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1.0 Executive Summary

One can communicate with a vehicles’ Electronic Control Unit through the
vehicles’ OBDII port. Using this method one can view information on a car such
as mileage, mpg, fuel consumption and error codes. One can also view the
air/fuel ratio, timing and many other parameters to observe the performance of a
vehicle whether it is for fuel economy or for speed. This can all be done using a
Scantool device that connects to the OBDII port and provides readouts to the
user. Normally this method is mainly used when the vehicle has a check engine
light (CEL) lit. The Scantool can read the data and show the user the error code
that the OBDII port is throwing. However, it is up to the user to now take the
code and research what it means and how to fix it on their specific vehicle. Now,
there are ways to read these check engine lights and other data using your
android powered device and connecting through a Bluetooth unit. This method is
very effective and allows the user to connect to the internet and find out how to
solve their check engine light error. Also, there are applications that will use the
android phone as a remote keyless entry system so that one may start, unlock,
and lock their vehicle which is especially useful if the vehicle did not come with
that feature pre-installed. The drawback to these applications is that there is not
one application that performs both functionalities described above. Also both
applications need a separate device to perform those specific functions, therefore
if one wanted to have both applications, the vehicle may become cluttered with
devices. Finally, the main drawback is that they are expensive. Unlocking and
starting your car from an android device can cost upwards in the 300’s.

We propose that we use an Android phone to do both functions in one
application as well as one device that will connect to the OBDII port and be able
to unlock, start and lock the vehicle in question. And we also propose that this
be done wirelessly and information may be sent wirelessly via Bluetooth
connection so that the user will not need to have a wire running from their phone
to the OBDII port on their vehicle. This way one can have full control over their
vehicle through their phone and look up trouble codes and how to fix them using
the android phone connected to the internet. Also the user will be able to save
the data that has been read from the OBDII port away into log files on the
android device to be viewed later. Logging data in this way will be a much
cheaper and efficient way of keeping track of information on the user’s car and
providing remote access to ones vehicle. The system will be able to read a
multitude of data and erase error codes. The system may also be able to start
the car, wind down the windows and open the trunk depending on the vehicle. A
complete list of the specifications and requirements of this project will be
discussed in the following section as well as a discussion about the motivations
and goals for this project.
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2.0 Project Description

The following section will contain information with regards to our motivation and
goals of this project, in addition to our objectives and our requirements and
specifications. The requirements section will be broken down into subcategories,
software and hardware.

2.1 Motivation and Goals

The motivation for this project is simple; we wanted to engineer a cheaper and
easier way for automobile drivers to monitor critical vehicle data from a car’s on
board computer. As well as remotely start a vehicle, control windows, locks, and
car alarms. We wanted drivers to be able to diagnose warning codes such as
the dreaded “check engine” light, without having to rush their vehicles to the
repair shop. Some versions of this project already exist in one form or another,
these projects, and how they differ from ours, will be discussed in a later section.
Our goal is to build a version that is cheaper, more inclusive, and easier to install
than the products that are available today.

Overall, we believe that this project can potentially save users time and money in
many different ways. For one, users of this app could potentially save hundreds
of dollars on mechanic diagnostic fees. Also, by using this application to read
critical vehicle data, such as tire or brake information, the user could save their
own life and the lives of others.

2.2 Software Requirements

The software requirement section will be broken down into two sub sections, the
first will pertain to the requesting and reading of vehicle data and the second will
pertain to the graphical user interface (GUI).

2.2.1 Requesting and Receiving Data

The Android application software will be written in Java and will be the engine
that powers the entire project. A main aspect of this project will be sending
request data. The application requirements as far as sending requests are as
follows:
e Must make a connection to microcontroller powered by Bluetooth
e Must interpret what user wants to do and send request to proper location
e Must include proper headers on all request data so packet ends up at
intended destination
e Must be able to send and receive data on the following functions:
o Timing Advance
o EngineRPM
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Coolant Temperature
Throttle Position

Fuel Level

Time Since Engine Start
Air Intake Temperature
Speed/ Average Speed
Mass Air Flow

Intake Manifold Pressure
Fuel Pressure

Engine Load

Fuel Economy/ Average Fuel Economy/ Miles to Empty
Battery Voltage

Error Codes

O 0O O OO0 OO OO OO OO O0O Oo

In terms of receiving data, after the return bytes arrive at the phone software, the
application must be able to take those bytes and convert them into legible data
that the user can read. Data will be sent to the phone in a specific format that is
discussed in much further detail below, this format will need to be converted so
that the application knows what the data is, and then it needs to convert the
actual data accordingly.

2.2.2 GUI Requirements

Like all applications, a user interface is one of the most important features. If the
user interface is not intuitive and inviting, the entire project would fail. The GUI
should be simple while still looking attractive. It should be intuitive and allow
users to take advantage of everything the project has to offer. This can be a
challenge because as a developer, you cannot always display everything you
would like on such a small screen. However, it is necessary to come up with a
way to show the user what they expect in an attractive and readable form. The
requirements for this aspect of the project are simple; we must allow the user to
take advantage of all the features the project offers and present information in a
readable fashion.

2.3 Hardware Requirements

This section detailing the requirements of the hardware will be broken down into
two subsections. The first will be the requirements of the OBD-II reader chip; the
second will be the requirements of the microcontroller.

2.3.1 OBD-Il Reader

The ELM-327 was selected as the OBD-II reading chip for this project. The ELM
must conform to the following requirements:

3
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e Make a connection to the automobiles engine control unit (ECU) through
the OBD-II port in order to retrieve information.

e Interface with a microprocessor in order to receive commands and provide
responses from the ECU.

e Support all five OBD-II protocols.

2.3.2 Microcontroller

The ATmega328 was selected as the microcontroller for the project. The MCU is
one of the most critical components of the project. It is necessary that all of the
requirements are met. The requirements for our microcontroller will be as
follows:
¢ Receive messages from the Android device over a Bluetooth connection
e Check headers of incoming requests from the android device and
determine where the message should be sent
e Interface with the ELM-327 and pass messages to the ELM
e Receive response messages from the ELM and send them back to the
Android device
e Provide necessary voltage to start car, roll down windows, unlock doors,
sound alarm, and pop trunk

2.4 Project Specifications

The chart in figure 2.4.1 shows the main functions of our project on the left and
the maximum amount of time it should take to execute those functions. We
believe starting the car and unlocking the doors will take slightly longer than the
rest of the functions because in addition to supplying voltage to the appropriate
wires, the microcontroller will also need to disable the car’s alarm.

Function Spec
Starting Car 10 Seconds
Window Control 3 Seconds
Lock Control 5 Seconds
Alarm Control 3 Seconds
Trunk Control 3 Seconds
OBD-Il Reading 3 Seconds
Range 25 Feet

Figure 2.4.1 — Specification Table
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3.0 Research related to Project Definition
3.1 Related Projects

The products discussed below each exude similar functionality and purpose as
our project however neither of these encompass the broad range of features that
our project does. In a sense, our project is a combination of the projects
discussed below. We were not able to find any other projects with the same
repertoire built into one piece of hardware and one application like ours will be.

3.1.1 Viper SmartStart System™

The Viper SmartStart is an application for BlackBerry, iPhone and Android mobile
devices and its purpose is to allow its users to “start your car from virtually

anywhere.”
The software’s other main features:
e Lock/Arm
e Unlock/disarm
e Trunk release
e Panic or car finder

This product is similar to ours in that we will also implement all of this core
functionality; however we hope to do so at a fraction of the cost.

The Viper SmartStart application is free, however the hardware module can cost
anywhere from $400 to $600, depending on the type of vehicle and type of
system being installed, in addition to the price of installation at retailers such as
Best Buy.

Some differences between our project and the Viper System are:

e Connectivity — our project utilizes Bluetooth whereas the Viper system
connects over a network. The advantages to using Bluetooth are that it
is more cost effective. The Viper users have to pay a monthly charge
and sign 1 or 3 year contracts to use the system whereas Bluetooth is
free. Another advantage is that a user cannot accidentally start his or
her car from hundreds of miles away.

e Features — In addition to the features listed above, our project will also
include the OBD-II reader which will allow users to check and clear error
codes, and read vehicle diagnostic information. The Viper SmartStart
does not include this functionality.

e Cost — As stated above, we plan to implement the core functionality of
the Viper system for only a fraction of the cost and no monthly charges
or long term commitments for users.
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Despite the existence of this product, we believe that our system includes
enough extra features, and for such a small fraction of the cost, that our project
has motivation and significance.

3.1.2 Torque Android Application

Torque is an engine diagnostics application that allows users to monitor their
car's ECU and retrieves information in a similar manner to our project. The
hardware that this application uses is a Bluetooth reader to connect the android
device to the car’'s OBD Il port. We plan to base our hardware off of the ELM327
Bluetooth OBD-II reader interfaced with a microprocessor to allow for extra
features. The reading capabilities of our project should meet or exceed those of
this product. Some of the advertised features listed for the Torque software:

e View live engine data on your Android phone - Connect to your vehicle
ECU

e Fully customizable dashboard screens - Design your own layouts and
custom dials, use your own themes

e Retrieve Fault Codes (DTCs) and clear Check Engine lights - View fault
descriptions using the built-in databases

e Upload live data to your webserver or the torque web viewer in real-time

e Check the performance of your vehicle with BHP / Torque / 0-60 & Quarter
Mile widgets

We expect our software to deliver most if not all of these features with the
addition of the extra features such as starting the car, locking and unlocking the
doors, arming and disarming the alarm and more.

Even though this application exists for a relatively cheap cost of 5.99, we believe
our project still has purpose because of the added functionality mentioned above.

3.1.3 OnStar Application

Recently GM has released an app for iPhone and Android that allows users to
start their car from anywhere in the world, lock and unlock the doors, honk the
horn and read data from their cars such as fuel level, oil life and tire pressure.

Some of the differences between this OnStar App and our project are, like the
SmartStart tool, our project will read more information than this OnStar app. Our
project would be geared more towards a savvy car enthusiast who knows what
he or she wants to read from the OBD-Il data. The OnStar app seems to be
geared more towards the everyday driver.
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The figures 3.1.3a and 3.1.3b below show some of the different interfaces of the
OnStar application. These can be compared to our screen shots given in section
15 of the User Interface heading.

The first image below shows the screen that allows the user to lock or unlock the
doors, start the car, or sound the horn. The second screen shows the fuel tank
level, and how many miles can be driven before the vehicle runs out of gas

LATET 3G 4:20PM =3

Remote

Remote Start Cancel Start

Horn & Lights

Figure 3.1.3a — Car function Screen

'J x

il AT&T 3G 4:20 PM
@ OnStar MyLink =

G 11/57:00AM from Chuck

Tank Level Fuel Left Fuel Range

75 % 1 2 Gals 451 Miles

L —

Gz

Remaining Oil Life

@ 90+«

Figure 3.1.3b — Car data screen
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3.2 High Level Design Options

There were two design options being contemplated. For our project, the main
factors we considered when deciding on a design were price and user
experience. We wanted the cheapest and most simple design while still
achieving the best possible user experience.

The two options we considered differ only in connectivity. The first design had
only one connection between the android app and the hardware module, the
second design featured a dual Bluetooth connection. High-level diagrams can be
seen in the subsections below.

3.2.1 Single Connection Design

This design is the one that we decided to move forward with. We believed it to
yield the better performance of the two in terms of speed and user experience.
The figure 3.1.1 below shows a high level overview.

In the design shown above, the flow of data is as follows:

e Android application sends data to MCU

e MCU then checks format of data. If data is intended for the OBD-II port, it
is passed on to the ELM and the MCU would await the response from the
ELM; else if the data request is to start the car, control windows, unlock
doors etc. The appropriate voltage is applied to the appropriate wires.

e Once the ELM receives data in a readable format, it converts the data into
a something the engine control unit (ECU) understands and passes it on
to the OBD-II port.

e The OBD-II takes the ECU’s response and gives it back to the ELM.

e The ELM then sends the response back to the MCU, which then relays it
back to the Android phone. The application could convert the response
bytes into a user friendly format. Such can be seen in the Functions
section 7.

We believed this design would yield better speed than our second option
because the application will not have to switch between Bluetooth connections
depending on what the user wants to do. It is always sending the data to the
MCU as opposed to sending data to two different destinations. (MCU and ELM)

The diagram below shows two different arrows, the bi-directional arrows
represent data flowing in both directions, for instance, from the android
application to the microcontroller, then from the microcontroller to the ELM and
from the ELM to the OBD-II port, data will need to travel both ways along that
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path. However, data will only need to travel one way from the MCU to the car
wires. We don’t believe it necessary to send an acknowledgment back because
we are assuming the user will see if the request failed to go through just by
observing the vehicle. If you send a request to start the vehicle, and somehow
the request is lost or corrupted, the user would see that the car failed to start, and
they would simply, resend the request.

OBD - Il Port Car Wiring

1

ELM327 % Microcontroller
Unit

Android Application

Figure 3.1.1 — Block Diagram for single connection design option
3.2.2 Double Connection Design

The second design features two separate Bluetooth connections. We considered
this design because it would appeared to be the simplest to implement; however,
we feared that the speed will suffer since the mobile phone can only connect to
one Bluetooth connection at a time, there would be constant switching involved.

If this design were to be implemented, it would reduce the workload of the

Microcontroller. In our previous design, the microcontroller would have to check

the header of the data it receives to figure out its final destination. In this design,
that responsibility lies with the application, the data flow is as follows:

e The application user interface would be split into two options. One would

be the OBD-II features involving the retrieval of data from the vehicle, and
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the other would be starting the car, unlocking doors and other commands
involving wiring.

If the user selects the first option. A Bluetooth connection with the ELM is
automatically made and the request is sent.

If the user selects the option involving the car wiring, a Bluetooth
connection to the microcontroller is automatically made and the request is
sent.

From here, the design is similar to the first design with some minor
variations.

If the ELM receives a request, it converts it and sends it through the OBD-
Il port to the ECU, which sends its response back to the ELM and then the
ELM relays it directly back to the phone application.

If the microcontroller receives a request, it simply applies voltage to
appropriate wire.

The reason this design is simpler is because the data isn’t being relayed from
component to component as much. Also, the programming of the microcontroller

would

be simpler. For instance, instead of all the data coming and going through

the microcontroller like in design one. In this design, the MCU would only have
to take in data from one source (the phone) and send data to one source (the
car). This would greatly simplify the microcontroller programming.

The figure 3.2.1 shows the high level block diagram of this design. Notice how
the first design has three bi-directional connections, but this design has only two.
The data path is more specific, interacting only with the components it needs to.

OBD - Il Port Car Wiring

] 1

ELM327 Microcontroller

Android Application

Figure 3.2.1 - Block diagram two connection design
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In this design, data flowing in both directions when a request is sent to the ELM,
since the ELM will have to send the response back to the phone. However, the
microcontroller will only have to have one input (the phone) and one output (the
car wires) and the data only needs to flow in one direction for the same reasons
as mentioned above in the previous design.

3.3 Bluetooth vs. Wi-Fi

Our project required a wireless communication between a smart-phone and the
hardware device connected to the 1998 Honda Accord. The two standard
methods of wireless communication are Bluetooth Technology and Wi-Fi. We
needed to examine the benefits of each of our primary wireless communication
options. Only after close examination, we will choose the best wireless
technology for the project.

3.3.1 Bluetooth Technology

Bluetooth technology is a short-range wireless communications technology. It
uses radio waves to communicate, similar to the ones used for television or your
standard AM/FM radio. Although Bluetooth technology uses radio waves, it's
only designed to be used in the “Personal Area Network”, more commonly known
as PAN. Bluetooth’s range is dependent upon the application. There are three
common classes of radios used within Bluetooth technology. The class of the
radio used in the Bluetooth chip, indicates the range it's capable of. Class 1
radios have a range of 300 feet and are typically used for industrial purposes.
Class 2 radios have a range of 33 feet and are common among mobile devices
such as phones and computers. Class 3 radios have a range of 3 feet and are
used in very specific applications.

Bluetooth technology operates at an adaptive frequency between 2.4 GHz and
2.485 GHz. This allows for minimal interference. The Bluetooth device becomes
aware of the operating signals in the area and avoids them to prevent
interference.

Bluetooth technology has a unique design that allows for minimal power
consumption. The most widely used class 2 radio, which is used in this project,
uses 2.5 mW of power in most cases.

3.3.2 Wi-Fi Technology

Wi-Fi enabled devices allow for connectivity to the internet through a wireless
network. These wireless networks can range from as small as a few rooms to as
large as a few miles. Typically the smaller Wi-Fi ranges are used for personal
use within a house or office. The larger Wi-Fi networks may span a large
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corporate office or university campus. The range of Wi-Fi is nice, but may be
outside the scope of our project since our wireless devices will be communicating
within feet of one another.

Wi-Fi is efficient when it comes to fast speeds and large ranges, but has it's
downfall in power consumption. Over the years, the main concern with Wi-Fi
enabled devices, is battery life. The amount of battery life in a device can be
dependent upon the use of Wi-Fi. Since this project will be operating on a 12 volt
car battery and the lithium ion battery in the mobile device, we need minimal
power consumption. Wi-Fi may consume more power than necessary for our
application.

3.3.3 Bluetooth Vs. Wi-Fi Conclusion

Bluetooth technology allows for minimal power consumption but has a small
network range while Wi-Fi consumes a significant amount of power allowing for
large network ranges. The project allows for either short or long ranges but
would prefer minimal power consumption. After the analysis of both Bluetooth
Technology and Wi-Fi networks, we’ve decided to use Bluetooth Technology for
our devices to communicate wirelessly.

4.0 Hardware
4.1 OBDII

The vast majority of this project is centered around the Onboard Diagnostics
standard in our vehicles, more commonly known as the OBD. We will be dealing
with the most recent version, the OBDII setup. The OBD is able to communicate
with the engine control unit, more commonly known as the ECU. The ECU is
onboard intelligence that helps manage the vehicle.

4.1.1 OBDII Background

In 1970, the United States government made an effort to clean up air pollution by
passing the Clean Air Act. As a result of the Clean Air Act, the OBD standard
was created and introduced the Society of Automotive Engineers(SAE). In the
early stages, manufacturers had specialized monitoring devices and tools to aide
in corporate matters. At this time, these devices and tools were not typically
found in the hands of the consumer. This is considered the first OBD standard
and the SAE hoped it would encourage manufacturers to develop more efficient
vehicles in the emissions and fuel economy departments.

The first OBD standard had multiple issues and would need some revising to be
an efficient regulation. The information retained on a vehicle’s ECU would

12
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change from vehicle manufacturer to vehicle manufacturer. Each vehicle
manufacturer had a unique set of diagnostic error codes, making it hard to create
universal diagnostic tools. The data link connector was not universal among
vehicle manufacturers. This means diagnostic devices could not interface with
the ECU of all makes and models. The first OBD standard needed some serious
standardizing to make it an efficient regulation. After this realization, the SAE
came out with a new standard, the OBDII.

In 1996, the OBDII standard was developed bye the SAE. The objective was to
correct the issues in the first OBD standard. A physical data link connector
became a mandatory part of the new OBDII standard. The common connector,
J1962, is found in all makes and models. This new standardized connector
allowed for manufacturers to make universal diagnostic tools that could hook up
to any vehicle. General diagnostic trouble codes were also made universal
among vehicle manufacturers. The standard allowed for vehicle manufacturers
to have “extra” diagnostic trouble codes as well to fit their specific needs. For
example: BMW may need more diagnostic trouble codes than most
manufacturers to accommodate for their vehicle’s excessive features. SAE
specified four regions of the vehicle that represented a set of diagnostic trouble
codes. Although the OBDII standard is a vast improvement over the first OBD
standard, it's not perfect. There are multiple different protocols that correspond
to the different makes and models of vehicles. The different protocols operate at
different speeds of data transfer. Typically, the faster the protocol, the better it is
considered. A protocol that can get twenty-five readings per second is more
useful than a protocol that can only read ten readings per second. In 2008, the
SAE corrected the standard by making 1SO 15765-4 the standardized protocol
for all vehicles after 2008. The ISO 15765-4 protocol allows for faster read
speeds than before.

OBDII ports were not required to be in cars until the beginning of 1996. All cars
and small trucks built in 1996, or later, should have OBDII capabilities. Some
vehicles that were built towards the end of 1996 may also be equipped with the
OBDII port. Figure 4.1.1a shows what an OBDII port may look like. The OBD
standard was developed in an attempt for vehicle manufacturers to produce more
efficient cars along the lines of fuel economy and emissions. If a vehicle has
OBDII capabilities, it will have an OBDII port and a written indication under the
hood of the vehicle. The documentation located on the bottom side of the hood
should read: “OBDII compliant” if the vehicle is OBDII equipped.

13
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Figure 4.1.1a — OBDII port of 2000 Dodge Durango

The OBDII standard allows for all parties to benefit. Vehicle owners and
mechanics use OBDII technology to access useful information from the ECU to
diagnose vehicle trouble or get other useful information such as fuel economy.
The OBDII port has the capabilities to allow the user to read error codes and
target in on specific areas of the vehicle for close monitoring.

4.1.2 OBDII ELM327

The OBDII reader used in this project was equipped with Bluetooth technology.
Specifically the ELM-327 Bluetooth chip was used.

The J1962 connector used as the ODBII interface for test tools does not directly
connect with standard computers. Another issue is the wide range of different
ODBII protocols used. The protocols differ on multiple levels including formatting
and signaling. Additional hardware or wireless communications are necessary to
help decipher protocols. An integrated circuit named the ELM327 was created to
connect between RS232 ports and OBD ports. The ELM327 can handle all of
the OBD protocols including the newest protocols in high tech vehicles.

The ELM327 uses ASCII to communicate with the OBDII port. The ELM327 also
includes enough onboard memory to be able to keep track of any necessary
changes. Some of these changes may include setting the timeout interval when
it's receiving messages from the ECU. In the case that the ELM327 doesn’t
receive an AT type command, it assumes that the command is intended for the
ECU. Before the ELM327 passes the command to the ECU, it makes sure that
the command meets the standards of the OBDII set by the SAE. In the case that
the ELM327 doesn’t understand the request, it responds with a question mark.

14
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The ELM327 plays the part of a command line interface, commonly known as a
CLI. This means that the ELM327 will always respond with a >’ character to the
serial port. The ELM327 will not execute any commands until it reads in a line
break or carriage return.

4.1.2.1 ELM327 Circuit

Although the ELM327 is a great integrated circuit, it's not enough to complete the
desired functions for this project. To be able to utilize the ELM327, a complete
circuit needs to be created for interfacing capabilities. Figure 4.1.2.1a is a block
diagram of the circuit needed to complete the task of becoming an OBDII reader.
It is necessary to have a clock to power the ELM327 integrated circuit.

4.00 MHz
XT1 xT2 MCLR .
Ymeasure
Memory F
— — AD
Baud Rate [(5]— Command - Comverter
LFmode E|—+ Y and
Frotocol
Interpreter
RS232Rx [E— RS232 ™™ ™ 130 157654 IS0 9141-2 SAE J1850
RS232Tx [}—e— INterface | o | | ] CAN IS0 14230-4 PWM & VPW
Busy [[E— 3} - [2a)
status LEDs OBD interfaces

Figure 4.1.2.1a - OBDII reader block diagram — Pending Permission

ELM electronics have come up with a recommended circuit for the ELM327 IC.
The schematic for the recommended circuit is seen in figure 4.1.2.1b.
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Inieriace
L]

Figum 9
AnOBD0 o ASZE erpreter

Figure 4.1.2.1b — Typical circuit schematic for ELM327- Printed with permission

4.1.3 OBDII Specifications

Where is my OBDII Port located? Regulations specify that the OBDII port must
be within three feet of the driver and must not require tools for access. The
typical location is under the dash on the driver side. Some manufacturers will
actually “hide” the OBDII port elsewhere, such as behind an ashtray.

4.1.3.1 OBDII Port and Pins

The OBDII reader has sixteen contacts that plug into the OBDII port to interface
with the vehicle. Each pin-out has a specific function. Pint number one is not a
standard pin for all makes and models. The functionality of pin one is left up to
the discretion of the manufacturer. General Motors typically uses pin one as
"J2411 GMLAN/SWC/Single-Wire CAN.” Pin number two is designated for the
positive BUS line of the SAE-J1850 PWM and SAE-1850 VPW. Ford and
Chrysler use pin three of the OBDII port. Ford uses this pin as DCL(+) while
Chrysler uses it as CCD BUS(+). Pin number four has a universal functionality
among all makes and models. Pin four is always designated as the “chassis
ground.” Pin number five also has universal functionality among vehicle
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manufacturers as "Signal ground.” Pin number six is designated as “CAN High”
among vehicle manufacturers. Pin seven is the “K line” of ISO 9141-2 and ISO
14230-4 in all vehicle makes and models. Pins eight, nine, twelve and thirteen
are left to the manufacturer’s discretion. Pin number ten is designated as the
“‘Negative BUS Line of SAE-J1850 PWM” among all vehicle manufacturers. Pin
eleven is commonly used by Ford and Chrysler in their onboard diagnostics unit
system. Ford typically uses pin eleven as “DCL(-)” while Chrysler uses it as
“CCD BUS(-).” Pin number fourteen is designated by the SAE to be the “CAN
Low.” Pin fifteen is designated by the SAE to be “L line” of ISO 9141-2 and ISO
14230-4. The last pin, pin sixteen, is designated to be the battery voltage in all
vehicle makes and models. The figure below, figure 4.1.3.1a, summarizes the
descriptions of each of the numbered contacts in the OBDII port.

OBDII Port Contact Specifications

1. Manufacturer Discretion. GM:
J2411 0.

GMLAN/SWC/Single-Wire CAN

2. Positive BUS Line of SAE-J1850 | 10. Negative BUS Line of SAE-

PWM and SAE-1850 VPW

J1850 PWM

3. Ford DCL(+) Argentina, Brazil
(pre OBD-II) 1997-2000, USA,
Europe, etc. Chrysler CCD Bus(+)

11. Ford DCL(-) Argentina, Brazil
(pre OBD-II) 1997-2000, USA,
Europe, etc. Chrysler CCD Bus(-)

4. Chassis ground

12. -

5. Signal ground

13. -

6. CAN High (ISO 15765-4 and
SAE-J2284)

14. CAN low (ISO 15765-4 SAE-
J2284)

7. Kline of ISO 9141-2 and ISO
14230-4

15. L line of ISO 9141-2 and ISO
14230-4

8. -

16. Battery voltage

Figure 4.1.3.1a — OBD-Il pins
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4.1.4 OBDIl Uses

The OBDII port has many different uses and functions. Some, but not all, will be
used in this project. The OBDII port is capable of reading the following
information from a vehicle:

Turbo Boost Pressure (PSI) *

Fuel Economy (Real-Time/Avg/Trip)
Timing Position

Speed (MPH, KPH)

Engine RPM

Coolant Temperature

Injection Pulse width (IPW)
Throttle Position (as a percentage)
Air Intake Temperature

Mass Air Flow (g/sec)

Throttle Position

Fuel Level *

Barometer

Battery Voltage

Engine Oil Temperature

Injection Control Pressure (ICP)
Transmission Temperature

Load

The OBDII port is capable of altering minor specifications within the vehicle. The
OBDII port is can modify the following:

Change Speed Limiter

Adjust Timing + or - 2 degrees
Seat Belt Reminder Chime *
Auto Door Lock *

High Rev Function

Change Rev Limiter

Calibrate Speedo

Tune transmission

The ' indicates that the specified function may be specific to certain vehicles,
not all car makes. For example: It's not possible to read the Turbo Boost
Pressure of a vehicle that doesn’t have a turbo-powered engine.

4.2 Window Mobility
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It is possible to control the windows from your Android-based smart-phone. To
implement this feature, we’ll need to splice or tap into the wiring harness of the
vehicle using wire taps. A 12-volt signal needs to be sent to the motor controlling
the windows in order to roll the windows up or down. A wire tap is pictured below
in figure 4.2a.

Figure 4.2a - The figure above is an example of a wiretap. It taps in and makes
a connection with the wire without having to completely cut the wire. —
Permission granted from http://www.midterminc.com (See e-mail in appendix)

4.3 Hardware Selection

This section will detail the different hardware components to be used in this
project and why they were selected.

4.3.1 ELM-327

We debated whether to create our own integrated circuit to read from the OBD-II
or to use a pre-designed chip. We decided to use the ELM327 which is a widely
used IC when it comes to automotive applications. The ELM327 is popular
because of its versatility when it comes to the different OBD-IlI protocols. It
supports all five of them. If we had designed our own chip, it would have been
time consuming to provide support for five different OBD-II protocols, and we
wanted our project to support as many different vehicles as possible. Since the
ELM chip was already fairly low-cost, we did not see the need in “re-inventing the
wheel” and we decided to just go with the ELM.

4.3.2 MCU Selection
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The ATmega328 was selected as the microcontroller for this project. We
selected this chip because it has the speed and power to support our purposes.
In addition, it is very well documented and widely used so we should have no
problem programming it. It has a max of 23 I/O pins which will be enough for our
project.

4.3.3 Test Board

When selecting our test board, we needed to make sure it was user friendly, and
that it was powerful enough to meet our needs. We chose Arduino because our
research showed that Arduino boards are quick and easy when it comes to
learning how to program on them. Also, with the Arduino board we had the
option to purchase a board with Bluetooth built in or we had the option to build a
board with PCB software. The boards are very well documented and we liked
that they could be programmed in C or C++.

4.3.4 Android Phone

Android was selected as the platform of choice for this project for many reasons.
For one, it is one of the most widely used mobile phone platforms. Since it is so
widely used, it gives our application a big potential user base. Another reason
we chose Android is because it is very developer friendly. It utilizes the java
programming language which we all have experience with and we are
comfortable programming with it. In addition, two of our team members already
had Android devices, so we could use those for testing and developing and did
not have to buy a phone.

5.0 Software Selection

This section details the software components involved in building the project and
why they were selected. The microcontroller programming software, the android
programming software and the PCB software used to design the integrated
circuit.

5.1 MCU Programming Software

Since we are using an Arduino board, the Arduino language will be used for
programming the microcontroller. There are other options such as AVR Studio;
however, from our research, we have gathered that Arduino’s programming IDE
is very user friendly and a fairly fast learning process.

5.2 Android Programming Software

Eclipse IDE will be used to program the Android application. We chose Eclipse
because it has a plug-in to easily program for Android using Java. Most of the
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team is familiar with Eclipse when programming in java so it should reduce the
learning curve.

5.3 PCB Design Software

In order to put our MCU and ELM327 on a single board, we needed to design a
PCB. We have decided to use EAGLE PCB Editor to design this board. Since
the Arduino boards are open source, the EAGLE files are given on the website
along with permission to edit and design new boards. The ELM327 Schematics
are also available. So EAGLE will be used to interface these two circuits and
print them on the same board, we will use the Arduino circuit for testing and we
will design our final PCB based on the Arduino, using only what we need.

6.0 OBD-II Protocol
6.1 Background

Despite the fact that OBD-II is standard on all vehicles made after 1996, there
exists five different signaling protocols. Most vehicles utilize just one of these
protocols. The five protocols and some properties of each can be seen below:

1. SAE J1850 PWM (Standard of the Ford Motor Company)
e Pin 2: Bus+
e Pin 10: Bus-
e High voltage is +5 V
e Message length is restricted to 12 bytes
2. SAE J1850 VPW (Standard of GM)
e Pin 2: Bus+
Bus idles low
High voltage is +7 V
Decision point is +3.5 V
Message length is restricted to 12 bytes
3. 1SO 9141-2 (Primarily used in Chrysler, European and Asian vehicles)
e Pin 7: K-line
e Pin 15: L-line
e UART signaling
e Message restricted to 12 bytes
4. 1SO 14230
¢ Mostly the same as ISO 9141-2
e Message can contain up to 255 bytes
5. 1SO 15765 CAN
e Pin 6: CAN high
e Pin 14: CAN low
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All OBD-II pin-outs use the same connector but different pins are used except for
pin 4 (battery ground) and pin 16 (battery positive).

For the purposes of this project, our hardware will support all protocols and our
software will support the ISO 9141 protocol due to the fact that the testing will be
done on a 1998 Honda Accord which uses the ISO 9141 protocol; however, if
time permits we will extend our software to support the other four protocols.

6.2 Requesting Data

Data requests are sent in a standard format from the diagnostics tool to the OBD-
Il port. The first 3 bytes sent are the header. Then, 1 to 7 data bytes follow.
Lastly, there is an error check byte. A high level view of a request message can
be seen in figure 6.2.1 below.

Header Bytes

0 1 2 3 4 8 9 10

Header | Header | Header | Data Data | Data | Data Data | CRC
TA SA

| priority ‘ receiver ‘transmitter|

AN

‘ 3 header bytes ‘ up to 7 data bytes | checksum |

Figure 6.2.1 — High Level Request Message — Printed with permission

The header bytes can vary depending upon the protocol, the below figures show
a breakdown of the header bytes figure 6.2.2 shows the header for a vehicle
using the 1SO 9141 protocol.

Byte O |Byte 1 (Target|Byte 2 (Source
(Priority/Type) Addr.) Addr.)
Request 104 (0x68) 106 (Ox6A) 241 (0xF1)

Figure 6.2.2 — Header Bytes for ISO 9141 Request

The figure 6.2.3 below gives the header bytes for a request message sent to an
OBD-II port using the SAE J1850 PWM protocol.

Byte 0| Byte 1 (Target|Byte 2 (Source
(Priority/Type) Addr.) Addr.)
Request 97 (0Ox61) 106 (0x6A) 241 (OxF1)
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Figure 6.2.3 — Header Bytes for PWM Request

The figure 6.2.4 below gives the header bytes for a request message sent to an
OBD-II port using the ISO 14230 protocol. The bits LLLLLL represent the length
of the data byte section of the message.

Byte 0 (Priority/Type) Byte 1 (Target Addr.) Byte 2 (Source Addr)

Request | 11LL LLLL (binary) 51 (0x33) 241 (OXF1)

Figure 6.2.4 — Header Bytes for ISO 14230 protocol

Data Bytes

The first data byte indicates the mode. There are 9 possible modes for
diagnostic requests; therefore the range of the first byte is from 1 to 9. Below is a
description of each mode.

Mode 1 — Used to obtain current diagnostic data: Number of trouble codes
set, status of onboard tests, vehicle data such as engine RPM,
temperatures, ignition advance, speed, air flow rates, information on fuel
system.

Mode 2 — Similar to mode 1 except instead of current data, it pertains to
data that was stored at a moment in time, such as when an error code
was turned on.

Mode 3 — Requests all diagnostic trouble codes from vehicle. 1t is
possible that there will be more than one response message if the number
of error codes exceeds the available data bytes.

Mode 4 — Simply instructs the vehicle to clear all error codes.

Mode 5 — An optional mode used for requesting results of an oxygen
sensor test. Some vehicles report this under mode 6.

Mode 6 — Used for obtaining test results for non-continuously monitored
systems. This is optional and is defined by the vehicle manufacturer if
used at all. For this reason, it probably won’t be included in our project.
Mode 7 — Optional mode similar to mode 3. This mode returns trouble
codes which may be set after a single drive cycle. This is useful for
checking the results after a repair has been done.

Mode 8 — Used to request control of an on board system. This mode is
manufacturer defined.

Mode 9 — Optional mode used to report vehicle information such as the
VIN and information stored in the ECU.

The second data byte is the Parameter Identification (PID) bytes. This byte is
used to specify what data is being requested. The remaining data bytes in the
request message are for further specification of what data is being requested.
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The final data byte is the CRC or checksum byte, depending on what protocol is
being used. This byte is used to check for any errors that might have occurred
during data transfer.

The figure 6.2.5 below takes the information discussed in this section and details
each byte that makes up a request message, in addition, the chart explains the
purpose and function for each byte

Byte | Header The first header byte details the priority and type of the
following message.

0 Header The second header byte details the target address of
the message, i.e. which part of the ECU should receive
this request.

1 Header The third and final header byte describes the source
address; in this case it would be the address of the
OBD-Il hardware device so the response message
knows where to go.

2 Data The first data byte specifies the mode; the mode can be
anywhere from 1 to 9.
3 Data The second data byte is the Parameter Identification

(PID). This is a 2 digit hex value that indicates the data
that is being requested.

4 -9 | Data Further specification of data
10 Error CRC or checksum byte
check

6.2.5 — Request Message

The section below will detail the PIDs for the most important modes (1 and 2)
and the values that each PID returns. Some of the PIDs discussed are used only
for mode 1 or mode 2 exclusively. Specifically, mode 1 does not use PID 02, and
mode 2 uses only PID 00 and PID 02 — OD.

6.3 Return Values

The response sent from the vehicle’s ECU back to the OBD-II port has a similar
structure as the request message; there are 3 header bytes, up to 7 data bytes
and an error correction byte. The high-level view is the same as the request
message and can be seen in figure 6.2.1 above.

The following charts display the three header values for the ECU’s response
message. In the same manner as the request messages, these responses differ
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depending on the protocol used. Figure 6.3.1 below describes the header for the
VPW or ISO 9141 protocol.

Header Bytes

Byte 0 Byte 1 Byte 2

Response 72 (0x48) 107 (Ox6B) ECU Address byte

Figure 6.3.1 — 1ISO 9141 ECU response Header

The next chart, figure 6.3.2 shows the three header bytes for a response
message sent from the ECU using the SAE J1850 PWM protocol.

Byte 0 Byte 1 Byte 2

Response 65 (0x41) 107 (Ox6B) ECU Address byte

Figure 6.3.2 — PWM ECU response Header

The next chart, figure 6.3.3 shows the three header bytes for a response
message sent from the ECU using the 1ISO 14230 protocol. The bits LLLLLL
make up a 6 bit binary value that represents the length of the data byte section.

Byte 0 Byte 1 Byte 2

Response 10LL LLLL 241(0xF1) ECU Address byte

Figure 6.3.3 — PWM ECU response Header

Data Bytes

The data bytes are organized in the same way for a response as they are for a
request. The first response data byte is the mode, just as in the request
message, except the response mode has the number 64 added to it. For
instance, if the first data byte in the request is a 1, for mode 1, the first data byte
in the response would be a 65, since 1 + 64 = 65.

The second data byte in the response message is the PID just as in the request.
The PID indicates which values were requested and the remaining data bytes
make up the actual response data.

The final byte is the error check byte to determine whether or not an error had
occurred during transmission.

The number of data bytes that occur in a response message typically depend of
the PID. For instance PID 00 will always return 4 data bytes, A — D, but PID 4
only returns one data byte, A. The data bytes will be referred to as A, B, C, D
etc. This also corresponds to the order of transmission on the bus and the order
of significance.

e PID 00 — This PID determines which PIDs are supported for the vehicle.
The bits of the 4 data bytes A, B, C and D correspond to PIDs 1 — 32.
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The most significant bit of A would be PID 01, and the least significant bit
of D would be PID 32.

e PID 01 — This PID returns four data bytes. Data byte A describes how
many error codes there are using bits 0 — 6. Bit 7 of data byte A is set to
1 if the MIL lamp is on or O if it is off. The chart in figure 6.3.4/5
describes how the remaining bits are used.

Test Bit = 1 if supported Bit = 1 if incomplete
Misfire BO B4

Fuel system Bl B5

Components B2 B6

Reserved B3 B7

Figure 6.3.4 — Data byte B error codes

Test Bit = 1 if supported Bit = 1 if incomplete
Catalyst CO DO

Heated catalyst C1l D1

Evaporative System C2 D2

Secondary Air System | C3 D3

A/C Refrigerant C4 D4

Oxygen Sensor C5 D5

Oxygen Sensor Heater | C6 D6

EGR System C7 D7

6.3.5 — Data bytes C and D error codes
PID 02 represents the freeze frame trouble codes and returns 2 bytes of data.

PID 03 — Fuel System Status. This PID returns two bytes A and B. Data byte A
corresponds to fuel system 1 and data byte B corresponds to fuel system 2.
Only one bit per each of these bytes can be set to a 1. The bits are laid out as
follows.

0 — Open loop operation 3 — Open loop due to system fault

1 — Closed Loop 4 — Closed loop with a fault

2 — Open loop due to driving conditions 5 to 7 — Padding, should be 0

PID 04 is the load value percentage and it returns just 1 data byte. There is a
calculation involved in obtaining the final result.

PID 05 is the coolant temperature in degrees Celsius and it returns 1 data byte.
PID 06 is the short term fuel percentage which returns 1 data byte. PIDs 07 — 09
are similar to PID 06 with regards to Data bytes returned. PID OA represents
Fuel pressure and in kilo Pascals and returns 1 data byte. PID OB represents
intake manifold pressure and returns 1 data byte.
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The PIDs expressed above as well as the remaining are found in Figure 6.3.6
and are also explained in detail in section 11 entitles OBD Reading Functions.
We made the table below to use as a quick reference when programming the
application. The table is also useful for the succeeding sections.

The following table in figure 6.3.6 shows what the remaining PIDs return and the
equations to calculate the actual values.

PID Description # Bytes Calculation
02 Freeze frame trouble |2, AandB N/A
code.
04 Load value percent. 1A A*100/255 = engine
load%
05 Coolant temperature in |1, A Deg=A-40
degrees C
06 Short term fuel percent | 1, A .7812 * (Byte A — 128)
07 - 09 | Similar to 6
0A Fuel pressure in kPa 1, A Pressure = A* 3
0B Intake manifold pressure | 1, A Pressure = A
kPa
0oC Engine RPM 2,Aand B RPM = .25 * (A*256 +
B)
oD Vehicle speed, in km/h 1A Speed = A
OE Timing advance in|1 A Advance = (5 * A) —
degrees 64
OF Intake air temperature in | 1, A Degrees = A - 40
degrees Celsius
10 MAF air flow 2,Aand B Air flow =
.01*(256*A+B)
11 Throttle position 1, A Position % = .3922 *
A
12 Sec. air status 1A Bit 0 — Upstream of
catalytic
Bit 1 — Downstream
Bit 2 — Atmosphere
Remaining -
Reserved, 0
13 Oxygen sensor | 1, A Bit 0 — Bank 1 -
locations/bank Sensor 1
Bit 1 — Bank 1 -
Sensor 2
Bit 2 — Bank 1 -
Sensor 3
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Bit 3 — Bank 1 -

Sensor 4
Bit 4,7 — Repeat for
Bank 2
14 Oxygen sensor | 2, Aand B Oxy sensor voltage =
voltage/bank 1 sensor 1 .005*A

Short term fuel% =
.7812 * (B-128)

15-1B | Same as 14, but for
remaining Banks

1C OBD design | 1, A 01-0OBD Il
requirements 02 - OBD
03 — OBD and OBD2
04 -0BD |
05 — none
06 — EOBD
1D Alternate Oxy sensor |1, A Similar to 13
locations
1E Auxiliary input status 1, A Bit O defines status,
1F Padded
20 Same as PID 00, for 21 -
40

Figure 6.3.6 — PID Chart

7.0 Communicating with ELM-327

The ELM-327 was designed to communicate with a computer through an RS232
connection. However, for the purposes of this project we will be connecting to
our MCU through the Tx and Rx pins.

The Android software will be communicating with the ELM327 through the
microprocessor. We need to ensure that we are communicating with the ELM
through the right com port. In addition, the settings of the ELM need to be
adjusted to make sure data is being sent and received at the proper speed.
Otherwise messages will be received in jumbled order and the ELM will not work
properly. The connection also needs to be set to 8 data bits, no parity bits and 1
stop bit. Once the ELM-327 is properly connected, it will send the following
message:

ELM327 1.4b.
>

When talking to the ELM, commands can be sent intended for the ELM’s internal
use or they can be messages to be passed on the ECU. If they are intended for

28



Team 9 Senior Design | 2011

the ELM the messages start with the letters ‘AT’ and whether it’s intended for the
ELM or the OBD-II, the message must end with a carriage return or hex OD. If an
incomplete string is sent without a carriage return, an internal timer is started and
after about 20 seconds, the ELM will print a question mark character “?’.

When processing commands, the ELM is constantly listening for new commands.
If a new command is sent while the ELM is processing a previous command, the
previous command is stopped and control is returned to the user.

7.1 AT Commands

This section will detail some of the more useful AT commands that may be used
in this project. The user of the application probably will not be given the ability to
most change parameters within the ELM because it would require specialized
knowledge of the chip; however, we may be hardcoding the following AT
commands if necessary.
e Allow Long (AL)
Extends the number of data bytes that the ELM can accept from 7 to 8.
e Buffer Dump (BD)
All messages sent and received by the ELM are stored in a buffer. This is
used to check where messages failed or to resend previous messages.
When this command is sent, the buffer is printed.
e There are various other commands to set the baud rate for each OBD-II
protocol. We will be using these to sync the baud rate with our
microcontroller so that data is received and sent at the correct speeds.

8.0 Interfacing MCU

In order to communicate with the EML-327 device, we will need to send data
over Bluetooth to the microcontroller. The microcontroller will then check the
header of the data being sent in order to determine what to do with the data. If it
determines that the data should go to the ELM, then it will be passed through.
Otherwise, if the command is to start the ignition, lock or unlock the doors, roll
down the windows or pop the trunk. The MCU will supply power to the
necessary car wires.

8.1 Interfacing with ELM-327

When interfacing an ATmega328 with the ELM-327, we must note that the ELM-
327 is, In itself, a microprocessor. The ELM chip utilizes a standard UART
interface which is connected to the RS232 Tx and Rx pins. The microcontroller
will be connected to the ELM using these Tx and Rx pins and they will be
powered by the same 5V source. The ELM provides a hand shaking feature
which helps to simplify the flow of data. This hand shaking feature consists of
two pins, the input pin is ‘request to send’ (RTS) and the output pin is ‘busy’
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which tells the system that the ELM is processing. The hand shaking feature will
be implemented as follows:

e One of the port pins on the microcontroller will be connected to the RTS
(pin 15) on the ELM

e Another port pin will be connected to the busy (pin 16) pin.

e When the MCU determines that a command needs to be sent to the ELM,
the busy pin will be checked. If it is a high logic level, then the
microcontroller needs to a) wait for the busy pin to go low, or b) set the
RTS pin to low in order to request to send data.

e Once the busy pin goes low, the ELM waits indefinitely for a command
from the microcontroller.

The figure 8.1.1 shows an image of how the microcontroller will be interfaced
with the ELM.

nooooods As seen in the figure (left), the pins
L 17 and 18 of the ELM will be

connected to Tx and Rx pins on the
e i microprocessor and the two will share
poafaagafats —‘ the same input voltage.
Section 9 below will detail the
Arduino board and the pins attributed
to it.

5y €masz?
L\;Huwuuuumuuuwuu

Figure 8.1.1 - ELM and MCU interface Printed with permission
9.0 Programming the ATmega328

Since we are using an Arduino board, we will be using Arduino’s C-based
programming language and the Arduino IDE for windows. Some of the main
functions of the microcontroller will be to apply voltages to specific output pins
and to send and receive requests and responses to the ELM-327. This section
will detail how that will be done using the Arduino programming language.

9.1 Arduino Programming

The Arduino board can be seen in figure 9.1.1 the different components on the
board are color coordinated and will be explained below.
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Figure 9.1.1 Arduino Board — Printed with permission
The components as listed on the Arduino data sheet are as follows
Starting clockwise from the top center:

Analog Reference pin (orange)

Digital Ground (light green)

Digital Pins 2-13 (green)

Digital Pins 0-1/Serial In/Out - TX/RX (dark green) - These pins cannot be
used for digital I/0O (digitalRead and digitalWrite) if you are also using
serial communication (e.g. Serial.begin).

Reset Button - S1 (dark blue)

In-circuit Serial Programmer (blue-green)

Analog In Pins 0-5 (light blue)

Power and Ground Pins (power: orange, grounds: light orange)

External Power Supply In (9-12VDC) - X1 (pink)

Toggles External Power and USB Power (place jumper on two pins
closest to desired supply) - SV1 (purple)

USB (used for uploading sketches to the board and for serial
communication between the board and the computer; can be used to
power the board) (yellow)

9.2 Digital Pins

The digital pins on Arduino board have many functions that will be discussed.
They can also be used for general purpose input and output. pinMode(),
digitalRead() and digitalWrite() are commands that are used when dealing with
these pins. The pins, when used as an input, can be given the value HIGH or
LOW, the max current that can be used, per pin, is 40 mA. Figure 9.2.1
describes each digital pin and their uses.

31



Team 9 Senior Design | 2011

Pins Uses

Serial : Pin 0 is the Rx pin; it is used to receive
e 0(RX) serial data. Pin 1 is the Tx pin; is used
e 1(TX) to transmit serial data.

External Interrupts: The external interrupt pins have the
o 2 ability to trigger an interrupt on the low
e 3 value, rising/falling edge, or change in

value using the attachinterrupt()
function.

PWM: These pins supply an 8 bit pulse width
e 3 modulation (PWM) output. The
e 5 analogWrite() function is used.
e 6
e 9
e 10
o 11

BT Reset: Connected to the Bluetooth line of the
o 7 Arduino BT board.

SPI: These pins support SPI
e 10(SS) communication; however, they are not
e 11 (MOSI) currently supported in the Arduino
e 12 (MISO) language.
e 13 (SCK)

Figure 9.2.1 — Digital Pins Table

9.3 Analog Pins

The analog pins have many built in functions that will be discussed later, the
analog input pins can do a 10-bit analog to digital conversion (ADC) using the
analogRead() function. The analog pins 0 through 5 can also be used as digital

pins 14 through 19.

Pin 4 (SDA) and pin 5 (SCL) both support the 1°C (TWI) communication. This

can be achieved by using the wire library.

9.4 Power Pins

The table in figure 9.4.1 describes the 3 power pins and their uses.
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Pins

Uses

VIN

This pin is the input voltage for the
board when it is using an external
power source. Meaning something
besides the USB connection or other
regulated power source.

5V

This is the regulated power supply to
the board and its components. This
power can come from the USB or the
VIN using an on board regulator.

GND

These are the ground pins.

Figure 9.4.1 — Power Pins Table

The figure above discusses the input voltage pins and the ground pins, these will
be used to supply power to the board. For our project, the VIN will probably be
used to power the board from the hot wire in the car.

9.5 Arduino Functions

This section will detail some of the built in functions that will need to be used
when programming our chip.

Setup()

The setup program is called when the program starts running. It is used to
initialize variables, set pin modes and start using libraries. This function
will run only one time, after startups and after resets.

Loop()

After the setup function runs, the program then moves on the loop
function. As the name suggests the program loops through this function
over and over allowing the program to change and respond. It is used to
actively control the Arduino board.

pinMode( pin, mode )

This function is used to configure a pin to be either an input or an output.
The parameters are pin, which is the number of the pin whose mode we
are setting (int) and mode, which is either INPUT or OUTPUT.

So far there are three methods that have been discussed; they will appear in
code as follows.

void setup()
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initialize variables here
call pinMode( int, INPUT/OUTPUT) here

end setup

void loop()

call other methods and
check if statements here

end loop

Within the loop function other Arduino functions will be used such as:

Digital I1/0

digitalWrite( pin, value )

This function can be called on any pin that has been configured as an
output. The value can either be HIGH or LOW. This function will also be
used to pull up resistors when a pin is set as INPUT.

We will use this in our microcontroller when we want to start the engine,
disable alarm, lock or unlock doors, pop trunk, roll down windows etc. All
of these actions will require voltage being applied to certain wires in the
car.

digitalRead( pin )

This function is meant to read the value from the specified pin. The return
value will either be HIGH or LOW. If the specified pin isn’'t connected to
anything, the return value can either be HIGH or LOW and can change
randomly.

We will use this method while interfacing with the ELM. We will need to
read pins in the hand shaking mechanism provided to us by the ELM and
discussed in section 8.1.

Analog I/0

analogRead( pin )

This function reads the value from the specified analog pin. The board
contains a 6 channel 10-bit analog to digital converter this means that it
maps input voltages between O and 5 to integer values between 0 and
1023.

analogWrite( pin, value )
This method will write an analog value to a pin (PWM wave). After a call
to this function, the pin will generate a steady wave until the next call.

Advanced I/O

shiftOut( dataPin, clockPin, bitOrder, value )
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This function shifts out a byte of data one bit at a time. Each bit is written
to the data pin, at which point the clockPin is toggled to indicate that the
bit is available. This is known as a synchronous serial protocol and is a
common way that micro controllers communicate with one another.

The dataPin is an int value that represents the pin to output each bit. The
clockPin is an int value that is toggled once the dataPin has been set. The
bitOrder can be either MSBFIRST or LSBFIRST and signifies the order in
which to set the dataPin. The value is a byte and is the data to shift out.

We will likely use this method when communicating OBD-II requests
between our microprocessor and the ELM-327. In addition to this function
there are several other functions that are used for interfacing the Arduino
with other devices.

Serial.begin( speed )

Serial.available()

Serial.read()

Serial.flush()

Serial.print()

Serial.printin( data )

YVVYVYYVYYVY

The functions above communicate happens via the Arduino board’s serial or
USB connection and on the digital Tx and Rx pins.

In addition to these functions listed and explained above, there are many other

simple

Arduino functions available that may be used when programming the

board that will not be discussed here in this document.

9.6 Data Types and Other Syntax

Because the Arduin language is based off of C, most of the variable types that
are available in any C language program are available when programming an
Arduino board. The following is a list of the available data types:

boolean e unsigned long
char o float

byte e double

int e string
unsigned int e array

long
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Also, control statements such as if statements, for loops, while loops, and switch
statements are all available in the Arduino programming language. Syntax for
writing and calling functions is similar to C and does not need to be documented
in this paper.

10.0 PCB Design

Since one of the goals of this project was to combine both the ELM327 and the
MCU that controls the car both on the same chip, it is necessary to use PCB
software. As mentioned in a prior section, we chose Cadsofts EAGLE PCB
Layout Editor. We have the schematics for both the Arduino board we are using
and the ELM327 chip. The schematics for each component will be discussed in
the following sections, followed by the final schematic.

10.1 Arduino Board Schematic

The figure 10.1.1 shows the schematic of the board we will be using to program
the MCU as well as what we are basing our final PCB off of. The left half of the
schematic shows where the Bluetooth chip will ultimately go. The right half

shows the MCU.
)
} ]

. 3 =

._”n - ::.g

—.—Jl ‘II L l |—G|:| =
ST ] i ]
= T 'l E i
B Gloto) - ﬁ"l‘l ;

Gl ] -

Figure 10.1.1 — Arduino Board Schematic- Printed with permission
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The board shows all the wiring needed to put it on a PCB. As discussed in the
“‘Interfacing the MCU” section in section 8, we will make a connection between
the Tx and Rx pins on the board and the Tx and Rx pins on the ELM chip. These
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Tx and Rx pins are pins 0 and 1 on the Arduino board and are the first two pins
starting from the bottom.

The image of the board (.brd) file can be seen in figure 10.1.2. The Tx and Rx
pins on the actual board are visible as the first two pins from the top right. On the
final board file, we will see a connection made between these pins and the
corresponding pins on the ELM chip.

The board file below can be compared to figure 9.1.1. The only difference is the
Bluetooth module instead of the USB port; however, this board file shows where
all the wirings and interconnections lead.

--------------------------------------------------------------------------- -
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Figure 10.1.2 — Board File for Arduino Board — Printed with permission

10.2 ELM327 Schematic

The figure 10.2.1 shows the ELM327 schematic and the different connections
between the different pins on the ELM chip. The Tx and Rx pins, which is what
we will be concerned with are labeled pins 1 and 4 on the top left schematic. We
will make a connection between these pins and the Tx and Rx pins from on our
MCU as mentioned above.

The actual ELM327 will be purchased preprogrammed; the schematic below will
be used when designing the PCB in order to make proper connections with the
MCU and Bluetooth.

37



Team 9 Senior Design | 2011

G2
Py A P

HETEr CHNH

n2 B A

BT
AT IRLSE

il

|CE 12
] "
e omnum
L
i T b
4] Ll
HEVT FRZBILED ! 2
H ppres regmim HE—yw %
LEDt
Y pesmnr 4 o -”—ﬂ
B peesre oo LR
2 e m
Be - ] g Jay,
"I
8 i
- E i g
it
i ; 12 g |
L AN
L] e gy Hi
I B e o HL
Ergm
4 | &
[ |
AuF | IF
o Goae

Figure 10.2.1 — ELM327 Schematic

The image in figure 10.2.2 is the board file for the ELM327, this image shows the
connections between the different components of the ELM chip. The actual ELM
has 28 output pins and the board file shows where each of these pins are tied to.
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Figure 10.2.2 — ELM board File

10.3 Final Design

This section will detail the final design by describing the parts that were used and
why they were selected. The schematic for the final design is pictured in figure
10.3.1 below.

In the figure, we show the MCU which is on the right side of the schematic. We
too the pins and connected them to outputs from the EAGLE library called
‘pinheads.” We made sure to connect the Tx and Rx pins on from the MCU to
the Bluetooth chip. We also had to connect the Tx and Rx to the ELM327 so that
it can transmit and receive data to and from the MCU.

The ELM327 chip from the schematic below was taken directly from the ELM
data sheet schematic. The Bluetooth chip is connected the same way as the
Arduino BT board which is what we will be using for testing.
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Figure 10.3.1 - Final PCB Design

11.0 OBDII Reader Functions
11.1 Reading

In order to read any data from the OBD a request must first be made to the OBD
so that it may respond. However, because our system has other functions
integrated into it such as starting the car, unlocking doors and rolling down
windows, the request will actually first be sent from the phone to the
microcontroller and from the microcontroller to the ELM327 which will translate
that information into the proper string following the protocol that the OBDII port
can read. Finally, the ELM327 will send the translated string the OBD and then
the response from the OBD will then traverse back up its sent path. The request
will be a string which will usually be 2 bytes. The first byte will indicate the mode
01 — 09 and the second will be the PID depending on what mode the request
sent is as some requests do not require PIDs. From there the OBD will then send
a response. The first byte of the response will indicate the mode. However, 40
must be subtracted to obtain the actual value of the mode. The next byte may
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indicate the PID depending on the mode or it may begin the data. The response
data will contain up to 7 data bytes that are important to deciphering what data
the OBD Most of the data received must be converted in order to be shown in the
proper syntax. The request string must fit the form as described in figure
11.1.1a:

Mode PID
Request XX YY
Figure 11.1.1a — Request to ELM 327

In the figure above XX and YY each describe a 2 digit hexadecimal number. The
second hexadecimal number labeled as the PID is not needed in certain mode
requests such as mode 03. The data received is also of a specific format shown
in figure 11.1.1b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte
E
Response | XX YY 7 AA BB CC DD
Figure 11.1.1b — Request to ELM 327

For most responses only byte A will contain a value. The other bytes will be
padded with O’s however for some responses 2 bytes are taken up and for error
codes all bytes may be used including extra lines depending on how many error
codes are found in the vehicle. The string will be read as “XXYYZZAABBCCDD”
in which case the data must be split by every 2 characters to be deciphered. The
data also contains header bytes that are to be stripped out because they are not
necessary to send and receive data from phone to ELM327 to OBD and back.

The OBDII port on a vehicle can show three kinds of data: Diagnostic Trouble
Codes (DTCs), real-time data, and freeze frame data. Freeze frame data relates
to a sort of “snapshot” of all the real-time data fields during a DTC error condition.
Usually mechanics will use this to help diagnose exactly what is the error that
caused the check engine light to display. For the following section however we
will be discussing real-time data and Diagnostic Trouble Codes. Real-time data
will relate to the data that comes from the various sensors on a vehicle. This
includes just about all the functions displayed in all the sections labeled
11.1.x.where “x” is any of the corresponding subsection numbers. Diagnostic
Trouble codes are error codes that occur when something in a vehicle
malfunctions and can be used to help repair a vehicle or prevent a vehicle from
needing a costly repair. Therefore, the ability to diagnose and repair these
problems is greatly needed. This section will go into great detail in discussing
the different values that the OBD reader will grab from the OBDII port and how
this will be implemented.
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11.1.1 Preface

All of the OBD functions will be coded in one package called function. Specifically
it will be called org.obddroid.function because of how android packages are
declared. The function package will consist of all the function objects. The
functions objects purpose are to hold the protocol of what string needs to be sent
to the OBD to determine the value of the data the user wishes to obtain and to
convert the data received by the OBD to the proper value that the user needs.
The following sections detail how the functions must be translated and how they
need to be implemented. The sections will also contain information on what
methods will need to be overloaded and what methods will not. Also they will
discuss how the constructors for each of the function objects should look and
they relation between the functions and the super classes to them.

Before we begin discussing about the specific functions, the hierarchy of the
classes must first be described. The main class at the top of the food chain will
the ObdFuntion( ) class. Some function objects will directly inherit from this class
although others will inherit from yet another class that inherits from this one.
Therefore, the next level in the food chain will consist of ObdTempOBDFunction(
) ObdPressureFunction( ), and ObdNumFunction( ), which will all extend
OBDFunction( ).The functions that give integer results will be extending
ObdNumFunction( ) while the functions that provide data about temperature will
extend ObdTempFunction( ).Finally, the functions that supply information about
pressure in the system will extend PressureOBDFunction( ). Still some classes
will extend directly to ObdFuntion( ). The three super classes will contain generic
methods that may be overridden depending on the function, if not it is assumed
that the function will utilize the generic method. The class diagram in figure
11.1.1a visually displays this hierarchy and shows the variables and methods of
each class.

In figure 11.1.1a the number above the classes represents the section in which
that specific class will be discussed. All the inheritance relations will be depicted
in the class diagram. Within each section the definition of what the function is
displaying and what that value that is coming out of the OBD means in relation to
the automotive world. Then the next topic to be discussed will be the string that
needs to be sent to request for data from the OBD followed by how the string that
the OBD will respond with should be displayed. Next will be the discussion on
how the data value will be translated to a numerical digit. Also any formulas on
how to translate this value to the proper value and the proper units based on the
users decision. Finally a discussion on how the function relates to the figure
shown along with how certain methods may be overloaded and how all the other
methods will be used.
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7.2

FuelEconomyFunction

+run()
+runFunc(in func : ObdFunction)
+formatResult()

7.1.1
EngineRunTimeFunction

+formatResult() : String

7114
MassAirFlowFunction

+formatResult() : String
+getMaf() : Double

1.1.6
TimingAdvanceFuntion

+formatResult() : String

ObdFunction

+desc : String

+func : String

+buff: ArrayList
+unit : Integer
+impUnit : Integer
+in: InputStream
+out: OutputStream

+run()

+readResult()

+formatResult() : String
+getFunc() : String

+getDesc() : String

+getUnit() : String

+getimpUnit() : String
+setinput(in in:InputStream)
+setOutput(in out:OutputStream)
+getinput(): INPutStream
+getOutput()’ OtitputStream

+sendFunc(in func : String) <}

14
DtcNumFunction

+celOn : Boolean
+codeCount : Integer

+formatResult() : String
+getCodeCount() : Integer
+getCelOn() : Boolean

14
ErrorCodesFunction

-dtcConversion: Char(]

+run()
+formatResult() : String

12
BatteryVoltageFunction

+formatResult() : String

713
TempObdFunction

+transform() : Integer
+getimpUnit() : Integer

IntObdFunction

114

PressureObdFunction

+intVal : Integer =-9999

+formatResult() : String

+formatResult() : String
+transform(in num : Integer) : Integer
+getUnit()() : Integer

+getimpUnit() : Integer

+transform(in b : Integer) : Integer

1

JAY

7112

AirintakeTempFunction

718

CoolantTempFunction

7115 7.1.16

IntakeManifoldPressureFunction FuelPressureFunction

+transform(in b : Integer) : Integer

7.1.17

7.1.10

EngineLoadFunction

EngineRPMFunction

FuelLevelFunction

+transform(in b : Integer) : Integer

+formatResult() : String
+transform(in a : Integer, in b : Integer) : Integer

+transform(in b : Integer) : Integer

7.113

SpeedFunction

+getimpUnit() : Integer

7.19
ThrottlePositionFunction

+transform(in b : Integer) : Integer

Figure 11.1.1a — Class Diagram of org.obd.function package
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11.1.2 OBD Function

This class will extend Thread and overwrite the run( ) method. The run method
here will simply send the function to the OBD and read the result and store the
values accordingly. Some classes may override the OBDFunction( )'s run
method, although most will simply use this. The reason for it being a thread with
a run method is that most of the data that these functions require are live data
and must continually be updated. The constructor for the OBDFunction( ) class
will have a header similar to this OBDFunction( )(String func, String desc, String
unit, String impUnit), where func will represent the code for the function that must
be sent to the OBD, desc is the description or name of the function, unit will be
the units that we use in the United States for the function and impUnit would be
the Imperial units that they would use in places like the UK. An array list called
buff must also be included that will act as a buffer when the bytes are read from
the OBD. It will translate the values read in from a string to byte form.

A few of the other methods in OBDFunction( ) are sendFunction( ), readResult( )
and formatResult( ). FormatResult( ) is a method that some functions will
override. If a function does not override this method then the function will just
remove the space that is in the beginning of the result string. SendFunction( )
simply sends the functions code to the OBD and readResult( ) will pull in the data
the OBD sends in response to sendFunction( ). Some of the other methods
involved in this class will be to simply return the value of the variables. When
data is read and written from the OBD we must implement an input stream and
output stream. In java an input stream reads the bytes written in from a source,
while an output stream is a way of writing data out to a source in byte sequence.
Therefore we will need a variable of InputStream type named in and one of
OutputStream type named out. We will also need methods to set and get the
input stream and output stream hence the methods: getinput( ), getOutput( ),
setlnput( ), and setOutput( ). These methods will stay apart of this super class
and are not to be overloaded by any child classes.

11.1.3 Temperature OBD Function

This class will be used for those classes that have to deal with temperature.
Currently, there are two classes that inherit from TempOBDFunction( ). Those
classes are AirintakeTempOBDFunction( ) and CoolantTempOBDFunction( )( ).
Some vehicles may have the ability to send information on more temperatures,
such as oil and transmission temperature. Since this is the case, programming
the system in this way allows for easy addition of those simple methods.
TempOBDFunction( ) uses the methods from OBDFunction( ) except for
getimpUnit( ), which this class overwrites. Within this classes getimpUnit( )
method we have the formula for converting from degrees Celsius (°C) to the unit
we use in the United States, Fahrenheit (°F), which is temperature in Celsius
times 9, then divided by 5, finally you add 32 to that value, or in other words F =
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(C*9)/5 + 32. TempOBDFunction( ) also contains the method transform( ),
whose job is to convert the byte striped from the OBD’s response to a
temperature value by offsetting the number by 40. In other words temperature =

byte - 40. Classes that inherit from this class should not need to overload any
methods and should only need to show what its command string that must be
sent to the ELM327 is.

11.1.4 Number OBD Functions

IntOBDFunction( ) as described in figure 11.1.1a is the class in which many of
the other classes inherit from. This class contains methods that the other classes
below may inherit from. This class also contains the formatResult( ) method,
which it overload from its parent class OBDFunction( ). The formatResult( )
method in this class which will grab the second byte from the result string and
convert it from hex to decimal then converts that value to a string and returns it
with the units appended to the end of it depending on whether the user has
chosen an imperial or metric unit. The method transform( ) is a method that other
classes may override to use formulas to convert the string received from the
OBD to a proper value. The next methods are getUnit( ) and getimpUnit( ) are to
be overwritten if the class needs to perform any conversions to change from
metric to imperial units. If not these methods simply return the same value based
on what transform( ) returns.

11.1.5 Pressure OBD Functions

Figure 11.1.1a shows that PressureOBDFunction( ) currently only has two
subclasses. Those two classes are IntakeManifoldPressureFunction( ) and
FuelPressureFunction( ). Fuel pressure has an equation to translate its data
therefore it will overwrite the transform( ) method. Otherwise the classes simply
use the methods supplied in this class. The transform( ) method in this class
doesn’t do any calculation and will just return the value that is stripped from the
second byte of the OBD response string. The formatResult( ) method is the one
that needs discussion. This method will either return the value that was grabbed
from the OBD response converted from hexadecimal to decimal or if the user has
chosen imperial units will divide this value by 101.3 to convert it from kilopascals
to atmosphere. There may be other values that can be obtained from the OBD
about pressure in the system as time goes on therefore, the hierarchy described
here allows for easy introduction of a new function that obtains data from the
OBD about the pressure on the system.

11.1.6 Timing Advance

This refers to the Ignition timing advance on cylinder #1 of a vehicle which is
when a spark will occur in relation to where the piston is positioned. This spark is
usually delayed to give the air-fuel mixture time to burn. Timing Advance is
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typically measured in degrees before top dead center or °BTDC. Proper timing is
necessary to how long the engine lasts along with fuel economy and
performance. Getting this value just right is essential to proper vehicle operation.
Many hours are spent trying to figure out the proper timing of a specific vehicle,
however this should be left to experts as improper timing can be fatal to an
engine.

Timing Advance is PID OE in mode O0l.Therefore the string sent to the
microcontroller needs to be “010E”. Figure 11.1.6a depicts how this string will
look:

Mode PID
Request 01 OE
Figure 11.1.6a — Timing Advance Request

And the OBD will send a response that the ELM327 will send to the
microcontroller and then to the phone will look like figure 11.1.6b with the XX
replaced by a hexadecimal value:

Mode PID Byte A | Byte B | Byte Byte Byte E
C D
Response | 41 OE XX 00 00 00 00

Figure 11.1.6b — Response to Timing Advance Request

Where 41 indicates that this is a response to a mode 01 request, the request
being of PID OE and XX representing the hexadecimal value of the timing
advance that must be divided by 2. The value is also offset by 64 therefore this
value must be subtracted to get the correct timing. So, the formula for timing
advance becomes:

Advance (Degrees) = (.5 * XX) - 64

The Timingadvance( ) function drawn in figure 11.1.1a depicts that this function
inherits directly from the OBDFunction( ) class. The reason for this is that it has
no other units besides degree, so it does not need to be converted to different
units for imperial and metric measurements. Timingadvance( ) does however
need to overload two methods from OBDFunction( ). Those methods would be
formatResult( ) and transform( ). The transform( ) method will take in an integer
as its parameter, which will be the data value achieved from the response to the
OBD function, and transform( ) that value using the formula above. The method
will then return that calculated value. Finally, formatResult( ) will handle the task
of taking that value and converting it into a readable string that will be displayed
in the GUI. The value will be formatted as a number with one decimal value
following and then converted to a string to be displayed.
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11.1.7 Engine RPM

RPM refers to the revolutions per minute that the crankshaft on a vehicle is
rotating. It is normally measured in thousands of revolutions and displayed on a
gauge on a vehicle. However, some vehicles do not include this although it is
very necessary to ensure you do not over-heat the engine and to aid in
economical and performance driving. In essence the higher the RPM the more
heat will be produced along with more speed, less RPM will produce less fuel
consumption and less acceleration.

RPM is PID 0C in mode 01 which represents the string “0C01”.Therefore, the
request string to the OBD should be of the form described in figure 11.1.7a

Mode PID
Request 01 oC

Figure 11.1.7a — Engine RPM request

The request above will only get a response from the OBD if the engine is running
because if they engine is not running the Engine RPM cannot be displayed as
the engine is not turned on. If the engine is running the OBD will respond with a
string that can be decoded using figure 11.1.4b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 oC XX YY 00 00 00

Figure 11.1.7b — Response to Engine RPM

Where 41 indicates mode 01 (41 — 40 = 01), OC representing PID OC and XX YY
begin a two byte hex number which must be converted. In order to convert this
number you must first transfer the number from hex to an actual decimal. After
that you must divide this number by 4 because RPM sent from the OBD is sent in
increments of ¥4 RPM, therefore the formula will be as follows:

RPM = 25x (XX %256 + YY)

The EngineRPMFunction( ) shown in figure 11.1.1a is a class that inherits from
INtOBDFunction( ) as it is a numerical function that must be transformed. This
function however only has one unit value and need not overload the getimpUnit(
) method shown in OBDFunction( ). This class will however need to overwrite the
transform( ) and formatResult( ) functions. In its transform( ) function the class
will take in two parameters, the first byte of data and the second byte of data
from the OBD, and use the formula found above to translate those two bytes into
the proper numerical value for the engines RPM. Objects of this class will also
overwrite the method formatResult( ) by using this method to return a string of
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the engine RPM value retrieved by transform( ) as a 4 digit value with no
decimals following. This will be used to display as a number (in revs per minute)
and on a gauge similar to the tachometer on many cars today inside our GUI if
the user selects to view this value.

11.1.8 Coolant Temperature

Engine Coolant Temperature or (ETC) will display the temperature of the coolant
that runs through the engine. If this gets to hot the engine will overheat and
become inoperable therefore this is an important component to be monitored.
Our system will have this displayed as a number that will show blue when the
coolant is cold, white when it is at normal operating temperature and it will
display red when the coolant becomes too hot and may cause the engine to
malfunction. The white level will be anywhere in between 180°F and 210°F
anything lower will be blue and any higher will be red. We may also introduce a
warning signal that will display if the coolant hits anything above 250°F. Also,
running an engine at improper temperatures will hurt performance and fuel
consumption.

In order to request data from the OBD about the coolant temperature, which is
PID 05, one will need to send the request in the form of a string representative of
the two columns displayed in figure 11.1.8a below:

Mode PID
Request 01 05
Figure 11.1.8a — Coolant Temperature Request

This indicates the string “0105” will be the string sent to the OBD. Following the
request, the response from the OBD will need to be as shown in figure 11.1.8b

Mode P1D Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 05 XX 00 00 00 00

Figure 11.1.8b — Response to Coolant Temperature

Where 41 indicates that it is mode 1(41 — 40 = 1), 05 shows that it is PID 05 and
XX represents a number in hex that will represent the actual temperature of the
coolant in degrees Celsius. This number however is offset by 40 from the actual
value to allow for temperatures below zero. For example, if XX was say 7B then
that would equal 123 decimal but the actual coolant temperature would be 123
minus 40, which equates to 83 degrees Celsius. Thus the formula should be:

Coolant Temperature (°C) = XX — 40
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CoolantTempOBDFunction( ) will extend TempOBDFunction( ). It will use the
convert( ) and getimpNum( ) methods from TempOBDFunction( ) to convert it to
the proper temperature value and proper unit. The CoolantTempOBDFunction( )
class will contain its constructor that calls the constructor of the class in which it
inherits. The constructor will need to show the function string as “0105” and the
description string as “Coolant Temperature” therefore its constructor will be

super(“0105”, “Coolant Temperature”, “C”, “F”);.
11.1.9 Throttle Position

When the accelerator in a vehicle is pressed the throttle must move open and
allow air to pass through. Throttle position refers to the exact location of the
butterfly valve in the throttle which either lets more or less air into the engine.
This is typically measured by a potentiometer attached to the butterfly spindle on
the throttle body. More air will result in more combustion and greater
acceleration. WOT refers to wide open throttle meaning the throttle position is
maxed out and the vehicle will accelerate hard. They value outputted by the OBD
will actually be represented as a percent (%) of WOT where 100% would mean
you are “putting the petal to the metal” or in other words have the acceleration
pedal depressed completely.

The request needed to be sent to obtain the Throttle position from the OBD must
be of mode 01 and PID 11, therefore the request to be sent to the device should
look like the following figure 11.1.9a:

Mode PID
Request 01 11
Figure 11.1.9a — Throttle Position Request

Then the OBD will respond to the request for the Throttle Position with a bit string
formatted to fit the form of figure 11.1.9b below:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 11 XX 00 00 00 00

Figure 11.1.9b — Response to Throttle Position

Where 41 dictates mode 01, 11 is the PID and XX represents the hexadecimal
value for the Throttle position that must be formatted by multiplying .3922. This
value will come in as a percent (%). This implies the formula to find Throttle
Position:

Throttle position (%) = XX * .3922
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ThrottlePositionFunction( ) according to figure 11.1.1a will inherit from
IntOBDFunction( ), which in turn inherits from the main class OBDFunction( ).
ThrottlePositionFunction( ) will overload the transform( ) method found in
IntOBDFunction( ). It will take in an integer as a parameter and use the formula
above to return the percent value of the throttle position. Since percent is the only
unit used, the methods getUnit( ) and getimpUnit( ) are going to remain the same
and will return only the transformed value. Also the formatResult( ) method
doesn’t need to be overwritten either because it will use the format as defined in
IntOBDFunction( ) which is to grab the one byte value out of the return header
and store that in an integer variable b and then call transform( ) on b storing it
into a variable then returning a formatted string that contains the value with no
decimal places followed by the unit of the value in either imperial or metric
depending on the users selection. In this case though, either selection will
provide the unit of percent or %.

11.1.10 Fuel Level

The Fuel Level will designate how much fuel is left in the vehicle. This will be
displayed as a graphic gauge that will show green when over 75%, yellow when
between 75 and 50, orange between 50 and 25 and red when below 25. We can
use the fuel level value to help determine other parameters. One such parameter
will be the cruising range. Depending on the average miles per gallon you can
multiply that by the amount of gallons left in the car, which can be found by
multiplying fuel level by the vehicles fuel capacity in gallons, to get an estimated
amount of miles the car to drive before it needs a fill up.

To get this value from the OBD the signal that needs to be sent must mode 01
and PID 2F.Therefore it will be in the form depicted in the following figure
11.1.10a:

Mode PID
Request 01 2F
Figure 11.1.10a — Fuel Level Request

The OBD will respond to the request for the Fuel Level with a bit string that must
be fit to the figure 11.1.10b below:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 2F XX 00 00 00 00

Figure 11.1.10b — Response to Throttle Position

Where 41 indicates that this is a response to a mode 01 on PID 2F and XX will
represent the Fuel level in a percentage of nominal fuel tank. However this value
must be formatted by using the following formula:
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Fuel Level (%) = 100 = (%)

Using this formula the FuelLevelFunction( ) class will overwrite the transform( )
method found in IntOBDFunction( ). This indicates that FuelLevelFunction( ) will
directly inherit from IntOBDFunction( ) and indirectly inherit from OBDFunction( )
through IntOBDFunction( ) as described in figure 11.1.1a above.
FuelLevelFunction( ) is similar to ThrottlePositionFunction( ) because it has only
one unit in either imperial or metric units, therefore it will not overload the getUnit(
) or getimpUnit( ) methods. So, it will simply return the transformed value after
formatResult( ) is called. And since formatResult( ) need not be overloaded
either, the fuel level value will be a string that contains the value of the fuel level,
without a decimal, followed by its unit which is percent (%) regardless if the user
has chosen to view imperial units or metric units.

11.1.11 Time since Engine Start

This indicates how many seconds it has been since the engine has been started.
This value will be a two bit number displayed as seconds since start. The display
will be a string formatted to display in the form “hh mm ss”. Where hh is hours,
mm is minutes and ss is seconds. The conversion of this will be discussed below
when the formatResult( ) method is explained. The request for this data to be
sent to the microcontroller to the ELM327 from the android device needs to be of
Mode 01 and on PID 1F so the request will be described in figure 11.1.11a:

Mode PID
Request 01 1F
Figure 11.1.11a — Engine Runtime Request

And the response to the request for the engine runtime from the OBD will be
returned as described in the following figure 11.1.11b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 1F XX YY 00 00 00

Figure 11.1.11b — Response to Engine Runtime

Where 41 indicates mode 01 and 1F is the PID and XX is the first byte of the time
and YY is the second byte. Since engine runtime is a value based on time the
minimum value will be 0 and the maximum value for this will be 65,535. Since the
value comes in as 2 bytes the value will need to be formatted so it will display
them properly. The formula should be as follows:

Run Time (seconds) = (XX x 256) + YY
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Looking at figure 11.1.1a one can see that EngineRunTimeFunction( ) inherits
directly from OBDFunction( ). This is because the value calculated is a time value
that must be formatted differently than any other function. Since the formula
above only returns the runtime as seconds one must use formatting techniques
to show this in hours minutes and seconds. This will be achieved by using a mix
of integer division and modulo division. To get hours you will take the value in
seconds (sec) and integer divide it by 3600, in other words hours = sec/3600.
Then, to get minutes you must take the remainder of that and divide that value by
60, so minutes = (sec%3600)/60. Finally, to find how many seconds you only
need to see how many seconds are left over when dividing the entire value
received by 60, or seconds = sec%60. Then we put these values together
separated by a space. This will all be coded into the formatResult( ) method. All
the other methods will remain the same, and since this does not inherit from
IntOBDFunction( ) or TempOBDFunction( ), there is no getUnit( )or getimpUnit( )
method to worry about.

11.1.12 Air Intake Temperature

This value comes from the air intake sensor and displays the exact temperature
of the air in the air intake that goes to the engine. The hotter the air going into the
engine the less dense the air will be and cause the vehicle to burn less gas,
however this can result in poor performance and potential harm in the engine
overall. Colder air is denser and causes the car to burn fuel more steadily
(richer). This will hike up performance and save the engine which is the reason
cold air intakes for vehicles are so popular. The value of this data is very
dependent on the temperature of the air outside the engine so finding a nominal
value for this temperature will be difficult as the temperature of the environment
fluctuates.

To request a response for the Intake Air Temperature from the OBD one will
need to send data that displays mode 01 and PID OF, therefore the string sent
will be “010F”.So the string will need to be in the form displayed in figure
11.1.12a below:

Mode PID
Request 01 OF
Figure 11.1.12a — Air Intake Temperature Request

And the OBD will respond with to the request for the air intake temperature with
its information string shown in figure 11.1.12b.

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response |41 OF XX 00 00 00 00

Figure 11.1.12b — Response to Engine Runtime
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Where 41 is mode 01 and OF dictates PID Of. Finally, XX is the temperature of
the air in the Air Intake in degrees Celsius. However this temperature is offset by
40 and must be formatted to display properly by using this simple formula:

Air Intake Temperature (°C) = XX — 40

This function will extend TempOBDFunction( ) because it is based on
temperature. It is formatted the same as other temperature functions and can be
read as either Celsius or Fahrenheit depending on the user’s choice. Therefore,
the class for this object function need only contain its constructor that has “010F”
as its function String and “Air Intake Temperature” as the description string. In
other words the constructor will only contain this line: “super(“010F”, “Air Intake
Temperature”, “C”, “F”);.

11.1.13 Speed(MPH, KPH)

Speed is the most obvious function of the OBD reader. It will show the speed the
car is currently going in both gauge form and a digital number similar to what is
currently on the speedometer. It will be able to be displayed in miles per hour
(MPH) and Kilometers per hour (KPH). This data will come from the OBD and
not from the accelerometer or the GPS on the phone such as other apps for the
android.

To find the Vehicle Speed the request sent to the OBD needs to be a mode 01
request in PID OD. Therefore the request string must look like the following
figure 11.1.13a:

Mode PID
Request 01 0D
Figure 11.1.13a — Speed Request

Then the OBD will respond to the request for speed by responding to the data
with a request string that resembles the following figure 11.1.13b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 0D XX 00 00 00 00

Figure 11.1.13b — Response to Speed Request

Where XX represents the hexadecimal speed of the vehicle in Kilometers per
hour (KPH). However if we want the value of this data as Mile per hour we must
multiply this number by .625 therefore the formulas for speed are:
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Speed (KPH) = XX
Speed (MPH) = XX * .625

SpeedFunction( ) extends the IntOBDFunction( ) method since it is a numerical
value that can be expressed in either an imperial or a metric unit. The imperial
unit for speed would be miles per hour while the metric unit can be read as
kilometers per hour. The method getimpUnit( ) will respond with the imperial
value if the user has chosen that as the units they wish to display in the options
menu. SpeedFunction( ) does not overload any other methods therefore the
transform( ) method will simply return the value that it is suppose to be and it will
be formatted in a generic way using the formatResult( ) method.

11.1.14 Mass Air Flow (MAF)

Mass Air Flow indicates the rate at which the air is flowing into the engine. This
value is import to calculate the engine load and determine how much fuel needs
to be injected, when to ignite the cylinder and when to shift gears. This value is
also useful to help calculate miles per gallon (MPG). The MAF will be displayed
as a double value with the units in grams per second (g/s).

To get this value from the OBD one must indicate a mode 01 request in PID 10
therefore the resultant string will be in the form similar to figure 11.1.14a below:

Mode PID
Request 01 10
Figure 11.1.14a — Mass Air Flow Request

Then the OBD will respond to the request for the Mass Air Flow rate with a String
in that is formatted like in figure 11.1.14b below:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 10 XX YY 00 00 00

Figure 11.1.14b — Response to Mass Air Flow Request

41 indicating that this is mode 01 and 10 showing what PID the response is for.
XX and YY will represent the 2 byte data value as a response that must be
converted and then divided by 100.Therefore the formula must be:

(256 *YY)+XX

Mass Air Flow (S‘:%C) 00

Figure 11.1.1a depicts the MassAirFlowFunction( ) inheriting directly from
OBDFunction( ). This class will utilize the methods of OBDFunction( ), however
the class does not use the formatResult( ) method. Instead, it overloads this
method and returns a string formatted to its own specification. Because, the
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result achieved is 2 bytes we must first grab these two bytes from the returned
string that came from the OBD. After retrieving these bytes and storing them in
the proper integers we must then use the formula above to change it to the
proper value. This value will be calculated as a double then returned as the string
representation of that double. The units for Mass Air Flow are g/sec or grams per
second. This is the only units for Mass Air Flow so whether the user chooses
imperial or metric units that is the unit they will be viewing.

11.1.15 Intake Manifold Pressure (MAP)

Intake Manifold Pressure or MAP refers to the absolute pressure inside the
intake manifold. This value is defined as the measure of the restriction to the
airflow through the engine. As this pressure builds up it will be harder for the air
to be forced into the engine. MAP can also be used to help obtain information on
a vehicles instantaneous fuel economy. Since the MAP data is real time data it’s
continually changing values will be more useful for real time fuel economy rather
than average fuel economy. This value is normally measure in kilopascals or kPa
(Absolute). MAP may also be measured in atmospheric units (atm) if the user is
viewing data in imperial units.

To retrieve this value one must send a request for mode 01 and PID OB from the
OBD. For example see figure 11.1.15a:

Mode PID
Request 01 10
Figure 11.1.15a — Intake Manifold Pressure (MAP) Request

The OBD will then respond to the request for intake manifold pressure (MAP)
with this String of values to be deciphered shown in figure 11.1.15b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 0B XX 00 00 00 00

Figure 11.1.15b — Response to Intake Manifold Pressure (MAP) Request

Where 41 and OB indicate a response to a mode 01 PID OB request and XX
refers to the actual hexadecimal value of the pressure in the intake manifold. This
is a straight up value and needs no conversion unless one would like the value
displayed as atmospheric units instead of kilopascals. In which case you must
take the value found and divide by 101.3 to achieve atm. Therefore, to convert
from kilopascals to atmosphere the formula is: atmosphere = kilopascals/101.3.

The formula above is wused in the formatResult( ) function for
PressureOBDFunction( ) shown in figure 11.1.1a. Also according to the figure
one can see that IntakeManifoldPressureFunction( ) inherits from
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PressureOBDFunction( ). This class does not overload any methods of
PressureOBDFunction( ). It only has its own constructor that shows what units it
has and what the string sent to the microcontroller should be. Since it is a
pressure function its units will be the same as all other pressure functions so the
conversion for this will be the same for other pressure functions as one will see
with fuel pressure below.

11.1.16 Fuel Pressure

Fuel Pressure is defined as the pressure in which fuel is given to the fuel
injectors by the vehicles fuel pump. A loss in fuel pressure can be very bad for
performance. Low fuel pressure means that the fuel will not be put into the
engine as quickly or efficiently as need be. This can result from a bad fuel pump
a leak in the lines or a few other malfunctions in the fuel system. The nominal
value for fuel pressure should be around 10 — 15 psi. This value will be displayed
as a gauge and possibly as a numerical value as well.

#change this and other PSI values to atm

Fuel pressure is mode 01 PID OA. So to get this value one must send this
request string to the OBD on the vehicle shown in figure 11.1.16a:

Mode PID
Request 01 OA
Figure 11.1.16a — Fuel Pressure Request

And the OBD will respond to the request for the Fuel Pressure with its string that
must then be formatted as shown in figure 11.1.16b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response |41 OA XX 00 00 00 00

Figure 11.1.16b — Response to Fuel Pressure

With 41 meaning that it is mode 1 and OA showing what PID it is. Also XX
represents the 2 digit hexadecimal representation of the fuel pressure. However,
to obtain the actual absolute value one must multiply this value by 3 to receive
the true value in kPa. This then gives us the formula to calculate fuel pressure
as:

Fuel Pressure(kPa) = 3 * XX

As with IntakeManifoldPressureFunction( ), FuelPressureFunction( ) also inherits
from PressureOBDFunction( ) and it uses the formatResult( ) method from
PressureOBDFunction( ). This class has the same units as well, which are
kilopascals (kPa) and atmosphere (atm). The difference in this class from
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IntakeManifoldPressureFunction( ), other than the string that must be sent to the
OBD, is that in order to obtain the correct value a transform( ) must be done.
Therefore, the transform( ) method of PressureOBDFunction( ) must be
overloaded to include the equation above. This will mean that the transform( )
function takes in the value that is stripped from the OBD’s response and converts
it using the formula and then returns the converted value. Of course, this value
may then be converted again in PressureOBDFunction( )’s formatResult( )
method if the user has chosen to go with imperial units.

11.1.17 Engine Load

Engine Load refers to how much of the engine is being used. Specifically for this
application it refers to how much percent of the total engine capacity is being
used. This value is the ratio of the current airflow of the vehicle divided by the
peak airflow. The current airflow is related to how much throttle you are applying
on the vehicle at this current time while the peak airflow is the maximum amount
of airflow the engine will ever be able to obtain. The value that is received will be
a percent (%) that may be displayed as a numerical value and as a gauge
depending on the users’ selection.

To obtain this value from the OBD the request that must be made must be of
mode 01 and PID 04. Therefore the request will be the string shown in figure
11.1.17a:

Mode PID
Request 01 04
Figure 11.1.17a — Engine Load Request

The OBD will then respond to the request for the Engine Load with the string in
the form shown in figure 11.1.17b:

Mode PID Byte Byte Byte Byte Byte
A B C D E
Response | 41 04 XX 00 00 00 00

Figure 11.1.17b — Response to Engine Load Request

The 41 represents mode 01, 04 means it is PID 04 and XX represents the data
that was requested. The data will be a hexadecimal value that must be formatted
to its proper value by multiplying by 100 and dividing by 255 so the formula will
be:

100

Engine Load = XX * —
255
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EngineLoadFunction( ), shown in figure 11.1.1a shows that it will inherit from
IntOBDFunction( ) inferring that it is a numerical value that must be converted.
However, since the units for Engine Load are percent (%), there is no need to
overload the methods getUnit( ) and getimpUnit( ) found in the IntOBDFunction( )
class. But, the formula above does need to be implemented, so it will be put into
the transform( ) method which this class will overload from its inherited class. The
number will be formatted as described in IntOBDFunction( ): a string
representing the integer value. Therefore, it will not contain any values after the
decimal point.

11.2 Fuel Economy

Fuel economy refers to the calculated fuel consumption of the vehicle. This value
is calculated using data from the mass air flow (MAF) sensor and the speed of
the vehicle. This value will be a double that represents how many miles per
gallon the vehicle is getting at that instantaneous moment. This can be used to
help a driver operate his/her vehicle more efficiently. The system will also save
this data in order to create an average of the instantaneous values to get an
average mile per gallon for the vehicle. Fuel Economy doesn’t come straight from
the OBD. Rather it's a value that will be calculated using the values that come
out of the OBD. In order to calculate the fuel economy one must use the following
formula:
_ (14.7 % 6.17 * 4.54 = speed* 0.621371)

Fuel Economy(MPG) = (3600 - L00wmar) ,

e 14.7 = grams of air to 1 gram of gasoline, which is the ideal air/fuel
ratio of most vehicles

e 6.17 = density of gasoline in pounds per gallon (Ib/gal)

e 4.54 = convert pounds per gallon (Ib/gal) to grams per pound (g/Ib)

.621361 = conversion of kilometers per hour (KPH) to miles per

hour (mph)

3600 = seconds per hour

100 = grams per second (g/sec) for mass air flow (Maf)

Speed = speed of vehicle, from OBD

Maf = mass air flow of vehicle from OBD

The formula above will give u fuel economy in miles per gallon (MPG), however if
one wants this value in metric units which is kilometers per liter (kml) one simply
needs to multiply the value found in the formula above by .354013 or in other
words: Fuel Economy (MPG) = Fuel Economy(KML) * .354013. Now, in order
to obtain the average fuel economy value, every time the fuel economy value is
sampled one must log this value and then find the average of all the values in the
log. More on logging can be found in the section 8 that discusses how logging of
data will be implemented.
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As we can see from figure 11.1.1a FuelEconomyFunction( ) extends
OBDFunction( ) directly and overloads the run( ) and formatResult( ) methods. It
also contains a runFunc( ) method whose job is to run a function that is specified
in its parameter in order to obtain values from the objects created. In the case of
this class there will be two objects, speed and maf, which will be then used to
calculate the fuel economy value. In the overloaded run( ) method, the class will
first create the two objects of SpeedFunction( ) and MassAirFlowFunction( ). The
class will then call the sendFunc( ) method described earlier, then set variables
for the speed and mass air flow by using each objects specific formatResult( )
method. Finally, the class will use the formula above to get the proper value. The
last method, formatResult( ) overloads the formatResult( ) method in
OBDFunction( ) and it will either return the value achieved in run( ) or if the user
has picked metric units will multiply that value by .354013 to achieve the fuel
economy in kilometers per liter.

11.3 Battery Voltage

If a vehicles voltage becomes too low it means that the battery is not operating
properly and may need to be replaced. Our system will measure the voltage and
report this back as a double in which yellow will indicate the battery operating out
of normal voltage range and white being within normal range.

*find out if high voltage is bad aswell

Battery voltage is different the previous functions. The voltage from the battery
can be determined by querying the ELM327 chip rather than by requesting this
data from the vehicles OBD. The ELM327 has a long list of commands that it
accepts and can change parameters for different operating conditions. All of
these commands begin with the header “AT”, as does the command to retrieve
the voltage from the car. When the command begins with AT the ELM327 knows
that it must handle this request. To get the input voltage which is the voltage that
the car battery contains one must enter this command to the ELM327 device
shown in figure 11.3a below:

Mode PID
Request AT RV
Figure 11.3a — Engine Load Request

In which “RV” stands for read voltage. The ELM327 will then respond with a 3
figure decimal value that represents the voltage. This value will be accurate down
to about 2%. The value that should be displayed should be something similar to
about 12.5V or so.

Since BatteryVoltageFunction( ) is not the same as the other functions in that it
gets its data from the ELM327 rather than from the OBD, it is not technically an
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OBDFunction( ). However the method for it is still the same: send a request and
translate the response. Therefore, we may have this function inherit from the
OBDFunction( ) class and utilize the methods found in that class. Because, of
this we will only need to overwrite one method instead of having to rewrite all the
methods for doing the same procedures. The method formatResult( )( ) is the
only one that need be changed. This method will now be changed to return the
string representation of the double value that was returned by the ELM3211. The
value is returned as a straight number therefore we do not need to grab bytes or
convert it in anyway, the value simply needs to be converted to a string formatted
to display the number with one digit following the decimal place.

11.4 Error Codes/ Clearing

Diagnostic Trouble Codes or DTCs are codes that occur when something in a
vehicle becomes faulty such as a sensor or misfire. When an error is triggered
the check engine light (CEL) on the vehicle shall turn on. To figure out this error
normally one would plug in a SCANTOOL to read this data from the OBDII port.
This data comes through as an error code that must be deciphered based on
make and model of the car. After these codes are fixed the check engine light
may still remain on until it is either reset through a lengthy complicated method of
switching the vehicle on and off or by simply sending a signal from the reader to
the OBDII port to clear it. DTC is one of the most appealing features of any
OBDII scanner. The ability to then connect to the internet to find a solution almost
instantaneously will also add to the value of this device.

The first thing one would want to do when trying to read error codes is first find
out how many faults are present. To do this we must do a mode 01 request on
PID 01. In this case one must send the string represented by figure 11.4a below:

Mode PID
Request 01 01
Figure 11.4a — DTC Code Count Request

Then the OBD will respond to the request with a string. This string will need to be
converted because if the Malfunction Indicator Light (MIL) is on the most
significant bit (MSB) in the third bit will be set to 1. The string sent by the OBD is
represented by figure 11.4b:

Mode PID Byte A | Byte B | Byte C | Byte D | Byte E
Response | 41 01 XX YY 7 AA BB

Figure 11.4b — Response to DTC Count Request

41 indicates mode 01, 01 shows PID 01 and XX is the actual number of error
codes. However one must subtract this number by 80 hex to find the actual true
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number of error codes. This will only work of course if the check engine light is on
because it will set the most significant bit or MSB to 1.The main use of this is to
check whether or not the malfunction indicator light (MIL) also known as CEL is
on or not. A better method however to find the number of error codes is to and(&)
the hex value with 7f hex and that will return the number of error codes, in other
words number of error codes = XX & 7f. Also, if you and that value with 80 and
get 1 then you will know if the check engine light was on or not. The following bits
after YY, ZZ AA and BB are bit mapped and are use to describe which tests were
and were not supported and completed.

After one determines the number of errors the next step is to find out specifically
what those error codes are. To do this one simply sends a mode 03 request.
Mode 03 requires no PID therefore, the string sent will simply be “03”. The
response to this request from the OBD will be a bit string that is similar to what is
represented in figure 11.4c

Mode PID Byte Byte Byte Byte Byte
A B C D E
Response | 43 XX YY ZZ AA BB CcC

Figure 11.4c — Response to DTC Request

43 indicates that it is a mode 03 request (43 — 40 = 3) and XX and YY is the
actual trouble code read as XXYY. There may be more data to this in which case
it is every 2 bytes that must be read in pairs to obtain what the codes are. A
“0000” indicates padding and the end of the actual transmission. These pairs of
values must be decoded first by replacing the first hex digit received using this
chart:

1°" Digit | Replace | Description

w/
0 PO Power Train Code — SAE defined
1 P1 “  “—Manufacturer Defined
2 P2 “ “— SAE Defined
3 P3 “ “—Jointly Defined
4 Co Chassis Code — SAE defined
5 C1 “  “—Manufacturer Defined
6 C2 “ “— Manufacturer Defined
7 C3 “ “—Reserved for Future
8 BO Body Code — SAE defined
9 Bl “  “—Manufacturer Defined
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A B2 “ “— Manufacturer Defined
B B3 “ “—Reserved for Future

C uo Network Code — SAE defined
D Ul “  “—Manufacturer Defined
E U2 “ “— Manufacturer Defined
F U3 “  “—Reserved for Future

Figure 11.4d — Decoding of Error Codes

For example, let us assume that the string sent by the OBD in a request for the
trouble codes was “43013300000000”. Then we would separate the string out to
fit the form of figure 11.3c. The resultant of this is depicted in figure 11.4e:

Mode PI1D Byte A | Byte B | Byte C | Byte D | Byte E
Response | 43 01 33 00 00 00 00

Figure 11.4e - Example Response to DTC Request

Then you would notice that it is a mode 03 response and that the next two bytes
combined are “0133”. The first digit of this value is 0 which corresponds to PO on
the chart. Next, we must concatenate this value to the rest of the string to obtain
P0133 as the error code. When one researches this error code one will see that
this is the error code for “oxygen sensor circuit slow response”. Knowing what the
error is one may now set in motion the appropriate methods to fix this fault.

Finally, once the Check engine light is fixed one will want that light to go away.
The only way to do this is to clear it through the OBD. This is achieved by simply
sending a mode 04 request with no PID to the OBD. Once that request is
received by the OBD the OBD will respond with the byte string “44” to indicate
that it has received this and has completed the operation. However, one must
wary of sending this command as issuing this command will perform all these
operations:

Reset the number of trouble codes

Erase any diagnostic trouble codes

Erase stored freeze frame data

Erase DTC that initiated freeze frame

Erase oxygen sensor test data

Erase mode 06 and 07 information

However, it will not erase permanent (Mode 0A) trouble codes, which
can only be reset by the ECU
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The issue that may occur by doing this however is that the vehicle may not
perform correctly as it recalibrates or “relearns” information that was necessary to
run properly. After a short period however the vehicle should begin operating
normally or at the very least begin to operate as it did before the reset request
was issued. Also if what caused the check engine light was not fixed eventually it
will turn on again as the car cycles itself. To avoid erasing all this data by
accident the device will need to verify that the user really wants to erase the data
by displaying a prompt that will explain what the repercussions of issuing this
request may be and asking the user if they are certain they want to perform this
task.

DtcNumFunction( ) is the class that will take care of the first function discussed in
this section. DtcNumFunction( ) will be the function that finds out exactly how
many error codes are in the system and if the check engine light (CEL) has been
activated. This function, according to figure 11.1.1a, will directly inherit from
OBDFunction( ). This class will overload the formatResult( ) method found in
OBDFunction( ) by returning a string that will say whether or not the check
engine light is on followed by how many codes are in the system, using the
formulas supplied earlier in this section. This method will not only set the amount
of error codes in the system but it will also set whether or not the check engine
light (CEL) is on or not. This class also contains two of its own functions
getCodeCount( ) and getCelOn( ), which will return how many error codes there
are and whether or not the malfunction indicator light is on respectively. After that
object has been created and the code count is achieved the next step is to look
to the ErrorCodesFunction( ) which will display the actual error codes
themselves. Again this method also inherits from the OBDFunction( ) class but it
creates a DtcNumFunction( ) object and uses this to get the amount of codes so
that it may use it in its run( ) method, which this class overloads from
OBDFunction( ). The run method here creates a DtcNumFunction( ) object,
obtains the code count adds 2 to it and divides by 3, code count +2 /3, in order
to obtain how many loops are needed to get all the error codes. We then check
the first value of the error code change it to the proper letter and finally append
the rest of code to it to obtain what the error code is and return each one using
the overloaded formatResult( ) method.

12.0 Logging

The On Board Diagnostic system in a vehicle reports data in real time to the user
based on certain requests as shown in all of section 11. However, the OBD has
no way of saving this data to be viewed at a later time to see if there are any
important changes when certain things have been done to a vehicle. For
instance, if one has put an aftermarket part on their vehicle they can see how
their average fuel economy was affected if this data was saved. Same goes for
using different grades of gasoline. In order to achieve this, our system will need
to implement a logging feature that will save away the data that was received
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from the On Board Diagnostics on the vehicle. This will allow the user to view the
date and time that the data was recording along with the actual value of that
data. Also, the user will be able to calculate an average value and then clear that
log to get a new data set that the user may use to put against their old log and
see what changes have taken effect. This feature may also be used in the future
to help further diagnose malfunctions in the vehicle. This can be useful in repairs
and provide useful assistance to mechanics in the field.

To implement this we will need to add a new log object that will be created every
time data is read from the OBD. We will also need to create a new activity within
the activity package to display the logs to the user depending on which log the
user wants to see. Figure 12.0.a below shows a class diagram of how this
system will be added to the current system. This is not the overall diagram
though; it is merely enough of the class diagram to show what is necessary to
this section of the entire system. It shows how the main activity class will interact
with the log class and how the new log activity class will interact with the system
as well.

ObdMainActivity

-powerManager: PowerManager
-prefs: SharedPreferences

+onCreate(in savedlnstance: Bundle)

+onltemSelected()

+onNothingSelected()

+setText(in num : String, in clear : Boolean)
+onDestroy()

+onResume()

+onPause()

+updateTextView()

+setAirTemp(in airTemp : String)
+setCoolTemp(in coolant : String)
+setSpeed(in speedv : String)

+setRpm(in rpm : String)
+setFuelEconomy(in fuel : String)
+setEngineRunTime(in runTime : String)
+setTimingAdvance(in timingAdvance : String)
+setFuelLevel(in fuelLevel : String)

ObdLogActivity

+fuelEconomy : ObdLog
+speed : ObdLog
+massAirFlow : ObdLog
+timingAdvance : ObdLog
+intakeTemp : ObdLog
+coolantTemp : ObdLog
+manifoldPressure : ObdLog
+fuelPressure : ObdLog
+enginelLoad : ObdLog

1

n

ObdLog

+fileName : String
+count : Integer
-value : String
-date : Date

+showLog(in fileName : String)
+onltemSelected()
+onNothingSelected()
+onDestroy()

+onResume()

+onPause()

+add(in value : String, in date : Date)
+clear()

+checkFull()

+removeOld()

+getAvg() : Integer

Figure 12.0.a - Logging Class Diagram
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From the diagram above we can see what methods and how each class relates
to one another to create and view the logs. When a log is created it is added to
the log file with the name of the value that the log contains. The log file will be a
simple text file in which the first line will be the number of log entries and every
line following will consist of the date and time the log was taken along with the
value of the log. The first class that will be discussed is OBDLog( ). An OBDLog(
) will consist of a string that denotes what the name of the log file will be and a
count which will be the amount of logs inside the specific log file. The add( )
method in this class has the job of taking the specific logs date, time and value
and adding it to the log file specified by file name. The add( ) method must also
increase the count variable. Before add( ) does these operations it must first call
checkFull(), which will check if the log file has too much data in it. Since the data
is all text a value of 10,000 or even more should not harm the performance of the
system too much. Therefore, if the log has more than 10,000 values in it the
system will then call removeOlId( ) which will remove the first 5,000 values from
the system so that more values may be added. RemoveOld( ) will then update
count to reflect this change. The final method of this class is getAvg( ). This
methods purpose is to sum up all the values in the log and then divide that by
count to return the average of all the values. This average will then be displayed
to the user in the OBDLog( )Activity( ) class.

The OBDLogActivity( ) class consists of many OBDLog( ) objects. Not all the
OBD functions will have logs tied to them. For instance, a log of the RPM values
would not be informative as the RPM of a vehicle varies too rapidly.
OBDLogActivity( ) is the class that deals with displaying the all the logs to the
user along with the average value. Therefore, this class contains methods
inherited from the Activity class such as; onDestroy( ), onResume( ),
onNothingSelected( ) and onltemSelected( ). It will also contain onCreate( )
which is called as soon as the user selects the log item from the main menu.
When onCreate( ) runs it will create a drop box of the different logs that the user
may view. When the user selects a log the onltemSelected( ) method comes in
and from there showLog( ) will be called. ShowLog( ) will display the log that its
fileName parameter dictates. It will achieve this by simply opening the log file
given by fileName and showing it to the user. The display will contain the last 20
values entered in to the log file with a button to display the older values. The
purpose of this is to improve performance as showing the entire log will take too
much time and is usually not needed. The system will then call the getAvg( )
method in the OBDLog( ) class to obtain the average and display that to the user
as well. All the data is tied to text files that must be located in the android system.
Therefore, if this file is not found the program should create a blank log file that
must be filled. We will code the program to perform this check every time the
program is run.
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In order to add logs to the log file the OBD reader must be run and values must
be read from the OBDII port. To do this the user must select the OBD Reader
from the main menu in which case the ObdMainActivity( ) would be called. When
ObdMainActivity( ) is called the onCreate( ) method is run which will create a
view for the user based on the functions the user has chosen to run. Then the
proper set methods will be called. Next the system will send and receive data to
the OBDII port. When this happens the data received will be formatted and then
displayed to the user within the set method. Each time the data is displayed an
OBDLog( ) object will be created. That objects data will then be added to the
specific log by using the add( ) method in OBDLog( ). This is how the log files will
be filled up. It is within the specific set method that this is done in order to ensure
that the data goes into the proper log file. As the log files are filled up the user will
then be able to switch to the log section and view the values entered. Also, if the
user chooses to view the values on a bigger screen the user only need to open
the log file on a computer by either sending it to a computer or mounting the
phone as a disk and viewing the log file on the disk.

13.0 Other Functions

Alongside the functions for reading data from the OBDII port discussed in
section 7 this application will also be able to perform other functions thanks to
the output ports on the microcontroller board. The application will also be able to
roll up/down the windows, unlock/lock the car, start the car and possibly pop the
trunk depending on if the vehicle has that feature. In order to do this we must first
add this ability to the user interface of the android powered device. We then must
add hardware with this capability to the chip that the android talks to and finally
we must find the correct wires that deal with the functions discussed so that we
may tap into those wires to implement these functions. The following sections will
discuss how the software on the phone and how the hardware of the chip must
be modified to allow these functions to be implemented for this application.

13.1 Software Implementation

Implementing these functions will require us to make a new protocol for these
functions. What will happen is that when the user clicks for a function to be
performed a message will be sent from the android device to the microcontroller
and the microcontroller will then read the header and know what to do from there.
Normally it will send the entire string to the ELM327, but if it receives the header
of the protocol we have created the microcontroller will know that it must now
handle the request by loading the proper voltages in the right ports. The chart in
figure 13.1a below shows what the new protocol will be:
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Function Header Data
Unlock FC 01
Lock FC 02
Pop Trunk FC 03
Panic FC 04
Windows Down FC 05
Windows Up FC 06
Start FC 07

Figure 13.1.a - Protocol for Other Functions

We can see that the header for this protocol is “FC” for all functions, therefore
once the microcontroller reads the header is FC it will know it is to perform a
function that is not on the OBD. It will then read the data and follow the
instructions discussed in section 13.2 below. To perform these functions on the
software side we must first create a menu that the user can see and use. The
user interface is discussed in the GUI section above. To create the interface for
the user we must add a class to the activity package in the android application.
This activity labeled remoteStartActivity( ) will contain methods to create and
handle the selections of the user. This class will create 7 objects from the
org.obdDroid.otherFunction package. These 7 objects are: unlockFunction( ),
lockFunction( ), trunkFunction( ), panicFunction( ), windowDownFunction( ),
windowUpFunction( ) and startFunction( ). These functions will inherit from a
super class otherFunction( ). The class diagram is shown in figure 13.1b below
followed by a walkthrough of each class and how they are implemented together
which includes a description of the methods and variables in each class and their

purpose.

remoteStartActivity otherFunction
+unlock : otherFunction -in: inputStream
+lock : otherFunction -out: outgutStream
+trunk : otherFunction -func : String
+panic : otherFunction 1 n +sendFunc()
+start : otherFunction +setInputStream()
+windwn : otherFunction +setOutputStream()

+winup : otherFunction

+onCreate()
+onltemSelected()
+onNothingSelected()
+onResume()
+onPause()
+onDestroy()

I |
trunkFunction startFunction lockFunction

windowUpFunction unlockFunction windowDownFunction panicFunction

Figure 13.1b Other Functions Class Diagram

67



Team 9 Senior Design | 2011

The first class from the figure above is the remoteStartActivity( ) class. When this
class is run from the android device it will create the seven objects that inherit
from the otherFunction( ) class. Next, remoteStartActivity( )’s onCreate( ) method
is called which will create the user interface. The onSelecteditem( ) method is the
method that will be invoked when a user selects a function on the screen. The
way this works is that if the user selects an item onSelecteditem( ) will then call
the sendFunc( ) method with the string specified in the protocol of the specific
function that the user has selected as the parameter. SendFunc( ) will send that
to the microcontroller to be evaluated and initiated. The sendFunc( ) method
comes from the otherFunction( ) class in which all of the other functions will
inherit from. This class will also contain the setlnputStream( ) and
setOutputStream( ) method that will send data to the microcontroller. Each class
beneath the otherFunction( ) method really only needs its constructor which will
contain the string of what its protocol should be as a parameter for instance, the
string for the unlock( ) class is “FC01”, similar to the form of the OBDFunction( )
classes.

13.2 Hardware Implementation

In order to perform the functions discussed in this section we must tap the trigger
wires located in various positions in the vehicle. The tap must come from the i/o
port on the microcontroller. Depending on how the vehicle is wired the voltage
that comes out of the 1/0O port must be either a positive trigger or a negative
trigger. Positive trigger means that the voltage must be +12 where as negative
trigger indicates that a -12 volt signal must come out of the specific port. For this
project we will be using a 1998 Honda Accord LX. This vehicle is a negative
trigger vehicle which means all the voltages that come out of the microcontroller
need to be negative. The microcontroller will be programmed to hand both
negative and positive triggering. Figure 13.2.a below depicts a chart that
describes the location and color of the wire that needs to be tapped in order to
perform the function indicated under the column called device. This chart is of
course specific only to the Honda LX but the implementation will be similar for
any vehicle. In order to tap the wires we must use a vampire tap as described in
section x. This way we will not need to completely splice the wire on the vehicle
and disturb the wiring of the factory system since this is just an add-on to the
vehicle and not a replacement for any system currently on the vehicle.

PART COLOR LOCATION
12 VOLT CONSTANT WHITE (+) IGNITION SWITCH HARNESS
STARTER BLACK/WHITE (+) See NOTE *1 IGNITION SWITCH HARNESS
IGNITION 1 BLACK/YELLOW (+) IGNITION SWITCH HARNESS
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PARKING LIGHTS (-)

RED/YELLOW (-)

@ STEERING COLUMN HARNESS

PARKING LIGHTS ( +)

RED/BLACK (+)

IN DRIVER SIDE FUSEBOX

POWER LOCK

BLACKI/BLUE (Negative (-)) See
NOTE *2

IN PASSENGER SIDE FUSEBOX

POWER UNLOCK

ORANGE (Negative (-)) See NOTE *2

IN PASSENGER SIDE FUSEBOX

DOOR TRIGGER

BLACK/WHITE (-)

IN PASSENGER SIDE FUSEBOX

DOMELIGHT SUPERVISION

USE DOOR TRIGGER, Requires Part
#R30-H Relay

TRUNK RELEASE

WHITE/RED (+), Requires Part #R30-
H Relay

IN DRIVERS KICK PANEL

HORN

LIGHT GREEN/BLUE (-)

@ STEERING COLUMN HARNESS

BRAKE

WHITE/BLACK (+)

@ SWITCH ABOVE BRAKE PEDAL

FACTORY ALARM DISARM

BLUE (-) See NOTE *4

ANTI-THEFT

TRANSPONDER ANTI-THEFT
SYSTEM, REQUIRES 791 BYPASS
MODULE AND EXTRA IGNITION KEY

TRANSPONDER @ IGNITION
SWITCH TUMBLER

Figure 13.2a - Honda Accord Wiring Chart

Using the chart above we can now create a diagram of how the wiring from the
chip to the vehicle should be. The diagram in figure 13.2b below will display
where the wires will come from the chip and where they will go to the vehicle to
perform these specific functions. Also we will place a clip on the wires from the
chip to the car so that we can plug and unplug the wires to remove the chip so
that we do not have wires hanging everywhere which will be shown in the
diagram which we will refer to below:

Black/White(+)

Black/Yellow(+)

Harness

Orange(-)

Black/Blue(-)

™ White/Red(-)

11962
Connector

S

Blue(-)

P —T————Red/Yellow(-)

Figure 13.2c - Chip to Harness Diagram
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The diagram above shows how the wiring of the system will be done. It shows
which wires need to go to which port from the harness on the vehicle and it also
includes the clip that we will use so that the wires may be disconnected for the
chip to be easily removed. Although the chip doesn’t exactly show how the
microcontroller needs to be programmed. For instance if one wants to unlock and
lock the car the microcontroller will need to send the -12 volt signal to the port
that either unlocks or locks the car however, for starting the car first a signal must
be sent to disarm the alarm, then the ignition and finally the starter which will
then trigger the car to start. Also when the car locks we may also send the port
for the parking lights with a -12 volt signal twice to initiate a blinking of the
parking lights along with the signal going to the horn to initiate honk of a horn to
indicate the car has been locked and one blink of the parking lights to indicate
the car has been unlocked. Also we may use the horn to sound off when the
panic button is hit, in which the port for the horn will be loaded with -12 volts in
sequential succession, meaning that it will have -12 volts then 0 then -12 volts
again. It will continually perform this pattern until another button is hit on the
android device or the microcontroller is unplugged. We must remember that this
sequence is specific to the Honda Accord, as some vehicles have an extra
ignition that must be triggered before the car can start. Also some vehicles do not
have a factory alarm while some vehicles may have an alarm system so complex
that starting the car with this method simply cannot be done. However, this will
work for many cars and will work for almost all cars with OBDII in the market with
slight modifications. To allow for these modifications we will ensure that the chip
has extra I/O ports in-case the vehicle would need them.

One may notice however that the window up and window down function is not
discussed in the chart or the diagram. To perform this we still need to load the
port on the chip with a -12v output but it will need to tap into the vehicle in a
different way. Also because winding down the window is not just a single trigger
the system will be programmed to load the port with -12 volts while the button is
pressed rather than if the button is pressed. That way when the button is
released the window will stop rolling down.

Normally the way that the window works is that it is tied to the battery and when
the switch is closed the circuit is closed because all the parts are tied to the same
ground. While the circuit is closed the motor will run to wind the windows down.
This wiring will be the same for the other windows as well as for the winding up of
the windows. So, in order to roll the windows up/down we simply need to mimic a
close in the circuit to the motor. Therefore, we simply tap into the wire after the
switch from the chip and send a -12 volt signal on that wire which will turn the
motor on to perform its function and once the signal is stopped so will the motor.
Now one may wonder, “what if the window is all the way down and the roll down
button is pressed again?” This is actually not an issue as these windows are tied
to relays that cut off once the window has reached its maximum or minimum
distance. This is why when you press the switch if the window is already all the

70



Team 9 Senior Design | 2011

way down it does nothing. Since we are simply tapping the wire this feature will
still hold and work the same way. The only drawback is if the user wishes the
window to go all the way down or up they must hold the button until it goes all the
way up, there will be no auto up feature.

14.0 User Interface Design and Implementation

The user interface is the primary point of interaction for the user. A good interface
can make or break a program. With a program as complicated and feature-filled
as ours, it's important to have an interface that clearly and simply shows all of the
options and features available. When designing the interface, we tried to keep
things similar to what a typical driver would have seen before. For example, the
physical function controls are organized like a normal electronic key fob that
you’d have on a keychain. The various gauges are arranged to look reminiscent
of a normal car dashboard, and everything is large and easy to see so it's not as
dangerous to glance at while driving.

It's not only important to keep the interface similar to what one would expect from
a normal car, but also to stick with standard Android user interface conventions.
To anyone familiar with the Android operating system, when you hit the physical
“‘Menu” key you expect a menu to pop up in the lower part of the screen with
various settings and options. Likewise, single pressing a gauge in the OBD
Reader screen to view more in-depth information, or long-pressing it to
customize it are natural extensions of similar behavior on the Android home
screen. Since the program is on a touchscreen, the interface also can’'t be
cluttered or small. Everything is large and easy to press and navigate around.
Our goal in designing this interface was to make a clean, natural, and easy to
use user interface, and we feel we have achieved that goal.

14.1 Research

When we started designing the Android user interface for our project, we began
by looking at other similar programs for Android and PC and seeing how we
could effectively portray the data the OBD would give us, and how to create an
intuitive input interface for the physical car functions.

Ideally we would have as much screen resolution as possible and be able to fit
several dials and gauges and graphs onscreen at once like in the popular laptop
OBD scanner program ScanXL seen in Figure 14.1a. Since we’re working on a
phone interface however, we can’t show as much data all at once. To get around
this, we split these views into a few different screens so that it’s still intuitive to
use, but the screen doesn’t get clogged with information. We did this by having
separate gauge and graph screens, and only showing one graphed variable at a
time instead of four or more.
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Figure 14.1a — ScanXL Professional graph screen

Similarly, we are much more limited with showing hard data as seen in Figure
14.1b. Though we have logs and graphs of data, they have to be separated.
There’s simply no way to cram all of this data onto a single screen in a legible

Way. = ScanXL™ EimScan - New Configuration® - [€:Wocuments and Settings\joey\Wesktop\ScanXL Data Logs\20090617_Hyundi Santa Fe_WAF_RPI Spark.lef]l [ B

Frame: 75 MHHdio o > @B Do

5 can Tool = Vehide 3cho Dos - 2009 ScanToclnet, LLC CANSe

Figure 14.1b — ScanXL Professional data view

Looking more at Android-specific OBD reading programs, we found that we really
liked some of the concepts found in the Android app Torque, shown below in
Figure 14.1c. There are several swipe-able customizable screens. All of the
gauges can be configured by the user to read whatever information from the
OBD reader that they want. We incorporated this into our design by having a
main screen with several gauges, and allowing the user to long-press any of the
gauges to customize it to their liking.
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Figure 14.1c — Torque main interface

One homebrew program that specifically helped with creating/designing the
gauges was “Vintage Thermometer, seen in Figure 14.1d. The actual code used
in the program was available for this program, and it was very helpful in learning
how to draw on the Canvas in Android, and importantly, how to accept data input
to move a dial in a circle. It was also useful for learning how to efficiently refresh
the gauge without taxing the phone’s CPU.

(] BB A @ 2:07pm

Figure 14.1d — Vintage Thermometer example

Another program that we used for inspiration for our design was alOBD Scanner.,
shown in Figure 14.1e. Though the main menu screen is a bit simplistic for our
purposes, there is one really nice feature: in the program, there is an option to
view a real-time graph of the incoming data while seeing the data itself above.
Our design is similar, but replaces the simple number in the top portion with a
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large graphical gauge showing the data. This graph view is an intuitive way to
view and graph data from the OBD. You could, for example, use this view as a
graphical speedometer, and also see your speed over time.

ﬁ] 6:59 AM

|al0BD - Simulate Response [SIM]

13308.75

Figure 14.1e — alOBD Scanner graph view

For the electronic key fob part of our project, we looked to existing programs that
performed a similar function. The Viper SmartStart user interface shown in
Figure 14.1f is an elegant way to portray the functions we needed, with a large
“Start” button in the center, surrounded by the four hardware functions. For our
keypad however, we also wanted to include the functionality to roll the windows
up or down, so some modifications were necessary. These will be discussed in
the section 14.2.6.

L ATET E3 9:42 AM =

Y VIPER

Lock Unlock

Home Alerts Cars MO

Figure 14.1f — Viper SmartStart main interface
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14.2 User Interface Walkthrough

The next few pages will be dedicated to showing each screen of the Ul and
explaining some of the functions and reasoning behind each one.

14.2.1 Splash Screen

Figure 14.2.1a shows a simple loading screen that tells the user what the
program does, who designed it, and masks any load time the program may have.
It was eventually scrapped when we found that the program loaded fast enough
by itself.

OeD II RERDER AMD CRR
COMTROLLER

Group 9
EEL 4914 — Spring 2011

Figure 14.2.1a — Splash/Loading screen

14.2.2 Main Menu

Figure 14.2.2a is the main menu of the program, done in the familiar list view
format seen in the Android Settings menu. The user can choose Start
Connection to manually enable Bluetooth and send a connection request to our
device to let them interact with the car. The connection is normally started
automatically, but this option is available in case there was an error in getting
connected — whether our device was out of range, there was an error pairing, or
any other bug — this lets the user conveniently retry the connection. OBD II
Reader lets the user access the OBD interface and read data from gauges or
graphs. The Keypad button gives to access the physical functions of the car
(starting, unlocking, rolling the window up and down, etc.). Logs lets the user
view log files previously taken from the OBD reader and average or graph them.
Error Codes lets the user read and clear error codes from the car via the OBD
port. Finally, settings will let the user configure various options about the
program.
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Start Connection

OBD II Reader

Keypad

Logs

Error Codes

Figure 14.2.2a — Main menu

14.2.3 OBD Reader

Figure 14.2.3a shows the original mockup of our main view of the OBD reader. It
was scrapped and replaced with just the obd gauge view, described below. It
shows four different gauges which display various data streaming live from the
physical OBD reader. Four gauges were chosen to be on the screen at once due
to size and complexity. Putting more gauges on the screen would look too
cluttered and would not be large enough to be readable at a glance. This layout
also helps with performance because the CPU only has to redraw four gauges
for every refresh instead of 6 or more. By default, the four functions shown on the
screen will be Speed, Throttle, Boost and Acceleration. However, these functions
are completely customizable, as seen and discussed further below in section
14.2.4. There is also a way to view a larger gauge display and real-time graph of
the incoming data by single pressing a gauge, discussed more in section 14.2.5.
The range of values displayed on the face of each gauge will be hardcoded in
and set to an appropriate range. The numbers and ticks on each gauge will then
be scaled appropriately for each function. Because there is no standard view that
looks like this, a custom view will have to be implemented. This is discussed in
detail in section 14.3.2.
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Figure 14.2.3a — OBD Reader view

14.2.4 Customize Gauge Screen

All of the gauges can be customized to read and display almost any value
obtainable from the OBD reader. The user accomplishes this by long-pressing on
the gauge they wish to customize and selecting a function, pulling up the menu
shown in Figure 14.2.4a. The “long press to customize” function is a well-known
function in Android to signify an ancillary function (similar to right-clicking in
Windows). From here, the user can choose the function that they desire from the
list of possible functions that can be read from the OBD reader. When an item is
pressed, this screen recedes and the previously selected gauge is updated to
read the new value. The name on the gauge and the scale used are also
adjusted accordingly. This functionality was inspired by similar functionality in
Torque, though in that program the user is allowed to not only customize the
value of each gauge, but move them around, resize them and put them on
multiple pages, similar to the Android home screen. We considered doing this,
but decided it would not be feasible to add all of this extra functionality in the
amount of time allotted for the senior design project. We decided to stick simply
to being able to customize the readout of the four standard gauges on the main
screen.
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Figure 14.2.4a — Customize gauge screen

14.2.5 OBD Graph Screen

If the user single-presses on the gauge from the main OBD reader screen, they
are brought to the screen shown in Figure 14.2.5a. This is based somewhat on
the design of the alOBD reader program, specifically the screen shown in Figure
14.1e, but instead of simply showing a changing number above the graph, a
large gauge is displayed. The gauge is enlarged to show more detail, and a
graph underneath it graphs the data over time with an appropriate range of
values on the y-axis. The gauge uses the same custom gauge view used in the
OBD reader screen, discussed in detail in section 14.3.2. The graph below is
also a custom view, which is discussed in section 14.3.3. This is likely to be the
most computationally intensive screen, since it has a real-time graph and a
gauge running at once. If the user interface becomes choppy or unresponsive we
may have to lower the refresh rate on one or both views. We feel this is one of
the most important screens, since it gives the user a very clear view of a specific
function. The user could use it as a digital speedometer for example, and be able
to see (and log) their speed over time. Pressing the back button on the Android
phone will return the user back to the main OBD reader view.
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Figure 14.2.5a — Graph View

14.2.6 Keypad

Mentioned previously, our virtual electronic key fob shown in Figure 14.2.6a is
based roughly on the Viper Smart Start main menu screen seen in Figure 14.1f.
It has a similar layout to a standard key fob, with some modifications for our
program. It has the standard functions that most users are used to: remotely
locking and unlocking the car, sounding the horn and opening the trunk. We have
the large start button in the center, mimicking the Viper Ul and fashioned to look
like a modern keyless start button. We made the Lock, Unlock and Start the
largest buttons since they will likely be the functions used the most. Since the
interface is obviously on a touchscreen instead of a more tactile medium some
slight adjustments have to be made. There are no ridges or rubber buttons to let
the user know where their fingers are. To avoid accidental button presses, we will
make it so that once a user initiates a command, no other button can be pressed
for a second or two. This way, if the user quickly hits the “unlock” button and
slides their finger away, they won’t accidentally then set off the car alarm. It will
be important that when the user accesses the Keypad function he is connected
to our device over Bluetooth first. If the phone is not connected to our device,
then a warning message will pop up and inform them of the situation and go back
to the menu instead of letting the user press buttons and frustratingly think that
nothing is happening.
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Figure 14.2.6a — Keypad view

14.2.7 Log Selection Screen

One of the features of our program is the log recorder, accessible via the main
menu, which can be seen in Figure 14.2.7a. While the OBD reader is connected,
timestamped logs are recorded of each variable and stored in a text file on the
user's SD card. The user can access this text file from the log selection screen
by scrolling through the list of saved logs and pressing on the name of the
appropriate function. Not every function of the OBD is logged however; for some
functions, it just doesn’t make sense (DTC codes) and for others the numbers
would change too rapidly to really have any significance - for example, the
throttle jumps and changes wildly depending on what you’re doing, and a log of
that would be mostly meaningless. The logging of data is automatically stopped
and saved if the OBD Reader is turned off or if the phone loses connection to the
device for any reason. If there is no existing log data and the user attempts to
access the logs from that function, a blank file will be presented with a message
stating the absence of any log data.
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Figure 14.2.7a — Log Selection Screen

14.2.8 Log Viewing Screen

Figure 14.2.8a shows the screen view when viewing the log for one of the
functions. By default, twenty entries are shown for performance/legibility
purposes. At the bottom of the screen is a “Show more...” button that loads the
next twenty entries in the log file (if available). Showing more still lets the user
view the original sets entries, and scroll through everything that has been loaded
up to that point. Though if the user really wants to view the entire log file all at
once, it would be much easier and convenient to simply connect the phone to a
computer and manually open the log file on the computer. It's important that the
log data is in an easily parse-able format, so when the data is extracted into an
array for graphing, the process to separate the actual data and the time is easy
and fast. Up to 10,000 entries can be stored in a single log file before being
culled by removing the first 5,000 entries. This keeps the file size down (since we
have to have log files for every function) and keeps down the computation cost of
opening and writing to a large file. If the user presses the physical menu button
on their Android phone, a menu is pulled up that gives the user the option to
average all of the values in the log — so they could, for example, find their
average speed during a trip, or their average gas mileage. Also in the menu
screen is the option to view a graph of the data, discussed further below with
Figure 14.2.9a.
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Figure 14.2.8a — Log viewing screen

14.2.9 Log Graph Screen

The graph view seen in Figure 14.2.9a is a plot of the data contained in the log
file the user is currently viewing. It creates large, readable graphs using all of the
data in the log file. The graph requires a custom view to generate, which is
explained in further detail in section 14.3.3. Because it's a non-moving static
graph it's easier to generate than the dynamic graphs used in the OBD reader
graphs. The top contains text stating the function being graphed and the time
period in which it was recorded. The Y-axis uses the same range used in the
OBD reader gauge view. There are options below the graph to return back to the
text view of the log and to select a different log function. The log can contain a
very large amount of data (mentioned previously, up to 10,000 log entries before
being culled), so it can quickly become unwieldy to graph all of the data at once.
This is especially true with data that is separated by long periods of time. The
graphing function will only graph from the most recent set of data so that strange
or broken looking graphs don’t result from a long period of time passing between
log data.
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Figure 14.2.9a — Log Graph View

14.2.10 Error Code Screen

The error code screen is shown in Figure 14.2.10a. If an error light shows up on
the user’s car dashboard, they can check the specific fault code, known as a
DTC (Diagnostic Trouble Code). They can also clear it if they so desire from this
screen. In order for this screen to be useful, the user must first be connected to
the device over Bluetooth. If there is no connection, an error message will appear
and the user will be sent back to the main menu to try to manually connect to the
device. Once connected, this screen displays a scrollable list of the names of all
of the errors retrieved. If the user presses on any of the errors, a menu will pop
up stating the specific error code (P0128 for “Coolant Thermostat Malfunction,”
for example), an option to send a message back to the OBD to clear that error —
not recommended if you haven’t actually fixed the problem — and a link to a
website that brings up more specific information and research about that specific
DTC code. Alternatively, the user can press the “Clear All” button on the bottom
of the screen to clear every error from the OBD.
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Figure 14.2.10a — Error code screen

14.2.11 Settings Screen

The settings screen, accessed from the Main Menu, is seen in Figure 14.2.11a.
It keeps things familiar to regular Android users by again using the familiar list
view and checkbox configuration of the stock Android OS settings screen. Our
Settings screen contains several program-wide options. The user can choose
metric or English units for several different types of measurements and readings
taken from the OBD, including miles vs. kilometers, Celsius vs. Fahrenheit, feet
vs. meters, and PSI vs. Bar. The user also has the choice of whether the
program pops up a notification when quitting to make sure that they want to —
enabled by default so the user doesn’t accidentally quit the program. By default,
the program forces the screen to always be turned on so the user can monitor
whatever they want while they’re driving. This behavior can be turned off by
checking the “Power Saver Mode” checkbox. There is also an option for
connecting automatically. Enabled by default, this will have the phone attempt to
connect to the Bluetooth device whenever the program is first launched. If
disabled, the user will have to manually Start Connection each time they want to
connect.

Use Miles

Use miles instead of kilometers

Use Celsius D

Use Celsius instead of Fahrenheit

Use Feet

Use feet instead of meters

Use PSI

Use PSl instead of bar

Confirm Quit
84 Confirm before exiting program

Power Saver Mode D
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Figure 14.2.11a — Settings screen
14.2.12 Ul Block Diagram

Figure 14.2.12a is the overall block diagram of how the different Ul screens are
arranged and flow into each other. The program flow is designed to be relatively
simple without having to delve deep into menus to get to the important functions.
Most functions branch off of the main menu screen, with some ancillary functions
available to the OBD Il reader and Log screen. Each one of these boxes
represents a separate Android “activity” comprised of multiple Views and
ViewGroups (discussed more in Section 14.4).

Splash Screen

Main Menu

v v v Y v v

Start

Keypad

OBD Il Reader

Error Codes

Connection

Logs

Settings

h

r

Customize

Graph View

Log Graphs

Log file view

Gauge Screen

Figure 14.2.12a — Ul Block Diagram

14.3 GUI Software Implementation

In the following sections we will describe how to implement the various Android
GUI processes in the program. First, however, it's important to understand how
GUIs are created in Android, and the choice that we have when designing them.
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There are two major ways to declare a layout. You can declare the layout for a
view as an XML file, which uses mostly standard XML vocabulary and syntax for
creating classes and subclasses. The other method is to put the Ul structure
inside the program itself and instantiate the elements of your layout at runtime.
While either choice is valid, XML is the preferred method to use when designing
a Ul in Android. This is because it allows the developer to keep the program code
separate from the presentation, similar to how CSS controls the look and feel of a
webpage while the HTML contains the actual content. Using XML lets the
developer modify the Ul without having to worry about creating new bugs or
problems in the code. The XML file is created separately, and then it is simply
called inside the activity with the setContentView() command. It also makes it
easier and simpler to create new layout for different screen resolutions, vertical
or horizontal screen orientations, and support for different languages. For the
most part we will be using XML to create our GUI.

An Activity represents a single screen in Android. Our program has several
interconnected activities that make up the core of the program. The activity’s Ul
is itself is built from a hierarchy of View and ViewGroup objects. Views are the
basic building blocks of Ul creation, and the class includes subclasses like
widgets that let the developer place GUI items such as text boxes and buttons.
ViewGroups are more overarching classes and control the overall layout of an
Activity. Views and ViewGroups form a tree — each ViewGroup is a branch that
can contain either more ViewGroups or terminate with a View which acts as the
leaf. setContentView() is called by the Activity and is passed the root of the tree,
and each child draws itself, traversing down the hierarchy until everything is
drawn in order. This helps to determine which views overlap and which order
they go in.

Once the Ul is built, it's important to be able to handle Ul events, which are
basically just some form of user input, whether it's a click, touch, trackball
movement, etc. We first have to create an event listener and pair it with a View.
Our program only accepts touch events, so we use View.OnTouchListener() TO
detect touch events and interpret them appropriately. Also, because some of our
activities will be custom classes that don’t use the default views, we will have to
override some of the callback methods to View, such as onTouchEvent(). This is
only necessary when building custom components like gauges, and is not
required for more standard Views.

Helpfully, menus — that is, the popup menus that appear when the physical menu
button on the phone is pressed - are a special type of View and are handled
separately. We simply call the onCreateOptionsMenu() method for the activities
that use them — in our case, the OBD Reader screen and the Log viewing
screen, and insert the menu items that we want. Android automatically handles
their position in the View hierarchy and places them appropriately. There’s also
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no need to create unique event handlers for menus — it's taken care of by
onOptionsltemSelected() to easily control what happens when one of the menu
items is pressed (switching to a new activity, deleting a log file, etc.).

14.3.1 Bluetooth Implementation

The Android phone’s Bluetooth connection is the primary communication method
for talking with our device, so it is very important that our program is able to
quickly and efficiently connect. All of the APIs that we need are available in the
android.bluetooth package. There are a few main classes required for creating
Bluetooth connections and connecting to a device. The BluetoothAdapter class is
required for any Bluetooth activity. It represents the adapter located on the phone
itself, lets it instantiate new BluetoothDevice classes, and can create a
BluetoothServerSocket to let it listen for other devices. The BluetoothDevice
class is used for remote devices and can create a BluetoothSocket or request
information from the remote device. BluetoothSocket lets two Bluetooth devices
connect with a socket and exchange data. In order to create a connection, at
least one device must open the BluetoothServerSocket class, which listens for
incoming requests and returns a BluetoothSocket in order to connect. Finally,
BluetoothClass is a read-only list of a device’s properties, though it is not an
exhaustive list.

The first thing you have to do before setting up a Bluetooth connection is setting
the right permissions in the application manifest file: BLUETOOTH and
BLUETOOTH_ADMIN. BLUETOOTH lets you request/accept connections and
communicate over Bluetooth, but BLUETOOTH_ADMIN is needed to start device
discovery and change Bluetooth settings. Our device will require the
BLUETOOTH_ADMIN permission (which in turn also needs the lower
BLUETOOTH permission) since our program will be modifying the Bluetooth
settings. Next, before we can do anything the program first has to ensure that
Bluetooth is turned on in the phone. Using the BluetoothAdapter class, the
isEnabled() function is called to check its status. If it's disabled, we can call
startActivityForResult() to pop up a dialog box (without leaving the program)
asking to enable Bluetooth. RESULT_OK will be returned if Bluetooth was
successfully enabled, and RESULT_CANCELED if not. If the user canceled the
request he can enable it again from the main menu screen.

Once enabled, the Android phone must now be able to find our device, either
using device discovery or by finding it in the list of previously paired devices. Our
device will always be discoverable, so we don’t have to worry about making the
phone itself discoverable. This whole process is done (again) through the
BluetoothAdapter class. Before doing the more intensive device discovery
process, we should first check if our device is already in the list of paired devices.
To do this we call getBondedDevices() which returns a list of paired devices. If
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our device is on there, we're good to go. If not, we have to search for it. Calling
startDiscovery() begins this process. Our application must register a
BroadcastReceiver for the ACTION_FOUND Intent so we can get information on
each device found. All that’'s needed in order to start the connection is the MAC
address of the device. Note that in Android the remote device must be paired
before the two devices are allowed to connect.

In order for two devices to connect, both must hold a connected BluetoothSocket
on the same RFCOMM (Radio Frequency COMMunication) channel. This can be
done a few different ways, but in our program, we will be connecting as a client to
the device. First we have to get a BluetoothSocket by calling
createRfcommSocketToServiceRecord(UUID). The UUID (Universally Unique
Identifier) is a 128-bit string used to uniquely identify the program’s Bluetooth
service. Once the socket is created, we initiate the connection with connect(),
where the remote device ensures the UUID is correct and accepts the
connection. Because connect() is a blocking call, it should be run on a separate
thread outside of the main Activity Ul thread so it doesn’t prevent any other
interaction with the program. The program also needs to make sure that device
discovery is not happening while trying to connect, since this slows down the
connection and could cause it to fail.

Finally, once the two devices are paired and connected, the program has to
manage the data connection and read/write over the Bluetooth connection. Using
the BluetoothSocket, we handle Input and Output streams via getinputStream()
and getOutputStream(). We read and write data to the streams using read(byte[])
and write(byte[]). It is important to create a separate thread for stream reading
and writing, since they are blocking methods. It is also important to close the
connection once the program is closed, using the cancel() command on a
BluetoothSocket.

14.3.2 Gauge Implementation

In order to create our main OBD reader screen, we need gauges that can show
the status of the desired OBD value. In order to do this, we first have to create a
custom view since there isn’'t any kind of “gauge view” by default built into
Android, like how TextView or ListView are. To start, we first have to create a
new class derived from the built-in class View. In order to make our gauges
circles (instead of ovals), we must make the view square by overriding the
onMeasure() method and forcing the width and height to be the same. This also
lets us scale the gauges to an appropriate size. One convenient thing to do
before delving into drawing gauges is to create a toolbox of sorts — basically just
methods that bring together a few of the basic drawing tools into more useful
ones. The methods are contained in a class called initDrawingTools(). These
include methods such as drawRim() which draws a light circle inside of a dark
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circle to create an offset look, with a LinearGradient used to make it look more
metallic. The method drawFace() uses a bitmap texture from the BitmapShader
class to draw the background picture of the gauge for us. It's important to set
setFilterBitmap() in the Paint instance to true so that it scales smoothly
regardless of the resolution on the phone. Our custom method drawScale() is
one of the most important. With the range of values hard-coded in for each
function, the program determines an appropriate scale and number of notches for
each OBD reader function. Canvas.rotate() is used to draw each notch and
number on the gauge, and call Canvas.restore() afterward to set the canvas
upright again. DrawTitle() is used with Canvas.drawTextOnPath() to draw the
name of the function on the gauge. This gives us some leeway about how we
draw the text, so it can be curved around the bottom if we want it to. This method
also lets us change the text when the function that a gauge is displaying gets
changed — everything (name, scale, etc.) should change appropriate with it and
be redrawn. Finally, drawHand() is used to create the moving dial on our gauge.
I's drawn using a solid color Path and using Canvas.rotate() to make it move in a
circle the way a real dial does. To make the the dial move to match the data
being received from the OBD reader, we set up a sensor event for the Bluetooth
input stream and whenever it changes, we update the rotational position of the
dial so that it matches the current value. Once this view is created, we can use it
within the activities for the OBD Reader and OBD Reader Graph screens.

Optimization is important as well, especially since the hardware is relatively
limited compared to a PC environment. We noticed while using the Android
program Torque that the display could be choppy and laggy at times. We want
our program to be as fast and efficient as possible, and able to be used on
Android phones that aren’t super high-end. One simple way to optimize Ul
drawing is to separate moving parts from non-moving parts. Moving parts would
just be the dial itself — we don'’t plan to implement any other changing lights or
colors into the gauges. Non-moving parts would include the rim, the notches and
numbers around the edges, and the background of the gauge. Parts of the gauge
that do not move can be drawn all together onto a single bitmap using
Canvas.drawBitmap() in onDraw(). This makes it so only the moving parts are
updated with each refresh, while the rest of it just sits in the background and
doesn’t have to be redrawn every single time. Instead of drawing to the “real”
canvas we draw to the bitmap background. Then only after we've done that do
we call the draw() command for the entire bitmap, and then the draw() command
for the dial.. This trades some phone memory for an increase in performance.
Limiting the number of gauges drawn to four, besides being good from a
design/visibility standpoint, is also good for performance since it doesn’t have to
draw the updates to too many gauges for every refresh. We hope to keep the
OBD reader interface feeling snappy and responsive while still being fully
functional.
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14.3.3 Graph Implementation

Support for graphing 2D plots is surprisingly lackluster on Android — there is no
built-in support to create dynamic line graphs (to be used in the OBD Reader
graph screen), or even static, unmoving line graphs such as those we are using
to view graphs from the log screen. After researching the methods used to get
around this, we found that there are basically two things usually done about this.
One rather clever solution is to just bypass all of the native Android code and use
a webview. Using a jQuery-based javascript library called “Flot”, a developer can
basically create a local HTML webpage that contains the graph which is written in
javascript. This webpage is then displayed in a webview inside the program.
While clever and easy to implement, this wasn’t the solution for our program. For
one thing, this method doesn’t support dynamic charts that update the data in
real time, which would make it useless for us for the OBD graphs. Another issue
with this method is performance — creating graphs on a webpage and then
displaying it is inherently less efficient than directly creating the graph in code.
The other commonly used method to get around Android’s graphing limitations is
the use a third party graphing library. There are several available, but most of
them either were unable to do dynamic charts (which are necessary for our
project) or cost money. We finally found a third party API called AndroidPlot that
was both free and supported dynamic chart creation, so we could use it for log
screen graphing and for graphing the OBD values in real-time. We simply import
the AndroidPlot libraries and use them like any other to create a custom
GraphView that we can reuse multiple times throughout our program to fit our
requirements.

Creating the static graphs for the logs isn’t too difficult. First, we have to edit
Ires/layout/main.xml to include an entry for the XYPIlot view. Next we create the
activity LogActivity.java and import the AndroidPlot libraries as well as the other
standard Android libraries. We create the onCreate() method and
setContentView() to main.xml inside it to set the view to be the plot we want. The
plot is initialized using findViewByld() using the name we gave it in the xml file as
the parameter. This allows us to distinguish between graph definitions in the XML
file, so if we were to have multiple graphs onscreen at once we would be able to
keep them straight by their names. To actually retrieve the data used to populate
the graph, we have to open the log text file and loop through it, collecting the
data in an array for the y-value and collecting the timestamp data into a separate
array for the x-value data. Once we have our two arrays, we use the
SimpleXYSeries constructor to turn them into a graph-able list of numbers.
LineAndPointFormatter() is used to format the colors of the lines and points on
the graph — important, otherwise it would just be black on black and unreadable.
We plan to use an easily distinguishable red-on-black color scheme for our
graphs. The number lists are added to the plot with the addSeries() command.
Finally, since the AndroidPlot library displays a developer debugging guide by
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default, we use the disableAllIMarkup command to remove it so our graph is nice
and clean. By the end of it all, we will have a screen that neatly displays the log
data in graph form. Graphing real-time data from the OBD however, is a little
more complicated.

We are reading real-time data from the OBD reader and displaying it in graph
form whenever a user presses on a gauge in the OBD reader view. The
procedure begins the same way as a static graph — adding an entry with an id for
the plot in main.xml. Also similar to static plots, we have to set up and initialize
the plots using the addSeries command, set the range (hard coded for each
specific OBD function) with setRangeBoundaries() and the domain (30 points of
data shown onscreen at once) with setDomainBoundaries(). For the data itself,
we will create a custom event listener that parses data from the Bluetooth input
stream and turns it into OBD codes. Every time a new sensor data is read, an
event is created. A separate method, onSensorChanged() will handle what
happens when a new event occurs. An array will read in the data and update the
values currently held in the array. We call removeFirst() to get rid of the oldest
sample in the history, then update the list with setModel(). Finally, the plot is
redrawn with the aptly named redraw() command to include the new data.
onSensorChanged is looped through and whenever it receives new data will
update the array and redraw the graph. This process effectively creates a real-
time dynamic graph of the incoming OBD data.

14.4 Activities

Discussed briefly in section 14.3, activities are the main building blocks of an
Android program. Each activity represents a “screen” of our program, and the
activities are linked to create a cohesive program. While running, an activity can
be Resumed (in the foreground with user focus), Paused (in the background but
still running/partially visible) or Stopped (completely obscured by another activity,
can be killed to free memory of necessary). Managing the activity lifecycle is
important. There are callback methods such as onCreate() for when the activity is
just being started, onResume() for when an activity becomes visible again, and
onDestroy() to control what to do when an activity is about to be destroyed (for
example, save some data before the activity is destroyed). In our program, the
user navigates back and forth frequently through the menus, so it's important to
specify what happens when an activity is paused or resumed or destroyed.

For the Ul, each activity contains a view hierarchy. View objects are individual
widgets that can be placed on the screen. Views include things like text boxes,
images, buttons, checkboxes, etc. ViewGroups are overall layouts for a set of
view objects. In the linear layout, every view object follows the next sequentially,
either horizontally or vertically (specified in the main.xml file). Relative layout is
useful when we need to place things spatially relative to one another. The list
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view layout provides a scrollable list of view objects — text in our case. There can
be nested ViewGroups, which is often the case when using linear layout, though
if the nesting goes too deep it's usually better to go with a relative layout instead.
Figure 14.4a shows an activity diagram showing each of the activities or screens
in the program, and the ViewGroups and Views that make up each one. The tree
is traversed from top to bottom, left to right, and the order is important.

The SplashScreen activity uses the linear layout, arranging vertically a text view
with the name of the program, an image view with a logo of our device, and
another text view for our group number and other information. The main menu,
though very important as a portal for the rest of the program, is relatively simple
view-wise. It simply uses a list view with a set of TextViews representing each
menu item. The Settings activity acts the same way: just a basic list view with
text items. The checkboxes to turn on or off the options displayed are actually
included as part of TextView. Keypad is an interesting design challenge. Getting
the boxes displayed is relatively simple, but putting the big start button in the
center of them all will be a challenge. The screen is essentially just several
pictures with actions tied to them — the square sections are placed relative to
each other — one below or under the other one, with the square representing to
big Start button (stylized to look like a circle) must be the last view object to be
placed so that it overlaps the other buttons and images.

The LogSelect activity is another simple list view — just a textual list of the logs
that are available to be read. Branching off of this however are two more
activities: LogView and LogGraph. LogView is pretty much just viewing a text file,
with a “read more” button on the bottom. We use a vertical linear layout, with a
text view first of the text read from the log, followed by a Button to activate the
read more functionality and access twenty more logs. LogGraph is relatively
tricky Ul-wise. There is a base vertical linear layout. First in line is our custom-
created view to show graphs from the log data, GraphView. The details of
GraphView are discussed in section 14.3.3. Below our custom GraphView is yet
another linear layout, this time horizontal. This ViewGroup contains two buttons,
one for returning to the LogView activity, and one for returning to the LogSelect
activity.

The Error Code activity, though it looks relatively simple, is also one of the more
complex Ul designs. The overall ViewGroup is a linear layout. Starting at the top
is a TextView for the “Error Codes” title. Below that is another ViewGroup, a list
view with a list of all of the error codes that are available to be displayed. This is
accomplished, as usual, with text view. Back into the first linear layout, there’s a
Button object used for the “clear all” button at the bottom of the activity.

Finally, the all-important OBDReader activity uses a relative layout to easily place
the four gauges symmetrically on the screen. The gauges themselves are
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created from another custom class, GaugeView, the implementation of which is
discussed in detail in section 14.3.2. The customize gauge screen accessed
when long-pressing on a gauge is actually not its own activity. It is a context
menu that is “registered” to the gauge view with registerForContextMenu() and
then “inflated” to populate the menu with items. The OBDGraph screen however
is it's own activity. It's the only one that uses both of our custom-created views,
GaugeView and GraphView. It uses a vertical linear layout with a single gauge
on top and a dynamic graph below.

SplashScreen

ViewGroup:
LinearLayout

A 4 ¥ \ 4
View: View: View:
TextView ImageView TextView

MainMenu W
ViewGroup:
ListView
View:
TextView
Settings +
Keypad v
ViewGroup:
ListvView ViewGroup:
Relativelayout
View:
TextView
View:
ImageView
ErrorCode
LogSelecy F v
ViewGroup:
ViewGroup: LinearLayout OBDReader v
ListView i
View: A 4 h 4 ViewGroup:
View: ViewGroup: View: RelativeLayout
LEXEYEw TextView ListView Button
View- GaugeView
TextView
LogGraph v
LogView v ViewGroup:
LinearLayout OBDGraph v
ViewGroup: | =
LinearLayout = - ViewGroup:
View: ViewGroup: LinearLayout

GraphView LinearLayout |
i ew: iew:
TextView Button View-
Button

GaugeView GraphView

93 |



Team 9 Senior Design | 2011

Figure 14.4a — Activity Diagram

15.0 Prototype Testing

Testing is a crucial part of any project, big or small. It's not uncommon that
testing take the longest of any of the phases from start to finish. The testing
phase will uncover problems of all sorts. The problems may range anywhere
from design, logical or your common mistake. In a project like this, testing needs
to be thought-out and efficient. We will test the hardware and software as
individual components before interfacing or connecting them with another project
component. As soon as two components are connected, we will ensure that their
functionality is still valid as a unit. This “build-and-test” strategy will be used from
the point that two components are connected, until the last component is added
to the prototype. This form of testing may seem tedious and more time
consuming in the beginning, but it will allow us to narrow the scope of problems
when they occur. The smaller the scope of the problem is, the easier the
problem is to find and fix. Different strategies will be used for both the hardware
and software aspects, as well as the technology that interfaces the different
systems together. The key strategy to effective testing is the “build-and-test”
strategy we’ve come up with.

15.1 Hardware Test Environment

The ultimate test environment for the prototype will be in a 1998 Honda Accord.
The testing location will take place in a parking lot or parking garage. Individual
hardware parts of the prototype will be tested indoors in the electrical engineering
lab at ideal temperatures and environments.

15.2 Hardware Specific Testing

Each piece of hardware needs to be tested for correct functionality before it can
be used in the prototype. All hardware parts need to be tested, including the
smart-phone and test vehicle. We cannot assume that the vehicle and smart-
phone are functional.

15.2.1 Vehicle OBDII Port Testing

To ensure that the OBDII port of the 1998 Honda Accord is functional, we will test
the port by inspection and electrical functionality. Once the OBDII port is located,
we will inspect the port visually to make sure the sockets are not clogged with
debris. We will also visually inspect the back of J1850 connector to make sure
that all of the wires running from the contacts to their respective destinations are
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intact. Once the OBDII port passes a visual inspection, we can do additional
testing with an OBDII reader. For multiple testing purposes we will purchase a
commercial ELM327 OBDII reader. We will use the commercial OBDII reader to
test the functionality of the ODBII port in the 1998 Honda Accord. Since we don't
know for sure that the Android application written for this project works, we’ll test
the OBDII port with a free Android application that has similar functionality. By
downloading the free version of “Torque” from the Android Market, we can test
the OBDII port of the 1998 Honda Accord. A smart-phone and the ELM327
OBDII reader will connect via Bluetooth Technology. Once a connection has
been made, the Torque application should be able to receive data from the car.
We will perform every function that the free version of Torque will allow us to do.
Once we can confirm that the OBDII port in the 1998 Honda Accord is functional,
we can move forward with our testing.

15.2.2 Smart-Phone Testing

The smart-phone will need to be heavily tested for Bluetooth functionality. This
first test will be simple on and off testing. We’ll go to the settings of the phone
and turn the Bluetooth on and off, while checking to see if the icon appears in the
taskbar located at the top of the screen. Once the taskbar indicates that the
Bluetooth is being turned on and off correctly, we can move to the test
procedure.

The second test will require a laptop. The smart-phone will have to be in a mode
named “discoverable.” This mode allows for other Bluetooth enabled devices to
search for the smart-phone for Bluetooth connection. While the smart-phone and
laptop have their Bluetooth enabled and the laptop is discoverable by other
devices, we will search for other Bluetooth enabled devices in the area from the
smart-phone. If everything is working correctly, the laptop will appear in the list of
Bluetooth enabled devices within the range of the smart-phone. At this point we
can request to make a connection with the laptop. The smart-phone user will
then have to enter an arbitrary four-digit password to start the connection. The
laptop user will be prompted with a request to connect to the smart-phone via
Bluetooth and asked to enter the arbitrary password that the smart-phone user
entered to start the connection. The laptop user will enter the arbitrary password
and attempt to send a random picture to the smart-phone. If the smart-phone
successfully receives the picture, then we are certain that the smart-phone is
capable of receiving data from another device via Bluetooth.

The last test that the smart-phone will endure, will be with a similar application to
the one created in this project and a commercial Bluetooth enabled OBDII
reader. We will download the free version of the application “Torque” and
connect, via Bluetooth, to the ELM327 OBDII reader while it's plugged into the
1998 Honda Accord. To narrow the scope of the possible failures, the OBDII port

95



Team 9 Senior Design | 2011

on the 1998 Honda Accord will have to pass it's testing prior to attempting the
last test for the smart-phone. If we did not test the OBDII port on the vehicle prior,
a failed test could be a result of a nonfunctional OBDII port. The smart-phone
user will open the Torque application and search for devices via Bluetooth. The
commercial OBDII reader will then appear in the list of Bluetooth devices in the
area. When the smart-phone user attempts to connect to the ELM327 OBDII
reader, they will be prompted to enter a pass-code. The ELM327 OBDII reader
has a built-in pass-code that the smart-phone user will have to enter to make a
successful connection. The standard pass-code for the ELM327 OBDII reader is
“1234.” Once the Bluetooth connection is made, the smart-phone user will go
through all of the possible functions on the free version of Torque to confirm the
functionality of the smart-phone’s Bluetooth capability. Pressing the accelerator
on the vehicle should cause the RPM gauge in the free version of Torque to
display the same measurement as the RPM gauge in the vehicle. We must note
that there will be some time delay for the reading being displayed on the smart-
phone due to the time it takes the Torque application to receive the necessary
data. Once we can confirm that the free Torque application is displaying accurate
data from the car, we can assure that the smart-phone’s Bluetooth capabilities
are functional.

15.3 Software Test Environment

Software will be tested several different ways and in different environments. The
common syntax examining and testing will be done in the same environment that
it will be written in, Eclipse. As individual functions are completed and added to
the Android application, they’ll be tested on the smart-phone. For consistent
testing and accurate results, we will test each function on the 1998 Honda
Accord with components that have already passed their respective tests. This
testing strategy allows us to eliminate the possibility of hardware deficiencies and
focus in on the software aspect when troubleshooting. A small amount of
software testing, for the microcontroller, will take place in an Electrical
Engineering lab at ideal temperatures and conditions.

15.3.1 Testbed

All testing will be run in both software (Eclipse) and hardware (phone)
environments. Coding and testing will be done in Eclipse 2.6.2, with ADT
(Android Development Tools) version 15.01. The test computer runs Windows 7
64-bit, and two separate AVDs (Android Virtual Device) running Android version
2.1 and 2.2 will be used to test software compatibility when hardware-specific
things (Bluetooth, GPS, etc.) are not required. Hardware testing will be done on
an LG Optimus T running Android version 2.2. We're targetting the application to
require at least Android 2.1, since it is widely available on most Android devices,
and included many changes to the underlying Android system since Android 1.6.
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While we don’t know of any specific function or feature available in 2.1 that’s not
available in previous versions, it makes testing and debugging easier since we
don’'t have to worry about supporting deprecated features or using something
that’s not supported by the older version.

15.4 Software Specific Testing

Software testing is a critical aspect to finishing this project in a timely manner. A
commonly and simplistic strategy is to test as you go. In a project this large, we
actually have to apply this strategy that our professors have been pounding in
our heads for the last four years.

15.4.1 Android Application Testing

The Android application will be examined and debugged at the code level by
each of the group members. After a function or chunk of code has passed the
syntax check done by Eclipse’s compiler we can move onto the next step of
testing. Since a compiler like the one in Eclipse cannot check code for anything
besides correct syntax, we must examine the code as a group to check for logical
errors. In typical homework programs from programming classes, we can
bypass logical examinations because we can base the program’s functionality
upon a correct output response from the user’s input. In our Android application,
this testing shortcut isn’t an option because the user environment is not the same
place that the source code is written. Every time that a function or chunk of code
needs to be tested for functionality, the application needs to be loaded to the
smart-phone and then tested using the vehicle commercial OBDII reader. Testing
the application for correct functionality just got much more time consuming with
respect to typical homework-assigned programs. Another issue is that the input
for our application is being sent from the vehicle and not from a user. This
implies that there’s only one test case coming from the user, while typical
programs have many different test cases. Once our group examines the code for
simplistic logical errors, we can agree that it's worth the time to setup the vehicle
to test the application for correct functionality. The code will be compiled an
additional time in Android’s platform, Android Virtual Device (AVD). We do not
suspect that the compiler in AVD would find any errors since the code was
already compiled in Eclipse. AVD’s purpose is to load the code, in application
form, onto the smart-phone. After AVD indicated that the application was
successfully loaded to the smart-phone, we can disconnect the smart-phone and
attempt to use the application. The smart-phone user can quickly inspect the
application’s GUI to make sure that the prior content was not effected by the
update and that the recently added content is the desired appearance. Not only
do we need to make sure that the function recently added works, but we need to
make sure that the prior existing functions still perform properly. The amount of
time needed to thoroughly test each function as it's added to the Android
application, makes the premature, logical inspection a critical step in completing
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the project in a timely manner. After inspecting the GUI of the entire application,
we can move forward with the actual functionality testing on the 1998 Honda
Accord with the commercially purchased OBDII reader.

15.4.1.1 Bluetooth Connectivity Testing

Once the basic GUI and Bluetooth functionality is done at the coding level, we
can load the application to the smart-phone for it's first functional test. At this
point, all that we want to test is that the application will successfully connect to
another wireless device via Bluetooth. Since the OBDII reader doesn’t have a
screen to easily indicate a Bluetooth connection has been made, we will test the
application’s Bluetooth functionality using a laptop and another smart-phone.
First we will test the application by entering an exiting all of the GUI screens
multiple times. This test is to check for bugs that would cause the application to
crash while doing simple navigation within the application itself. Once the
application is stable we can try to make a Bluetooth connection with another
device. After both devices have their Bluetooth capabilities enabled, the person
testing the application will search for discoverable Bluetooth enabled devices in
range by selecting the Bluetooth search function. When a list of Bluetooth
enabled devices appear on the screen, we can proceed to the next step of
making a successful Bluetooth connection. The user would then select the
desired device for connectivity and enter a password if necessary. We can then
check the Bluetooth connection of the laptop that the application is attempting to
connect with to see if the connection was successful. This check can be made by
going into the Bluetooth properties of any typical laptop. After we ca confirm one
successful Bluetooth connection, we need to test the Bluetooth capability of the
application on at least two other devices, while connecting to each device a
minimum of five times. The excessive connecting and disconnecting to multiple
devices should uncover any issues with our applications Bluetooth capabilities.

15.4.1.2 RPM Function Testing

The RPM function will be the first function implemented into the application for a
few different reasons, including testing purposes. First of all, the function at the
code level isn’'t too complex and it doesn’t rely on other functions to operate.
Since the RPM function doesn’t rely on other functions to operate, the testing is
simple. We will load the application onto the smart-phone using AVD. Then we
can connect the application with the commercial OBDII reader via Bluetooth.
When a successful connection is established, the smart-phone user will then
navigate to the RPM function. Upon arrival of the RPM function, the smart-phone
user will examine the reading of the RPM’s on the RPM gauge in the GUI and
compare that value to the value being display on the RPM gauge of the test
vehicle. The user will have to use their best judgment to decide if the RPM
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readings are accurate. The user will need to understand that there’s a time delay
in the readings that are displayed on the application because of the time it takes
to get the reading from the ECU and ultimately send it to the smart-phone.
Although we cannot guarantee the readings on the application are ideal, we can
get a great deal of confidence through specific testing tactics. One group
member will vary the throttle position between high and low while another group
member examines the application RPM gauge and RPM gauge of the vehicle.
The application RPM gauge should behave in the same manner as the RPM
gauge on the vehicle, but with a small time delay. The same low and high RPM’s
should be achieved while keeping a similar motion. Although this test is purely by
inspection, it deems to be accurate.

15.4.1.3 Logging Function Testing

Every function in the application will be tested for accuracy, but may require
different forms of testing. The second function we plan to implement is what we
call the “Logging Function.” This function records the data that is sent to the
smart-phone from the OBDII reader in a data log. The data is necessary for both
the car enthusiast that would use this application and to help the developers test
other functions within the application. First we need to make sure that the logging
function works correctly. Each piece of data that is recorded will have a time
stamp attached to it. The time stamp will play a key factor in testing the logging
function for accuracy. Once the logging function compiles without any errors or
warnings, we can inspect the code for logic mistakes. After the code has been
inspected for logic mistakes, we can load the application onto the smart-phone
for the final stage of testing. We will use the RPM function we implemented
earlier, to help us test the logging function. When testing the logging function, we
will do multiple trials to see how accurate the logging really is. Once we have the
smart-phone successfully connected to the vehicle via a Bluetooth connection
with the commercial OBDII reader, we can start the series of testing. The testing
will follow the following steps and be repeated ten times.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Document the time the testing begins.

3. Select the RPM function on the Android application.

4. Have the vehicle operator press the accelerator while analyzing the RPM
reading on the vehicle.

5. Vehicle operator shall document the maximum RPM reading reached to
the greatest degree of accuracy.

6. The smart-phone operator shall analyze and document the maximum
RPM reading reached on the android application.
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7. The smart-phone operator shall then select the logging function and
record the highest RPM reading that was logged along with the associated
time stamp in the logging function.

8. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there should be five pieces of test data to help decide if the
logging function is functioning properly. The figure below, figure 15.4.1.3a, will be
filled out to help analyze the data with more accuracy.

Logging Function Testing

Vehicle RPM Logging
RPM Application | Function
Reading Reading Reading

Trial Actual Logging
Number Time Time

9

10

Figure 15.4.1.3a — Table used to test Logging Function

After all ten trials are recorded we can analyze the data to see how accurate the
time stamp is. The far left column represents what trial number the data is
associated with. The second column, “Actual Time”, represents the time
manually recorded by the tester. The third column, “Logging Time”, represents
the time stamp in the logging function’s log, when the highest RPM reading was
recorded. The fourth column, “Vehicle RPM Reading”, represents the highest
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RPM reading read from the vehicle’s in-dash odometer by the tester. The fifth
column, “RPM Application Reading”, is the highest reading read from the GUI of
the application’s RPM function by the tester. Since multiple readings have to be
read at the same time, this test will take a minimum of two people. A third tester
to try to collect both, the vehicle RPM reading and the RPM application reading,
is preferred, but not mandatory. The third tester would allow for debate among
the collected readings and ultimately help collect better test data. The last
column, “Logging Function Reading”, is the highest RPM that was logged in the
logging function during that specific trial. Since the testing will take a few seconds
alone, we will not be looking for the time stamp to be incredibly accurate. We
expect the times logged and actual times to be within a minute of each other. If
our data indicates a difference of a minute or greater, we will do further testing
with emphasis on the logging time stamp. The main concern with the logging
function is that it is logging accurate readings from the car. All three of the RPM
data recordings need to be within 300 RPM’s of each other. If the RPM readings
deviate much further than 300 RPM'’s of each other, we will need to analyze and
re-test the function.

15.4.1.4 Fuel Level Function Testing

The third function that will be implemented is the fuel level function. This function
will read the amount of fuel that is left in the tank of the vehicle. After completing
the fuel level function code, we will implement and test the completed code for
the application at the code level. We will ensure that all of the code compiles
without any errors or warnings. Once the code successfully compiles, we will
analyze the code for logical mistakes. When the code has passed visual
inspection, it's time to upload the partially completed application to the smart-
phone for field-testing. For testing purposes, Firoz Umran can confirm that the
fuel level odometer in his 1998 Honda Accord is an accurate representation of
the amount of fuel left in the gas tank. We will keep a standard field test setup for
testing each of the functions. The standard procedure will include using the
commercially bought ELM327 OBDII reader, the smart-phone and the 1998
Honda Accord. Once a successful connection between the smart-phone and the
OBDII reader has been established, the fuel level function will be ready for field-
testing. To help ensure the degree of accuracy of our application, we will test the
fuel level function ten different times. At the beginning of each trial, the tester will
clear the data log in the logging function and record the time the testing is taking
place. The smart-phone user will select the fuel level function in the GUI menu
and record the reading of the fuel level according to the GUI on the application
screen. The tester will then record the fuel level that is displayed on the odometer
in the 1998 Honda Accord. The smart-phone user will then exit the fuel level
function and select the logging function. The tester shall analyze the logged data
within the logging function and record the time stamp and fuel level indicated.
The steps below shall be followed for each trial, for ten trials.
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1. The smart-phone user shall ensure that the data log in the logging function

is cleared prior to each testing trial.

Analyze and record the time testing begins.

Select the Fuel Level Function on the Android application menu.

The smart-phone user shall record the fuel level measurement indicated

on the GUI of the smart-phone to the best accuracy possible.

5. The vehicle operator shall record the fuel level measurement displayed on
the in-dash gauge to the greatest degree of accuracy.

6. The smart-phone operator shall then select the logging function and
record the fuel level measurement that was logged along with the
associated time stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

hwn

The field-testing of the fuel level function will take more time than most of the
other functions. For each of the trials’ data to have value, the fuel level needs to
vary from trial to trial. If time allows, we will do one trial per day for ten days. The
time between trials allows for the 1998 Honda Accord to be driven, which
consumes fuel and ultimately changes the fuel level for the following trial. A
backup plan for quicker testing has been created in the event that time is scarce
and the testing needs to be done promptly.

The faster testing method that allows for the trials to be done consecutively will
require the vehicle’s fuel level for the first trial to be between empty and an eighth
of a tank. If the fuel level is any higher than an eighth of a tank, we will need to
siphon the fuel into five-gallon gasoline containers. Once the fuel level is an
eighth of a tank or less, the first trial is ready to begin. If the fuel level is already
in the desired range, we will need about ten gallons of fuel in external gasoline
containers. After each trial, about a gallon of gasoline will be added to the
vehicle’s fuel tank for the following trial. The addition of fuel after each trial should
alter the fuel level enough to notice a difference in the data from trial to trial.

After each test trial, there should be five pieces of test data to help decide if the
fuel level function is functioning properly. The figure below, figure 15.4.1.4a, will
be filled out to help analyze the data with more accuracy.

Fuel Level Function Testing

Trial Actual Logging Vehicle | Application | Logging
Number Time Time Fuel Fuel Fuel
Reading Reading Reading
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9

10

Figure 15.4.1.4a — Table used to test Fuel Level Function

After all ten trials have been recorded we must analyze the data to understand
the accuracy of the fuel level function. Although, the time stamp from the logging
function was specifically tested and analyzed during the Logging Function
testing, it is possible that the addition of the fuel level function altered the
functionality of the logging function, therefore we cannot take the time stamp
reading for granted. The far left column represents what trial number the data is
associated with. The second column, “Actual Time”, represents the time
manually recorded by the tester. The third column, “Logging Time”, represents
the time stamp in the logging function’s log, when the fuel level reading was
recorded. The fourth column, “Vehicle Fuel Reading”, represents the fuel level
reading read by the tester, from the vehicle’s in-dash gauge. The fifth column,
“Fuel Level Application Reading”, is the fuel level reading read from the GUI of
the application’s Fuel Level function, by the tester. The last column, “Logging
Function Reading”, is the fuel level that was logged in the logging function during
that specific trial.

As a group we will analyze the data gathered over all ten trials. Since the time
stamp in the logging function was previously tested, we will look for consistency
among all time stamps from all test trials, but not emphasize it as our main
concern. We expect the times logged and actual times to be within a minute of
each other. If our data indicates a difference of a minute or greater, we will do
further testing with emphasis on the logging time stamp. The greatest concern is
that the fuel level, for all three readings, are within a reasonable margin of error.
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We would like the fuel level readings to be within a sixteenth of a tank from one
another. If the fuel level readings deviate much further than a sixteenth of a tank
from one another, we will have to decide if the readings are inaccurate or if the
margin of error is larger than anticipated. In vehicles with relatively small fuel
tanks, such as the 1998 Honda Accord, it's more difficult to get an accurate
reading from the fuel gauge.

15.4.1.5 Time Since Engine Start Function Testing

The fourth function that will be implemented is the Time Since Engine Start
(TSES) function. This function will read the last time that the engine in the 1998
Honda Accord was started. After completing the TSES function code, we will
implement and test the completed code for the application at the code level. We
will ensure that all of the code compiles without any errors or warnings. Once the
code successfully compiles, we will analyze the code for logical mistakes. When
the code has passed visual inspection, it's time to upload the partially completed
application to the smart-phone for field-testing. The standard field test procedure
will include using the commercially bought ELM327 OBDII reader, the smart-
phone and the 1998 Honda Accord. Once a successful connection between the
smart-phone and the OBDII reader has been established, the TSES function will
be ready for field-testing. To help ensure the degree of accuracy of our
application, we will test the TSES function ten different times. At the beginning of
each trial, the tester will clear the data log in the logging function and record the
time the testing is taking place. The tester will begin the test by starting the
vehicle and recording the time that the engine started. After a successful start
and recorded time, the engine will be shut off. The smart-phone user will select
the TSES function in the GUI menu and record the time of that the engine was
started last, according to the GUI on the application screen. The smart-phone
user must also record the time that the TSES was recorded to ensure that the
logging function’s time stamp is still accurate. The smart-phone user will then exit
the TSES function and select the logging function. The tester shall analyze the
logged data within the logging function and record the time that the engine was
last started according to the log along with it's time stamp. It's important to
understand that the difference between the time stamp and the time that the
engine was last started. The time stamp indicates when the data was sent from
the car to the smart-phone, while the time next to it is the actual data that was
requested, the TSES. The steps below shall be followed for each trial, for ten
trials.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Start the vehicle while recording start time, then turn vehicle off.

3. Select the Time Since Engine Start Function on the Android application
menu.
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4. The smart-phone user shall record the TSES indicated on the GUI of the
smart-phone and the time the reading occurred.

5. The smart-phone operator shall then select the logging function and
record the TSES that was logged along with the associated time stamp in
the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

The tester shall allow anywhere from a few minutes to a few hours between trials
to vary the test data. Random test data will allow for a higher degree of
confidence in the results. After each test trial, there will be five pieces of test data
to help decide if the TSES function is functioning properly. The figure below,
figure 15.4.1.5a, will be filled out to help analyze the data with more accuracy.

Time Since Engine Start Function Testing

. Actual . Application | Logging
Trial Logging Actual TSES TSES

Reading .
Number Time Time Stamp | TSES Reading | Reading

9

10

Figure 15.4.1.5a — Table used to test Time Since Engine Start Function

After all ten trials have been recorded we must analyze the data to understand
the accuracy of the TSES function. Although, the time stamp from the logging
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function was specifically tested and analyzed during the Logging Function
testing, it is possible that the addition of the TSES function altered the
functionality of the logging function, therefore we cannot take the time stamp
reading for granted. The far left column represents what trial number the data is
associated with. The second column, “Actual Reading Time”, represents the time
that the tester read the reading for the TSES from the application’s TSES
function itself. The third column, “Logging Time Stamp”, represents the time
stamp in the logging function’s log, when the TSES reading was sent to the
smart-phone. The fourth column, “Actual TSES Reading”, represents the TSES
calculation. This calculation is simply the difference in time between the time the
tester started the engine to the time the tester uses the TSES function on the
smart-phone. This reading is accurate and will be used as the correct amount of
time that the engine was last started. The fifth column, “Application TSES
Reading”, is the TSES reading read from the GUI of the application’s TSES
function, by the tester. The last column, “Logging TSES Reading”, is the TSES
that was logged in the logging function during that specific trial.

As a group we shall analyze the data gathered over all ten trials. Since the time
stamp in the logging function was previously tested, we will look for consistency
among all time stamps from all test trials, but not emphasize it as our main
concern. We expect the times logged and actual times to be within a minute of
each other. If our data indicates a difference of a minute or greater, we will do
further testing with emphasis on the logging time stamp. The greatest concern is
that the TSES, for all three readings, are accurate and within a reasonable
margin of error. As testers, we understand that the calculated TSES should be
the most accurate reading, therefore our goal is achieve readings that are within
45 seconds of the calculated TSES. If the test results deviate significantly from
our expectations, we shall analyze the data further to determine the outcome.

15.4.1.6 Fuel Economy Function Testing

The fifth function that will be added to the application is the Fuel Economy
function. This function tells the smart-phone user their fuel economy, average
fuel economy and how many miles until the fuel tank is empty. Once the fuel
economy function compiles without any errors or warnings, we can inspect the
code for logic mistakes. After the code has been inspected for logic mistakes, we
can load the application onto the smart-phone for the final stage of testing. We
will use the logging function that was implemented earlier, to help test the fuel
economy function. When testing the fuel economy function, we will do multiple
trials to understand the accuracy of the user readings. The fuel economy function
will be tested under the assumption that the logging function is accurate. Only
one test trial per day shall be performed to help vary test results. For each trial
the smart-phone will have to be successfully connected to the vehicle via a
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Bluetooth connection with the commercial OBDII reader before we can start
testing. The testing will follow the following steps and be repeated ten times.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Fuel Economy Function in the
application menu and read and record the three fuel economy readings
supplied. The time of the readings shall also be recorded.

3. Smart-phone user shall exit the Fuel Economy Function and navigate to
the logging function.

4. The smart-phone operator shall then select the logging function and
record the fuel economy data that was logged along with the associated
time stamp in the logging function.

5. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be eight pieces of test data to help decide if the fuel
economy function is functioning properly. After all ten trials are recorded we can
analyze the data to see how accurate the fuel economy function is. The purpose
of recording the time that the tester performed the fuel economy reading from the
GUI, is to ensure that the implementation of the new function to the already
existing android application, did not alter the functionality of the logging function.
The fuel economy readings read from the GUI will be checked against the data
that was logged in the logging function. By this point in the testing phase, we
anticipate that the logging function will be completely accurate since it was one of
the first functions added to the application. The fuel economy readings will be
inspected by Firoz Umran because of his familiarity with the vehicle.

15.4.1.7 Speed Function Testing

The sixth function that will be added to the application is the Speed function. This
function tells the smart-phone user their speed or average speed or a length of
time. Once the speed function compiles without any errors or warnings, we can
inspect the code for logic mistakes. After the code has been inspected for logic
mistakes, we can load the application onto the smart-phone for the final stage of
testing. We will use the logging function that was implemented earlier, to help
test the speed function. When testing the speed function, we will do multiple trials
to understand the accuracy of the user readings. The speed function will be
tested under the assumption that the logging function is accurate. Each testing
trial will require at least three testers for best results. One tester is needed to
operate the vehicle, one to operate the smart-phone and another to observe the
vehicle odometers. For each trial the smart-phone will have to be successfully
connected to the vehicle via a Bluetooth connection with the commercial OBDII
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reader before we can start testing. The testing will follow the following steps and
be repeated ten times.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Speed Function in the application
menu.

3. The vehicle driver will set the trip on the dashboard then proceed to drive
for about three minutes (just enough time to allow for average speed
calculations).

4. While the vehicle is in motion: The smart-phone user will compare the
speed indicated on the GUI and the speed indicated on the odometer in
the dashboard of the vehicle. Note: The speed on the android application
will have a time delay, with respect to the vehicle’s odometer, due to the
time taken to send data to the smart-phone. The observer shall time the
length of the trip with a stopwatch.

5. After about three minutes of driving the test is over. The smart-phone user
shall exit the Speed Function and navigate to the logging function.

6. The smart-phone operator shall then select the logging function and
record the Speed data that was logged along with the associated time
stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be eight pieces of test data to help decide if the
speed function is functioning properly. After all ten trials are recorded we can
analyze the data to see how accurate the speed function is. The purpose of
recording the time that the tester performed the speed and average speed
reading from the GUI, is to ensure that the implementation of the new function to
the already existing android application, did not alter the functionality of the
logging function. The speed data read from the GUI will be checked against the
data that was logged in the logging function and the observed speed from the
odometers in the vehicle. By this point in the testing phase, we anticipate that the
logging function will be completely accurate since it was one of the first functions
added to the application.

15.4.1.8 Coolant Temperature Function Testing

The seventh function that will be added to the application is the Coolant
Temperature function. This function tells the smart-phone user the temperature
of their coolant in real time. Once the coolant temperature function compiles
without any errors or warnings, we can inspect the code for logic mistakes. After
the code has been inspected for logic mistakes, we can load the application onto
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the smart-phone for the final stage of testing. We will use the logging function
that was implemented earlier, to help test the coolant temperature function.
When testing the coolant temperature function, we will do multiple trials to
understand the accuracy of the user readings. The coolant temperature function
will be tested under the assumption that the logging function is accurate. For
each trial the smart-phone will have to be successfully connected to the vehicle
via a Bluetooth connection with the commercial OBDII reader before we can start
testing. The testing will follow the following steps and be repeated ten times.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Coolant Temperature Function in the
application menu.

3. The vehicle operator will start the car and leave it in park while observing
the temperature gauge.

4. A third tester shall record the time and temperature from the in-dash
gauge and the application’s GUI every 30 seconds.

5. After four minutes or eight readings have been recorded, enough test data
will have been gathered for one trial. The smart-phone user shall exit the
Coolant Temperature Function and navigate to the logging function. The
vehicle can also be shut off.

6. The smart-phone operator shall then select the logging function and
record the Coolant Temperature data that was logged along with the
associated time stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be several pieces of test data to help decide if the
Coolant Temperature function is functioning properly. After all ten trials are
recorded we can analyze the data to see how accurate the Coolant Temperature
function is. The purpose of recording the time that the tester recorded the coolant
temperature from the GUI and the in-dash odometer is so the logged data in the
logging function will be associated with the correct set of data. The Coolant
Temperature data read from the GUI will be checked against the data that was
logged in the logging function and the observed coolant temperature from the
odometer in the vehicle. By this point in the testing phase, we anticipate that the
logging function will be completely accurate since it was one of the first functions
added to the application.

15.4.1.9 Air Intake Temperature Function Testing

The eighth function that will be added to the application is the Air Intake
Temperature function. This function tells the smart-phone user the temperature
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of their air intake in real time. Once the air intake temperature function compiles
without any errors or warnings, we can inspect the code for logic mistakes. After
the code has been inspected for logic mistakes, we can load the application onto
the smart-phone for the final stage of testing. We will use the logging function
that was implemented earlier, to help test the air intake temperature function.
When testing the air intake temperature function, we will do multiple trials to
understand the accuracy of the user readings. The air intake temperature
function will be tested under the assumption that the logging function is accurate.
For each trial the smart-phone will have to be successfully connected to the
vehicle via a Bluetooth connection with the commercial OBDII reader before we
can start testing. The testing will follow the following steps and be repeated ten
times.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Air Intake Temperature Function in the
application menu.

3. The vehicle operator will start the car drive around for four minutes.

4. A third tester shall record the time and temperature from the application’s
GUI every 30 seconds.

5. After four minutes or eight readings have been recorded, enough test data
will have been gathered for one trial. The smart-phone user shall exit the
Air Intake Temperature Function and navigate to the logging function. The
vehicle can also be shut off after all the data has been recorded.

6. The smart-phone operator shall then select the logging function and
record the Air Intake Temperature data that was logged along with the
associated time stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be several pieces of test data to help decide if the
Air Intake Temperature function is functioning properly. After all ten trials are
recorded we can analyze the data to see how accurate the Air Intake
Temperature function is. The purpose of recording the time that the tester
recorded the Air Intake temperature from the GUI is so the logged data in the
logging function will be associated with the correct set of data. The Air Intake
Temperature data read from the GUI will be checked against the data that was
logged in the logging function. By this point in the testing phase, we anticipate
that the logging function will be completely accurate since it was one of the first
functions added to the application.

15.4.1.10 Timing Advance Function Testing
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The ninth function that will be added to the application is the Timing Advance
function. This function tells the smart-phone user the timing advance of the
engine. Once the Timing Advance function compiles without any errors or
warnings, we can inspect the code for logic mistakes. After the code has been
inspected for logic mistakes, we can load the application onto the smart-phone
for the final stage of testing. We will use the logging function that was
implemented earlier, to help test the Timing Advance function. The Timing
Advance function will be tested under the assumption that the logging function is
accurate. Prior to testing, the smart-phone will have to be successfully connected
to the vehicle via a Bluetooth connection with the commercial OBDII reader
before we can start testing. The following steps will be performed to test the
functionality of the Timing Advance Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.

2. Smart-phone tester shall select the Timing Advance Function in the
application menu.

3. The displayed data on the application’s GUI shall be recorded along with
the time the data was read.

4. The smart-phone user shall exit the Timing Advance Function.

5. The smart-phone operator shall then select the logging function and
record the Timing Advance data that was logged along with the associated
time stamp in the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function.

To test the accuracy of the data read from the GUI of the application’s Timing
Advance Function, we will use another application such as Torque to generate a
third Timing Advance reading. The Timing Advance data read from the GUI will
be checked against the data that was logged in the logging function and the data
recorded from another application such as Torque. By this point in the testing
phase, we anticipate that the logging function will be completely accurate since it
was one of the first functions added to the application.

15.4.1.11 Mass Air Flow Function Testing

The tenth function that will be added to the application is the Mass Air Flow
function. This function tells the smart-phone user the Mass Air Flow of the
engine. Once the Mass Air Flow function compiles without any errors or
warnings, we can inspect the code for logic mistakes. After the code has been
inspected for logic mistakes, we can load the application onto the smart-phone
for the final stage of testing. We will use the logging function that was
implemented earlier, to help test the Mass Air Flow function. The Mass Air Flow
function will be tested under the assumption that the logging function is accurate.
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Prior to testing, the smart-phone will have to be successfully connected to the
vehicle via a Bluetooth connection with the commercial OBDII reader before we
can start testing. The following steps will be performed to test the functionality of
the Mass Air Flow Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.

2. Smart-phone tester shall select the Mass Air Flow Function in the
application menu.

3. The displayed data on the application’s GUI shall be recorded along with
the time the data was read.

4. The smart-phone user shall exit the Mass Air Flow Function.

5. The smart-phone operator shall then select the logging function and
record the Mass Air Flow data that was logged along with the associated
time stamp in the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function.

To test the accuracy of the data read from the GUI of the application’s Mass Air
Flow Function, we will use another application such as Torque to generate a third
Mass Air Flow reading. The Mass Air Flow data read from the GUI will be
checked against the data that was logged in the logging function and the data
recorded from another application such as Torque. By this point in the testing
phase, we anticipate that the logging function will be completely accurate since it
was one of the first functions added to the application.

15.4.1.12 Intake Manifold Pressure Function Testing

The eleventh function that will be added to the application is the Intake Manifold
Pressure function. This function tells the smart-phone user the pressure on their
intake manifold in real time. Once the Intake Manifold Pressure function compiles
without any errors or warnings, we can inspect the code for logic mistakes. After
the code has been inspected for logic mistakes, we can load the application onto
the smart-phone for the final stage of testing. We will use the logging function
that was implemented earlier, to help test the Intake Manifold Pressure function.
When testing the Intake Manifold Pressure function, we will do multiple trials to
understand the accuracy of the user readings. The Intake Manifold Pressure
function will be tested under the assumption that the logging function is accurate.
For each trial the smart-phone will have to be successfully connected to the
vehicle via a Bluetooth connection with the commercial OBDII reader before we
can start testing. The testing will follow the following steps and be repeated ten
times.
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1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Intake Manifold Pressure Function in
the application menu.

3. The vehicle operator will start the car drive around for four minutes.

4. A third tester shall record the time and pressure from the application’s GUI
every 30 seconds.

5. After four minutes or eight readings have been recorded, enough test data
will have been gathered for one trial. The smart-phone user shall exit the
Intake Manifold Pressure Function and navigate to the logging function.
The vehicle can also be shut off after all the data has been recorded.

6. The smart-phone operator shall then select the logging function and
record the Intake Manifold Pressure data that was logged along with the
associated time stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be several pieces of test data to help decide if the
Intake Manifold Pressure function is functioning properly. After all ten trials are
recorded we can analyze the data to see how accurate the Intake Manifold
Pressure function is. The purpose of recording the time that the tester recorded
the Intake Manifold Pressure from the GUI is so the logged data in the logging
function will be associated with the correct set of data. The Intake Manifold
Pressure data read from the GUI will be checked against the data that was
logged in the logging function. By this point in the testing phase, we anticipate
that the logging function will be completely accurate since it was one of the first
functions added to the application.

15.4.1.13 Fuel Pressure Function Testing

The twelfth function that will be added to the application is the Fuel Pressure
function. This function tells the smart-phone user their fuel pressure in real time.
Once the Fuel Pressure function compiles without any errors or warnings, we can
inspect the code for logic mistakes. After the code has been inspected for logic
mistakes, we can load the application onto the smart-phone for the final stage of
testing. We will use the logging function that was implemented earlier, to help
test the Fuel Pressure function. When testing the Fuel Pressure function, we will
do multiple trials to understand the accuracy of the user readings. The Fuel
Pressure function will be tested under the assumption that the logging function is
accurate. For each trial the smart-phone will have to be successfully connected
to the vehicle via a Bluetooth connection with the commercial OBDII reader
before we can start testing. The testing will follow the following steps and be
repeated ten times.
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1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to each testing trial.

2. Smart-phone tester shall select the Fuel Pressure Function in the
application menu.

3. The vehicle operator will start the car drive around for four minutes.

4. A third tester shall record the time and pressure from the application’s GUI
every 30 seconds.

5. After four minutes or eight readings have been recorded, enough test data
will have been gathered for one trial. The smart-phone user shall exit the
Fuel Pressure Function and navigate to the logging function. The vehicle
can also be shut off after all the data has been recorded.

6. The smart-phone operator shall then select the logging function and
record the Fuel Pressure data that was logged along with the associated
time stamp in the logging function.

7. The smart-phone user shall clear the contents of the data log in the
logging function and repeat all the steps above, nine more times.

After each test trial, there will be several pieces of test data to help decide if the
Fuel Pressure function is functioning properly. After all ten trials are recorded we
can analyze the data to see how accurate the Fuel Pressure function is. The
purpose of recording the time that the tester recorded the Fuel Pressure from the
GUI is so the logged data in the logging function will be associated with the
correct set of data. The Fuel Pressure data read from the GUI will be checked
against the data that was logged in the logging function. By this point in the
testing phase, we anticipate that the logging function will be completely accurate
since it was one of the first functions added to the application.

15.4.1.14 Engine Load Function Testing

The thirteenth function that will be added to the application is the Engine Load
function. This function tells the smart-phone user the Engine Load on the engine.
Once the Engine Load function compiles without any errors or warnings, we can
inspect the code for logic mistakes. After the code has been inspected for logic
mistakes, we can load the application onto the smart-phone for the final stage of
testing. We will use the logging function that was implemented earlier, to help
test the Engine Load function. The Engine Load function will be tested under the
assumption that the logging function is accurate. Prior to testing, the smart-phone
will have to be successfully connected to the vehicle via a Bluetooth connection
with the commercial OBDII reader before we can start testing. The following
steps will be performed to test the functionality of the Engine Load Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.
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2. Smart-phone tester shall select the Engine Load Function in the
application menu.

3. The displayed data on the application’s GUI shall be recorded along with
the time the data was read.

4. The smart-phone user shall exit the Engine Load Function.

5. The smart-phone operator shall then select the logging function and
record the Engine Load data that was logged along with the associated
time stamp in the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function.

To test the accuracy of the data read from the GUI of the application’s Engine
Load Function, we will use another application such as Torque to generate a
third Engine Load reading. The Engine Load data read from the GUI will be
checked against the data that was logged in the logging function and the data
recorded from another application such as Torque. By this point in the testing
phase, we anticipate that the logging function will be completely accurate since it
was one of the first functions added to the application.

15.4.1.15 Battery Voltage Function Testing

The fourteenth function that will be added to the application is the Battery Voltage
function. This function tells the smart-phone user the voltage of the battery. Once
the Battery Voltage function compiles without any errors or warnings, we can
inspect the code for logic mistakes. After the code has been inspected for logic
mistakes, we can load the application onto the smart-phone for the final stage of
testing. We will use the logging function that was implemented earlier, to help
test the Battery Voltage function. The Battery Voltage function will be tested
under the assumption that the logging function is accurate. Prior to testing, the
smart-phone will have to be successfully connected to the vehicle via a Bluetooth
connection with the commercial OBDII reader before we can start testing. The
following steps will be performed to test the functionality of the Battery Voltage
Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.

2. Smart-phone tester shall select the Battery Voltage Function in the
application menu.

3. The displayed data on the application’s GUI shall be recorded along with
the time the data was read.

4. The smart-phone user shall exit the Battery Voltage Function.

5. The smart-phone operator shall then select the logging function and
record the Battery Voltage data that was logged along with the associated
time stamp in the logging function.
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6. The smart-phone user shall clear the contents of the data log in the
logging function.

To test the accuracy of the data read from the GUI of the application’s Battery
Voltage Function, we will use another application such as Torque to generate a
third Battery Voltage reading. The Battery Voltage data read from the GUI will be
checked against the data that was logged in the logging function and the data
recorded from another application such as Torque. By this point in the testing
phase, we anticipate that the logging function will be completely accurate since it
was one of the first functions added to the application.

15.4.1.16 Error Code Function Testing

The fifteenth function that will be added to the application is the Error Code
function. This function tells the smart-phone user the error code associated with
a check engine light. Once the Error Code function compiles without any errors
or warnings, we can inspect the code for logic mistakes. After the code has been
inspected for logic mistakes, we can load the application onto the smart-phone
for the final stage of testing. We will use the logging function that was
implemented earlier, to help test the Error Code function. The Error Code
function will be tested under the assumption that the logging function is accurate.
Prior to testing, the smart-phone will have to be successfully connected to the
vehicle via a Bluetooth connection with the commercial OBDII reader before we
can start testing. The following steps will be performed to test the functionality of
the Error Code Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.

2. Smart-phone tester shall select the Error Code Function in the application
menu.

3. The displayed error code on the application’s GUI shall be recorded along
with the time the data was read.

4. The smart-phone user shall exit the Error Code Function.

5. The smart-phone operator shall then select the logging function and
record the error code that was logged along with the associated time
stamp in the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function.
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To test the accuracy of the error code read from the GUI of the application’s Error
Code Function, we will use another application such as Torque to generate a
third Error Code reading. The Error Code read from the GUI will be checked
against the error codes that were logged in the logging function and the error
codes recorded from another application such as Torque. By this point in the
testing phase, we anticipate that the logging function will be completely accurate
since it was one of the first functions added to the application.

15.4.1.17 Throttle Position Function Testing

The fourteenth function that will be added to the application is the Throttle
Position function. This function tells the smart-phone user the position of the
throttle. Once the Throttle Position function compiles without any errors or
warnings, we can inspect the code for logic mistakes. After the code has been
inspected for logic mistakes, we can load the application onto the smart-phone
for the final stage of testing. We will use the logging function that was
implemented earlier, to help test the Throttle Position function. The Throttle
Position function will be tested under the assumption that the logging function is
accurate. Prior to testing, the smart-phone will have to be successfully connected
to the vehicle via a Bluetooth connection with the commercial OBDII reader
before we can start testing. The following steps will be performed to test the
functionality of the Throttle Position Function.

1. The smart-phone user shall ensure that the data log in the logging function
is cleared prior to testing.

2. Smart-phone tester shall select the Throttle Position Function in the
application menu.

3. The displayed data on the application’s GUI shall be recorded along with
the time the data was read.

4. The smart-phone user shall exit the Throttle Position Function.

5. The smart-phone operator shall then select the logging function and
record the Throttle Position data that was logged along with the
associated time stamp in the logging function.

6. The smart-phone user shall clear the contents of the data log in the
logging function.

To test the accuracy of the data read from the GUI of the application’s Throttle
Position Function, we will use another application such as Torque to generate a
third Throttle Position reading. The Throttle Position data read from the GUI will
be checked against the data that was logged in the logging function and the data
recorded from another application such as Torque. By this point in the testing
phase, we anticipate that the logging function will be completely accurate since it
was one of the first functions added to the application.
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15.4.2 Microcontroller Testing

After the microcontroller has been programmed on the test board, we will build a
circuit on a breadboard to test the functionality. LED lights will be used to indicate
a successful signal transmission from the microcontroller. The tester shall go
through all possible signal configurations using the LED lights. Once the
microcontroller has been successfully tested, we can implement it with the rest of
the hardware into the PCB board. After the PCB board has been built, it can take
the place of the commercial ODBII reader. The microcontroller shall then be
tested using the application itself.

15.4.3 GUI Testing

OBD gauge testing: connect the device and access the OBD reader screen. By
default it should contain four gauges for reading speed, acceleration, boost and
throttle. Ensure that each gauge can be long-pressed to pull up the customization
dialog. Test each gauge with every function to ensure that not only all of the
functions work, but that there are no positional bugs depending on which gauge
is used. There should be no conflict with setting all of the gauges to read the
same data. The gauges should also be checked to make sure the markings and
numbers on the scale are correct for each function, and don’t run into any
overlapping or drawing conflicts when the function changes.

Graph testing: connect the device, access the OBD reader screen and single
press each gauge. It should launch the graph view for the appropriate function.
To make sure it works properly, open the graph view, go back to the OBD reader
view, change the function, and then go back to the graph view. It should be
updated to the new function. The graph should start at the left side, slowly make
its way over to the right edge, and once it hits it should begin scrolling the whole
graph over to the left, ensuring that the parts of the graph scrolling offscreen are
cleared from the view. The range of values will be the same as those on the
gauge. The large gauge above the graph should work like those on the main
OBD screen and conform to the same testing.

Bluetooth connection testing: when the program is launched, the program should
check whether or not Bluetooth is enabled. If Bluetooth is disabled, a popup
message should appear asking if the user would like to turn it on. If the user
already has Bluetooth enabled, there should be no popup. From the main menu,
press “Start Connection” to attempt to connect to the device. If the phone has not
been paired with the device previously, it should bring up the Bluetooth options
screen and search for available Bluetooth devices. Once paired, the user will
return to the program where it will establish the connection to it. If the phone was
already paired with the device, it will connect automatically when “Start
Connection” is pressed. The program should be able to gracefully handle
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interruptions to the Bluetooth connection. If the user is on any of the views in the
program that rely on the input stream from the Bluetooth device, an error
message should pop up informing the user of the situation and letting them open
the Bluetooth options screen to see if they can reconnect. If the user is on the
gauge or graph view the numbers should return to their default (unconnected)
states — and if recording a log, it will stop reading data and close any associated
log files.

Keypad view testing: connect to the device and navigate to the Keypad screen.
Press the Unlock button, and ensure the car unlocks. Press the Lock button and
ensure that the car locks. Press the Start button and ensure the car starts. Press
the Up and Down buttons and make sure the windows roll up and down
respectively. Finally, press the panic and trunk buttons and observe that they
perform their respective functions. These functions should be tested from a
variety of distances to make sure any interference doesn’t produce errant results
(i.e., it should either perform the function or not, nothing in between). Since the
car doesn’t communicate back to the phone whether it has completed the desired
task, the car will have to be physically observed to make sure each button
performs its function properly.

Android hardware button testing: pressing the physical buttons on the Android
device should behave in a predictable and standard way. The back button in
particular can be troublesome in some applications, where it will close the
application without warning and return to the Android home screen instead of
going back by a screen. We would like to avoid this annoying behavior in our
program. For our purposes, the back button should always return to the previous
screen, or if a dialog menu is displayed, should dismiss the dialog. If the user is
on the settings, keypad, OBD reader, error code or log screens, it should return
back to the main menu. If, on the OBD reader view, the user has pulled up the
customization menu for one of the gauges, pressing back should dismiss the
menu but remain on the OBD reader view. If the graph view is accessed pressing
back should return to the OBD reader view. Similar to other OBD readers, the
only time the back button should be able to be used to close the program is when
it's at the main menu. If this occurs, the program should prompt the user with
popup box asking if the user is sure he wants to quit the program. The Android
‘menu” key should also behave in a predictable and standard way. It usually
pops up a small menu on the lower portion of the screen, with options applicable
to the screen at hand. We will need to test that the menu button works and pulls
up the appropriate menu on the views that need it, and that nothing occurs when
the button is pressed on screens that don’t utilize it. Also in keeping with Android
convention, pressing anywhere on the screen that is not the menu while the
menu is up should dismiss it and not act as a press. The physical search key is
not used in our program, and it should be tested on each screen to make sure
there is no aberrant behavior with the button.
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Log view testing: launch the program and select Log View from the main menu
without connecting to the device or running the OBD reader view. Since there is
no log data, the program should create blank files for each of the functions we're
logging if it detects that no such log file exists. An error message should be
displayed if the user attempts to graph or average values from this blank file.
Next, to test that it is reading values properly, connect to the device via
Bluetooth, and run the OBD reader for a while to let the logs collect data. Go
back to the main menu and select Log View again. From the list of available logs,
select each one and ensure not only that data has been written to it, but that it's
the correct data (timestamp and value). Only 20 logs are shown by default, with a
“Show more...” button; we need to make sure that the Show More button works
as intended, increasing the number of log entries displayed while also letting the
user scroll back up to see the first set of logs. Press the menu button while
looking at a log to pull up the log settings menu and select “Find Average.” The
screen should pop up a message stating the average. To make sure that it's
doing the calculation right, find the average by hand and compare it with the
number displayed in the Android program to make sure they match up. Next test
the graph view with each log set. Make sure that it uses an appropriate time
scale on the X-axis, since the log data might be separated by significant lengths
of time, and sticking those two data sets right next to each other would be
incorrect. We also need to test that the Y-axis values are set up correctly, based
on the range of values chosen for each function from the other gauge and graph
screens. We also need to test to make sure the Clear log functionality works
properly. When pressed it should delete any logs contained in the file for that
particular function, and replace it with a blank log file that behaves the way it's
supposed to (i.e., not allowing graphs or averaging). Finally, we must ensure that
the log files are being saved properly. Browse on the phone or connect to a
computer and see that the log files are stored in the pre-established folder on the
user's SD card. There should also be a backup storage location on the phone
storage in case an SD card is not installed or corrupted/write protected.

16.0 Administrative Content

Administrative content covers the project’s planning and financial management.
In a four-member group project, planning and financing are key aspects to the
project's success. The project needs to be planned out evenly over the time
allotted for completion. Planning and setting milestone dates are crucial to the
success and quality of the project. As project administrators, we need to explore
all options to help keep the cost of the project under budget. The following two
sections, 16.1 and 16.2, explain how the project’s time and budget is managed.

16.1 Milestone Timeline
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In general, senior design projects are intended to take two, sixteen-week long
semesters to complete. However, this project will need to be completed in a
single sixteen-week semester and a twelve-week semester. Since we have four
weeks less to complete the project than the ideal allotted amount of time, we
need to plan and work efficiently.

The early stages of the project dealt with research. Researching similar projects
and similar applications allowed the group members to find out what has and has
not been done. Researching similar projects and applications took roughly three
weeks to complete. The research helped determine exact specifications of the
functionality of the project. Shortly after the start of research, we we're able to
start the documentation process. The ideas and knowledge obtained from
research were documented accordingly. The documentation is projected to be
the longest process in the project at 65 days in length. While still researching
and documenting simultaneously, we started the design phase. We designed the
software and hardware aspects of the project in 24 and 29 days, respectively.
Once the design was complete, we started purchasing the parts and test
equipment necessary for the project. We project having all of the part and
equipment necessary to the project by the first week of June. If the projection is
accurate, we will have acquired the parts and hardware over a 60-day span.
After all of the documentation is complete, we will begin to write the application.
The goal is to complete the application programming in 61 days. While some
group members are writing the application, others will start building the hardware
prototype. The hardware prototype should take about four weeks to complete.
The hardware prototype should be completed about two and a half weeks into
June, so there’s plenty of time to correct the unexpected problems. While the
prototype is being constructed, we will program the microcontroller so it's ready
to be tested with the prototype. The microcontroller should take a little less than
a week to program. We anticipate that extensive testing and debugging will be
necessary. The testing and debugging process will begin as soon as it is
possible. Although, we don’t foresee extensive testing and debugging will take
place until after the hardware prototype is complete. Thorough testing and
debugging shall take place during the last three and a half weeks of the project to
ensure prompt delivery by the due date. Figure 16.1a shown below, is a visual
representation of the milestones we have and wish to achieve throughout the
course of the project.

121



Team 9 Senior Design | 2011

ID [Task Name ‘ Start ‘ Duration | Finish ~ [ngll [Febt3'1t [Mard0ll [hor2t'tt [May20'11 i3 11
0( 116 ] 22 (29| 38 | 325 471t [ 428 [ 5715 | 61 [ 68| 75 7]
1 |Senior Design Project Mon 1/10/11| 141 days' Mon 7/25/11 ||—
2 Research Similar Projects Mon1/10/11| 20days|  Fi2/4/11[ ]
3 Research Similar Applications  Mon1/10/11| ~ 21days| Mon2/7/11 ]
B Project Proposal Doc Mon1/24/11| 65days| Frid/22/11| |
5 Software Design Fil2U/11| 24days| Wed2/2311| [}
6 Hardware Design Fil2U11| 29days| Wed3211| [}
7 Program Application Tued4/26/11| 61days| Tue7/19/11
8 Acquire Hardware Tue3/15/11) 60days| Mon 6/6/11 |
I| Program Microcontroller Mon 5/23/11 6 days| Mon 5/30/11 . D
10 | Build Prototype Wed /111  28days| Fri6/17/11
[ 11| Testand Debug Mon6/20/11|  26days| Mon7/25/11 | |

Figure 16.1a — Estimated timeline of project from start to finish
16.2 Budget and Finance

The financing for this project came from the pocket of each of the group
members: Alexander Powell, Firoz Umran, Josh Estes and Matthew Huereca. In
some cases, the part of software was free or already owned by one of the group
members. The ELM327 OBDII reader was purchased for $39.99 and used
testing purposes. Each group member contributed $15.00 towards this device.
The testing subject is a 1998 Honda Accord and was supplied by Firoz Umran for
free. We estimate our final PCB board to cost about $150.00, which will be paid
for by each of the group members. If the estimation is accurate, each group
member will contribute $37.50. The smart-phone used will be contributed by one
of the group members and is valued at $200.00. The platform used to program
the Android application is a free download, courtesy of Eclipse. The computers
used during the project are the possessions of each of the group members and
will not consume any of the project fund. The microprocessor used cost $15.00
and will be paid for by each of the group members. Each group member will
contribute $2.50 for the microcontroller. Five wire taps are used in the hardware
design and cost $0.50 each. Each group member shall contribute $0.63 for the
wire taps. If all of our assumptions are accurate and the hardware design is
sufficient, we anticipate the total expenditure of the project to be $202.49. This
implies that each group member will have to contribute $50.63 towards the
project. The table below, figure 16.2.a, shows a complete breakdown of the
project spending.

Project Cost Analysis

Part Quantity Cost Financing
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ELM327 OBDII 1 $39.99 Project Fund
Reader
1998 Honda 1 $3.625.00 Loan from Firoz
Accord Umran
PCB Board 1 $150.00 Project Fund
Smart-Phone 1 $200.00 Loan from Group
Members
Eclipse Platform 4 $0.00 Free Download
Computer 4 $4000.00 Loan from Group
Members
Microprocessor
1 $15.00 Project Fund
Wire Tap 5 $0.50 Each Project Fund
Project Fund
Total $202.49
Expenditure

Figure 16.2a — Project Cost Analysis Table

17.0 Conclusion

We believe that our project will be a useful tool for reading critical vehicle data as
well as a handy way to lock and unlock car doors on the go and start the car
before even entering the vehicle.

We have demonstrated our high level design which will include a connection from
the android Bluetooth to the Bluetooth PCB. The ATMega MCU on the PCB
receives the data and then either passes it on to the ELM 327 to read car data, or
the MCU performs a function such as car start or door lock.

Our hardware design features our final schematic for the PCB. It shows the
connections made between the Bluetooth chip, the MCU and the ELM327. The
schematic was designed using EAGLE software.
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The programming of the functions was done using specific request messages
that the OBD-Il port and car ECU reads. These messages contain headers, and
data requests. The response messages were also discussed and class
diagrams were created.

We believe the project has a need and motivation despite the existence of similar
products. Our project will have more functionality and will be done made at a
cheaper price than any of the other projects mentioned in the report.
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Appendices

A. Copy write permission

Wire Tap Permission inoox |x

@ Alexander Powell to contact Apr 14 (2 days ago) | *5 Reply v

I'm currently a senior at the University of Central Florida and will be using your wire taps in my senior design project. |
would like permission to use a picture of your wire tap from your website in my documentation. May | have permission
to use a picture of a wire tap off of your website in my senior design project documentation?

“ Reply =* Forward

Mid Term Inc to me Apr15(1dayago) “Reply v

Sure!

Thanks Much!

Eric . Essayan

Mid Term, Inc.

2642 E. Church Ave.
Fresno, Ca. 93706
Ph: 559-237-5817
Fax: 559-237-9369
www.midterminc.com

ELM Permission

Josh:
Sure, we don't mind as long as they are not used in a derogatory way.
Good luck with the project,

Jim Nagy
Elm Electronics Inc.

On 2011-04-21, at 2:42 AM, <]bestes@knights.ucf.edus <jbestes@knights.ucf.edus wrate:

Hello, Tam in & senior design class at the University of Central Florida. We will be using your ELM327 in our project and Iwould like to get
permission to use some images from your website in our documentation. Please let me nowv if this is okay.

Thank you,
Josh Estes
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