On Board Droid

Firoz Umran, Josh Estes, Matthew Huereca and
Alexander Powell

School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract — The On Board Diagnostics (OBD) port on a
vehicle is used to communicate data with a vehicles ECU.
The data read from the OBD can be used for various
purposes. The most common is to read faults in the vehicle
indicated when the vehicles check engine light (CEL) turns
on. The purpose of this project is to read this data from the
OBD and display it in a meaningful manner to the user
through their Android powered device, which will connect to
the OBD wirelessly via Bluetooth. For added functionality
the vehicle will also be wired so that the windows will go up
and down, doors will lock and unlock and the vehicle will
start all via commands from the users Android device.

1. INTRODUCTION

OBD-II became a standard in 1996. All cars
produced after this point adhere to this standard. This
standard sets the pinouts on the connector to be the same
in all cars. The table below shows the standard OBD
pinouts followed by a figure of how a typical OBD
connector looks.

TABLE |
OBDII PORT PINOUTS

OBDII Port Contact Specifications

1. Manufacturer Discretion. GM:

J2411
GMLAN/SWC/Single-Wire CAN

9. -

2. Positive BUS Line of SAE-J1850
PWM and SAE-1850 VPW

10. Negative BUS
Line of SAE-J1850
PWM

3. Ford DCL(+) Argentina, Brazil (pre

OBD-Il) 1997-2000, USA, Europe, etc.

Chrysler CCD Bus(+)

11. Ford DCL(-)
Argentina, Brazil (pre
OBD-Il) 1997-2000,
USA, Europe, etc.
Chrysler CCD Bus(-)

4. Chassis ground

12. -

5. Signal ground

13. -

6. CAN High (ISO 15765-4 and SAE-
J2284)

14. CAN low (ISO
15765-4 SAE-J2284)

7. Kline of ISO 9141-2 and ISO
14230-4

15. L line of ISO 9141-
2 and I1SO 14230-4

8. -

16. Battery voltage

loogoooooos

gEIEIEIEIEIEIEIElls

Fig. 1 Standard OBD Connector

For the purposes of this project the only pins we will
be concerned about are:

(1) Pin 5 — signal ground

(2) Pin7—K line ISO 9141-2

(3) Pin 15 —L line of ISO 9141-2
(4) Pin 16 — Battery Voltage (12v)

The reason for this is that we will be using a 1998
Honda Accord for this project and the protocol associated
with this vehicle is ISO 9141-2 so those are the only pins
necessary along with power and ground.

Our project will wirelessly connect to the car via
Bluetooth from an android device. The project will be
able to do two specific functions, OBD functions and
physical functions.

A. OBD Functions

These functions are all read from the ECU of the car for
various data such as Air Intake Temperature, RPM, Speed
and of course reading the Check Engine Light. This data
will be displayed on the Android device in various forms
such as gauges, text and graphs.

B. Physical Functions

These functions concern with doing things on the car
itself. These functions consist of locking, unlocking,
opening trunk, winding windows down, winding windows
up and starting the car. The purpose of this is to mimic a
remote entry system on most vehicles using a Bluetooth
enabled Android device.

IT HIGH LEVEL DESIGN

Figure 1 shows the high level design diagram for our
project. It shows the flow of data: The android application
send data to the MCU. The MCU checks the format of the
data and determines whether to send it on to the ELM or
to perform a physical function. If passed to the ELM, the
data is translated to code that is readable by the ECU
(Engine Control Unit). The OBD-II takes the ECU’s
response and sends it back to the ELM, which is then sent

to the MCU and finally shows up on the Android phone in
a user friendly format.

OBD - Il Port Car Wiring
Microcontroller
ELma27 H =

Android Application

Fig. 2 High Level Design diagram
III. HARDWARE

This section will describe the hardware used in the
project outside of the vehicle and smartphone.
Specifically, the main hardware components that make up
the PCB will be covered. The main components of the
PCB are: the Bluetooth module, two microcontrollers and
the integration of specific functions from the Arduino test
board.

A. BlueSmirf Gold Bluetooth Module

We decided to use the BlueSmirf Gold Bluetooth
module because it has a class 1 radio as the form of
wireless communication. It also has low power
consumption since the average current used is about 25
milliamps. The frequency hopping scheme allows for the
Bluetooth to operate in harsh environments like WiFi,
802.11g and Zigbee. The Bluetooth connection is also
encrypted when using the BlueSmirf Gold Bluetooth
module. The frequency operation is between 2.4 and 2.524
GHz. The operating voltage conveniently varies from 3.3
volts to 6 volts. The built-in antenna eliminates another
external part.

B. ELM327 Microcontroller

The ELM327 is an OBDII interpreter integrated circuit.
This IC supports all of the protocols used by vehicle
manufacturers to communicate with the OBDII port. The
ELM327 allows for customized protocols so special
OBDII functions can be implemented. Among the great
features of the ELM327, it’s also appealing from a
specifications standpoint. Low power consumption while
in stand-by mode is critical when installed within a
vehicle. The IC features a non-volatile memory location
for storing user data. The baud rate is adjustable for easy
interface with other hardware parts.

C. ATMega328 Microcontroller

The ATMega328 is an 8-bit processor with a 28 pin-
out design. The ATMega328 is equipped with 32K of
flash memory and 23 1/O lines. With an external crystal,
the MCU can run at a rate up to 20 MHz. The
ATMega328 can operate between the 1.8 volts and 5
volts.

D. Arduino UNO Integration

The Arduino UNO is the test board used in the project.
The main attraction of this test board is how well it works
with the ATMeaga328 MCU. During the construction of
the project, we decided to integrate some of the features of
the Arduino UNO into the final PCB. The input voltage
range from 6 volts to 20 volts allows for an easy power
access directly from the OBDII port of the vehicle. The
voltage regulator design allows creates a 3.3 volt pin
which perfectly suits the BlueSmirf Gold Bluetooth
module.

E. Overall Setup

The schematic below shows the overall schematic and
design of the project.

-
Ere
i
&

-
ol
bel 4
|
o

Fig. 3 Overall hardware schematic

IV. PROTOCOL

This section will describe in detail the protocol being
used by the Android device to communicate with the
microcontrollers to perform the specific functions. This
section will be split into a discussion of the protocol for
the OBD Functions, the protocol for our ELM 327
microcontroller and the protocol for the physical
functions.

A. OBD Function Protocol

There are five separate OBDII protocols:
(1) SAE J1850 PWM (Standard of the Ford Motor
Company)- Pin 2: Bus+, Pin 10: Bus-, High voltage is +5
V, Message length is restricted to 12 bytes
(2) SAE J1850 VPW (Standard of GM)- Pin 2: Bus+, Bus
idles low, High voltage is +7 V, Decision point is +3.5 V,
Message length is restricted to 12 bytes
(3) 1SO 9141-2 (Primarily used in Chrysler, European and
Asian vehicles)- Pin 7: K-line, Pin 15: L-line, UART
signaling, Message restricted to 12 bytes
(4) 1SO 14230: Mostly the same as ISO 9141-2, Message
can contain up to 255 bytes
(5) 1SO 15765 CAN- Pin 6: CAN high, Pin 14: CAN low
For this project we will only be dealing with protocol 3.
In order to receive data from the OBD a request must first
be made to the OBDII port in this form:

Mode PID
Request XX YY

XX indicates the mode of the request in which there are
9. And YY indicates the PID of the request. For example
if one wants to view the air intake temperature of a
vehicle. The request is a mode 1 and its PID is OF so one
must send 010F to the OBDII port. The different modes
are:

(1) Mode 1 — Used to obtain current diagnostic data:
Number of trouble codes set, status of onboard tests,
vehicle data such as engine RPM, temperatures, ignition
advance, speed, air flow rates, information on fuel system.
(2) Mode 2 — Similar to mode 1 except instead of current
data, it pertains to data that was stored at a moment in
time, such as when an error code was turned on.

(3) Mode 3 — Requests all diagnostic trouble codes from
vehicle. It is possible that there will be more than one
response message if the number of error codes exceeds the
available data bytes.

(4) Mode 4 — Simply instructs the vehicle to clear all error
codes.

(5) Mode 5 — An optional mode used for requesting results
of an oxygen sensor test. Some vehicles report this under
mode 6.

(6) Mode 6 — Used for obtaining test results for non-
continuously monitored systems. This is optional and is
defined by the vehicle manufacturer if used at all. For this
reason, it probably won’t be included in our project.

(7) Mode 7 — Optional mode similar to mode 3. This
mode returns trouble codes which may be set after a single
drive cycle. This is useful for checking the results after a
repair has been done.

(8) Mode 8 — Used to request control of an on board
system. This mode is manufacturer defined.

(9) Mode 9 — Optional mode used to report vehicle
information such as the VIN and information stored in the
ECU.

Most of the requests will be of Mode 1 except when
dealing with reading the check engine light on a vehicle
which will be dealt with in Mode 3. Once a request is sent
the port will respond with a message in the following
form:

TA SA

| priority ‘ receiver ‘lransmlrter|

| 3 header bytes | up ta 7 data bytes ‘ checksum |

However, the 3 header bytes are for the user. The bytes
of interest are the 7 data bytes. The first two bytes will
simply be an echo of the request that was sent to it while
the remaining four bytes will contain the data. Depending
on what the request is the data that comes in must be
properly formatted in order for the user to view the
responses in a meaningful manner. The table below
shows the different Mode 1 requests to be used and the
formulas to convert the data.

TABLE 2
PID CONVERSION CHART
PID | Description # Bytes | Calculation
02 Freeze frame | 2, A | N/A
trouble code. and B
04 Load value | 1, A A*100/255 =
percent. engine load%
05 Coolant 1,A Deg=A-40
temperature in
degrees C
06 Short term fuel | 1, A .7812 * (Byte A —
percent 128)
07 - | Similarto 6
09
0A Fuel pressure in | 1, A Pressure = A * 3
kPa
0B Intake manifold | 1, A Pressure = A
pressure kPa
0C Engine RPM 2, A|RPM = 25 *

and B (A*256 + B)
0D Vehicle speed, in | 1, A Speed = A
km/h
OE Timing advance | 1, A Advance = (5 *
in degrees A) - 64
OF Intake air | 1, A Degrees = A - 40

temperature in
degrees Celsius

10 MAF air flow 2, A | Air flow =
and B .01*(256*A+B)
11 Throttle position | 1, A Position % =
3922 * A

B. ELM 327 Protocol

Before we can even talk to the OBD we must be sure
that our microcontroller that is preprogrammed with the
protocol is setup properly. In order to do this the ELM327
comes with its own set of commands that can be used to
configure the MCU. These commands all begin with
“AT” and will hereby be referred to as AT commands.
The commands of importance are as follows:

(1) ATDP — describe the current protocol

(2) ATRV —get voltage

(3) ATZ - serial reset

(4) AtEO — Echo off (used so the request does not appear
in the response)

(5) ATIB — set the baud rate for different devices

C. Physical Functions Protocol

When requests are sent to our ATmega 328
microcontroller the ATmega will decipher the message
and decide whether it should handle the function or send it
to the ELM chip. It will handle the function if the request
begins with FC. For the physical functions we have
created our own protocol each beginning with FC as
shown in the table below.

V. SOFTWARE

The software on the Android device is programmed in
the JAVA programming language. This language is a
high-level object oriented language. There are several
sections of interest to discuss about the programming of
the software. Those sections include the OBD real-time
OBD functions themselves, the keypad for the physical
functions, the error codes and the logging feature.

A.OBD Real-Time Functions

Each specific OBD function has its own object
associated with it. Within that object are methods to send,
receive and convert data to, from and for the user. Each
specific object uses the formulas found in TABLE 2 to
convert the data it has received. These objects are built in
a hierarchy which makes it easier to add more objects in
the system without having to rewrite a massive amount of
code and since they are “real-time” functions each object
is also a threaded object that has a run method to be called
when the user wants to constantly read this data. There is
one function that was programmed that is not mentioned
in the table because it does not come straight out of the
OBD but it is a very useful function. That function is the
ability to get the instantaneous fuel economy from the car.
To do this we must first get the values for the Mass Air
Flow and the Speed of the vehicle then we use the formula
to calculate the value.

_ (14.7 % 6.17 * 4.54 * speed* 0.621371)

Fuel Economy(MPG) = (3600 + 100rmaD) @)

B.Keypad

The keypad is where all the physical functions are
located. These functions are similar to the OBD functions
except that there are no formulas because no data is sent
back after the request is made. Rather something physical
should happen such as the car unlocking. Below is a class
diagram of all the objects used for the keypad.

otherFunction

-in: inputStream
-out: outputStream
-func : String
+sendFunc()
+setinputStream()
+setOutputStream()

+winup : otherFunction
+onCreate()

lected() I [I

+panic : otherFunction 1 n

TABLE 3

PHYSICAL FUNCTION PROTOCOL

Function Header Data
remoteStartActivity

Unlock FC 01 o
Lock FC 02 e
Pop Trunk FC 03 i aeranon.
Panic FC 04 ontemselected)
Windows Down FC 05 ool
Windows Up FC 06 onpesved
Start FC 07

trunkFunction startFunction lockFunction

unlockFunction windowDownFunction panicFunction

windowUpFunction

Fig.4 Class diagram of the physical functions. Shows the
relationship between the functions and the activity in which they
are present in. All the functions inherit from the main class
called otherFunction which contains all the necessary methods
for sending data.

C. Error Codes

To read the error codes thrown by a cars ECU a mode 3
request is sent to the OBD. However, the formatting of
this message is different than the others. All the error
codes are sent at once, 3 per line, and a vehicle may have
multiple errors. So what must first be done is send a mode
1 PID 1 request to obtain how many error codes are in the
system. Then use that to determine how many lines will
be returned and split the error codes from there. Every
two bytes consist of one error code. Finally, once you
have the error code you must take the first digit and use
the chart below to convert the code to something that can
be searched for in an online database.

TABLE 4
ERROR CODE CONVERSION
15T Digit Replace w/ | Description
PO Power Train Code — SAE defined
1 P1 “ “—Manufacturer Defined
2 P2 “ “—SAE Defined
3 P3 « <« _Jointly Defined
4 co Chassis Code — SAE defined
5 C1 “ “—Manufacturer Defined
6 c2 “ “—Manufacturer Defined
7 C3 “ “—Reserved for Future
8 BO Body Code — SAE defined
9 B1 “ “—Manufacturer Defined
A B2 “ “— Manufacturer Defined
B B3 “ “—Reserved for Future
Cc uo Network Code — SAE defined
D Ul “ “—Manufacturer Defined
E u2 “ “—Manufacturer Defined
F u3 “ “—Reserved for Future

D. Logging Feature

The logging feature is the ability to store away the real-
time data that has previously been read so that it may be
viewed again at a later time. Adding to that the user will
also be able to calculate average values of all data read.
For example, the user can take all the instantaneous fuel
economy values and use that to calculate the vehicles
average fuel economy, which is extremely useful in these
times of high gas prices. The way this works is that a log
file is created for every OBDII real-time function. Every
time that data is read in for that specific function it gets
put in that functions log file. Then when the user selects
to view that log the program will simply open that text file
and display it to the user.

ObdMainActivity

-powerManager: PowerManager
-prefs: SharedPreferences

+onCreate(in savedinstance: Bundle)
+onltemSelected()

+onNothingSelected()

+setText(in num : String, in clear : Boolean)
+onDestroy()

+onResume()

+onPause()

+updateTextView()

+setAirTemp(in airTemp : String)
+setCoolTemp(in coolant : String)

ObdLogActivity
+fuelEconomy : ObdLog
+speed : ObdLog
+massAirFlow : ObdLog
+timingAdvance : ObdLog
+intakeTemp : ObdLog
+coolantTemp : ObdLog

+manifoldPressure : ObdLog
+fuelPressure : ObdLog
+setSpeed(in speedv : String) +engineLoad : ObdLog
+setRpm(in rpm : String)

+setFuelEconomy(in fuel : String)
+setEngineRunTime(in runTime : String)
+setTimingAdvance(in timingAdvance : String)
+setFuelLevel(in fuelLevel : String)

[+showLog(in fileName : String)
+onitemSelected()
+onNothingSelected()
+onDestroy()

+onResume()

+onPause()

1

n

ObdLog
+fileName : String
+count : Integer
-value : String

-date : Date

[+add(in value : String, in date : Date)
+clear()

+checkFull()

+remove0ld()

+getAvg() : Integer

Fig.5 This is the class diagram of the logging feature. It
shows the main screen and its methods that relate to the Log
object being created and entered into the logging screen to be
called upon and viewed by the user at a later time.

VI. USER INTERFACE

The user interface of our Android program allows the user
to interact with the OBD data as well as control the car’s
functions. It was designed to mimic features already
familiar to drivers (gauges and keypads) while still fitting
in with our project’s design goals. Figure 6 shows the
main menu of the program. Start Connection allows user
to manually connect to the device, though the program
will try to connect automatically when first launched.
OBD Il Reader opens the OBD gauge and graph screen
that lets the user see data being read from the OBD.
Keypad shows a virtual car keypad that mimics the design
of physical keypads used to unlock, lock, etc. Logs lets the
user view logs saved to the user’s SD card. They can view

the raw data in text form, or see it graphed out. Error
Codes displays any errors read from the OBD and gives
their associated DTC (Diagnostic Trouble Code). There is
an option to Clear All errors from this screen as well.
Settings contains user controlled settings such as setting
the units, the option to keep the screen on at all times
while using the program, and whether to confirm when
quitting.

Start Connection

OBD II Reader

Keypad

Logs

Error Codes

Settings

Fig. 6 The main menu of the program

Figure 7 shows the main OBD reader screen. From here
the user can press and hold on the gauge to choose which
function to read. The user can also press the menu key on
their android phone and have the options to run custom
functions by sending commands directly to the OBD.

= Il €2 10:03 Pm

Speed (MPH)

Fig. 7 The OBD reader screen

The Android app was programmed using Java, and most
of the interface was created with XML. For many of the
screens the java file just calls the XML file that contains
the formatting of the screen, similar to how HTML and

CSS work together by keeping the “content” and the
styling separated. Each screen is considered an “activity”
and each activity is a separate class. Most of the interface
was created using standard views found in the Android
libraries, such as text boxes and buttons. However, some
interface objects were too complicated to be created from
the built in libraries alone. Custom views had to be created
for the gauges and the graphs. The gauge is drawn using
the canvas commands found in Java. In particular, the
rotate command used on a canvas object was very useful
in drawing the notches and numbers in a circle around the
edges of the gauge. Whenever a gauge is needed, we just
create a gauge object and manipulate it from there. For the
graphs, we used an Android graphing library called
AndroidPlot. We chose AndroidPlot specifically because
it provided the ability to create both static and dynamic
graphs. Static graphs are used for the log functionality —
taking text log data and converting it into a graph. The
dynamic graphing ability is used for the OBD reader
screen to display the data in real time in conjunction with
the gauge. In our implementation we use a linked list to
hold the most recently acquired data from the OBD, and
draw that data to the graph. When a new data point is
received, it’s added to the linked list, the oldest data point
is removed and the graph is redrawn again.

VII WIRING THE CAR

Since we are using a 1998 Honda Accord for the
purpose of this project we will need to wire the car based
on its factory specs. For the OBD port we simply plug the
connector in and it’s ready to send and receive data.
However, to unlock the car we need to take the pin that
goes high when an unlock signal is sent and wire it to a
relay that connects to the unlock trigger on the car. Since
the unlock trigger is negative logic it must be tied to
ground so when the relay is activated the unlock trigger
will get a ground signal and unlock the car. The table
below shows where all the trigger wires are located and
whether they are positive (+) or negative (-) triggered.
Following the table is a figure on how the system will be
wired to the relay harness.

TABLE 5
ACCORD WIRING CHART
PART COLOR LOCATION PART
IGNITION
12 VOLT 12 VOLT
WHITE (+) | SWITCH
CONSTANT DARNESS | CONSTANT
BLACK/WHI | IGNITION
STARTER | TE (+) See SWITCH STARTER
NOTE *1 HARNESS
IGNITION | BLACK/YEL | IGNITION | IGNITION
1 LOW (+) SWITCH 1

HARNESS
@
PARKING RED/YELLO | STEERING PARKING
LIGHTS(-) | W(-) COLUMN LIGHTS (-)
HARNESS
PARKING INDRIVER | PARKING
LIGHTS (+ (T)ED/BLACK SIDE LIGHTS (+
) FUSEBOX)
BLACK/BLU IN
POWER E (Negative (- | PASSENGE | POWER
LOCK)) See NOTE R SIDE LOCK
*2 FUSEBOX
IN
POWER (?\)IEgé{[\il\iE(-)) PASSENGE | POWER
UNLOCK See NOTE *2 R SIDE UNLOCK
FUSEBOX
IN
DOOR BLACK/WHI | PASSENGE | DOOR
TRIGGER TE (-) R SIDE TRIGGER
FUSEBOX
DOMELIG USE DOOR DOMELIG
HT TRIGGER, HT
SUPERVISI Requires Part SUPERVISI
ON #R30-H Relay ON
WHITE/RED IN
TRUNK (+), Requires DRIVERS TRUNK
RELEASE Part #R30-H KICK RELEASE
Relay PANEL
@
LIGHT
STEERING
HORN GREEN/BLUE COLUMN HORN
0 HARNESS
@ SWITCH
WHITE/BLA | ABOVE
BRAKE CK (+) BRAKE BRAKE
PEDAL
FACTORY FACTORY
ALARM N%LTUEE*&) See ALARM
DISARM DISARM
g W %
=3
Fig. 7 Shows the wiring from the chip to the relay harness

and then to the rest of the car.

VIl CONCLUSION

We believe that our project will be a useful tool for
reading critical vehicle data as well as a handy way to lock
and unlock car doors on the go and start the car before
even entering the vehicle. Our project provides an
intuitive and unique way to interact with the car, and we
have learned much about designing and testing hardware
and getting software and hardware to work together.
Creating this project has been an excellent learning
experience.

IX BIOGRAPHY

Matthew Huereca is a senior student of
the Computer Engineering department at
the University of Central Florida. He
will graduate in the summer of 2011 and
plans to pursue a career in the computer
engineering industry.

Alexander Powell is an Electrical
Engineering student with a Computer
Science minor and will graduate The
University of Central Florida in summer
of 2011. He nplans to enter the
engineering industry with hopes of
returning to graduate school in 2012.

Firoz Umran is a Computer
Engineering student at the University
of Central Florida. He will graduate
in the summer of 2011 and plans to
obtain a career in Engineering.

Josh Estes is a Computer Engineering
student and will graduate The
University of Central Florida in
summer of 2011. He plans to enter the
engineering industry with hopes of
returning to graduate school in to

pursue a Masters in Business
Administration.

VIl References
Beloussov, Alexandre. “alOBD Scanner.” Android

Market. N.p., 27 Jan. 2011. Web. 28 Feb. 2011.
<https://market.android.com/details?id=com.obd2>.

“Build One.” blueOBD. N.p., 2010. Web. 3 Feb. 2011.
<http://www.blueobd.com/build_one.html>.

Hawkins, Tan. “Torque (Free/Basic).” Android Market.
N.p.,, 9 Mar. 2011. Web. 28 Feb. 2011
<https://market.android.com/
details?id=org.prowl.torquefree>.

“HOWTO Read Your Car’s Mind.” ThinkyThings. N.p.,
10 May 2007. Web. 25 Feb. 2011
<http://www.thinkythings.org/obdii/#references>.

Memruk, Ivan. “Android Custom Ul: Making a Vintage
Themometer.” Mind The Robot. N.p., 7 June 2010.
Webh. 17 Apr. 2011. <http://mindtherobot.com/blog/
272/android-custom-ui-making-a-vintage-

thermometer/>.
“Mode 1 and Mode 2 Parameter IDs.” OBDII Diagnostics.
N.p., n.d. Web. 23 Feb. 2011.

<http://www.obddiagnostics.com/obdinfo/pids1-
2.htmi>.

Noxon, Jeff. “Opendiag OBD-IlI Schematics & PCB
Layout.” Planetfall. N.p., 13 Jan. 2009. Web. 21 Feb.
2011. <http://www.planetfall.com/cms/content/
opendiag-obd-ii-schematics-pcb-layout>.

“OBD2 Diagnostic Operational Modes.” CanOBD2.
Innova, 2011. Web. 18 Feb. 2011.

“OBD FAQ: OBD-II Communication Protocols.” OBD-
Codes. N.p., nd. Web. 21 Mar. 2011.
<http://www.obd-codes.com/fag/obd-ii-
protocols.php>.

“OBD-II Background.” The OBD Il Home Page. N.p.,
2011. Web. 23 Feb. 2011. <http://www.obdii.com/
background.html>.

“OBDII Message Structure.” OBD Diagnostics. N.p., n.d.
Web. 21 Feb. 2011. <http://www.obddiagnostics.com/
obdinfo/msg_struct.html>.

“OBD to RS232 Interpreter.” ELM Electronics. N.p., n.d.
Web. 5 Mar. 2011. <http://www.elmelectronics.com/
DSheets/ELM327DS.pdf>.

“ScanXL Professional.” ScanTool. N.p., n.d. Web. 25 Feb.
2011. <http://www.scantool.net/scanxl-pro.html>.
“Scothlock Connectors.” Mid Term Terminal and
Connectors Company. N.p., 2005. Web. 9 Apr. 2011.

<http://www.midterminc.com/en-us/dept_52.html>.

“Viper SmartStart.” Android Market. N.p., 5 Jan. 2011.
Web. 28 Feb. 2011. <https://market.android.com/
details?id=com.directed.android.viper>.

“Viper SmartStart for Android.” Viper. N.p., n.d. Web. 21
Mar. 2011. <http://www.viper.com/smartstart/
android/Features.aspx>.

“What Is Your Car Trying To Tell You.” The Wire Up.
N.p., 16 Oct. 2008. Web. 16 Oct. 208.
<http://www.thewireup.com/2008/10/what-is-your-
car-trying-to-tell-you.html>.

