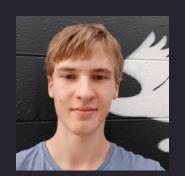

Smart Ball Milling Machine Group 30

Sponsored by the Blair Research Group



The Team

Chase Szafranski EE

Aaron Dahl EE

Flavio R. Ortiz EE

Korey Menefee EE

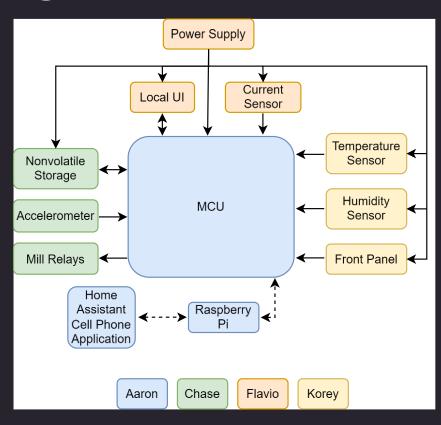
Project Motivation

- What is a ball milling machine?
 - Used to grind and blend materials
 - Stainless steel balls are placed in a canister with the substance
 - The milling machine vigorously shakes the canister

- What's wrong with the current machine?
 - Dr Blair's group often runs the mill for extended periods.
 - The motor needs to be stopped every 30 minutes or so to cool down
 - The mill needs to be manually restarted

Project Goals

- Remote Operation and Automation
- Sensory Capabilities and responses
 - Current and Power Cost Detection
 - Motor Temperature Detection
 - Vibration Detection
- Record Keeping of Total Milling Time
- Customer Customization
 - Requested/Personalized UI



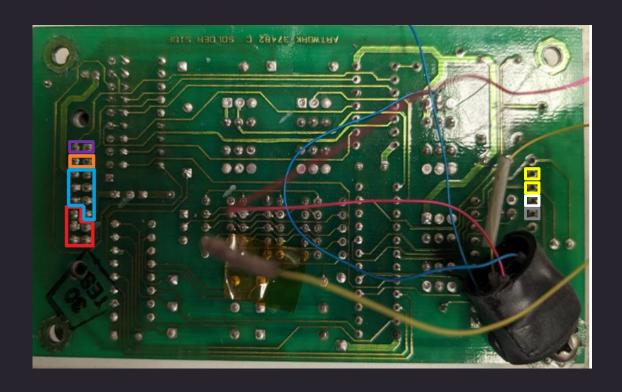
Engineering Requirements

Remote User input Delay	Less than 5 Seconds
Reboot Time	Less than 10 Seconds
Timer Accuracy after Outage	Less than 60 Seconds
Timer Clock Drift	Less than .5% Error
Current Detection	Less than .5% Error
Environment Humidity Detection	Measure humidity between 5% and 95%
Motor Temperature Monitoring	Measure Temperature up to 150°C

Block Diagram

Initial Hurdles & Considerations

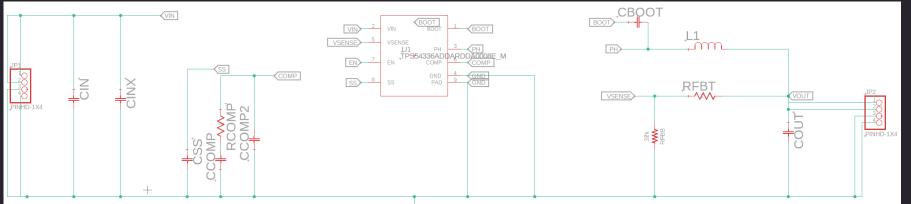
- Interfacing with Existing Mill
- All Steel Container
- Meeting Engineering Requirements/Goals
 - Timer & State Recovery
 - Sensor Monitoring
- Wireless Implementation
 - Environment
 - UCF IT Security
 - Existing Lab Network Setup
- User Interface


The Existing Mill Controller

The Existing Mill Controller

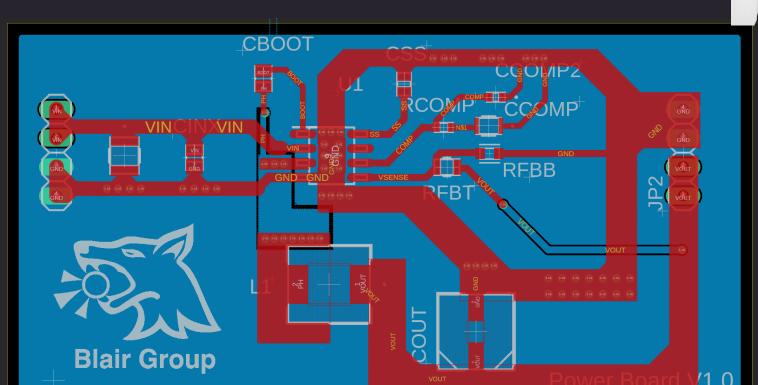
- Power Stable /Enable Interlock
- 5 V
- GND
- 12 V
- Lid Switch
- 115 VAC
- External Relay

Relay Selection


	Coto 8L41-05	Coto 8L02-05	Littlefuse HE721C05	Standex- Meder SIL03
Coil Voltage	5 V	5 V	5 V	3V
Coil Current	25 mA	25 mA	25 mA	6 mA
Max Switching Voltage	100 VAC	200 VAC	120 VAC	200 VAC
Max Switching Current	0.25 A	0.5 A	0.35 A	0.5 A
Configuration	SPDT	DPST	SPDT	SPST
Price	\$10.21	\$4.48	\$4.65	\$4.48

Power Supply

Model	LC78_2.0	R-78K-2.0	TSR 2-2433
Accuracy	±3%	±3%	±2%
Efficiency	91%	85%	93%
V in	4.5V – 28V DC	4.5V – 36V DC	4.75V – 36V DC
Operating Temperature	-40C - +85C (Derating at 60C)	-40C - +90C	-40C - +85C
Dimension(mm)	11.6 x 7.5 x 10.2	11.5 x 8.5 x 17.5	10.1 x 7.5 x 14
Switching Frequency	600 kHz	400 kHz	410 kHz
Ripple + Noise	150mV	100mV	150mV
Price	\$11.62	\$4.50	\$11.75

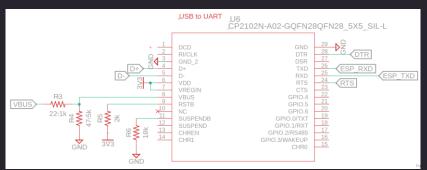


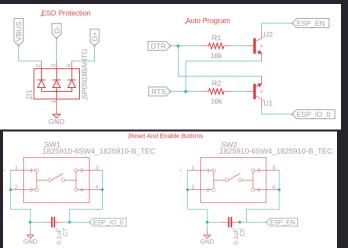
TPS54336ADDAR				
Accuracy	±2.35%	Switching Fequency	340 kHz	
Efficiency	88.6%	Ripple Voltage	5 mV	
V in	4.5V – 28V DC	Operating Temperature	-40C - +150C	
Vout / lout	3.3V / 2A	Price	\$1.63	

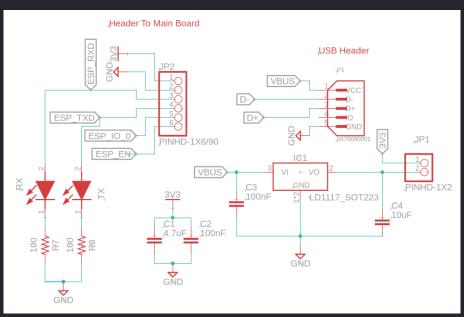
Voltage Regulator – PCB Layout

Microcontroller Selection

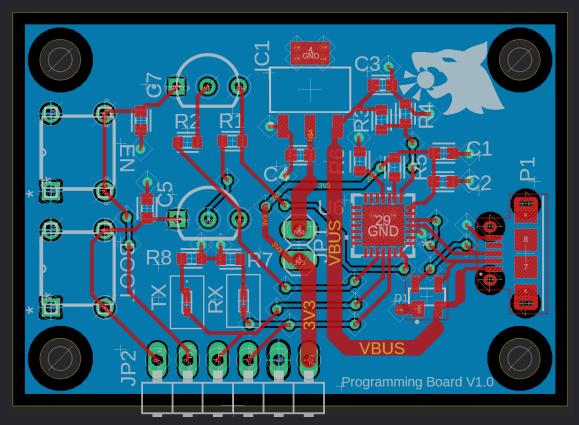
	ESP32-WROOM	ATmega328P	STM32WBA52
Core Clock	240MHz	16MHz	100 MHz
Cores	2	1	1
Flash	4 MB	32 kB	1 MB
SRAM	520 kB	2 kB	128 kB
GPIO Pins	26	23	35
Wireless Connectivity	Wifi, Bluetooth	No	Bluetooth
Price	\$3.80	\$2.80	\$5.67
IDE Support	ESP-IDF, Arduino	Microchip Studio, Arduino	STM32CubeIDE


Programming Board

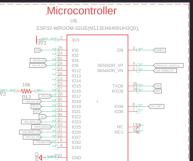


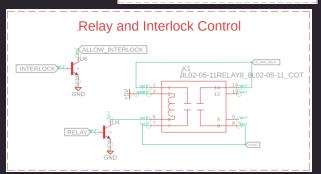

- Allows for easy programming and debugging
- Moves the Micro-USB header off of the main board
 - Removes a failure point from the main board
 - Allows the programming buttons to be outside of the mill
- Automatically causes the ESP32 to enter programming mode using signals from the USB-UART bridge

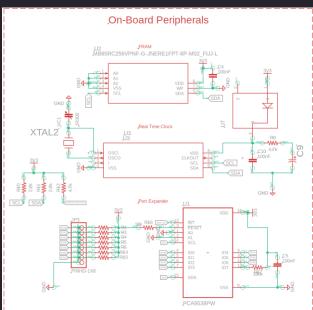
Programming Board - Schematic

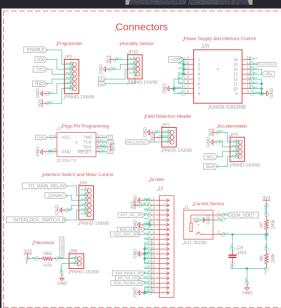


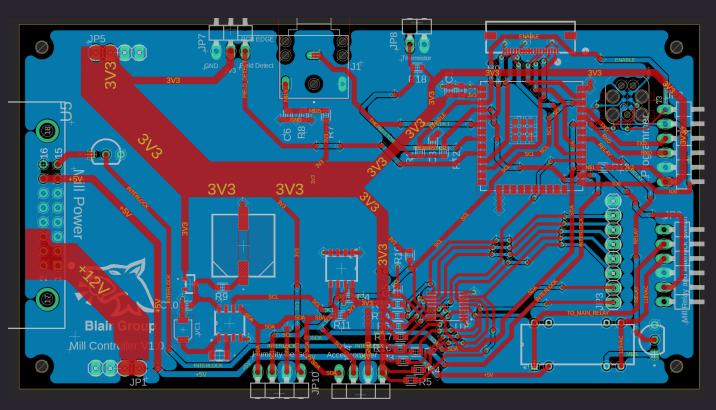
Programming Board - Layout






Main Board - Schematic

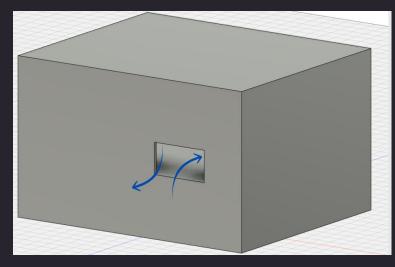




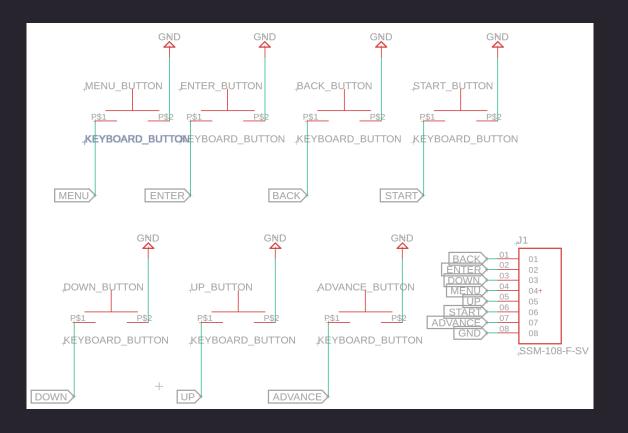
Main Board - Layout

Initial Hurdles & Considerations

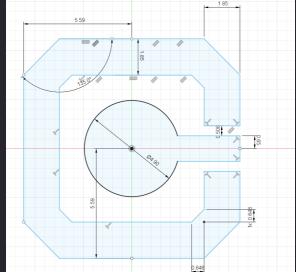
- Interfacing with Existing Mill
- All Steel Container
- Meeting Engineering Requirements/Goals
 - Timer & State Recovery
 - Sensor Monitoring
- Wireless Implementation
 - Environment
 - UCF IT Security
 - Existing Lab Network Setup
- User Interface

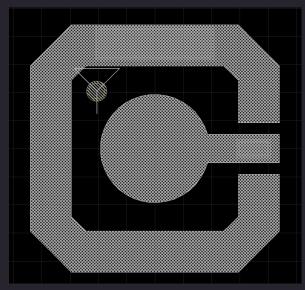


Faraday Cage Solution

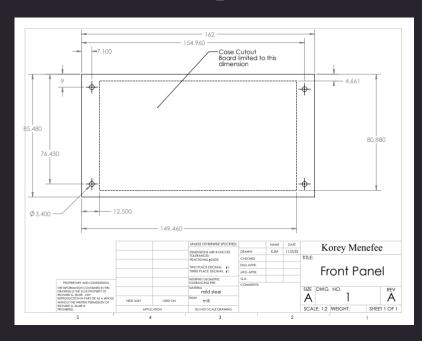

 Replace existing front panel with PCB designed keyboard to allow Wi-Fi signal both in and out of mill.

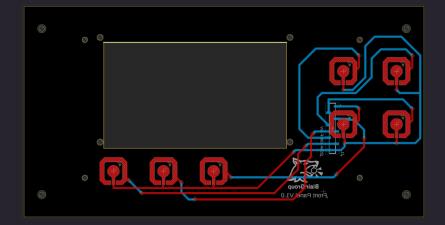
Front Panel - Schematic


Snaptron Buttons


Snaptron Single-sided Pads

Diameter	P1	N1	T1	W1	s	F1/F2
4mm	1.60	2.10	1.25	0.97	0.30	0.32
5mm/5.3mm	2.03	2.59	1.67	1.04	0.38	0.41
6mm/6.3mm	2.45	2.96	1.96	1.09	0.64	0.41
7mm	2.86	3.45	2.28	1.27	0.76	0.60
8.5mm	3.48	4.19	2.77	1.55	0.92	0.89
10mm	4.08	4.67	3.15	1.55	1.10	0.89
11mm	4.50	5.23	3.45	1.70	1.20	0.89
12mm	4.90	5.59	3.76	1.85	1.30	0.89



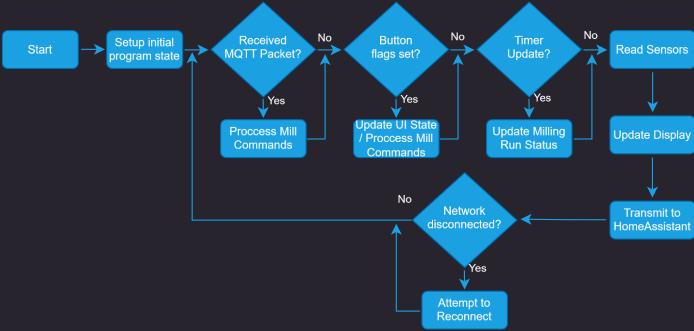


Front Panel – Early Layout and Footprint

Front Panel - Prototype

Initial Hurdles & Considerations

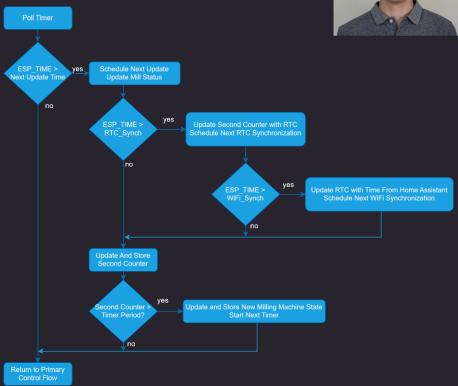
- Interfacing with Existing Mill
- All Steel Container
- Meeting Engineering Requirements/Goals
 - Timer & State Recovery
 - Sensor Monitoring
- Wireless Implementation
 - Environment
 - UCF IT Security
 - Existing Lab Network Setup
- User Interface



Software Requirements

- Accurate Timekeeping
- State saving
 - Recovery from short power disruptions
- Control through local UI or Home Assistant
- Machine status available locally and online

Software Overview



Timing Subsystem

- Three Levels
 - ESP32 built-in timer
 - Real time clock module
 - Updates from Home Assistant

State Saving and Retrieval

- State is written to a ring buffer in non-volatile memory
- Tagged with sequence number
- Retrieval looks for smallest sequence number, then highest sequential write from that point

A power outage during the write won't destroy the previous states

State 0	State 0	State 0	State 0	State 4
	State 1	State 1	State 1	State 1
		State 2	State 2	State 2
			State 3	State 3

Sensors

Current: Split Core CT

Humidity: SHT

Temperature: Thermistor

Accelerometer: Bosch

Split-core CT Sensor Selection

Sensor	CR9580-10-M	SCT013-010	SCT-0400-010
Accuracy	±0.5%	±1%	±1%
Frequency Range	50 – 400Hz	50-1000 Hz	50-1000 Hz
Output Voltage	0-5 V (DC)	1 V (AC)	0.333 V (AC)
Rated/Max input	10A/24A	10A/35A	10A/12A
Burden impedance	1 Mega-ohm	Built in	Built in
Dimensions	49.57mm(W) x 25.42mm(D) x 50.84mm(H)	32.00mm(W) x 22.00mm(D) x 57.00mm(H)	24.00mm(W) x 27.00mm(D) x 40.00mm(H)
Opening Size	10.17mm	13mm	10.0mm
Cost	\$50.39	\$6.90	\$26.00

Sensor Part Selections

Humidity

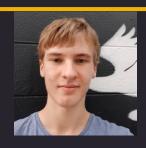
Model	Minimum Reading	Maximum Reading	Resolution/Accur acy	Cost	Size in mm
SHT41	0% RH -40C	100% RH 125C	1.8% RH, 0.2C	3.12	1.5x1.5x0.5
SHT30	0% RH -40C	100% RH 125C	2% RH 0.2C	4.94	2.5x2.5x0.9
DHT22	0% RH -40C	100% RH 80C	2-5%RH 0.5C	9.95	1.05x2.32 x0.53
SHTC3	0% RH -40C	100% RH 125C	2% RH 0.2C	2.86	2x2x0.7
Phidgets 1125_0	10% RH -30C	95% RH 80C	5% RH 0.75C	74.33	35.56x50.8 X8.53
CHS-UPS	5% RH 0C	95% RH 60C	3% RH	77.17	9x6.5x3.7
Adafruit BME688	5% RH 0C	100% RH 80C	3% RH 1.0C	19.95	25.5x17.6 x4.6
SHT20	0% RH -40C	100% RH 125C	3% RH 0.3C	5.40	3.0x3.0x1.1

Sensor Part Selections

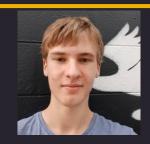
Temperature

Model	Minimum Temp	Maximum Temp	Resolution	Cost	Size in M (Length)
P/N 1600- 10K Thermistor	-80C	150C	±0.1C: When less than 70C	\$20.00	0.152
	-40C	150C			0.038
A99CA-200C	-40C	120C	0.5C	\$35.51	0.050
NTCLE100E3	-40C	125C	±5% (Resistance Tolerance)	\$0.29	0.024
02-N103-1	-40C	125C	±10% (Resistance Tolerance)	\$5.80	0.025
103JG1KE	-55C	300+	±10% (Resistance Tolerance)	\$0.46	.0254
2152793605	-40C	135C	±1% (Resistance Tolerance)	\$2.53	0.033

Sensor Part Selections

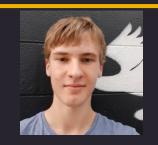

Accelerometer

	STM	Memsic	Kionix	Bosch
	IIS328DQ	MXC6655X	KXTJ3-	BMA400
	[27]	A [28]	1057 [29]	[41]
Supported	±2g/±4g/±8	±2g/±4g/±8	±2g/±4g/±8	±2g/±4g/±8
Scales	g	g	g/±16g	g/±16g
Output Bit Width	16 bits	12 bits	8/12/14 bit modes	12 bits
Output Data	0.5 Hz to 1	100 Hz	0.781 Hz to	125 to 800
Rate	kHz		1.6 kHz	Hz
Interface Type	SPI or I ² C	I ² C	I ² C	SPI or I ² C
Shock Survivability	10,000g	200,000g	10,000g	10,000g



Initial, Hurdles, & Considerations

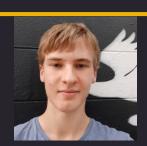
- Interfacing with Existing Mill
- All Steel Container
- Meeting Engineering Requirements/Goals
 - Timer & State Recovery
 - Sensor Monitoring
- Wireless Implementation
 - o **Environment**
 - UCF IT Security
 - Existing Lab Network Setup
- User Interface



Wireless UI Requirements

- Intuitive UI with few interactive main elements not hidden in menus.
- Same or similar functionality as local UI
- Ability to display sensor readings from MCU
- Ability to show messages from MCU
- Compatible with phone and browser
- Guaranteed delivery of messages (soft requirement)

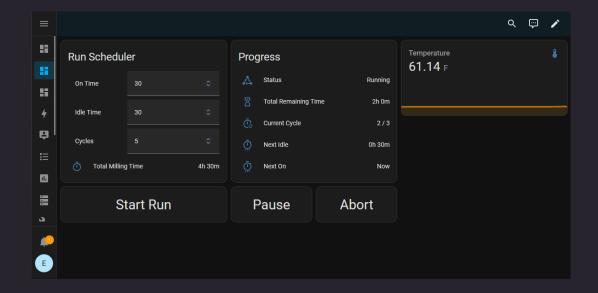
Communication Protocol Selection

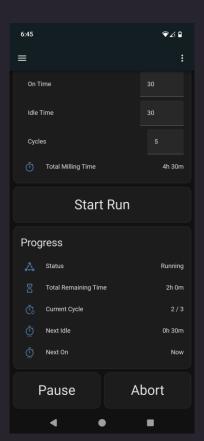


	Bluetooth	BLE	Wi-Fi
Speed (Mbps)	1/2/3	0.125 / 0.5 / 1 / 2	1 to 150
RSSI (dBm)	-70	-82 / -75 / -70	-30 to - 80
Home Assistant Support	Yes	Yes	Yes
MQTT support	Depends	Depends	Yes

MQTT Topic Flow Chart

- A topic acts a channel
- Code and network activity is easier to understand
- Allows for more mills to be added to the network




Current_1

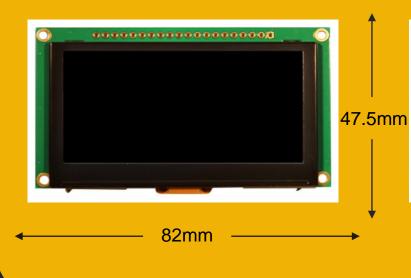
Current Progress

Desktop View

Phone View

Initial Hurdles & Considerations

- Interfacing with Existing Mill
- All Steel Container
- Meeting Engineering Requirements/Goals
 - Timer & State Recovery
 - Sensor Monitoring
- Wireless Implementation
 - Environment
 - UCF IT Security
 - Existing Lab Network Setup
- User Interface


Display Selection

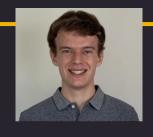
OLED Display	Crystal Fontz CFAL12864K-Y	New Haven Display NHD-2.7- 12864WDY3-M	Display Visions EA OLEDL128- 6LGA
Resolution	128 x 64	128.64	102 x 64
Contrast Ratio	10,000:1	10,000:1	2,000:1
Brightness	80 cd/m2	80 cd/m2	100 cd/m2
Dimensions	73.0 (W) x 41.86 (H) x 2.15 (D)	82.0 (W) x 47.5 (H) x 6.4 (D)	39.0 (W) x 20.75 (H) x 2.6 (D)
Connector	Molex 31 pin connector	Molex 20 pin connector	20 pin header direct solder
Interface	8-Bit Parallel, SPI, I2C	8-Bit Parallel, SPI	SPI, I2C
Integrated Controller	Yes	Yes	Yes
Lifetime	50,000 hrs	100,000 hrs	50,000 hrs
Price	\$38.85	\$38.08	\$30.42

New Haven Display

GUI

We chose the u8g2 open-source display library to program the display due to its simple one-line configuration and it being supported by Lopaka graphics editor and image converter. This allowed to easily generate and position the images on the display.

The initial start-up screen will allow the user to operate the mill in traditional mode. This will let the user input the desired runtime in minutes with the addition of allowing them to enter the number of cycles.


The menu will allow the user to adjust the mill settings such as the rest time between runs and access various information such as total running time, Sensor readings and network connection status.

- : Mill Settings
- 2: Run Log
- 3: Sensors
- 4: Network Status

Budget

ESP32 Devkit (x4)	\$40	
Component Breakout Boards (for prototyping)	\$40	
OLED Display	\$50	
Raspberry Pi	\$0, already owned	
Programmer Board Stencil, PCB (x5)	\$11	
Power Board Stencil, PCB (x5)	\$9	
Control Board Stencil, PCB (x5)	\$14	
Front Panel Stencil, PCB (x5)	\$16	
Components, all boards (x5)	\$300	
Total	\$480	

Work Distribution

Task	Primary	Secondary
Power System Reverse Engineering	Chase	Korey
UI Design	Flavio	Korey
Membrane Keyboard Design	Korey	Chase
Controller PCB Design	Korey	Chase
Power Supply	Flavio	Korey
Microcontroller Main Loop	Chase	Aaron
MCU Wifi and MQTT Programming	Aaron	Chase
Raspberry Pi Home Assistant Setup and Programming	Aaron	Chase

Current Progress

Complete

- Breadboard prototypes of subsystems
- Version 1 of PCBs has arrived
- Planned integration of code

Soon

- Assemble and test PCBs
- Full code integration

Upcoming

- Breakout PCBs for accelerometer and humidity sensor
 - The accelerometer will be on a moving plate that the canisters are indirectly attached to
 - The humidity sensor needs to be in the main compartment
- Add motor field detection circuitry
- Home Assistant push notifications
- Full system testing

Thank You

