
On Board Droid

Firoz Umran, Josh Estes, Matthew Huereca and

Alexander Powell

School of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The On Board Diagnostics (OBD) port on a
vehicle is used to communicate data with a vehicles ECU.
The data read from the OBD can be used for various
purposes. The most common is to read faults in the vehicle
indicated when the vehicles check engine light (CEL) turns
on. The purpose of this project is to read this data from the
OBD and display it in a meaningful manner to the user
through their Android powered device, which will connect to
the OBD wirelessly via Bluetooth. For added functionality
the vehicle will also be wired so that the windows will go up
and down, doors will lock and unlock and the vehicle will
start all via commands from the users Android device.

I. INTRODUCTION

 OBD-II became a standard in 1996. All cars

produced after this point adhere to this standard. This

standard sets the pinouts on the connector to be the same

in all cars. The table below shows the standard OBD

pinouts followed by a figure of how a typical OBD

connector looks.

TABLE I
OBDII PORT PINOUTS

Fig. 1 Standard OBD Connector

For the purposes of this project the only pins we will
be concerned about are:

(1) Pin 5 – signal ground

(2) Pin 7 – K line ISO 9141-2

(3) Pin 15 – L line of ISO 9141-2

(4) Pin 16 – Battery Voltage (12v)

The reason for this is that we will be using a 1998

Honda Accord for this project and the protocol associated

with this vehicle is ISO 9141-2 so those are the only pins

necessary along with power and ground.

Our project will wirelessly connect to the car via

Bluetooth from an android device. The project will be

able to do two specific functions, OBD functions and

physical functions.

A. OBD Functions

These functions are all read from the ECU of the car for

various data such as Air Intake Temperature, RPM, Speed

and of course reading the Check Engine Light. This data

will be displayed on the Android device in various forms

such as gauges, text and graphs.

B. Physical Functions

These functions concern with doing things on the car

itself. These functions consist of locking, unlocking,

opening trunk, winding windows down, winding windows

up and starting the car. The purpose of this is to mimic a

remote entry system on most vehicles using a Bluetooth

enabled Android device.

II HIGH LEVEL DESIGN

Figure 1 shows the high level design diagram for our

project. It shows the flow of data: The android application

send data to the MCU. The MCU checks the format of the

data and determines whether to send it on to the ELM or

to perform a physical function. If passed to the ELM, the

data is translated to code that is readable by the ECU

(Engine Control Unit). The OBD-II takes the ECU’s

response and sends it back to the ELM, which is then sent

OBDII Port Contact Specifications

1. Manufacturer Discretion. GM:
J2411
GMLAN/SWC/Single-Wire CAN

9. -

2. Positive BUS Line of SAE-J1850
PWM and SAE-1850 VPW

10. Negative BUS
Line of SAE-J1850
PWM

3. Ford DCL(+) Argentina, Brazil (pre
OBD-II) 1997-2000, USA, Europe, etc.
Chrysler CCD Bus(+)

11. Ford DCL(-)
Argentina, Brazil (pre
OBD-II) 1997-2000,
USA, Europe, etc.
Chrysler CCD Bus(-)

4. Chassis ground 12. -

5. Signal ground 13. -

6. CAN High (ISO 15765-4 and SAE-
J2284)

14. CAN low (ISO
15765-4 SAE-J2284)

7. K line of ISO 9141-2 and ISO
14230-4

15. L line of ISO 9141-
2 and ISO 14230-4

8. - 16. Battery voltage

to the MCU and finally shows up on the Android phone in

a user friendly format.

Fig. 2 High Level Design diagram

III. HARDWARE

 This section will describe the hardware used in the

project outside of the vehicle and smartphone.

Specifically, the main hardware components that make up

the PCB will be covered. The main components of the

PCB are: the Bluetooth module, two microcontrollers and

the integration of specific functions from the Arduino test

board.

A. BlueSmirf Gold Bluetooth Module

We decided to use the BlueSmirf Gold Bluetooth

module because it has a class 1 radio as the form of

wireless communication. It also has low power

consumption since the average current used is about 25

milliamps. The frequency hopping scheme allows for the

Bluetooth to operate in harsh environments like WiFi,

802.11g and Zigbee. The Bluetooth connection is also

encrypted when using the BlueSmirf Gold Bluetooth

module. The frequency operation is between 2.4 and 2.524

GHz. The operating voltage conveniently varies from 3.3

volts to 6 volts. The built-in antenna eliminates another

external part.

B. ELM327 Microcontroller

The ELM327 is an OBDII interpreter integrated circuit.

This IC supports all of the protocols used by vehicle

manufacturers to communicate with the OBDII port. The

ELM327 allows for customized protocols so special

OBDII functions can be implemented. Among the great

features of the ELM327, it’s also appealing from a

specifications standpoint. Low power consumption while

in stand-by mode is critical when installed within a

vehicle. The IC features a non-volatile memory location

for storing user data. The baud rate is adjustable for easy

interface with other hardware parts.

C. ATMega328 Microcontroller

 The ATMega328 is an 8-bit processor with a 28 pin-

out design. The ATMega328 is equipped with 32K of

flash memory and 23 I/O lines. With an external crystal,

the MCU can run at a rate up to 20 MHz. The

ATMega328 can operate between the 1.8 volts and 5

volts.

D. Arduino UNO Integration

 The Arduino UNO is the test board used in the project.

The main attraction of this test board is how well it works

with the ATMeaga328 MCU. During the construction of

the project, we decided to integrate some of the features of

the Arduino UNO into the final PCB. The input voltage

range from 6 volts to 20 volts allows for an easy power

access directly from the OBDII port of the vehicle. The

voltage regulator design allows creates a 3.3 volt pin

which perfectly suits the BlueSmirf Gold Bluetooth

module.

E. Overall Setup

 The schematic below shows the overall schematic and

design of the project.

Fig. 3 Overall hardware schematic

IV. PROTOCOL

This section will describe in detail the protocol being

used by the Android device to communicate with the

microcontrollers to perform the specific functions. This

section will be split into a discussion of the protocol for

the OBD Functions, the protocol for our ELM 327

microcontroller and the protocol for the physical

functions.

A. OBD Function Protocol

 There are five separate OBDII protocols:

(1) SAE J1850 PWM (Standard of the Ford Motor

Company)- Pin 2: Bus+, Pin 10: Bus-, High voltage is +5

V, Message length is restricted to 12 bytes

(2) SAE J1850 VPW (Standard of GM)- Pin 2: Bus+, Bus

idles low, High voltage is +7 V, Decision point is +3.5 V,

Message length is restricted to 12 bytes

(3) ISO 9141-2 (Primarily used in Chrysler, European and

Asian vehicles)- Pin 7: K-line, Pin 15: L-line, UART

signaling, Message restricted to 12 bytes

(4) ISO 14230: Mostly the same as ISO 9141-2, Message

can contain up to 255 bytes

(5) ISO 15765 CAN- Pin 6: CAN high, Pin 14: CAN low

For this project we will only be dealing with protocol 3.

In order to receive data from the OBD a request must first

be made to the OBDII port in this form:

 Mode PID

Request XX YY

 XX indicates the mode of the request in which there are

9. And YY indicates the PID of the request. For example

if one wants to view the air intake temperature of a

vehicle. The request is a mode 1 and its PID is 0F so one

must send 010F to the OBDII port. The different modes

are:

(1) Mode 1 – Used to obtain current diagnostic data:

Number of trouble codes set, status of onboard tests,

vehicle data such as engine RPM, temperatures, ignition

advance, speed, air flow rates, information on fuel system.

(2) Mode 2 – Similar to mode 1 except instead of current

data, it pertains to data that was stored at a moment in

time, such as when an error code was turned on.

(3) Mode 3 – Requests all diagnostic trouble codes from

vehicle. It is possible that there will be more than one

response message if the number of error codes exceeds the

available data bytes.

(4) Mode 4 – Simply instructs the vehicle to clear all error

codes.

(5) Mode 5 – An optional mode used for requesting results

of an oxygen sensor test. Some vehicles report this under

mode 6.

(6) Mode 6 – Used for obtaining test results for non-

continuously monitored systems. This is optional and is

defined by the vehicle manufacturer if used at all. For this

reason, it probably won’t be included in our project.

(7) Mode 7 – Optional mode similar to mode 3. This

mode returns trouble codes which may be set after a single

drive cycle. This is useful for checking the results after a

repair has been done.

(8) Mode 8 – Used to request control of an on board

system. This mode is manufacturer defined.

(9) Mode 9 – Optional mode used to report vehicle

information such as the VIN and information stored in the

ECU.

 Most of the requests will be of Mode 1 except when

dealing with reading the check engine light on a vehicle

which will be dealt with in Mode 3. Once a request is sent

the port will respond with a message in the following

form:

However, the 3 header bytes are for the user. The bytes

of interest are the 7 data bytes. The first two bytes will

simply be an echo of the request that was sent to it while

the remaining four bytes will contain the data. Depending

on what the request is the data that comes in must be

properly formatted in order for the user to view the

responses in a meaningful manner. The table below

shows the different Mode 1 requests to be used and the

formulas to convert the data.

TABLE 2

PID CONVERSION CHART

PID Description # Bytes Calculation

02 Freeze frame

trouble code.

2, A

and B

N/A

04 Load value

percent.

1, A A*100/255 =

engine load%

05 Coolant

temperature in

degrees C

1, A Deg = A – 40

06 Short term fuel

percent

1, A .7812 * (Byte A –

128)

07 -

09

Similar to 6

0A Fuel pressure in

kPa

1, A Pressure = A * 3

0B Intake manifold

pressure kPa

1, A Pressure = A

0C Engine RPM 2, A RPM = .25 *

and B (A*256 + B)

0D Vehicle speed, in

km/h

1, A Speed = A

0E Timing advance

in degrees

1, A Advance = (.5 *

A) – 64

0F Intake air

temperature in

degrees Celsius

1, A Degrees = A - 40

10 MAF air flow 2, A

and B

Air flow =

.01*(256*A+B)

11 Throttle position 1, A Position % =

.3922 * A

 B. ELM 327 Protocol

 Before we can even talk to the OBD we must be sure

that our microcontroller that is preprogrammed with the

protocol is setup properly. In order to do this the ELM327

comes with its own set of commands that can be used to

configure the MCU. These commands all begin with

“AT” and will hereby be referred to as AT commands.

The commands of importance are as follows:

(1) ATDP – describe the current protocol

(2) ATRV – get voltage

(3) ATZ – serial reset

(4) AtE0 – Echo off (used so the request does not appear

in the response)

(5) ATIB – set the baud rate for different devices

 C. Physical Functions Protocol

 When requests are sent to our ATmega 328

microcontroller the ATmega will decipher the message

and decide whether it should handle the function or send it

to the ELM chip. It will handle the function if the request

begins with FC. For the physical functions we have

created our own protocol each beginning with FC as

shown in the table below.

TABLE 3

PHYSICAL FUNCTION PROTOCOL

Function Header Data

Unlock FC 01

Lock FC 02

Pop Trunk FC 03

Panic FC 04

Windows Down FC 05

Windows Up FC 06

Start FC 07

V. SOFTWARE

 The software on the Android device is programmed in

the JAVA programming language. This language is a

high-level object oriented language. There are several

sections of interest to discuss about the programming of

the software. Those sections include the OBD real-time

OBD functions themselves, the keypad for the physical

functions, the error codes and the logging feature.

A. OBD Real-Time Functions

 Each specific OBD function has its own object

associated with it. Within that object are methods to send,

receive and convert data to, from and for the user. Each

specific object uses the formulas found in TABLE 2 to

convert the data it has received. These objects are built in

a hierarchy which makes it easier to add more objects in

the system without having to rewrite a massive amount of

code and since they are “real-time” functions each object

is also a threaded object that has a run method to be called

when the user wants to constantly read this data. There is

one function that was programmed that is not mentioned

in the table because it does not come straight out of the

OBD but it is a very useful function. That function is the

ability to get the instantaneous fuel economy from the car.

To do this we must first get the values for the Mass Air

Flow and the Speed of the vehicle then we use the formula

to calculate the value.

 (1)

B. Keypad

 The keypad is where all the physical functions are

located. These functions are similar to the OBD functions

except that there are no formulas because no data is sent

back after the request is made. Rather something physical

should happen such as the car unlocking. Below is a class

diagram of all the objects used for the keypad.

+onCreate()
+onItemSelected()
+onNothingSelected()
+onResume()
+onPause()
+onDestroy()

remoteStartActivity

+unlock : otherFunction
+lock : otherFunction
+trunk : otherFunction
+panic : otherFunction
+start : otherFunction
+windwn : otherFunction
+winup : otherFunction

+sendFunc()
+setInputStream()
+setOutputStream()

otherFunction

-in: inputStream
-out: outputStream
-func : String

unlockFunction panicFunction

startFunctiontrunkFunction

windowUpFunction
windowDownFunction

lockFunction

1 n

Fig. 4 Class diagram of the physical functions. Shows the
relationship between the functions and the activity in which they
are present in. All the functions inherit from the main class
called otherFunction which contains all the necessary methods
for sending data.

C. Error Codes

To read the error codes thrown by a cars ECU a mode 3

request is sent to the OBD. However, the formatting of

this message is different than the others. All the error

codes are sent at once, 3 per line, and a vehicle may have

multiple errors. So what must first be done is send a mode

1 PID 1 request to obtain how many error codes are in the

system. Then use that to determine how many lines will

be returned and split the error codes from there. Every

two bytes consist of one error code. Finally, once you

have the error code you must take the first digit and use

the chart below to convert the code to something that can

be searched for in an online database.

TABLE 4

ERROR CODE CONVERSION

1ST Digit Replace w/ Description

0 P0 Power Train Code – SAE defined

1 P1 “ “ – Manufacturer Defined

2 P2 “ “ – SAE Defined

3 P3 “ “ – Jointly Defined

4 C0 Chassis Code – SAE defined

5 C1 “ “ – Manufacturer Defined

6 C2 “ “ – Manufacturer Defined

7 C3 “ “ – Reserved for Future

8 B0 Body Code – SAE defined

9 B1 “ “ – Manufacturer Defined

A B2 “ “ – Manufacturer Defined

B B3 “ “ – Reserved for Future

C U0 Network Code – SAE defined

D U1 “ “ – Manufacturer Defined

E U2 “ “ – Manufacturer Defined

F U3 “ “ – Reserved for Future

D. Logging Feature

 The logging feature is the ability to store away the real-

time data that has previously been read so that it may be

viewed again at a later time. Adding to that the user will

also be able to calculate average values of all data read.

For example, the user can take all the instantaneous fuel

economy values and use that to calculate the vehicles

average fuel economy, which is extremely useful in these

times of high gas prices. The way this works is that a log

file is created for every OBDII real-time function. Every

time that data is read in for that specific function it gets

put in that functions log file. Then when the user selects

to view that log the program will simply open that text file

and display it to the user.

Fig. 5 This is the class diagram of the logging feature. It

shows the main screen and its methods that relate to the Log
object being created and entered into the logging screen to be

called upon and viewed by the user at a later time.

VI. USER INTERFACE

The user interface of our Android program allows the user

to interact with the OBD data as well as control the car’s

functions. It was designed to mimic features already

familiar to drivers (gauges and keypads) while still fitting

in with our project’s design goals. Figure 6 shows the

main menu of the program. Start Connection allows user

to manually connect to the device, though the program

will try to connect automatically when first launched.

OBD II Reader opens the OBD gauge and graph screen

that lets the user see data being read from the OBD.

Keypad shows a virtual car keypad that mimics the design

of physical keypads used to unlock, lock, etc. Logs lets the

user view logs saved to the user’s SD card. They can view

+onCreate(in savedInstance: Bundle)
+onItemSelected()
+onNothingSelected()
+setText(in num : String, in clear : Boolean)
+onDestroy()
+onResume()
+onPause()
+updateTextView()
+setAirTemp(in airTemp : String)
+setCoolTemp(in coolant : String)
+setSpeed(in speedv : String)
+setRpm(in rpm : String)
+setFuelEconomy(in fuel : String)
+setEngineRunTime(in runTime : String)
+setTimingAdvance(in timingAdvance : String)
+setFuelLevel(in fuelLevel : String)

-powerManager: PowerManager
-prefs: SharedPreferences

ObdMainActivity

+add(in value : String, in date : Date)
+clear()
+checkFull()
+removeOld()
+getAvg() : Integer

+fileName : String
+count : Integer
-value : String
-date : Date

ObdLog

1

n

+showLog(in fileName : String)
+onItemSelected()
+onNothingSelected()
+onDestroy()
+onResume()
+onPause()

+fuelEconomy : ObdLog
+speed : ObdLog
+massAirFlow : ObdLog
+timingAdvance : ObdLog
+intakeTemp : ObdLog
+coolantTemp : ObdLog
+manifoldPressure : ObdLog
+fuelPressure : ObdLog
+engineLoad : ObdLog

ObdLogActivity

1

n

the raw data in text form, or see it graphed out. Error

Codes displays any errors read from the OBD and gives

their associated DTC (Diagnostic Trouble Code). There is

an option to Clear All errors from this screen as well.

Settings contains user controlled settings such as setting

the units, the option to keep the screen on at all times

while using the program, and whether to confirm when

quitting.

Fig. 6 The main menu of the program

Figure 7 shows the main OBD reader screen. From here

the user can press and hold on the gauge to choose which

function to read. The user can also press the menu key on

their android phone and have the options to run custom

functions by sending commands directly to the OBD.

Fig. 7 The OBD reader screen

The Android app was programmed using Java, and most

of the interface was created with XML. For many of the

screens the java file just calls the XML file that contains

the formatting of the screen, similar to how HTML and

CSS work together by keeping the “content” and the

styling separated. Each screen is considered an “activity”

and each activity is a separate class. Most of the interface

was created using standard views found in the Android

libraries, such as text boxes and buttons. However, some

interface objects were too complicated to be created from

the built in libraries alone. Custom views had to be created

for the gauges and the graphs. The gauge is drawn using

the canvas commands found in Java. In particular, the

rotate command used on a canvas object was very useful

in drawing the notches and numbers in a circle around the

edges of the gauge. Whenever a gauge is needed, we just

create a gauge object and manipulate it from there. For the

graphs, we used an Android graphing library called

AndroidPlot. We chose AndroidPlot specifically because

it provided the ability to create both static and dynamic

graphs. Static graphs are used for the log functionality –

taking text log data and converting it into a graph. The

dynamic graphing ability is used for the OBD reader

screen to display the data in real time in conjunction with

the gauge. In our implementation we use a linked list to

hold the most recently acquired data from the OBD, and

draw that data to the graph. When a new data point is

received, it’s added to the linked list, the oldest data point

is removed and the graph is redrawn again.

VII WIRING THE CAR

 Since we are using a 1998 Honda Accord for the

purpose of this project we will need to wire the car based

on its factory specs. For the OBD port we simply plug the

connector in and it’s ready to send and receive data.

However, to unlock the car we need to take the pin that

goes high when an unlock signal is sent and wire it to a

relay that connects to the unlock trigger on the car. Since

the unlock trigger is negative logic it must be tied to

ground so when the relay is activated the unlock trigger

will get a ground signal and unlock the car. The table

below shows where all the trigger wires are located and

whether they are positive (+) or negative (-) triggered.

Following the table is a figure on how the system will be

wired to the relay harness.

TABLE 5

ACCORD WIRING CHART
 PART COLOR LOCATION PART

 12 VOLT

CONSTANT
 WHITE (+)

 IGNITION

SWITCH

HARNESS

 12 VOLT

CONSTANT

 STARTER

 BLACK/WHI

TE (+) See
NOTE *1

 IGNITION

SWITCH
HARNESS

 STARTER

 IGNITION
1

 BLACK/YEL
LOW (+)

 IGNITION
SWITCH

 IGNITION
1

HARNESS

 PARKING

LIGHTS (-)

 RED/YELLO

W (-)

 @

STEERING

COLUMN

HARNESS

 PARKING

LIGHTS (-)

 PARKING

LIGHTS (+
)

 RED/BLACK

(+)

 IN DRIVER

SIDE
FUSEBOX

 PARKING

LIGHTS (+
)

 POWER

LOCK

 BLACK/BLU
E (Negative (-

)) See NOTE

*2

 IN
PASSENGE

R SIDE

FUSEBOX

 POWER

LOCK

 POWER

UNLOCK

 ORANGE

(Negative (-))

See NOTE *2

 IN

PASSENGE

R SIDE
FUSEBOX

 POWER

UNLOCK

 DOOR

TRIGGER

 BLACK/WHI

TE (-)

 IN

PASSENGE

R SIDE

FUSEBOX

 DOOR

TRIGGER

 DOMELIG

HT

SUPERVISI
ON

 USE DOOR

TRIGGER,

Requires Part
#R30-H Relay

 DOMELIG

HT

SUPERVISI
ON

 TRUNK

RELEASE

 WHITE/RED
(+), Requires

Part #R30-H

Relay

 IN
DRIVERS

KICK

PANEL

 TRUNK

RELEASE

 HORN

 LIGHT

GREEN/BLUE
(-)

 @

STEERING

COLUMN
HARNESS

 HORN

 BRAKE
 WHITE/BLA

CK (+)

 @ SWITCH
ABOVE

BRAKE

PEDAL

 BRAKE

 FACTORY

ALARM

DISARM

 BLUE (-) See

NOTE *4

 FACTORY

ALARM

DISARM

Fig. 7 Shows the wiring from the chip to the relay harness
and then to the rest of the car.

VIII CONCLUSION

 We believe that our project will be a useful tool for

reading critical vehicle data as well as a handy way to lock

and unlock car doors on the go and start the car before

even entering the vehicle. Our project provides an

intuitive and unique way to interact with the car, and we

have learned much about designing and testing hardware

and getting software and hardware to work together.

Creating this project has been an excellent learning

experience.

IX BIOGRAPHY

Matthew Huereca is a senior student of

the Computer Engineering department at

the University of Central Florida. He

will graduate in the summer of 2011 and

plans to pursue a career in the computer

engineering industry.

Alexander Powell is an Electrical

Engineering student with a Computer

Science minor and will graduate The

University of Central Florida in summer

of 2011. He plans to enter the

engineering industry with hopes of

returning to graduate school in 2012.

Firoz Umran is a Computer

Engineering student at the University

of Central Florida. He will graduate

in the summer of 2011 and plans to

obtain a career in Engineering.

Josh Estes is a Computer Engineering

student and will graduate The

University of Central Florida in

summer of 2011. He plans to enter the

engineering industry with hopes of

returning to graduate school in to

pursue a Masters in Business

Administration.

VII References

Beloussov, Alexandre. “alOBD Scanner.” Android

Market. N.p., 27 Jan. 2011. Web. 28 Feb. 2011.

<https://market.android.com/details?id=com.obd2>.

Chip

Starter

Ignition

Unlock

Lock

Trunk

Alarm Disarm

Parking Lights

J1
96

2
Co

nn
ec

to
r

Black/White(+)

Black/Yellow(+)

Orange(-)

Black/Blue(-)

White/Red(-)

Blue(-)

Red/Yellow(-)

Ha
rn

es
s

Clip

“Build One.” blueOBD. N.p., 2010. Web. 3 Feb. 2011.

<http://www.blueobd.com/build_one.html>.

Hawkins, Ian. “Torque (Free/Basic).” Android Market.

N.p., 9 Mar. 2011. Web. 28 Feb. 2011.

<https://market.android.com/

details?id=org.prowl.torquefree>.

“HOWTO Read Your Car’s Mind.” ThinkyThings. N.p.,

10 May 2007. Web. 25 Feb. 2011.

<http://www.thinkythings.org/obdii/#references>.

Memruk, Ivan. “Android Custom UI: Making a Vintage

Themometer.” Mind The Robot. N.p., 7 June 2010.

Web. 17 Apr. 2011. <http://mindtherobot.com/blog/

272/android-custom-ui-making-a-vintage-

thermometer/>.

“Mode 1 and Mode 2 Parameter IDs.” OBDII Diagnostics.

N.p., n.d. Web. 23 Feb. 2011.

<http://www.obddiagnostics.com/obdinfo/pids1-

2.html>.

Noxon, Jeff. “Opendiag OBD-II Schematics & PCB

Layout.” Planetfall. N.p., 13 Jan. 2009. Web. 21 Feb.

2011. <http://www.planetfall.com/cms/content/

opendiag-obd-ii-schematics-pcb-layout>.

“OBD2 Diagnostic Operational Modes.” CanOBD2.

Innova, 2011. Web. 18 Feb. 2011.

“OBD FAQ: OBD-II Communication Protocols.” OBD-

Codes. N.p., n.d. Web. 21 Mar. 2011.

<http://www.obd-codes.com/faq/obd-ii-

protocols.php>.

“OBD-II Background.” The OBD II Home Page. N.p.,

2011. Web. 23 Feb. 2011. <http://www.obdii.com/

background.html>.

“OBDII Message Structure.” OBD Diagnostics. N.p., n.d.

Web. 21 Feb. 2011. <http://www.obddiagnostics.com/

obdinfo/msg_struct.html>.

“OBD to RS232 Interpreter.” ELM Electronics. N.p., n.d.

Web. 5 Mar. 2011. <http://www.elmelectronics.com/

DSheets/ELM327DS.pdf>.

“ScanXL Professional.” ScanTool. N.p., n.d. Web. 25 Feb.

2011. <http://www.scantool.net/scanxl-pro.html>.

“Scothlock Connectors.” Mid Term Terminal and

Connectors Company. N.p., 2005. Web. 9 Apr. 2011.

<http://www.midterminc.com/en-us/dept_52.html>.

“Viper SmartStart.” Android Market. N.p., 5 Jan. 2011.

Web. 28 Feb. 2011. <https://market.android.com/

details?id=com.directed.android.viper>.

“Viper SmartStart for Android.” Viper. N.p., n.d. Web. 21

Mar. 2011. <http://www.viper.com/smartstart/

android/Features.aspx>.

“What Is Your Car Trying To Tell You.” The Wire Up.

N.p., 16 Oct. 2008. Web. 16 Oct. 208.

<http://www.thewireup.com/2008/10/what-is-your-

car-trying-to-tell-you.html>.

