water Sample	Operating Wavelength	340nm - 700nm
Fluorescent Source	Power	1mW
Fluorescent Source	Wavelength	460nm +/- 30nm
Microcontroller	Detection + Display time	<1 sec.
Grating	Grooves/mm	600 grooves/mm
Photodiode	Responsitivity	0.3A/W
Spectrometer	Spectral Range Collected	460nm +/- 30 nm
Spectrometer	Focusing Size	1.2 mm x 1.2 mm
Battery	Power time	>1 hour
Entire System	Weight	<10 lbs.
Entire System	Time	<1.5 minute

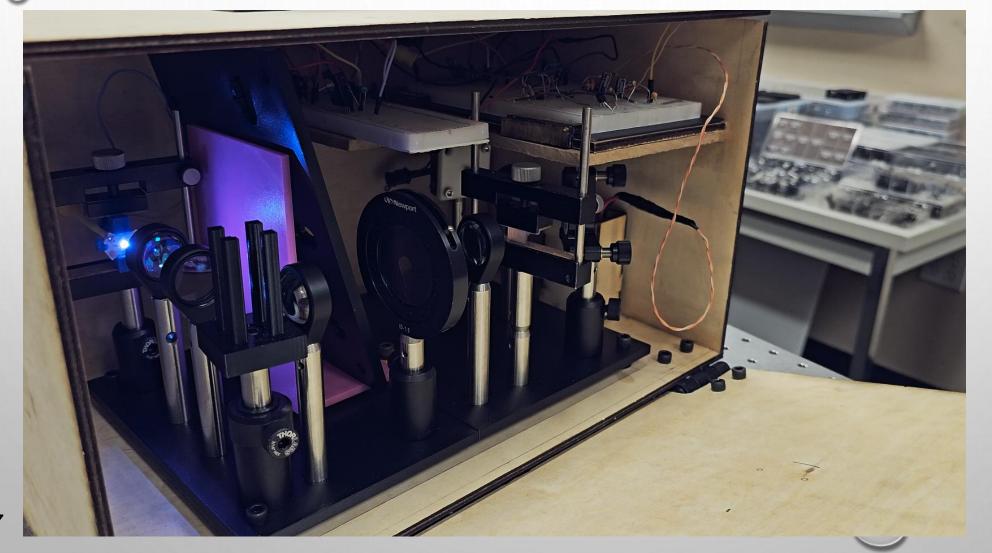
Project Block Diagram

Sample Prep and Notable Chemistry


- Grow sample using vial of E.Coli intended for student use
- Each dot is 1CFU, seeing 1 dot is considered undrinkable
 - Typically, concentration is measured in molarity, but we will be using CFU as this is the typical guideline for EPA standards
- Move colonies to cuvette by counting the dots, try to use dots of similar size
- Add stain for 2 drops/ml, was the best seen in concentration testing.


DAPI Fluorescence

- Quantum Yield = 0.04 unbound, 0.92 bound
- Fluorescence did have a shift from theoretical approximation
 - Purple line → theoretical
 - Blue line → experimental
 - Likely from change in solvent or binding to RNA.
- Fluorescence is a linear relationship
 - $Concentration = M \cdot Voltage + b$



Overall Optical Design

Overall Optical Design

Microcontroller Comparison and Selection

Criteria for Selection:

1. Communication Interfaces

6. Memory

2. I/O Pins

7. Processing Power

3. Power Requirements

8. Analog Inputs

4. Development Environment and Tools

5. Cost

	Arduino Uno Rev3	Raspberry Pi Pico	MSP430FR6989
Clock's speed (MHz)	16	133	16
Communication interfaces	UART, I2C, SPI, USB	UART, I2C, SPI, PIO	UART, I2C, SPI, USI
Memory	32 KB Flash, 2 KB SRAM	264 KB RAM, 2 MB Flash	128 KB Flash, 2 KB SRAM
Operating voltage (V)	7 to 12	3.3	1.8 to 3.6
Cost (\$)	27	4	20

Power Supply Research and Selection

	Wall adapter	Disposable batteries	Rechargeable batteries
Portable	No	Yes	Yes
Long run cost-effective	Yes	No	Yes
Easy to use	Yes	Yes	Yes
Environmentally friendly	Yes	No	Yes

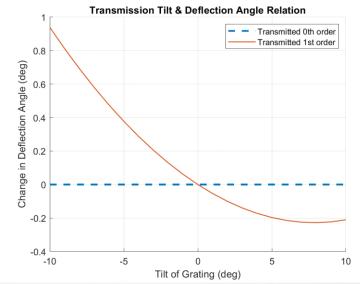
Rechargeable battery Comparison and Selection

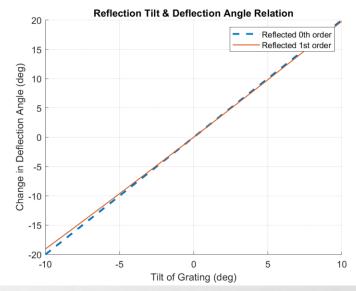
	Voltage	Current
UV LED	3.2 V	20 mA
Red LED	2 V	15 mA
Green LED	3.2 V	15 mA
Microcontroller	7 to 12 V	50 mA
Op-Amp	±4 V to ±18 V	

	Lead-Acid	Nickel-Cadmium	Lithium-ion	Nickel Metal Hydride	Lithium-ion Polymer
Manufacturer	Miady	Exell Battery	AOLIKES	Gecoty	Blomiky
Dimensions (in)	2.68 x 1.77 x 3.86	2 x 2 x 1.25	2.68 x 1.46 x 0.75	4.21 x 2.99 x 1.93	2.8 x 1.3 x 0.9
Weight (lbs)	0.2	0.56	0.22	0.2	0.23
Voltage (V)	6	12	7.4	7.2	11.1
Current (Ah)	5	1	2.6	2.4	1.5
Price (\$)	16.99	23.95	15.82	15.99	14.99
Reason for selection 10	Not suitable due to size constraints	Not suitable due to memory effect and environmental concerns	Safety concerns	Suffers memory effect and shorter lifespan	high voltage, compact size, lightweight, cost- effective

SCUAL SIRACUSA - EE

Excitation Source

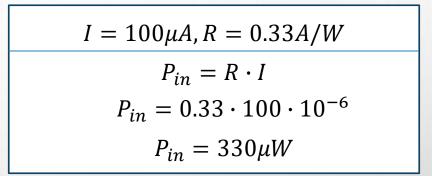

- Not many options for excitation
 - Lasers too large and expensive
 - Laser diodes do not exist cheaply in this wavelength range
 - LEDs are essentially the only option.
- Most important factors are power and 365nm center wavelength


Component	Center WvI	Spectral Width	Viewing Angle (deg)	Power	Cost
JIATONG UVLED	365nm	25nm	20	1.1mW	\$20 x20
TCY UVLED	365nm	30nm	35	2mW	\$3.50 x10
LST1-01G01- UV01-00	365nm	40nm	130	875mW	\$21.80 x1

Diffraction Grating

- Transmission vs Reflection grating
- Need high efficiency at 465 nm
- Need high diffraction period
- Selected is middle of both needs

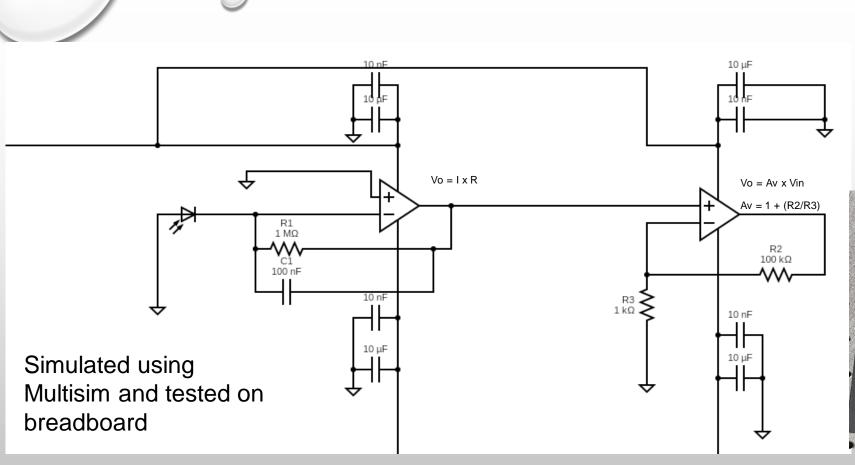
Component	Blaze Wvl	Transmission @ 465 nm	Diffraction Period	Dim.	Cost
Edmund Optics 85-290	290nm	25%	1200	12.7 mm x 12.7 mm	\$110
Thorlabs GTY13-06	365nm	55%	600	12.7 mm x 12.7 mm	\$106
Thorlabs GT13-03	525nm	65%	300	12.7 mm x 12.7 mm	\$91

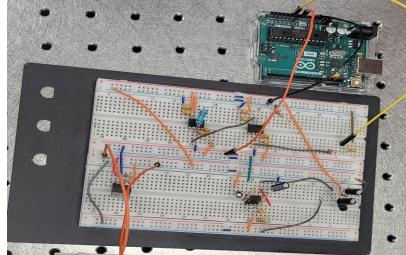


Technology	Powering	Signal Readability	Cost
Photodiode	No	Easy	Low - High
CCD Camera	Yes	Hard	High

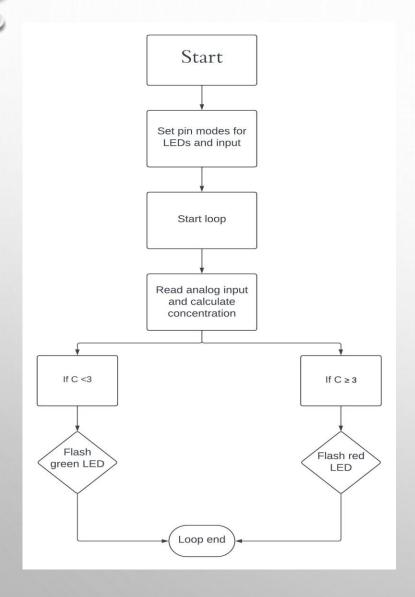
- Main Factors:
 - Responsitivity --> Better SNR
 - Cost --> Lower is better
- Detecting Area not as important
 - Will need to focus with lens for best signal

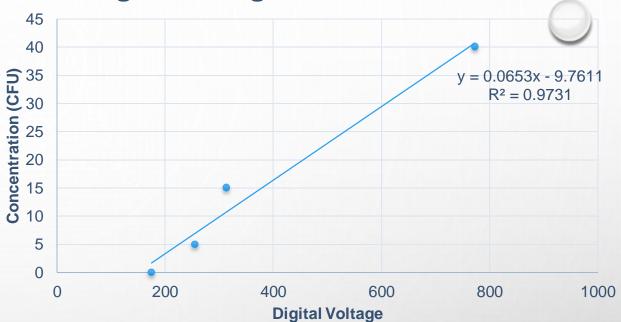
Component	Detecting Area	Responsitivity (A/W)	Cost
BPW21-O	2.73mm x 2.73mm	0.27	\$13.08
MT03-023	1.1mm x 1.1mm	0.33	\$16.75
FD11A	1.1mm x 1.1mm	0.28	\$16.00
ODD-5WB	2.52mm diameter	0.25	\$9.01



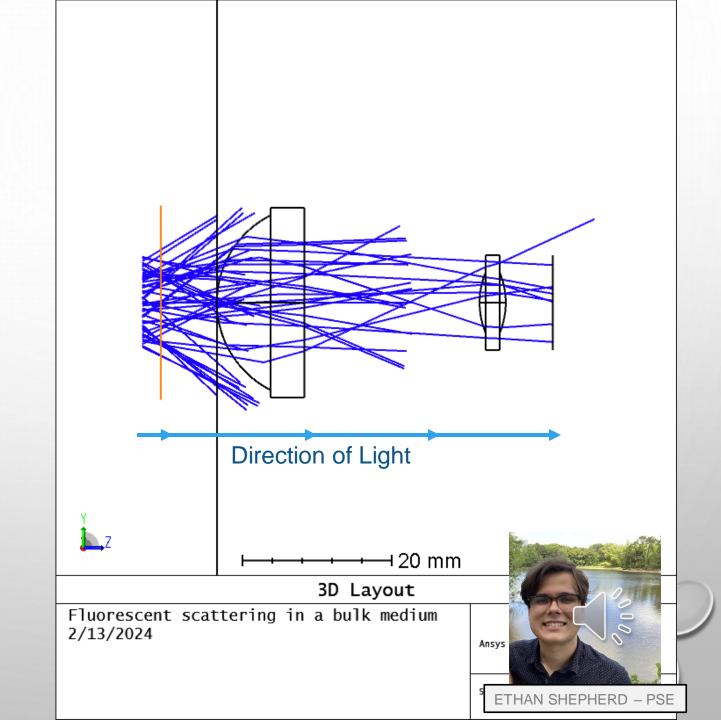

Operational Amplifier Comparison and Selection

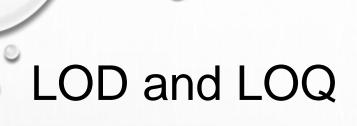
	OP27GPZ	TL084I
Voltage Supply Range	±4 V to ±18 V	±2.25 V to ±20 V
Input Offset Current	12 nA	5 pA
Input Bias Current	15 nA	30 pA
Input Offset Voltage	30µV	3 mV
Input Voltage Noise	3nV/√Hz	18 nV/√Hz
CMRR	120 dB	86 dB
Cost	\$5.80	\$0.9


OPERATIONAL AMPLIFIER CIRCUIT DIAGRAM



Software Flowchart


Digital Voltage vs. Concentration



Lenses

- Three major lenses needed:
 - Exclusion of photodiode lens
- 1) Sample collection lens
 - High power, high NA
- 2) Spectrometer collimation lens
 - Lower power, 1/2" diameter
- 3) Spectrometer focusing lens
 - Lower Power

	Digital Voltage Reading (avg)	Concentration (CFU, avg)	Standard Deviation
Pure Water	174	1.56	0.0346
Pure Water + DAPI (2drops/ml)	188	2.517	0.0651
Water + Bacteria (40CFU)	196.294	3.057	0.0552
Water + Bacteria (40CFU) + DAPI	756.67	39.656	0.077

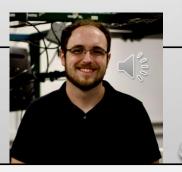
- For 99% confidence interval, an LOD of:
 - 1.649CFU for pure water
 - 2.685CFU for pure water +DAPI
- For LOQ using the 10 times rule:
 - 1.906CFU for pure water
 - 3.168CFU for pure water + DAPI
- Manufacturer recommendation is wait 20 minutes for stain
 - Results max out at about 2.139 ± 0.3385 minutes for concentration of 40CFU

Work Distribution

Ethan Shepherd

- Light collection from sample
- Detection method
- Spectrometer design
- Housing

Dylan Brancato

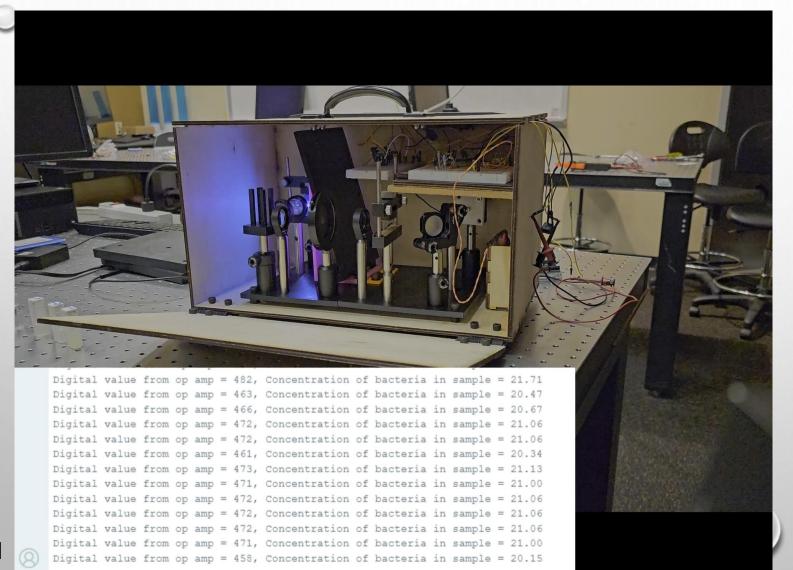

- Sample Preparation
- Fluorescence emission
- Spectrometer Design

Pascual Siracusa

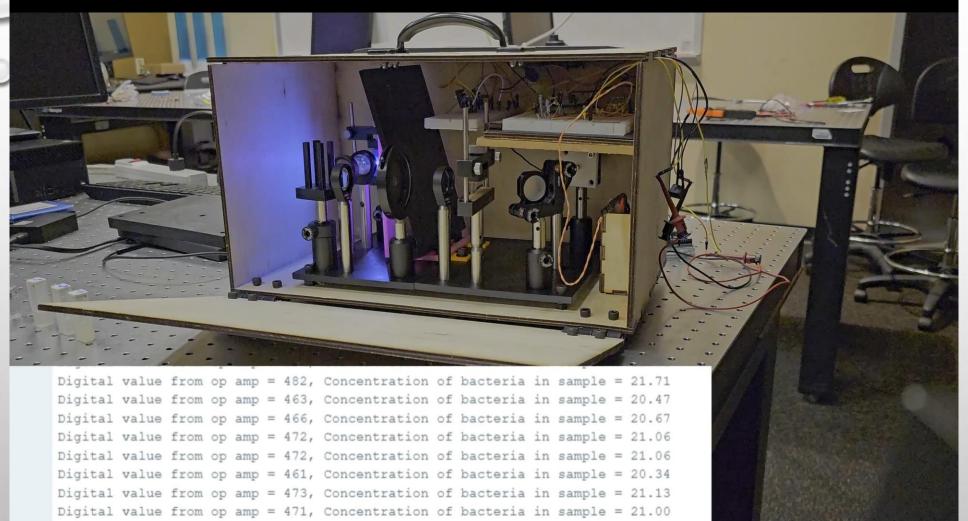
- Power Distribution
- Data Processing
- Signal Amplification

ETHAN SHEPHERD - PSE

DYLAN BRANCATO - PSE


PASCUAL SIRACUSA – EE

Bill of Materials vs Budget


Item	Quantity	Budget	Cost
Excitation Source	1	\$15	\$21.50
Cuvette	4	\$40	\$37.66
Bacteria Culture	2	\$50	\$42.15
Lenses	5	\$120	\$109.62
Diffraction Grating	1	\$110	\$106.84
Photodiode	2	\$10	\$16.75
Microcontroller	1	\$30	\$27.60
Battery	2	\$20	\$29.98
Various EE Parts	X	\$20	\$22.85
DAPI Stain	1	\$100	\$158.65
Housing materials	X	\$70	\$85.37
Total		\$585	\$658.97

Device Functionality

Digital value from op amp = 472, Concentration of bacteria in sample = 21.06 Digital value from op amp = 472, Concentration of bacteria in sample = 21.06 Digital value from op amp = 472, Concentration of bacteria in sample = 21.06 Digital value from op amp = 471, Concentration of bacteria in sample = 21.00

Digital value from op amp = 458, Concentration of bacteria in sample = 20.15

Note:

 Some concentration is shown for pure water samples, this is due to scattered light off the cuvette and fluorescence of unbound stain. The concentration is 0.

DYLAN BRANCATO - PSE