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1.0 Executive Summary 

One can communicate with a vehicles‟ Electronic Control Unit through the 
vehicles‟ OBDII port.  Using this method one can view information on a car such 
as mileage, mpg, fuel consumption and error codes.  One can also view the 
air/fuel ratio, timing and many other parameters to observe the performance of a 
vehicle whether it is for fuel economy or for speed.  This can all be done using a 
Scantool device that connects to the OBDII port and provides readouts to the 
user.  Normally this method is mainly used when the vehicle has a check engine 
light (CEL) lit.  The Scantool can read the data and show the user the error code 
that the OBDII port is throwing.  However, it is up to the user to now take the 
code and research what it means and how to fix it on their specific vehicle.  Now, 
there are ways to read these check engine lights and other data using your 
android powered device and connecting through a Bluetooth unit.  This method is 
very effective and allows the user to connect to the internet and find out how to 
solve their check engine light error. Also, there are applications that will use the 
android phone as a remote keyless entry system so that one may start, unlock, 
and lock their vehicle which is especially useful if the vehicle did not come with 
that feature pre-installed. The drawback to these applications is that there is not 
one application that performs both functionalities described above. Also both 
applications need a separate device to perform those specific functions, therefore 
if one wanted to have both applications, the vehicle may become cluttered with 
devices.  Finally, the main drawback is that they are expensive.  Unlocking and 
starting your car from an android device can cost upwards in the 300‟s.   
 
We propose that we use an Android phone to do both functions in one 
application as well as one device that will connect to the OBDII port and be able 
to unlock, start and lock the vehicle in question.  And we also propose that this 
be done wirelessly and information may be sent wirelessly via Bluetooth 
connection so that the user will not need to have a wire running from their phone 
to the OBDII port on their vehicle.  This way one can have full control over their 
vehicle through their phone and look up trouble codes and how to fix them using 
the android phone connected to the internet. Also the user will be able to save 
the data that has been read from the OBDII port away into log files on the 
android device to be viewed later.  Logging data in this way will be a much 
cheaper and efficient way of keeping track of information on the user‟s car and 
providing remote access to ones vehicle. The system will be able to read a 
multitude of data and erase error codes.  The system may also be able to start 
the car, wind down the windows and open the trunk depending on the vehicle.  A 
complete list of the specifications and requirements of this project will be 
discussed in the following section as well as a discussion about the motivations 
and goals for this project. 
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2.0 Project Description 

The following section will contain information with regards to our motivation and 
goals of this project, in addition to our objectives and our requirements and 
specifications.  The requirements section will be broken down into subcategories, 
software and hardware. 

2.1 Motivation and Goals 

The motivation for this project is simple; we wanted to engineer a cheaper and 
easier way for automobile drivers to monitor critical vehicle data from a car‟s on 
board computer.  As well as remotely start a vehicle, control windows, locks, and 
car alarms.  We wanted drivers to be able to diagnose warning codes such as 
the dreaded “check engine” light, without having to rush their vehicles to the 
repair shop.  Some versions of this project already exist in one form or another, 
these projects, and how they differ from ours, will be discussed in a later section.  
Our goal is to build a version that is cheaper, more inclusive, and easier to install 
than the products that are available today. 
 
Overall, we believe that this project can potentially save users time and money in 
many different ways.  For one, users of this app could potentially save hundreds 
of dollars on mechanic diagnostic fees.  Also, by using this application to read 
critical vehicle data, such as tire or brake information, the user could save their 
own life and the lives of others.   

 
2.2 Software Requirements 

The software requirement section will be broken down into two sub sections, the 
first will pertain to the requesting and reading of vehicle data and the second will 
pertain to the graphical user interface (GUI). 
 

2.2.1 Requesting and Receiving Data 

The Android application software will be written in Java and will be the engine 
that powers the entire project.  A main aspect of this project will be sending 
request data.  The application requirements as far as sending requests are as 
follows: 

 Must make a connection to microcontroller powered by Bluetooth 

 Must interpret what user wants to do and send request to proper location 

 Must include proper headers on all request data so packet ends up at 
intended destination 

 Must be able to send and receive data on the following functions: 
o Timing Advance 
o EngineRPM 
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o Coolant Temperature 
o Throttle Position 
o Fuel Level 
o Time Since Engine Start 
o Air Intake Temperature 
o Speed/ Average Speed 
o Mass Air Flow 
o Intake Manifold Pressure 
o Fuel Pressure 
o Engine Load 
o Fuel Economy/ Average Fuel Economy/ Miles to Empty 
o Battery Voltage 
o Error Codes 

 
In terms of receiving data, after the return bytes arrive at the phone software, the 
application must be able to take those bytes and convert them into legible data 
that the user can read.  Data will be sent to the phone in a specific format that is 
discussed in much further detail below, this format will need to be converted so 
that the application knows what the data is, and then it needs to convert the 
actual data accordingly.   
 

2.2.2 GUI Requirements 

Like all applications, a user interface is one of the most important features.  If the 
user interface is not intuitive and inviting, the entire project would fail.  The GUI 
should be simple while still looking attractive.  It should be intuitive and allow 
users to take advantage of everything the project has to offer.  This can be a 
challenge because as a developer, you cannot always display everything you 
would like on such a small screen.  However, it is necessary to come up with a 
way to show the user what they expect in an attractive and readable form.  The 
requirements for this aspect of the project are simple; we must allow the user to 
take advantage of all the features the project offers and present information in a 
readable fashion. 
 

2.3 Hardware Requirements 

This section detailing the requirements of the hardware will be broken down into 
two subsections.  The first will be the requirements of the OBD-II reader chip; the 
second will be the requirements of the microcontroller. 

2.3.1 OBD-II Reader 

The ELM-327 was selected as the OBD-II reading chip for this project.  The ELM 
must conform to the following requirements: 
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 Make a connection to the automobiles engine control unit (ECU) through 
the OBD-II port in order to retrieve information. 

 Interface with a microprocessor in order to receive commands and provide 
responses from the ECU. 

 Support all five OBD-II protocols. 
 

2.3.2 Microcontroller 

The ATmega328 was selected as the microcontroller for the project.  The MCU is 
one of the most critical components of the project.  It is necessary that all of the 
requirements are met.  The requirements for our microcontroller will be as 
follows: 

 Receive messages from the Android device over a Bluetooth connection 

 Check headers of incoming requests from the android device and 
determine where the message should be sent 

 Interface with the ELM-327 and pass messages to the ELM 

 Receive response messages from the ELM and send them back to the 
Android device 

 Provide necessary voltage to start car, roll down windows, unlock doors, 
sound alarm, and pop trunk 

 

2.4 Project Specifications 

The chart in figure 2.4.1 shows the main functions of our project on the left and 
the maximum amount of time it should take to execute those functions.  We 
believe starting the car and unlocking the doors will take slightly longer than the 
rest of the functions because in addition to supplying voltage to the appropriate 
wires, the microcontroller will also need to disable the car‟s alarm. 
 
 

Function Spec 

Starting Car 10 Seconds 

Window Control 3 Seconds 

Lock Control 5 Seconds 

Alarm Control 3 Seconds 

Trunk Control 3 Seconds 

OBD-II Reading 3 Seconds 

Range 25 Feet 

Figure 2.4.1 – Specification Table 
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3.0 Research related to Project Definition 

3.1 Related Projects 

The products discussed below each exude similar functionality and purpose as 
our project however neither of these encompass the broad range of features that 
our project does.  In a sense, our project is a combination of the projects 
discussed below.  We were not able to find any other projects with the same 
repertoire built into one piece of hardware and one application like ours will be. 
 

3.1.1 Viper SmartStart System™ 

The Viper SmartStart is an application for BlackBerry, iPhone and Android mobile 
devices and its purpose is to allow its users to “start your car from virtually 
anywhere.”   
The software‟s other main features: 

 Lock/Arm 

 Unlock/disarm 

 Trunk release 

 Panic or car finder 
 
This product is similar to ours in that we will also implement all of this core 
functionality; however we hope to do so at a fraction of the cost. 
 
The Viper SmartStart application is free, however the hardware module can cost 
anywhere from $400 to $600, depending on the type of vehicle and type of 
system being installed, in addition to the price of installation at retailers such as 
Best Buy. 
 
Some differences between our project and the Viper System are: 

 Connectivity – our project utilizes Bluetooth whereas the Viper system 
connects over a network.  The advantages to using Bluetooth are that it 
is more cost effective.  The Viper users have to pay a monthly charge 
and sign 1 or 3 year contracts to use the system whereas Bluetooth is 
free.  Another advantage is that a user cannot accidentally start his or 
her car from hundreds of miles away. 

 Features – In addition to the features listed above, our project will also 
include the OBD-II reader which will allow users to check and clear error 
codes, and read vehicle diagnostic information.  The Viper SmartStart 
does not include this functionality. 

 Cost – As stated above, we plan to implement the core functionality of 
the Viper system for only a fraction of the cost and no monthly charges 
or long term commitments for users.  
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Despite the existence of this product, we believe that our system includes 
enough extra features, and for such a small fraction of the cost, that our project 
has motivation and significance.  
 

3.1.2 Torque Android Application 

Torque is an engine diagnostics application that allows users to monitor their 
car‟s ECU and retrieves information in a similar manner to our project.  The 
hardware that this application uses is a Bluetooth reader to connect the android 
device to the car‟s OBD II port.  We plan to base our hardware off of the ELM327 
Bluetooth OBD-II reader interfaced with a microprocessor to allow for extra 
features.  The reading capabilities of our project should meet or exceed those of 
this product.  Some of the advertised features listed for the Torque software: 
 

 View live engine data on your Android phone - Connect to your vehicle 
ECU 

 Fully customizable dashboard screens - Design your own layouts and 
custom dials, use your own themes 

 Retrieve Fault Codes (DTCs) and clear Check Engine lights - View fault 
descriptions using the built-in databases 

 Upload live data to your webserver or the torque web viewer in real-time 

 Check the performance of your vehicle with BHP / Torque / 0-60 & Quarter 
Mile widgets 

 
We expect our software to deliver most if not all of these features with the 
addition of the extra features such as starting the car, locking and unlocking the 
doors, arming and disarming the alarm and more. 
 
Even though this application exists for a relatively cheap cost of 5.99, we believe 
our project still has purpose because of the added functionality mentioned above.   
 

3.1.3 OnStar Application 

Recently GM has released an app for iPhone and Android that allows users to 
start their car from anywhere in the world, lock and unlock the doors, honk the 
horn and read data from their cars such as fuel level, oil life and tire pressure.   
 
Some of the differences between this OnStar App and our project are, like the 
SmartStart tool, our project will read more information than this OnStar app.  Our 
project would be geared more towards a savvy car enthusiast who knows what 
he or she wants to read from the OBD-II data.  The OnStar app seems to be 
geared more towards the everyday driver. 
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The figures 3.1.3a and 3.1.3b below show some of the different interfaces of the 
OnStar application.  These can be compared to our screen shots given in section 
15 of the User Interface heading. 
 
The first image below shows the screen that allows the user to lock or unlock the 
doors, start the car, or sound the horn.  The second screen shows the fuel tank 
level, and how many miles can be driven before the vehicle runs out of gas 
 

 
Figure 3.1.3a – Car function Screen    

 

 
    Figure 3.1.3b – Car data screen 
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3.2 High Level Design Options 

There were two design options being contemplated.  For our project, the main 
factors we considered when deciding on a design were price and user 
experience.  We wanted the cheapest and most simple design while still 
achieving the best possible user experience. 
 
The two options we considered differ only in connectivity.  The first design had 
only one connection between the android app and the hardware module, the 
second design featured a dual Bluetooth connection.  High-level diagrams can be 
seen in the subsections below. 
 

3.2.1 Single Connection Design 

This design is the one that we decided to move forward with.  We believed it to 
yield the better performance of the two in terms of speed and user experience.  
The figure 3.1.1 below shows a high level overview. 
 
In the design shown above, the flow of data is as follows: 

 Android application sends data to MCU 

 MCU then checks format of data.  If data is intended for the OBD-II port, it 
is passed on to the ELM and the MCU would await the response from the 
ELM; else if the data request is to start the car, control windows, unlock 
doors etc.  The appropriate voltage is applied to the appropriate wires. 

 Once the ELM receives data in a readable format, it converts the data into 
a something the engine control unit (ECU) understands and passes it on 
to the OBD-II port. 

 The OBD-II takes the ECU‟s response and gives it back to the ELM. 

 The ELM then sends the response back to the MCU, which then relays it 
back to the Android phone.  The application could convert the response 
bytes into a user friendly format.  Such can be seen in the Functions 
section 7. 

 
We believed this design would yield better speed than our second option 
because the application will not have to switch between Bluetooth connections 
depending on what the user wants to do.  It is always sending the data to the 
MCU as opposed to sending data to two different destinations. (MCU and ELM)  
 
The diagram below shows two different arrows, the bi-directional arrows 
represent data flowing in both directions, for instance, from the android 
application to the microcontroller, then from the microcontroller to the ELM and 
from the ELM to the OBD-II port, data will need to travel both ways along that 
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path.  However, data will only need to travel one way from the MCU to the car 
wires.  We don‟t believe it necessary to send an acknowledgment back because 
we are assuming the user will see if the request failed to go through just by 
observing the vehicle.  If you send a request to start the vehicle, and somehow 
the request is lost or corrupted, the user would see that the car failed to start, and 
they would simply, resend the request. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 – Block Diagram for single connection design option 

3.2.2 Double Connection Design 

The second design features two separate Bluetooth connections.  We considered  
this design because it would appeared to be the simplest to implement; however, 
we feared that the speed will suffer since the mobile phone can only connect to 
one Bluetooth connection at a time, there would be constant switching involved. 
 
If this design were to be implemented, it would reduce the workload of the 
Microcontroller.  In our previous design, the microcontroller would have to check 
the header of the data it receives to figure out its final destination.  In this design, 
that responsibility lies with the application, the data flow is as follows: 

 The application user interface would be split into two options.  One would 
be the OBD-II features involving the retrieval of data from the vehicle, and 

OBD – II Port

ELM327
Microcontroller

Unit

Android Application

Car Wiring
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the other would be starting the car, unlocking doors and other commands 
involving wiring. 

 If the user selects the first option.  A Bluetooth connection with the ELM is 
automatically made and the request is sent. 

 If the user selects the option involving the car wiring, a Bluetooth 
connection to the microcontroller is automatically made and the request is 
sent. 

 From here, the design is similar to the first design with some minor 
variations. 

 If the ELM receives a request, it converts it and sends it through the OBD-
II port to the ECU, which sends its response back to the ELM and then the 
ELM relays it directly back to the phone application. 

 If the microcontroller receives a request, it simply applies voltage to 
appropriate wire. 

 
The reason this design is simpler is because the data isn‟t being relayed from 
component to component as much.  Also, the programming of the microcontroller 
would be simpler.  For instance, instead of all the data coming and going through 
the microcontroller like in design one.  In this design, the MCU would only have 
to take in data from one source (the phone) and send data to one source (the 
car).  This would greatly simplify the microcontroller programming. 
 
The figure 3.2.1 shows the high level block diagram of this design.  Notice how 
the first design has three bi-directional connections, but this design has only two.  
The data path is more specific, interacting only with the components it needs to.     
  
 

 
 

 

 

 

 

 

 

Figure 3.2.1 - Block diagram two connection design 

OBD – II Port

ELM327
Microcontroller

Unit

Android Application

Car Wiring
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In this design, data flowing in both directions when a request is sent to the ELM, 
since the ELM will have to send the response back to the phone.  However, the 
microcontroller will only have to have one input (the phone) and one output (the 
car wires) and the data only needs to flow in one direction for the same reasons 
as mentioned above in the previous design.   
 

3.3 Bluetooth vs.  Wi-Fi 

Our project required a wireless communication between a smart-phone and the 
hardware device connected to the 1998 Honda Accord.  The two standard 
methods of wireless communication are Bluetooth Technology and Wi-Fi.  We 
needed to examine the benefits of each of our primary wireless communication 
options.  Only after close examination, we will choose the best wireless 
technology for the project. 
 

3.3.1 Bluetooth Technology 

Bluetooth technology is a short-range wireless communications technology.  It 
uses radio waves to communicate, similar to the ones used for television or your 
standard AM/FM radio.  Although Bluetooth technology uses radio waves, it‟s 
only designed to be used in the “Personal Area Network”, more commonly known 
as PAN.  Bluetooth‟s range is dependent upon the application.  There are three 
common classes of radios used within Bluetooth technology.  The class of the 
radio used in the Bluetooth chip, indicates the range it‟s capable of.  Class 1 
radios have a range of 300 feet and are typically used for industrial purposes.  
Class 2 radios have a range of 33 feet and are common among mobile devices 
such as phones and computers.  Class 3 radios have a range of 3 feet and are 
used in very specific applications.   
 
Bluetooth technology operates at an adaptive frequency between 2.4 GHz and 
2.485 GHz.  This allows for minimal interference.  The Bluetooth device becomes 
aware of the operating signals in the area and avoids them to prevent 
interference.   
 
Bluetooth technology has a unique design that allows for minimal power 
consumption.   The most widely used class 2 radio, which is used in this project, 
uses 2.5 mW of power in most cases. 
 

3.3.2 Wi-Fi Technology 

Wi-Fi enabled devices allow for connectivity to the internet through a wireless 
network.  These wireless networks can range from as small as a few rooms to as 
large as a few miles.  Typically the smaller Wi-Fi ranges are used for personal 
use within a house or office.  The larger Wi-Fi networks may span a large 
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corporate office or university campus.  The range of Wi-Fi is nice, but may be 
outside the scope of our project since our wireless devices will be communicating 
within feet of one another. 
 
Wi-Fi is efficient when it comes to fast speeds and large ranges, but has it‟s 
downfall in power consumption.  Over the years, the main concern with Wi-Fi 
enabled devices, is battery life.  The amount of battery life in a device can be 
dependent upon the use of Wi-Fi.  Since this project will be operating on a 12 volt 
car battery and the lithium ion battery in the mobile device, we need minimal 
power consumption.  Wi-Fi may consume more power than necessary for our 
application. 
 

3.3.3 Bluetooth Vs.  Wi-Fi Conclusion 

Bluetooth technology allows for minimal power consumption but has a small 
network range while Wi-Fi consumes a significant amount of power allowing for 
large network ranges.  The project allows for either short or long ranges but 
would prefer minimal power consumption.  After the analysis of both Bluetooth 
Technology and Wi-Fi networks, we‟ve decided to use Bluetooth Technology for 
our devices to communicate wirelessly. 
 

4.0 Hardware 

4.1 OBDII 

The vast majority of this project is centered around the Onboard Diagnostics 
standard in our vehicles, more commonly known as the OBD.  We will be dealing 
with the most recent version, the OBDII setup.  The OBD is able to communicate 
with the engine control unit, more commonly known as the ECU.  The ECU is 
onboard intelligence that helps manage the vehicle. 

 
4.1.1 OBDII Background 

In 1970, the United States government made an effort to clean up air pollution by 
passing the Clean Air Act.  As a result of the Clean Air Act, the OBD standard 
was created and introduced the Society of Automotive Engineers(SAE).  In the 
early stages, manufacturers had specialized monitoring devices and tools to aide 
in corporate matters.  At this time, these devices and tools were not typically 
found in the hands of the consumer.  This is considered the first OBD standard 
and the SAE hoped it would encourage manufacturers to develop more efficient 
vehicles in the emissions and fuel economy departments. 
 
The first OBD standard had multiple issues and would need some revising to be 
an efficient regulation.  The information retained on a vehicle‟s ECU would 
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change from vehicle manufacturer to vehicle manufacturer.  Each vehicle 
manufacturer had a unique set of diagnostic error codes, making it hard to create 
universal diagnostic tools.  The data link connector was not universal among 
vehicle manufacturers.  This means diagnostic devices could not interface with 
the ECU of all makes and models.  The first OBD standard needed some serious 
standardizing to make it an efficient regulation.  After this realization, the SAE 
came out with a new standard, the OBDII.   
 
In 1996, the OBDII standard was developed bye the SAE.  The objective was to 
correct the issues in the first OBD standard.  A physical data link connector 
became a mandatory part of the new OBDII standard.  The common connector, 
J1962, is found in all makes and models.  This new standardized connector 
allowed for manufacturers to make universal diagnostic tools that could hook up 
to any vehicle.  General diagnostic trouble codes were also made universal 
among vehicle manufacturers.  The standard allowed for vehicle manufacturers 
to have “extra” diagnostic trouble codes as well to fit their specific needs.  For 
example: BMW may need more diagnostic trouble codes than most 
manufacturers to accommodate for their vehicle‟s excessive features.  SAE 
specified four regions of the vehicle that represented a set of diagnostic trouble 
codes.  Although the OBDII standard is a vast improvement over the first OBD 
standard, it‟s not perfect.  There are multiple different protocols that correspond 
to the different makes and models of vehicles.  The different protocols operate at 
different speeds of data transfer.  Typically, the faster the protocol, the better it is 
considered.  A protocol that can get twenty-five readings per second is more 
useful than a protocol that can only read ten readings per second.  In 2008, the 
SAE corrected the standard by making ISO 15765-4 the standardized protocol 
for all vehicles after 2008.  The ISO 15765-4 protocol allows for faster read 
speeds than before. 
 
OBDII ports were not required to be in cars until the beginning of 1996.  All cars 
and small trucks built in 1996, or later, should have OBDII capabilities.  Some 
vehicles that were built towards the end of 1996 may also be equipped with the 
OBDII port.  Figure 4.1.1a shows what an OBDII port may look like.  The OBD 
standard was developed in an attempt for vehicle manufacturers to produce more 
efficient cars along the lines of fuel economy and emissions.  If a vehicle has 
OBDII capabilities, it will have an OBDII port and a written indication under the 
hood of the vehicle.  The documentation located on the bottom side of the hood 
should read: “OBDII compliant” if the vehicle is OBDII equipped. 
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Figure 4.1.1a – OBDII port of 2000 Dodge Durango 

 
The OBDII standard allows for all parties to benefit.  Vehicle owners and 
mechanics use OBDII technology to access useful information from the ECU to 
diagnose vehicle trouble or get other useful information such as fuel economy.  
The OBDII port has the capabilities to allow the user to read error codes and 
target in on specific areas of the vehicle for close monitoring.   
 

4.1.2 OBDII ELM327 

The OBDII reader used in this project was equipped with Bluetooth technology.  
Specifically the ELM-327 Bluetooth chip was used. 
 
The J1962 connector used as the ODBII interface for test tools does not directly 
connect with standard computers.  Another issue is the wide range of different 
ODBII protocols used.  The protocols differ on multiple levels including formatting 
and signaling.  Additional hardware or wireless communications are necessary to 
help decipher protocols.  An integrated circuit named the ELM327 was created to 
connect between RS232 ports and OBD ports.  The ELM327 can handle all of 
the OBD protocols including the newest protocols in high tech vehicles. 
 
The ELM327 uses ASCII to communicate with the OBDII port.  The ELM327 also 
includes enough onboard memory to be able to keep track of any necessary 
changes.  Some of these changes may include setting the timeout interval when 
it‟s receiving messages from the ECU.   In the case that the ELM327 doesn‟t 
receive an AT type command, it assumes that the command is intended for the 
ECU.  Before the ELM327 passes the command to the ECU, it makes sure that 
the command meets the standards of the OBDII set by the SAE.  In the case that 
the ELM327 doesn‟t understand the request, it responds with a question mark. 
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The ELM327 plays the part of a command line interface, commonly known as a 
CLI.  This means that the ELM327 will always respond with a „>‟ character to the 
serial port.  The ELM327 will not execute any commands until it reads in a line 
break or carriage return. 
 

4.1.2.1 ELM327 Circuit 
 
Although the ELM327 is a great integrated circuit, it‟s not enough to complete the 
desired functions for this project.  To be able to utilize the ELM327, a complete 
circuit needs to be created for interfacing capabilities.  Figure 4.1.2.1a is a block 
diagram of the circuit needed to complete the task of becoming an OBDII reader.  
It is necessary to have a clock to power the ELM327 integrated circuit. 
 

 
 Figure 4.1.2.1a - OBDII reader block diagram – Pending Permission 
 
ELM electronics have come up with a recommended circuit for the ELM327 IC.  
The schematic for the recommended circuit is seen in figure 4.1.2.1b. 
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Figure 4.1.2.1b – Typical circuit schematic for ELM327- Printed with permission 
 

4.1.3 OBDII Specifications 

Where is my OBDII Port located? Regulations specify that the OBDII port must 
be within three feet of the driver and must not require tools for access.  The 
typical location is under the dash on the driver side.  Some manufacturers will 
actually “hide” the OBDII port elsewhere, such as behind an ashtray. 
 

4.1.3.1 OBDII Port and Pins 
 
The OBDII reader has sixteen contacts that plug into the OBDII port to interface 
with the vehicle.  Each pin-out has a specific function.  Pint number one is not a 
standard pin for all makes and models.  The functionality of pin one is left up to 
the discretion of the manufacturer.  General Motors typically uses pin one as 
"J2411 GMLAN/SWC/Single-Wire CAN.” Pin number two is designated for the 
positive BUS line of the SAE-J1850 PWM and SAE-1850 VPW.  Ford and 
Chrysler use pin three of the OBDII port.  Ford uses this pin as DCL(+) while 
Chrysler uses it as CCD BUS(+).  Pin number four has a universal functionality 
among all makes and models.  Pin four is always designated as the “chassis 
ground.” Pin number five also has universal functionality among vehicle 
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manufacturers as ”Signal ground.” Pin number six is designated as “CAN High” 
among vehicle manufacturers.  Pin seven is the “K line” of ISO 9141-2 and ISO 
14230-4 in all vehicle makes and models.  Pins eight, nine, twelve and thirteen 
are left to the manufacturer‟s discretion.  Pin number ten is designated as the 
“Negative BUS Line of SAE-J1850 PWM” among all vehicle manufacturers.  Pin 
eleven is commonly used by Ford and Chrysler in their onboard diagnostics unit 
system.  Ford typically uses pin eleven as “DCL(-)” while Chrysler uses it as 
“CCD BUS(-).” Pin number fourteen is designated by the SAE to be the “CAN 
Low.” Pin fifteen is designated by the SAE to be “L line” of ISO 9141-2 and ISO 
14230-4.  The last pin, pin sixteen, is designated to be the battery voltage in all 
vehicle makes and models.  The figure below, figure 4.1.3.1a, summarizes the 
descriptions of each of the numbered contacts in the OBDII port. 

 

Figure 4.1.3.1a – OBD-II pins 

 

OBDII Port Contact Specifications 

1.  Manufacturer Discretion.  GM: 

J2411 

GMLAN/SWC/Single-Wire CAN 

9.  - 

2.  Positive BUS Line of SAE-J1850 

PWM and SAE-1850 VPW 

10.  Negative BUS Line of SAE-

J1850 PWM 

3.  Ford DCL(+) Argentina, Brazil 

(pre OBD-II) 1997-2000, USA, 

Europe, etc.  Chrysler CCD Bus(+) 

11.  Ford DCL(-) Argentina, Brazil 

(pre OBD-II) 1997-2000, USA, 

Europe, etc.  Chrysler CCD Bus(-) 

4.  Chassis ground 12.  -  

5.  Signal ground 13.  - 

6. CAN High (ISO 15765-4 and 

SAE-J2284) 

14.  CAN low (ISO 15765-4 SAE-

J2284) 

7.  K line of ISO 9141-2 and ISO 

14230-4 

15.  L line of ISO 9141-2 and ISO 

14230-4 

8.  - 16.  Battery voltage 
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4.1.4 OBDII Uses 
 
The OBDII port has many different uses and functions.  Some, but not all, will be 
used in this project.  The OBDII port is capable of reading the following 
information from a vehicle: 
 

 Turbo Boost Pressure (PSI) * 

 Fuel Economy (Real-Time/Avg/Trip) 
 Timing Position 

 Speed (MPH, KPH) 
 Engine RPM 

 Coolant Temperature 

 Injection Pulse width (IPW) 
 Throttle Position (as a percentage) 
 Air Intake Temperature 

 Mass Air Flow (g/sec) 
 Throttle Position 

 Fuel Level * 
 Barometer 
 Battery Voltage 

 Engine Oil Temperature 

 Injection Control Pressure (ICP) 
 Transmission Temperature 

 Load 

 
The OBDII port is capable of altering minor specifications within the vehicle.  The 
OBDII port is can modify the following: 
 

 Change Speed Limiter 
  Adjust Timing + or - 2 degrees 

  Seat Belt Reminder Chime * 

  Auto Door Lock * 

  High Rev Function 

 Change Rev Limiter 

 Calibrate Speedo 

 Tune transmission 
 
The „*‟ indicates that the specified function may be specific to certain vehicles, 
not all car makes.  For example: It‟s not possible to read the Turbo Boost 
Pressure of a vehicle that doesn‟t have a turbo-powered engine. 
 

4.2 Window Mobility 
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It is possible to control the windows from your Android-based smart-phone.   To 
implement this feature, we‟ll need to splice or tap into the wiring harness of the 
vehicle using wire taps. A 12-volt signal needs to be sent to the motor controlling 
the windows in order to roll the windows up or down.  A wire tap is pictured below 
in figure 4.2a. 
 

 
Figure 4.2a - The figure above is an example of a wiretap.  It taps in and makes 
a connection with the wire without having to completely cut the wire.  – 
Permission granted from http://www.midterminc.com (See e-mail in appendix) 

4.3 Hardware Selection 

This section will detail the different hardware components to be used in this 
project and why they were selected. 
 

4.3.1 ELM-327 

We debated whether to create our own integrated circuit to read from the OBD-II 
or to use a pre-designed chip.  We decided to use the ELM327 which is a widely 
used IC when it comes to automotive applications.  The ELM327 is popular 
because of its versatility when it comes to the different OBD-II protocols.  It 
supports all five of them.  If we had designed our own chip, it would have been 
time consuming to provide support for five different OBD-II protocols, and we 
wanted our project to support as many different vehicles as possible.  Since the 
ELM chip was already fairly low-cost, we did not see the need in “re-inventing the 
wheel” and we decided to just go with the ELM. 

4.3.2 MCU Selection 

http://www.midterminc.com/
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The ATmega328 was selected as the microcontroller for this project.  We 
selected this chip because it has the speed and power to support our purposes.  
In addition, it is very well documented and widely used so we should have no 
problem programming it.  It has a max of 23 I/O pins which will be enough for our 
project. 
 

4.3.3 Test Board 

When selecting our test board, we needed to make sure it was user friendly, and 
that it was powerful enough to meet our needs.  We chose Arduino because our 
research showed that Arduino boards are quick and easy when it comes to 
learning how to program on them.  Also, with the Arduino board we had the 
option to purchase a board with Bluetooth built in or we had the option to build a 
board with PCB software.  The boards are very well documented and we liked 
that they could be programmed in C or C++. 

 
4.3.4 Android Phone 

Android was selected as the platform of choice for this project for many reasons.  
For one, it is one of the most widely used mobile phone platforms.  Since it is so 
widely used, it gives our application a big potential user base.  Another reason 
we chose Android is because it is very developer friendly.  It utilizes the java 
programming language which we all have experience with and we are 
comfortable programming with it.  In addition, two of our team members already 
had Android devices, so we could use those for testing and developing and did 
not have to buy a phone.   

5.0 Software Selection 

This section details the software components involved in building the project and 
why they were selected.  The microcontroller programming software, the android 
programming software and the PCB software used to design the integrated 
circuit. 
 

5.1 MCU Programming Software 

Since we are using an Arduino board, the Arduino language will be used for 
programming the microcontroller.  There are other options such as AVR Studio; 
however, from our research, we have gathered that Arduino‟s programming IDE 
is very user friendly and a fairly fast learning process.  
  

5.2 Android Programming Software 

Eclipse IDE will be used to program the Android application.  We chose Eclipse 
because it has a plug-in to easily program for Android using Java.  Most of the 
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team is familiar with Eclipse when programming in java so it should reduce the 
learning curve. 
 

5.3 PCB Design Software 

In order to put our MCU and ELM327 on a single board, we needed to design a 
PCB.  We have decided to use EAGLE PCB Editor to design this board.  Since 
the Arduino boards are open source, the EAGLE files are given on the website 
along with permission to edit and design new boards.  The ELM327 Schematics 
are also available.  So EAGLE will be used to interface these two circuits and 
print them on the same board, we will use the Arduino circuit for testing and we 
will design our final PCB based on the Arduino, using only what we need. 

6.0 OBD-II Protocol 

6.1 Background 

Despite the fact that OBD-II is standard on all vehicles made after 1996, there 
exists five different signaling protocols.  Most vehicles utilize just one of these 
protocols.  The five protocols and some properties of each can be seen below: 
 

1. SAE J1850 PWM (Standard of the Ford Motor Company) 

 Pin 2: Bus+ 

 Pin 10: Bus- 

 High voltage is +5 V 

 Message length is restricted to 12 bytes 
2. SAE J1850 VPW (Standard of GM) 

 Pin 2: Bus+ 

 Bus idles low 

 High voltage is +7 V 

 Decision point is +3.5 V 

 Message length is restricted to 12 bytes 
3. ISO 9141-2 (Primarily used in Chrysler, European and Asian vehicles) 

 Pin 7: K-line 

 Pin 15: L-line 

 UART signaling 

 Message restricted to 12 bytes 
4. ISO 14230 

 Mostly the same as ISO 9141-2 

 Message can contain up to 255 bytes 
5. ISO 15765 CAN 

 Pin 6: CAN high 

 Pin 14: CAN low 
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All OBD-II pin-outs use the same connector but different pins are used except for 
pin 4 (battery ground) and pin 16 (battery positive).  
 
For the purposes of this project, our hardware will support all protocols and our 
software will support the ISO 9141 protocol due to the fact that the testing will be 
done on a 1998 Honda Accord which uses the ISO 9141 protocol; however, if 
time permits we will extend our software to support the other four protocols. 
 

6.2 Requesting Data 

Data requests are sent in a standard format from the diagnostics tool to the OBD-
II port.  The first 3 bytes sent are the header.  Then, 1 to 7 data bytes follow.  
Lastly, there is an error check byte.  A high level view of a request message can 
be seen in figure 6.2.1 below. 
 
Header Bytes 

0 1 2 3 4 … 8 9 10 

Header Header Header Data Data Data Data Data CRC 

 

 
Figure 6.2.1 – High Level Request Message – Printed with permission 
The header bytes can vary depending upon the protocol, the below figures show 
a breakdown of the header bytes figure 6.2.2 shows the header for a vehicle 
using the ISO 9141 protocol. 
 

 Byte 0 
(Priority/Type) 

Byte 1 (Target 
Addr.) 

Byte 2 (Source 
Addr.) 

Request 104 (0x68) 106 (0x6A) 241 (0xF1)  

Figure 6.2.2 – Header Bytes for ISO 9141 Request 
 
The figure 6.2.3 below gives the header bytes for a request message sent to an 
OBD-II port using the SAE J1850 PWM protocol.  
 

 Byte 0 
(Priority/Type) 

Byte 1 (Target 
Addr.) 

Byte 2 (Source 
Addr.) 

Request 97 (0x61) 106 (0x6A) 241 (0xF1)  
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Figure 6.2.3 – Header Bytes for PWM Request 
 
The figure 6.2.4 below gives the header bytes for a request message sent to an 
OBD-II port using the ISO 14230 protocol.  The bits LLLLLL represent the length 
of the data byte section of the message. 
 
 Byte 0 (Priority/Type) Byte 1 (Target Addr.) Byte 2 (Source Addr) 

Request 11LL LLLL (binary) 51 (0x33) 241 (0xF1)  

Figure 6.2.4 – Header Bytes for ISO 14230 protocol 
 
Data Bytes 
The first data byte indicates the mode.  There are 9 possible modes for 
diagnostic requests; therefore the range of the first byte is from 1 to 9.  Below is a 
description of each mode. 
 

 Mode 1 – Used to obtain current diagnostic data: Number of trouble codes 
set, status of onboard tests, vehicle data such as engine RPM, 
temperatures, ignition advance, speed, air flow rates, information on fuel 
system. 

 Mode 2 – Similar to mode 1 except instead of current data, it pertains to 
data that was stored at a moment in time, such as when an error code 
was turned on. 

 Mode 3 – Requests all diagnostic trouble codes from vehicle.  It is 
possible that there will be more than one response message if the number 
of error codes exceeds the available data bytes. 

 Mode 4 – Simply instructs the vehicle to clear all error codes. 

 Mode 5 – An optional mode used for requesting results of an oxygen 
sensor test.  Some vehicles report this under mode 6. 

 Mode 6 – Used for obtaining test results for non-continuously monitored 
systems.  This is optional and is defined by the vehicle manufacturer if 
used at all.  For this reason, it probably won‟t be included in our project. 

 Mode 7 – Optional mode similar to mode 3.  This mode returns trouble 
codes which may be set after a single drive cycle.  This is useful for 
checking the results after a repair has been done. 

 Mode 8 – Used to request control of an on board system.  This mode is 
manufacturer defined. 

 Mode 9 – Optional mode used to report vehicle information such as the 
VIN and information stored in the ECU. 

 
The second data byte is the Parameter Identification (PID) bytes. This byte is 
used to specify what data is being requested.  The remaining data bytes in the 
request message are for further specification of what data is being requested. 
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The final data byte is the CRC or checksum byte, depending on what protocol is 
being used.  This byte is used to check for any errors that might have occurred 
during data transfer. 
 
The figure 6.2.5 below takes the information discussed in this section and details 
each byte that makes up a request message, in addition, the chart explains the 
purpose and function for each byte 
 

Byte Header The first header byte details the priority and type of the 
following message. 

0 Header The second header byte details the target address of 
the message, i.e. which part of the ECU should receive 
this request. 

1 Header The third and final header byte describes the source 
address; in this case it would be the address of the 
OBD-II hardware device so the response message 
knows where to go. 

2 Data The first data byte specifies the mode; the mode can be 
anywhere from 1 to 9. 

3 Data The second data byte is the Parameter Identification 
(PID).  This is a 2 digit hex value that indicates the data 
that is being requested.  

4 - 9 Data Further specification of data 

10 Error 
check 

CRC or checksum byte 

6.2.5 – Request Message 
 
The section below will detail the PIDs for the most important modes (1 and 2) 
and the values that each PID returns.  Some of the PIDs discussed are used only 
for mode 1 or mode 2 exclusively.  Specifically, mode 1 does not use PID 02, and 
mode 2 uses only PID 00 and PID 02 – 0D.   

 
6.3 Return Values 

The response sent from the vehicle‟s ECU back to the OBD-II port has a similar 
structure as the request message; there are 3 header bytes, up to 7 data bytes 
and an error correction byte.  The high-level view is the same as the request 
message and can be seen in figure 6.2.1 above. 
 
The following charts display the three header values for the ECU‟s response 
message.  In the same manner as the request messages, these responses differ 
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depending on the protocol used. Figure 6.3.1 below describes the header for the 
VPW or ISO 9141 protocol.  
 
Header Bytes 

 Byte 0 Byte 1 Byte 2 

Response 72 (0x48) 107 (0x6B) ECU Address byte 

Figure 6.3.1 – ISO 9141 ECU response Header 
 
The next chart, figure 6.3.2 shows the three header bytes for a response 
message sent from the ECU using the SAE J1850 PWM protocol. 
 

 Byte 0 Byte 1 Byte 2 

Response 65 (0x41) 107 (0x6B) ECU Address byte 

Figure 6.3.2 – PWM ECU response Header 
 
The next chart, figure 6.3.3 shows the three header bytes for a response 
message sent from the ECU using the ISO 14230 protocol.  The bits LLLLLL 
make up a 6 bit binary value that represents the length of the data byte section. 
 
 

 Byte 0 Byte 1 Byte 2 

Response 10LL LLLL 241(0xF1) ECU Address byte  

Figure 6.3.3 – PWM ECU response Header 
 
Data Bytes 
The data bytes are organized in the same way for a response as they are for a 
request.  The first response data byte is the mode, just as in the request 
message, except the response mode has the number 64 added to it.  For 
instance, if the first data byte in the request is a 1, for mode 1, the first data byte 
in the response would be a 65, since 1 + 64 = 65. 
The second data byte in the response message is the PID just as in the request.  
The PID indicates which values were requested and the remaining data bytes 
make up the actual response data. 
The final byte is the error check byte to determine whether or not an error had 
occurred during transmission. 
 
The number of data bytes that occur in a response message typically depend of 
the PID.  For instance PID 00 will always return 4 data bytes, A – D, but PID 4 
only returns one data byte, A.  The data bytes will be referred to as A, B, C, D 
etc. This also corresponds to the order of transmission on the bus and the order 
of significance. 
 

 PID 00 – This PID determines which PIDs are supported for the vehicle.  
The bits of the 4 data bytes A, B, C and D correspond to PIDs 1 – 32.  
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The most significant bit of A would be PID 01, and the least significant bit 
of D would be PID 32. 

 PID 01 – This PID returns four data bytes.  Data byte A describes how 
many error codes there are using bits 0 – 6.  Bit 7 of data byte A is set to 
1 if the MIL lamp is on or 0 if it is off.  The chart in figure 6.3.4/5 
describes how the remaining bits are used. 
 

Test Bit = 1 if supported Bit = 1 if incomplete 

Misfire B0 B4 

Fuel system B1 B5 

Components B2 B6 

Reserved B3 B7 

Figure 6.3.4 – Data byte B error codes 
 

Test Bit = 1 if supported Bit = 1 if incomplete 

Catalyst C0 D0 

Heated catalyst C1 D1 

Evaporative System C2 D2 

Secondary Air System C3 D3 

A/C Refrigerant C4 D4 

Oxygen Sensor C5 D5 

Oxygen Sensor Heater C6 D6 

EGR System  C7 D7 

6.3.5 – Data bytes C and D error codes 
PID 02 represents the freeze frame trouble codes and returns 2 bytes of data. 
 
PID 03 – Fuel System Status.  This PID returns two bytes A and B.  Data byte A 
corresponds to fuel system 1 and data byte B corresponds to fuel system 2.  
Only one bit per each of these bytes can be set to a 1.  The bits are laid out as 
follows. 

0 – Open loop operation   3 – Open loop due to system fault 
1 – Closed Loop    4 – Closed loop with a fault 
2 – Open loop due to driving conditions 5 to 7 – Padding, should be 0 

 
PID 04 is the load value percentage and it returns just 1 data byte.  There is a 
calculation involved in obtaining the final result. 
PID 05 is the coolant temperature in degrees Celsius and it returns 1 data byte. 
PID 06 is the short term fuel percentage which returns 1 data byte.  PIDs 07 – 09 
are similar to PID 06 with regards to Data bytes returned.  PID 0A represents 
Fuel pressure and in kilo Pascals and returns 1 data byte.  PID 0B  represents 
intake manifold pressure and returns 1 data byte. 
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The PIDs expressed above as well as the remaining are found in Figure 6.3.6 
and are also explained in detail in section 11 entitles OBD Reading Functions.  
We made the table below to use as a quick reference when programming the 
application.  The table is also useful for the succeeding sections. 
 
The following table in figure 6.3.6 shows what the remaining PIDs return and the 
equations to calculate the actual values. 
 

PID Description  # Bytes Calculation 

02 Freeze frame trouble 
code.   

2, A and B N/A 

04 Load value percent.   1, A A*100/255 = engine 
load% 

05 Coolant temperature in 
degrees C 

1, A Deg = A – 40  

06 Short term fuel percent 1, A .7812 * (Byte A – 128) 

07 - 09 Similar to 6   

0A Fuel pressure in kPa 1, A Pressure = A * 3 

0B Intake manifold pressure 
kPa   

1, A Pressure = A 

0C Engine RPM 2, A and B RPM = .25 * (A*256 + 
B) 

0D Vehicle speed, in km/h 1, A Speed = A 

0E Timing advance in 
degrees 

1, A Advance = (.5 * A) – 
64 

0F Intake air temperature in 
degrees Celsius 

1, A Degrees = A - 40 

10 MAF air flow 2, A and B Air flow = 
.01*(256*A+B) 

11 Throttle position  1, A Position % = .3922 * 
A 

12 Sec. air status 1, A Bit 0 – Upstream of 
catalytic 
Bit 1 – Downstream  
Bit 2 – Atmosphere  
Remaining – 
Reserved, 0  

13 Oxygen sensor 
locations/bank 

1, A Bit 0 – Bank 1 – 
Sensor 1 
Bit 1 – Bank 1 – 
Sensor 2 
Bit 2 – Bank 1 – 
Sensor 3 
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Bit 3 – Bank 1 – 
Sensor 4 
Bit 4,7 – Repeat for 
Bank 2 

14 Oxygen sensor 
voltage/bank 1 sensor 1 

2, A and B Oxy sensor voltage = 
.005*A 
Short term fuel% = 
 .7812 * (B-128) 

15 – 1B Same as 14, but for 
remaining Banks 

  

1C OBD design 
requirements 

1, A 01 – OBD II 
02 – OBD 
03 – OBD and OBD2 
04 – OBD I 
05 – none  
06 – EOBD  

1D Alternate Oxy sensor 
locations 

1, A Similar to 13 

1E Auxiliary input status 1, A Bit 0 defines status,  

1F Padded   

20 Same as PID 00, for 21 - 
40 

  

Figure 6.3.6 – PID Chart 
 

 

7.0 Communicating with ELM-327 

The ELM-327 was designed to communicate with a computer through an RS232 
connection.  However, for the purposes of this project we will be connecting to 
our MCU through the Tx and Rx pins.  
The Android software will be communicating with the ELM327 through the 
microprocessor.  We need to ensure that we are communicating with the ELM 
through the right com port.  In addition, the settings of the ELM need to be 
adjusted to make sure data is being sent and received at the proper speed.  
Otherwise messages will be received in jumbled order and the ELM will not work 
properly.  The connection also needs to be set to 8 data bits, no parity bits and 1 
stop bit.  Once the ELM-327 is properly connected, it will send the following 
message: 
  
ELM327 1.4b. 
> 
 
When talking to the ELM, commands can be sent intended for the ELM‟s internal 
use or they can be messages to be passed on the ECU.  If they are intended for 
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the ELM the messages start with the letters „AT‟ and whether it‟s intended for the 
ELM or the OBD-II, the message must end with a carriage return or hex 0D.  If an 
incomplete string is sent without a carriage return, an internal timer is started and 
after about 20 seconds, the ELM will print a question mark character „?‟.   
 
When processing commands, the ELM is constantly listening for new commands.  
If a new command is sent while the ELM is processing a previous command, the 
previous command is stopped and control is returned to the user. 
 

7.1 AT Commands 

This section will detail some of the more useful AT commands that may be used 
in this project.  The user of the application probably will not be given the ability to 
most change parameters within the ELM because it would require specialized 
knowledge of the chip; however, we may be hardcoding the following AT 
commands if necessary. 

 Allow Long (AL) 
Extends the number of data bytes that the ELM can accept from 7 to 8. 

 Buffer Dump (BD) 
All messages sent and received by the ELM are stored in a buffer.  This is 
used to check where messages failed or to resend previous messages.  
When this command is sent, the buffer is printed. 

 There are various other commands to set the baud rate for each OBD-II 
protocol.  We will be using these to sync the baud rate with our 
microcontroller so that data is received and sent at the correct speeds. 

8.0 Interfacing MCU 

In order to communicate with the EML-327 device, we will need to send data 
over Bluetooth to the microcontroller.  The microcontroller will then check the 
header of the data being sent in order to determine what to do with the data.  If it 
determines that the data should go to the ELM, then it will be passed through.  
Otherwise, if the command is to start the ignition, lock or unlock the doors, roll 
down the windows or pop the trunk.  The MCU will supply power to the 
necessary car wires. 
 

8.1 Interfacing with ELM-327 

When interfacing an ATmega328 with the ELM-327, we must note that the ELM-
327 is, in itself, a microprocessor.  The ELM chip utilizes a standard UART 
interface which is connected to the RS232 Tx and Rx pins.  The microcontroller 
will be connected to the ELM using these Tx and Rx pins and they will be 
powered by the same 5V source.  The ELM provides a hand shaking feature 
which helps to simplify the flow of data.  This hand shaking feature consists of 
two pins, the input pin is „request to send‟ (RTS) and the output pin is „busy‟ 
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which tells the system that the ELM is processing.  The hand shaking feature will 
be implemented as follows: 

 One of the port pins on the microcontroller will be connected to the RTS 
(pin 15) on the ELM 

 Another port pin will be connected to the busy (pin 16) pin. 

 When the MCU determines that a command needs to be sent to the ELM, 
the busy pin will be checked.  If it is a high logic level, then the 
microcontroller needs to a) wait for the busy pin to go low, or b) set the 
RTS pin to low in order to request to send data. 

 Once the busy pin goes low, the ELM waits indefinitely for a command 
from the microcontroller. 

 
The figure 8.1.1 shows an image of how the microcontroller will be interfaced 
with the ELM. 
 

 As seen in the figure (left), the pins 
17 and 18 of the ELM will be 
connected to Tx and Rx pins on the 
microprocessor and the two will share 
the same input voltage. 
Section 9 below will detail the 
Arduino board and the pins attributed 
to it. 

Figure 8.1.1 - ELM and MCU interface Printed with permission 

9.0  Programming the ATmega328 

Since we are using an Arduino board, we will be using Arduino‟s C-based 
programming language and the Arduino IDE for windows.  Some of the main 
functions of the microcontroller will be to apply voltages to specific output pins 
and to send and receive requests and responses to the ELM-327.  This section 
will detail how that will be done using the Arduino programming language. 
 

9.1 Arduino Programming 

The Arduino board can be seen in figure 9.1.1 the different components on the 
board are color coordinated and will be explained below. 
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Figure 9.1.1 Arduino Board – Printed with permission 
The components as listed on the Arduino data sheet are as follows 
Starting clockwise from the top center: 

 Analog Reference pin (orange) 

 Digital Ground (light green) 

 Digital Pins 2-13 (green) 

 Digital Pins 0-1/Serial In/Out - TX/RX (dark green) - These pins cannot be 
used for digital I/O (digitalRead and digitalWrite) if you are also using 
serial communication (e.g. Serial.begin). 

 Reset Button - S1 (dark blue) 

 In-circuit Serial Programmer (blue-green) 

 Analog In Pins 0-5 (light blue) 

 Power and Ground Pins (power: orange, grounds: light orange) 

 External Power Supply In (9-12VDC) - X1 (pink) 

 Toggles External Power and USB Power (place jumper on two pins 
closest to desired supply) - SV1 (purple) 

 USB (used for uploading sketches to the board and for serial 
communication between the board and the computer; can be used to 
power the board) (yellow) 

 

9.2 Digital Pins 

The digital pins on Arduino board have many functions that will be discussed.  
They can also be used for general purpose input and output.  pinMode(), 
digitalRead() and digitalWrite() are commands that are used when dealing with 
these pins.  The pins, when used as an input, can be given the value HIGH or 
LOW, the max current that can be used, per pin, is 40 mA.  Figure 9.2.1 
describes each digital pin and their uses. 
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Pins Uses 

Serial : 

 0 (Rx) 

 1 (Tx) 
 

Pin 0 is the Rx pin; it is used to receive 
serial data.  Pin 1 is the Tx pin; is used 
to transmit serial data. 

External Interrupts: 

 2 

 3 

The external interrupt pins have the 
ability to trigger an interrupt on the low 
value, rising/falling edge, or change in 
value using the attachInterrupt() 
function. 
 

PWM: 

 3 

 5 

 6 

 9 

 10 

 11 
 

These pins supply an 8 bit pulse width 
modulation (PWM) output.  The 
analogWrite() function is used. 

BT Reset: 

 7 
 

Connected to the Bluetooth line of the 
Arduino BT board. 

SPI: 

 10 (SS) 

 11 (MOSI) 

 12 (MISO) 

 13 (SCK) 
 

These pins support SPI 
communication; however, they are not 
currently supported in the Arduino 
language. 

Figure 9.2.1 – Digital Pins Table 
 

9.3 Analog Pins 

The analog pins have many built in functions that will be discussed later, the 
analog input pins can do a 10-bit analog to digital conversion (ADC) using the 
analogRead() function.  The analog pins 0 through 5 can also be used as digital 
pins 14 through 19.   
  
Pin 4 (SDA) and pin 5 (SCL) both support the I2C (TWI) communication.  This 
can be achieved by using the wire library. 

 
9.4 Power Pins 

The table in figure 9.4.1 describes the 3 power pins and their uses. 
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Pins Uses 

VIN This pin is the input voltage for the 
board when it is using an external 
power source.  Meaning something 
besides the USB connection or other 
regulated power source. 
 

5V This is the regulated power supply to 
the board and its components.  This 
power can come from the USB or the 
VIN using an on board regulator. 
 

GND These are the ground pins. 
 

Figure 9.4.1 – Power Pins Table 
 
The figure above discusses the input voltage pins and the ground pins, these will 
be used to supply power to the board.  For our project, the VIN will probably be 
used to power the board from the hot wire in the car. 
 

9.5 Arduino Functions 

This section will detail some of the built in functions that will need to be used 
when programming our chip. 
 

 Setup() 
The setup program is called when the program starts running.  It is used to 
initialize variables, set pin modes and start using libraries.  This function 
will run only one time, after startups and after resets. 

 Loop() 
After the setup function runs, the program then moves on the loop 
function.  As the name suggests the program loops through this function 
over and over allowing the program to change and respond.  It is used to 
actively control the Arduino board. 

 pinMode( pin, mode ) 
This function is used to configure a pin to be either an input or an output.  
The parameters are pin, which is the number of the pin whose mode we 
are setting (int) and mode, which is either INPUT or OUTPUT. 

 
So far there are three methods that have been discussed; they will appear in 
code as follows.   
 
void setup() 
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 initialize variables here 
 call pinMode( int, INPUT/OUTPUT) here 
end setup 
 
void loop() 
 call other methods and 
 check if statements here 
end loop 
 
Within the loop function other Arduino functions will be used such as: 
 
Digital I/O 

 digitalWrite( pin, value ) 
This function can be called on any pin that has been configured as an 
output.  The value can either be HIGH or LOW.  This function will also be 
used to pull up resistors when a pin is set as INPUT. 
 
We will use this in our microcontroller when we want to start the engine, 
disable alarm, lock or unlock doors, pop trunk, roll down windows etc.  All 
of these actions will require voltage being applied to certain wires in the 
car. 

 

 digitalRead( pin ) 
This function is meant to read the value from the specified pin.  The return 
value will either be HIGH or LOW.  If the specified pin isn‟t connected to 
anything, the return value can either be HIGH or LOW and can change 
randomly. 
 
We will use this method while interfacing with the ELM.  We will need to 
read pins in the hand shaking mechanism provided to us by the ELM and 
discussed in section 8.1. 

Analog I/O 

 analogRead( pin ) 
This function reads the value from the specified analog pin.  The board 
contains a 6 channel 10-bit analog to digital converter this means that it 
maps input voltages between 0 and 5 to integer values between 0 and 
1023. 

 

 analogWrite( pin, value ) 
This method will write an analog value to a pin (PWM wave).  After a call 
to this function, the pin will generate a steady wave until the next call. 
 

Advanced I/O 

 shiftOut( dataPin, clockPin, bitOrder, value ) 
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This function shifts out a byte of data one bit at a time.  Each bit is written 
to the data pin, at which point the clockPin is toggled to indicate that the 
bit is available.  This is known as a synchronous serial protocol and is a 
common way that micro controllers communicate with one another. 
 
The dataPin is an int value that represents the pin to output each bit.  The 
clockPin is an int value that is toggled once the dataPin has been set.  The 
bitOrder can be either MSBFIRST or LSBFIRST and signifies the order in 
which to set the dataPin.  The value is a byte and is the data to shift out. 
 
We will likely use this method when communicating OBD-II requests 
between our microprocessor and the ELM-327.  In addition to this function 
there are several other functions that are used for interfacing the Arduino 
with other devices.   

 Serial.begin( speed ) 
 Serial.available() 
 Serial.read() 
 Serial.flush() 
 Serial.print() 
 Serial.println( data ) 

 
The functions above communicate happens via the Arduino board‟s serial or 
USB connection and on the digital Tx and Rx pins. 
 
In addition to these functions listed and explained above, there are many other 
simple Arduino functions available that may be used when programming the 
board that will not be discussed here in this document. 

 
 
 
9.6 Data Types and Other Syntax 

Because the Arduin language is based off of C, most of the variable types that 
are available in any C language program are available when programming an 
Arduino board.  The following is a list of the available data types: 
 

 boolean 

 char 

 byte 

 int 

 unsigned int 

 long 
 

 unsigned long 

 float 

 double 

 string 

 array 
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Also, control statements such as if statements, for loops, while loops, and switch 
statements are all available in the Arduino programming language.  Syntax for 
writing and calling functions is similar to C and does not need to be documented 
in this paper. 
 

10.0 PCB Design 

Since one of the goals of this project was to combine both the ELM327 and the 
MCU that controls the car both on the same chip, it is necessary to use PCB 
software.  As mentioned in a prior section, we chose Cadsoft‟s EAGLE PCB 
Layout Editor.  We have the schematics for both the Arduino board we are using 
and the ELM327 chip.  The schematics for each component will be discussed in 
the following sections, followed by the final schematic. 
 

10.1 Arduino Board Schematic 

The figure 10.1.1 shows the schematic of the board we will be using to program 
the MCU as well as what we are basing our final PCB off of.  The left half of the 
schematic shows where the Bluetooth chip will ultimately go.  The right half 
shows the MCU. 

 

Figure 10.1.1 – Arduino Board Schematic- Printed with permission 
 
The board shows all the wiring needed to put it on a PCB.  As discussed in the 
“Interfacing the MCU” section in section 8, we will make a connection between 
the Tx and Rx pins on the board and the Tx and Rx pins on the ELM chip.  These 
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Tx and Rx pins are pins 0 and 1 on the Arduino board and are the first two pins 
starting from the bottom. 
 
The image of the board (.brd) file can be seen in figure 10.1.2.  The Tx and Rx 
pins on the actual board are visible as the first two pins from the top right.  On the 
final board file, we will see a connection made between these pins and the 
corresponding pins on the ELM chip. 
 
The board file below can be compared to figure 9.1.1. The only difference is the 
Bluetooth module instead of the USB port; however, this board file shows where 
all the wirings and interconnections lead. 
 

 
Figure 10.1.2 – Board File for Arduino Board – Printed with permission 
 

10.2 ELM327 Schematic 

The figure 10.2.1 shows the ELM327 schematic and the different connections 
between the different pins on the ELM chip.  The Tx and Rx pins, which is what 
we will be concerned with are labeled pins 1 and 4 on the top left schematic.  We 
will make a connection between these pins and the Tx and Rx pins from on our 
MCU as mentioned above. 
 
The actual ELM327 will be purchased preprogrammed; the schematic below will 
be used when designing the PCB in order to make proper connections with the 
MCU and Bluetooth. 
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Figure 10.2.1 – ELM327 Schematic  

 
The image in figure 10.2.2 is the board file for the ELM327, this image shows the 
connections between the different components of the ELM chip.  The actual ELM 
has 28 output pins and the board file shows where each of these pins are tied to. 
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Figure 10.2.2 – ELM board File 
 

 
10.3 Final Design 

This section will detail the final design by describing the parts that were used and 
why they were selected.  The schematic for the final design is pictured in figure 
10.3.1 below. 
 
In the figure, we show the MCU which is on the right side of the schematic.  We 
too the pins and connected them to outputs from the EAGLE library called 
“pinheads.”  We made sure to connect the Tx and Rx pins on from the MCU to 
the Bluetooth chip.  We also had to connect the Tx and Rx to the ELM327 so that 
it can transmit and receive data to and from the MCU. 
 
The ELM327 chip from the schematic below was taken directly from the ELM 
data sheet schematic.  The Bluetooth chip is connected the same way as the 
Arduino BT board which is what we will be using for testing.   
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Figure 10.3.1 – Final PCB Design 
 
 

11.0 OBDII Reader Functions 

11.1 Reading 

In order to read any data from the OBD a request must first be made to the OBD 
so that it may respond. However, because our system has other functions 
integrated into it such as starting the car, unlocking doors and rolling down 
windows, the request will actually first be sent from the phone to the 
microcontroller and from the microcontroller to the ELM327 which will translate 
that information into the proper string following the protocol that the OBDII port 
can read. Finally, the ELM327 will send the translated string the OBD and then 
the response from the OBD will then traverse back up its sent path. The request 
will be a string which will usually be 2 bytes. The first byte will indicate the mode 
01 – 09 and the second will be the PID depending on what mode the request 
sent is as some requests do not require PIDs. From there the OBD will then send 
a response. The first byte of the response will indicate the mode. However, 40 
must be subtracted to obtain the actual value of the mode. The next byte may 
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indicate the PID depending on the mode or it may begin the data. The response 
data will contain up to 7 data bytes that are important to deciphering what data 
the OBD Most of the data received must be converted in order to be shown in the 
proper syntax. The request string must fit the form as described in figure 
11.1.1a: 

 Mode PID 

Request XX YY 

   Figure 11.1.1a – Request to ELM 327 
 
In the figure above XX and YY each describe a 2 digit hexadecimal number. The 
second hexadecimal number labeled as the PID is not needed in certain mode 
requests such as mode 03. The data received is also of a specific format shown 
in figure 11.1.1b: 

 Mode PID Byte A Byte B Byte C Byte D Byte 

E 

Response XX YY ZZ AA BB CC DD 

   Figure 11.1.1b – Request to ELM 327 
 
For most responses only byte A will contain a value. The other bytes will be 
padded with 0‟s however for some responses 2 bytes are taken up and for error 
codes all bytes may be used including extra lines depending on how many error 
codes are found in the vehicle. The string will be read as “XXYYZZAABBCCDD” 
in which case the data must be split by every 2 characters to be deciphered. The 
data also contains header bytes that are to be stripped out because they are not 
necessary to send and receive data from phone to ELM327 to OBD and back. 

The OBDII port on a vehicle can show three kinds of data:  Diagnostic Trouble 
Codes (DTCs), real-time data, and freeze frame data. Freeze frame data relates 
to a sort of “snapshot” of all the real-time data fields during a DTC error condition. 
Usually mechanics will use this to help diagnose exactly what is the error that 
caused the check engine light to display. For the following section however we 
will be discussing real-time data and Diagnostic Trouble Codes. Real-time data 
will relate to the data that comes from the various sensors on a vehicle. This 
includes just about all the functions displayed in all the sections labeled 
11.1.x.where “x” is any of the corresponding subsection numbers. Diagnostic 
Trouble codes are error codes that occur when something in a vehicle 
malfunctions and can be used to help repair a vehicle or prevent a vehicle from 
needing a costly repair. Therefore, the ability to diagnose and repair these 
problems is greatly needed.  This section will go into great detail in discussing 
the different values that the OBD reader will grab from the OBDII port and how 
this will be implemented. 
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11.1.1 Preface 

All of the OBD functions will be coded in one package called function. Specifically 
it will be called org.obddroid.function because of how android packages are 
declared. The function package will consist of all the function objects. The 
functions objects purpose are to hold the protocol of what string needs to be sent 
to the OBD to determine the value of the data the user wishes to obtain and to 
convert the data received by the OBD to the proper value that the user needs. 
The following sections detail how the functions must be translated and how they 
need to be implemented. The sections will also contain information on what 
methods will need to be overloaded and what methods will not. Also they will 
discuss how the constructors for each of the function objects should look and 
they relation between the functions and the super classes to them.  

Before we begin discussing about the specific functions, the hierarchy of the 
classes must first be described. The main class at the top of the food chain will 
the ObdFuntion( ) class. Some function objects will directly inherit from this class 
although others will inherit from yet another class that inherits from this one. 
Therefore, the next level in the food chain will consist of ObdTempOBDFunction( 
) ObdPressureFunction( ), and ObdNumFunction( ), which will all extend 
OBDFunction( ).The functions that give integer results will be extending 
ObdNumFunction( ) while the functions that provide data about temperature will 
extend ObdTempFunction( ).Finally, the functions that supply information about 
pressure in the system will extend PressureOBDFunction( ). Still some classes 
will extend directly to ObdFuntion( ). The three super classes will contain generic 
methods that may be overridden depending on the function, if not it is assumed 
that the function will utilize the generic method. The class diagram in figure 
11.1.1a visually displays this hierarchy and shows the variables and methods of 
each class.  

In figure 11.1.1a the number above the classes represents the section in which 
that specific class will be discussed. All the inheritance relations will be depicted 
in the class diagram. Within each section the definition of what the function is 
displaying and what that value that is coming out of the OBD means in relation to 
the automotive world. Then the next topic to be discussed will be the string that 
needs to be sent to request for data from the OBD followed by how the string that 
the OBD will respond with should be displayed. Next will be the discussion on 
how the data value will be translated to a numerical digit. Also any formulas on 
how to translate this value to the proper value and the proper units based on the 
users decision. Finally a discussion on how the function relates to the figure 
shown along with how certain methods may be overloaded and how all the other 
methods will be used. 
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Figure 11.1.1a – Class Diagram of org.obd.function package 

 

+run()
+sendFunc(in func : String)
+readResult()
+formatResult() : String
+getFunc() : String
+getDesc() : String
+getUnit() : String
+getImpUnit() : String
+setInput(in in:InputStream)
+setOutput(in out:OutputStream)
+getInput()
+getOutput()

+desc : String
+func : String
+buff: ArrayList
+unit : Integer
+impUnit : Integer
+in: InputStream
+out: OutputStream

ObdFunction

: InputStream
: OutputStream

+transform() : Integer
+getImpUnit() : Integer

TempObdFunction

+formatResult() : String
+transform(in b : Integer) : Integer

PressureObdFunction

AirIntakeTempFunction CoolantTempFunction IntakeManifoldPressureFunction

+transform(in b : Integer) : Integer

FuelPressureFunction
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11.1.2 OBD Function 

This class will extend Thread and overwrite the run( ) method. The run method 
here will simply send the function to the OBD and read the result and store the 
values accordingly. Some classes may override the OBDFunction( )‟s run 
method, although most will simply use this. The reason for it being a thread with 
a run method is that most of the data that these functions require are live data 
and must continually be updated. The constructor for the OBDFunction( ) class 
will have a header similar to this OBDFunction( )(String func, String desc, String 
unit, String impUnit), where func will represent the code for the function that must 
be sent to the OBD, desc is the description or name of the function,  unit will be 
the units that we use in the United States for the function and impUnit would be 
the Imperial units that they would use in places like the UK. An array list called 
buff must also be included that will act as a buffer when the bytes are read from 
the OBD. It will translate the values read in from a string to byte form. 

A few of the other methods in OBDFunction( ) are sendFunction( ), readResult( ) 
and formatResult( ).  FormatResult( ) is a method that some functions will 
override. If a function does not override this method then the function will just 
remove the space that is in the beginning of the result string. SendFunction( )  
simply sends the functions code to the OBD and readResult( ) will pull in the data 
the OBD sends in response to sendFunction( ). Some of the other methods 
involved in this class will be to simply return the value of the variables. When 
data is read and written from the OBD we must implement an input stream and 
output stream. In java an input stream reads the bytes written in from a source, 
while an output stream is a way of writing data out to a source in byte sequence. 
Therefore we will need a variable of InputStream type named in and one of 
OutputStream type named out. We will also need methods to set and get the 
input stream and output stream hence the methods: getInput( ), getOutput( ), 
setInput( ), and setOutput( ). These methods will stay apart of this super class 
and are not to be overloaded by any child classes. 

11.1.3 Temperature OBD Function 

This class will be used for those classes that have to deal with temperature. 
Currently, there are two classes that inherit from TempOBDFunction( ). Those 
classes are AirIntakeTempOBDFunction( ) and CoolantTempOBDFunction( )( ). 
Some vehicles may have the ability to send information on more temperatures, 
such as oil and transmission temperature. Since this is the case, programming 
the system in this way allows for easy addition of those simple methods. 
TempOBDFunction( ) uses the methods from OBDFunction( ) except for 
getImpUnit( ), which this class overwrites. Within this classes getImpUnit( ) 
method we have the formula for converting from degrees Celsius (°C) to the unit 
we use in the United States, Fahrenheit (°F), which is temperature in Celsius 

times 9, then divided by 5, finally you add 32 to that value, or in other words    
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             . TempOBDFunction( ) also contains the method transform( ), 
whose job is to convert the byte striped from the OBD‟s response to a 

temperature value by offsetting the number by 40. In other words              

      –    . Classes that inherit from this class should not need to overload any 
methods and should only need to show what its command string that must be 
sent to the ELM327 is. 

11.1.4 Number OBD Functions 

IntOBDFunction( ) as described in figure 11.1.1a  is the class in which many of 
the other classes inherit from. This class contains methods that the other classes 
below may inherit from. This class also contains the formatResult( ) method, 
which it overload from its parent class OBDFunction( ). The formatResult( ) 
method in this class which will grab the second byte from the result string and 
convert it from hex to decimal then converts that value to a string and returns it 
with the units appended to the end of it depending on whether the user has 
chosen an imperial or metric unit. The method transform( ) is a method that other 
classes may override to use formulas to convert the string received from the 
OBD to a proper value. The next methods are getUnit( ) and getImpUnit( ) are to 
be overwritten if the class needs to perform any conversions to change from 
metric to imperial units. If not these methods simply return the same value based 
on what transform( ) returns. 

11.1.5 Pressure OBD Functions 

Figure 11.1.1a shows that PressureOBDFunction( ) currently only has two 
subclasses. Those two classes are IntakeManifoldPressureFunction( ) and 
FuelPressureFunction( ). Fuel pressure has an equation to translate its data 
therefore it will overwrite the transform( ) method. Otherwise the classes simply 
use the methods supplied in this class. The transform( ) method in this class 
doesn‟t do any calculation and will just return the value that is stripped from the 
second byte of the OBD response string. The formatResult( ) method is the one 
that needs discussion. This method will either return the value that was grabbed 
from the OBD response converted from hexadecimal to decimal or if the user has 
chosen imperial units will divide this value by 101.3 to convert it from kilopascals 
to atmosphere. There may be other values that can be obtained from the OBD 
about pressure in the system as time goes on therefore, the hierarchy described 
here allows for easy introduction of a new function that obtains data from the 
OBD about the pressure on the system. 

11.1.6 Timing Advance 

This refers to the Ignition timing advance on cylinder #1 of a vehicle which is 
when a spark will occur in relation to where the piston is positioned. This spark is 
usually delayed to give the air-fuel mixture time to burn. Timing Advance is 
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typically measured in degrees before top dead center or °BTDC. Proper timing is 
necessary to how long the engine lasts along with fuel economy and 
performance.  Getting this value just right is essential to proper vehicle operation. 
Many hours are spent trying to figure out the proper timing of a specific vehicle, 
however this should be left to experts as improper timing can be fatal to an 
engine. 

Timing Advance is PID 0E in mode 01.Therefore the string sent to the 
microcontroller needs to be “010E”. Figure 11.1.6a depicts how this string will 
look: 

 Mode PID 

Request 01 0E 

   Figure 11.1.6a – Timing Advance Request 
 
And the OBD will send a response that the ELM327 will send to the 
microcontroller and then to the phone will look like figure 11.1.6b with the XX 
replaced by a hexadecimal value: 

 Mode PID Byte A Byte B Byte 

C 

Byte 

D 

Byte E 

Response 41 0E XX 00 00 00 00 

Figure 11.1.6b – Response to Timing Advance Request 
 

Where 41 indicates that this is a response to a mode 01 request, the request 
being of PID 0E and XX representing the hexadecimal value of the timing 
advance that must be divided by 2. The value is also offset by 64 therefore this 
value must be subtracted to get the correct timing. So, the formula for timing 
advance becomes: 

                               –     

The Timingadvance( ) function drawn in figure 11.1.1a depicts that this function 
inherits directly from  the OBDFunction( ) class. The reason for this is that it has 
no other units besides degree, so it does not need to be converted to different 
units for imperial and metric measurements. Timingadvance( ) does however 
need to overload two methods from OBDFunction( ). Those methods would be 
formatResult( ) and transform( ). The transform( ) method will take in an integer 
as its parameter, which will be the data value achieved from the response to the 
OBD function, and transform( ) that value using the formula above. The method 
will then return that calculated value. Finally, formatResult( ) will handle the task 
of taking that value and converting it into a readable string that will be displayed 
in the GUI. The value will be formatted as a number with one decimal value 
following and then converted to a string to be displayed. 
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11.1.7 Engine RPM 

RPM refers to the revolutions per minute that the crankshaft on a vehicle is 
rotating. It is normally measured in thousands of revolutions and displayed on a 
gauge on a vehicle. However, some vehicles do not include this although it is 
very necessary to ensure you do not over-heat the engine and to aid in 
economical and performance driving. In essence the higher the RPM the more 
heat will be produced along with more speed, less RPM will produce less fuel 
consumption and less acceleration. 

RPM is PID 0C in mode 01 which represents the string “0C01”.Therefore, the 
request string to the OBD should be of the form described in figure 11.1.7a 

 

 

Figure 11.1.7a – Engine RPM request 

The request above will only get a response from the OBD if the engine is running 
because if they engine is not running the Engine RPM cannot be displayed as 
the engine is not turned on. If the engine is running the OBD will respond with a 
string that can be decoded using figure 11.1.4b: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 0C XX YY 00 00 00 

Figure 11.1.7b – Response to Engine RPM 
 

Where 41 indicates mode 01 (41 – 40 = 01), 0C representing PID 0C and XX YY 
begin a two byte hex number which must be converted. In order to convert this 
number you must first transfer the number from hex to an actual decimal. After 
that you must divide this number by 4 because RPM sent from the OBD is sent in 
increments of ¼ RPM, therefore the formula will be as follows: 

                           

The EngineRPMFunction( ) shown in figure 11.1.1a is a class that inherits from 
IntOBDFunction( ) as it is a numerical function that must be transformed. This 
function however only has one unit value and need not overload the getImpUnit( 
) method shown in OBDFunction( ). This class will however need to overwrite the 
transform( ) and formatResult( ) functions. In its transform( ) function the class 
will take in two parameters, the first byte of data and the second byte of data 
from the OBD, and use the formula found above to translate those two bytes into 
the proper numerical value for the engines RPM. Objects of this class will also 
overwrite the method formatResult( ) by using this method to return a string of 

 Mode PID 

Request 01 0C 
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the engine RPM value retrieved by transform( ) as a 4 digit value with no 
decimals following. This will be used to display as a number (in revs per minute) 
and on a gauge similar to the tachometer on many cars today inside our GUI if 
the user selects to view this value. 

11.1.8 Coolant Temperature 

Engine Coolant Temperature or (ETC) will display the temperature of the coolant 
that runs through the engine. If this gets to hot the engine will overheat and 
become inoperable therefore this is an important component to be monitored. 
Our system will have this displayed as a number that will show blue when the 
coolant is cold, white when it is at normal operating temperature and it will 
display red when the coolant becomes too hot and may cause the engine to 

malfunction. The white level will be anywhere in between 180℉ and 210℉ 
anything lower will be blue and any higher will be red.  We may also introduce a 
warning signal that will display if the coolant hits anything above 250℉. Also, 
running an engine at improper temperatures will hurt performance and fuel 
consumption. 

In order to request data from the OBD about the coolant temperature, which is 
PID 05, one will need to send the request in the form of a string representative of 
the two columns displayed in figure 11.1.8a below: 

 Mode PID 

Request 01 05 

   Figure 11.1.8a – Coolant Temperature Request 
 
This indicates the string “0105” will be the string sent to the OBD. Following the 
request, the response from the OBD will need to be as shown in figure 11.1.8b 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 05 XX 00 00 00 00 

Figure 11.1.8b – Response to Coolant Temperature 
 

Where 41 indicates that it is mode 1(41 – 40 = 1), 05 shows that it is PID 05 and 
XX represents a number in hex that will represent the actual temperature of the 
coolant in degrees Celsius. This number however is offset by 40 from the actual 
value to allow for temperatures below zero. For example, if XX was say 7B then 
that would equal 123 decimal but the actual coolant temperature would be 123 
minus 40, which equates to 83 degrees Celsius. Thus the formula should be: 
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CoolantTempOBDFunction( ) will extend TempOBDFunction( ). It will use the 
convert( ) and getImpNum( ) methods from TempOBDFunction( ) to convert it to 
the proper temperature value and proper unit. The CoolantTempOBDFunction( ) 
class will contain its constructor that calls the constructor of the class in which it 
inherits. The constructor will need to show the function string as “0105” and the 
description string as “Coolant Temperature” therefore its constructor will be 
super(“0105”, “Coolant Temperature”, “C”, “F”);.  

11.1.9 Throttle Position 

When the accelerator in a vehicle is pressed the throttle must move open and 
allow air to pass through. Throttle position refers to the exact location of the 
butterfly valve in the throttle which either lets more or less air into the engine. 
This is typically measured by a potentiometer attached to the butterfly spindle on 
the throttle body. More air will result in more combustion and greater 
acceleration. WOT refers to wide open throttle meaning the throttle position is 
maxed out and the vehicle will accelerate hard. They value outputted by the OBD 
will actually be represented as a percent (%) of WOT where 100% would mean 
you are “putting the petal to the metal” or in other words have the acceleration 
pedal depressed completely.    

The request needed to be sent to obtain the Throttle position from the OBD must 
be of mode 01 and PID 11, therefore the request to be sent to the device should 
look like the following figure 11.1.9a: 

 Mode PID 

Request 01 11 

   Figure 11.1.9a – Throttle Position Request 
 
Then the OBD will respond to the request for the Throttle Position with a bit string 
formatted to fit the form of figure 11.1.9b below: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 11 XX 00 00 00 00 

Figure 11.1.9b – Response to Throttle Position 
 

Where 41 dictates mode 01, 11 is the PID and XX represents the hexadecimal 
value for the Throttle position that must be formatted by multiplying .3922. This 
value will come in as a percent (%). This implies the formula to find Throttle 
Position: 
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ThrottlePositionFunction( ) according to figure 11.1.1a will inherit from 
IntOBDFunction( ), which in turn inherits from the main class OBDFunction( ). 
ThrottlePositionFunction( ) will overload the transform( ) method found in 
IntOBDFunction( ). It will take in an integer as a parameter and use the formula 
above to return the percent value of the throttle position. Since percent is the only 
unit used, the methods getUnit( ) and getImpUnit( ) are going to remain the same 
and will return only the transformed value. Also the formatResult( ) method 
doesn‟t need to be overwritten either because it will use the format as defined in 
IntOBDFunction( ) which is to grab the one byte value out of the return header 
and store that in an integer variable b and then call transform( ) on b storing it 
into a variable then returning a formatted string that contains the value with no 
decimal places followed by the unit of the value in either imperial or metric 
depending on the users selection. In this case though, either selection will 
provide the unit of percent or %.  

11.1.10 Fuel Level 

The Fuel Level will designate how much fuel is left in the vehicle. This will be 
displayed as a graphic gauge that will show green when over 75%, yellow when 
between 75 and 50, orange between 50 and 25 and red when below 25. We can 
use the fuel level value to help determine other parameters. One such parameter 
will be the cruising range. Depending on the average miles per gallon you can 
multiply that by the amount of gallons left in the car, which can be found by 
multiplying fuel level by the vehicles fuel capacity in gallons, to get an estimated 
amount of miles the car to drive before it needs a fill up. 

To get this value from the OBD the signal that needs to be sent must mode 01 
and PID 2F.Therefore it will be in the form depicted in the following figure 
11.1.10a: 

 Mode PID 

Request 01 2F 

   Figure 11.1.10a – Fuel Level Request 
 
The OBD will respond to the request for the Fuel Level with a bit string that must 
be fit to the figure 11.1.10b below: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 2F XX 00 00 00 00 

Figure 11.1.10b – Response to Throttle Position 
 

Where 41 indicates that this is a response to a mode 01 on PID 2F and XX will 
represent the Fuel level in a percentage of nominal fuel tank. However this value 
must be formatted by using the following formula: 
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Using this formula the FuelLevelFunction( ) class will overwrite the transform( ) 
method found in IntOBDFunction( ). This indicates that FuelLevelFunction( ) will 
directly inherit from IntOBDFunction( ) and indirectly inherit from OBDFunction( ) 
through IntOBDFunction( ) as described in figure 11.1.1a above. 
FuelLevelFunction( ) is similar to ThrottlePositionFunction( ) because it has only 
one unit in either imperial or metric units, therefore it will not overload the getUnit( 
) or getImpUnit( ) methods. So, it will simply return the transformed value after 
formatResult( ) is called. And since formatResult( ) need not be overloaded 
either, the fuel level value will be a string that contains the value of the fuel level, 
without a decimal, followed by its unit which is percent (%) regardless if the user 
has chosen to view imperial units or metric units. 

11.1.11 Time since Engine Start 

This indicates how many seconds it has been since the engine has been started. 
This value will be a two bit number displayed as seconds since start. The display 
will be a string formatted to display in the form “hh mm ss”. Where hh is hours, 
mm is minutes and ss is seconds. The conversion of this will be discussed below 
when the formatResult( ) method is explained. The request for this data to be 
sent to the microcontroller to the ELM327 from the android device needs to be of 
Mode 01 and on PID 1F so the request will be described in figure 11.1.11a: 

 Mode PID 

Request 01 1F 

   Figure 11.1.11a – Engine Runtime Request 
 
And the response to the request for the engine runtime from the OBD will be 
returned as described in the following figure 11.1.11b: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 1F XX YY 00 00 00 

Figure 11.1.11b – Response to Engine Runtime 
 

Where 41 indicates mode 01 and 1F is the PID and XX is the first byte of the time 
and YY is the second byte. Since engine runtime is a value based on time the 
minimum value will be 0 and the maximum value for this will be 65,535. Since the 
value comes in as 2 bytes the value will need to be formatted so it will display 
them properly. The formula should be as follows: 
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Looking at figure 11.1.1a one can see that EngineRunTimeFunction( ) inherits 
directly from OBDFunction( ). This is because the value calculated is a time value 
that must be formatted differently than any other function. Since the formula 
above only returns the runtime as seconds one must use formatting techniques 
to show this in hours minutes and seconds. This will be achieved by using a mix 
of integer division and modulo division. To get hours you will take the value in 
seconds (sec) and integer divide it by 3600, in other words hours = sec/3600. 
Then, to get minutes you must take the remainder of that and divide that value by 
60, so minutes = (sec%3600)/60. Finally, to find how many seconds you only 
need to see how many seconds are left over when dividing the entire value 
received by 60, or seconds = sec%60. Then we put these values together 
separated by a space. This will all be coded into the formatResult( ) method. All 
the other methods will remain the same, and since this does not inherit from 
IntOBDFunction( ) or TempOBDFunction( ), there is no getUnit( )or getImpUnit( ) 
method to worry about. 

11.1.12 Air Intake Temperature 

This value comes from the air intake sensor and displays the exact temperature 
of the air in the air intake that goes to the engine. The hotter the air going into the 
engine the less dense the air will be and cause the vehicle to burn less gas, 
however this can result in poor performance and potential harm in the engine 
overall. Colder air is denser and causes the car to burn fuel more steadily 
(richer). This will hike up performance and save the engine which is the reason 
cold air intakes for vehicles are so popular. The value of this data is very 
dependent on the temperature of the air outside the engine so finding a nominal 
value for this temperature will be difficult as the temperature of the environment 
fluctuates. 

To request a response for the Intake Air Temperature from the OBD one will 
need to send data that displays mode 01 and PID 0F, therefore the string sent 
will be “010F”.So the string will need to be in the form displayed in figure 
11.1.12a below: 

 Mode PID 

Request 01 0F 

   Figure 11.1.12a – Air Intake Temperature Request 
 
And the OBD will respond with to the request for the air intake temperature with 
its information string shown in figure 11.1.12b.  

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 0F XX 00 00 00 00 

Figure 11.1.12b – Response to Engine Runtime 
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Where 41 is mode 01 and 0F dictates PID 0f. Finally, XX is the temperature of 
the air in the Air Intake in degrees Celsius. However this temperature is offset by 
40 and must be formatted to display properly by using this simple formula: 

                                       

This function will extend TempOBDFunction( ) because it is based on 
temperature. It is formatted the same as other temperature functions and can be 
read as either Celsius or Fahrenheit depending on the user‟s choice. Therefore, 
the class for this object function need only contain its constructor that has “010F” 
as its function String and “Air Intake Temperature” as the description string. In 
other words the constructor will only contain this line:  “super(“010F”, “Air Intake 
Temperature”, “C”, “F”);.  

11.1.13 Speed(MPH, KPH) 

Speed is the most obvious function of the OBD reader. It will show the speed the 
car is currently going in both gauge form and a digital number similar to what is 
currently on the speedometer. It will be able to be displayed in miles per hour 
(MPH) and Kilometers per hour (KPH).  This data will come from the OBD and 
not from the accelerometer or the GPS on the phone such as other apps for the 
android. 

To find the Vehicle Speed the request sent to the OBD needs to be a mode 01 
request in PID 0D. Therefore the request string must look like the following 
figure 11.1.13a: 

 Mode PID 

Request 01 0D 

   Figure 11.1.13a – Speed Request 
 
Then the OBD will respond to the request for speed by responding to the data 
with a request string that resembles the following figure 11.1.13b: 

 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 0D XX 00 00 00 00 

Figure 11.1.13b – Response to Speed Request 
 

Where XX represents the hexadecimal speed of the vehicle in Kilometers per 
hour (KPH). However if we want the value of this data as Mile per hour we must 
multiply this number by .625 therefore the formulas for speed are: 
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SpeedFunction( ) extends the IntOBDFunction( ) method since it is a numerical 
value that can be expressed in either an imperial or a metric unit. The imperial 
unit for speed would be miles per hour while the metric unit can be read as 
kilometers per hour. The method getImpUnit( ) will respond with the imperial 
value if the user has chosen that as the units they wish to display in the options 
menu. SpeedFunction( ) does not overload any other methods therefore the 
transform( ) method will simply return the value that it is suppose to be and it will 
be formatted in a generic way using the formatResult( ) method.  
 

11.1.14 Mass Air Flow (MAF) 

Mass Air Flow indicates the rate at which the air is flowing into the engine. This 
value is import to calculate the engine load and determine how much fuel needs 
to be injected, when to ignite the cylinder and when to shift gears. This value is 
also useful to help calculate miles per gallon (MPG). The MAF will be displayed 
as a double value with the units in grams per second (g/s). 

To get this value from the OBD one must indicate a mode 01 request in PID 10 
therefore the resultant string will be in the form similar to figure 11.1.14a below: 

 Mode PID 

Request 01 10 

   Figure 11.1.14a – Mass Air Flow Request 
 
Then the OBD will respond to the request for the Mass Air Flow rate with a String 
in that is formatted like in figure 11.1.14b below: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 10 XX YY 00 00 00 

Figure 11.1.14b – Response to Mass Air Flow Request 
 

41 indicating that this is mode 01 and 10 showing what PID the response is for. 
XX and YY will represent the 2 byte data value as a response that must be 
converted and then divided by 100.Therefore the formula must be: 

               (
 

   
)  

            

   
  

Figure 11.1.1a depicts the MassAirFlowFunction( ) inheriting directly from 
OBDFunction( ). This class will utilize the methods of OBDFunction( ), however 
the class does not use the formatResult( ) method. Instead, it overloads this 
method and returns a string formatted to its own specification. Because, the 
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result achieved is 2 bytes we must first grab these two bytes from the returned 
string that came from the OBD. After retrieving these bytes and storing them in 
the proper integers we must then use the formula above to change it to the 
proper value. This value will be calculated as a double then returned as the string 
representation of that double. The units for Mass Air Flow are g/sec or grams per 
second. This is the only units for Mass Air Flow so whether the user chooses 
imperial or metric units that is the unit they will be viewing.  

11.1.15 Intake Manifold Pressure (MAP) 

Intake Manifold Pressure or MAP refers to the absolute pressure inside the 
intake manifold. This value is defined as the measure of the restriction to the 
airflow through the engine. As this pressure builds up it will be harder for the air 
to be forced into the engine. MAP can also be used to help obtain information on 
a vehicles instantaneous fuel economy. Since the MAP data is real time data it‟s 
continually changing values will be more useful for real time fuel economy rather 
than average fuel economy. This value is normally measure in kilopascals or kPa 
(Absolute). MAP may also be measured in atmospheric units (atm) if the user is 
viewing data in imperial units. 

 To retrieve this value one must send a request for mode 01 and PID 0B from the 
OBD. For example see figure 11.1.15a: 

 Mode PID 

Request 01 10 

  Figure 11.1.15a – Intake Manifold Pressure (MAP) Request 

The OBD will then respond to the request for intake manifold pressure (MAP) 
with this String of values to be deciphered shown in figure 11.1.15b: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 0B XX 00 00 00 00 

Figure 11.1.15b – Response to Intake Manifold Pressure (MAP) Request 
 

Where 41 and 0B indicate a response to a mode 01 PID 0B request and XX 
refers to the actual hexadecimal value of the pressure in the intake manifold. This 
is a straight up value and needs no conversion unless one would like the value 
displayed as atmospheric units instead of kilopascals. In which case you must 
take the value found and divide by 101.3 to achieve atm. Therefore, to convert 
from kilopascals to atmosphere the formula is: atmosphere = kilopascals/101.3. 

The formula above is used in the formatResult( ) function for 
PressureOBDFunction( ) shown in figure 11.1.1a. Also according to the figure 
one can see that IntakeManifoldPressureFunction( ) inherits from 
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PressureOBDFunction( ). This class does not overload any methods of 
PressureOBDFunction( ). It only has its own constructor that shows what units it 
has and what the string sent to the microcontroller should be. Since it is a 
pressure function its units will be the same as all other pressure functions so the 
conversion for this will be the same for other pressure functions as one will see 
with fuel pressure below.  

11.1.16 Fuel Pressure 

Fuel Pressure is defined as the pressure in which fuel is given to the fuel 
injectors by the vehicles fuel pump. A loss in fuel pressure can be very bad for 
performance. Low fuel pressure means that the fuel will not be put into the 
engine as quickly or efficiently as need be. This can result from a bad fuel pump 
a leak in the lines or a few other malfunctions in the fuel system. The nominal 
value for fuel pressure should be around 10 – 15 psi. This value will be displayed 
as a gauge and possibly as a numerical value as well. 

#change this and other PSI values to atm  

Fuel pressure is mode 01 PID 0A. So to get this value one must send this 
request string to the OBD on the vehicle shown in figure 11.1.16a: 

 Mode PID 

Request 01 0A 

   Figure 11.1.16a – Fuel Pressure Request 
 
And the OBD will respond to the request for the Fuel Pressure with its string that 
must then be formatted as shown in figure 11.1.16b: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 0A XX 00 00 00 00 

Figure 11.1.16b – Response to Fuel Pressure 
 

With 41 meaning that it is mode 1 and 0A showing what PID it is. Also XX 
represents the 2 digit hexadecimal representation of the fuel pressure. However, 
to obtain the actual absolute value one must multiply this value by 3 to receive 
the true value in kPa. This then gives us the formula to calculate fuel pressure 
as: 

                            

As with IntakeManifoldPressureFunction( ), FuelPressureFunction( ) also inherits 
from PressureOBDFunction( ) and it uses the formatResult( ) method from 
PressureOBDFunction( ). This class has the same units as well, which are 
kilopascals (kPa) and atmosphere (atm). The difference in this class from 
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IntakeManifoldPressureFunction( ), other than the string that must be sent to the 
OBD, is that in order to obtain the correct value a transform( ) must be done. 
Therefore, the transform( ) method of PressureOBDFunction( ) must be 
overloaded to include the equation above. This will mean that the transform( ) 
function takes in the value that is stripped from the OBD‟s response and converts 
it using the formula and then returns the converted value. Of course, this value 
may then be converted again in PressureOBDFunction( )‟s formatResult( ) 
method if the user has chosen to go with imperial units. 

11.1.17 Engine Load 

Engine Load refers to how much of the engine is being used. Specifically for this 
application it refers to how much percent of the total engine capacity is being 
used. This value is the ratio of the current airflow of the vehicle divided by the 
peak airflow. The current airflow is related to how much throttle you are applying 
on the vehicle at this current time while the peak airflow is the maximum amount 
of airflow the engine will ever be able to obtain. The value that is received will be 
a percent (%) that may be displayed as a numerical value and as a gauge 
depending on the users‟ selection.   

To obtain this value from the OBD the request that must be made must be of 
mode 01 and PID 04. Therefore the request will be the string shown in figure 
11.1.17a: 

 Mode PID 

Request 01 04 

   Figure 11.1.17a – Engine Load Request 
 
The OBD will then respond to the request for the Engine Load with the string in 
the form shown in figure 11.1.17b: 

 Mode PID Byte 

A 

Byte 

B 

Byte 

C 

Byte 

D 

Byte 

E 

Response 41 04 XX 00 00 00 00 

Figure 11.1.17b – Response to Engine Load Request 
 

The 41 represents mode 01, 04 means it is PID 04 and XX represents the data 
that was requested. The data will be a hexadecimal value that must be formatted 
to its proper value by multiplying by 100 and dividing by 255 so the formula will 
be: 
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EngineLoadFunction( ), shown in figure 11.1.1a  shows that it will inherit from 
IntOBDFunction( ) inferring that it is a numerical value that must be converted. 
However, since the units for Engine Load are percent (%), there is no need to 
overload the methods getUnit( ) and getImpUnit( ) found in the IntOBDFunction( ) 
class. But, the formula above does need to be implemented, so it will be put into 
the transform( ) method which this class will overload from its inherited class. The 
number will be formatted as described in IntOBDFunction( ):  a string 
representing the integer value. Therefore, it will not contain any values after the 
decimal point. 

11.2 Fuel Economy 

Fuel economy refers to the calculated fuel consumption of the vehicle. This value 
is calculated using data from the mass air flow (MAF) sensor and the speed of 
the vehicle. This value will be a double that represents how many miles per 
gallon the vehicle is getting at that instantaneous moment. This can be used to 
help a driver operate his/her vehicle more efficiently. The system will also save 
this data in order to create an average of the instantaneous values to get an 
average mile per gallon for the vehicle. Fuel Economy doesn‟t come straight from 
the OBD. Rather it‟s a value that will be calculated using the values that come 
out of the OBD. In order to calculate the fuel economy one must use the following 
formula: 

                    
                                      

                
, 

 14.7 = grams of air to 1 gram of gasoline, which is the ideal air/fuel 
ratio of most vehicles 

 6.17 = density of gasoline in pounds per gallon (lb/gal) 

 4.54 = convert pounds per gallon (lb/gal) to grams per pound (g/lb) 

 .621361 = conversion of kilometers per hour (KPH) to miles per 
hour (mph) 

 3600 = seconds per hour 

 100 = grams per second (g/sec) for mass air flow (Maf) 

 Speed = speed of vehicle, from OBD 

 Maf = mass air flow of vehicle from OBD 

The formula above will give u fuel economy in miles per gallon (MPG), however if 
one wants this value in metric units which is kilometers per liter (kml) one simply 
needs to multiply the value found in the formula above by .354013 or in other 
words:                                                . Now, in order 
to obtain the average fuel economy value, every time the fuel economy value is 
sampled one must log this value and then find the average of all the values in the 
log. More on logging can be found in the section 8 that discusses how logging of 
data will be implemented. 
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As we can see from figure 11.1.1a FuelEconomyFunction( ) extends 
OBDFunction( ) directly and overloads the run( ) and formatResult( ) methods. It 
also contains a runFunc( ) method whose job is to run a function that is specified 
in its parameter in order to obtain values from the objects created. In the case of 
this class there will be two objects, speed and maf, which will be then used to 
calculate the fuel economy value. In the overloaded run( ) method, the class will 
first create the two objects of SpeedFunction( ) and MassAirFlowFunction( ). The 
class will then call the sendFunc( ) method described earlier, then set variables 
for the speed and mass air flow by using each objects specific formatResult( ) 
method. Finally, the class will use the formula above to get the proper value. The 
last method, formatResult( ) overloads the formatResult( ) method in 
OBDFunction( ) and it will either return the value achieved in run( ) or if the user 
has picked metric units will multiply that value by .354013 to achieve the fuel 
economy in kilometers per liter. 

11.3 Battery Voltage 

If a vehicles voltage becomes too low it means that the battery is not operating 
properly and may need to be replaced. Our system will measure the voltage and 
report this back as a double in which yellow will indicate the battery operating out 
of normal voltage range and white being within normal range. 

*find out if high voltage is bad aswell 

Battery voltage is different the previous functions. The voltage from the battery 
can be determined by querying the ELM327 chip rather than by requesting this 
data from the vehicles OBD. The ELM327 has a long list of commands that it 
accepts and can change parameters for different operating conditions. All of 
these commands begin with the header “AT”, as does the command to retrieve 
the voltage from the car. When the command begins with AT the ELM327 knows 
that it must handle this request. To get the input voltage which is the voltage that 
the car battery contains one must enter this command to the ELM327 device 
shown in figure 11.3a below: 

 Mode PID 

Request AT RV 

   Figure 11.3a – Engine Load Request 
 
In which “RV” stands for read voltage. The ELM327 will then respond with a 3 
figure decimal value that represents the voltage. This value will be accurate down 
to about 2%. The value that should be displayed should be something similar to 
about 12.5V or so. 

Since BatteryVoltageFunction( ) is not the same as the other functions in that it 
gets its data from the ELM327 rather than from the OBD, it is not technically an 
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OBDFunction( ). However the method for it is still the same: send a request and 
translate the response. Therefore, we may have this function inherit from the 
OBDFunction( ) class and utilize the methods found in that class. Because, of 
this we will only need to overwrite one method instead of having to rewrite all the 
methods for doing the same procedures. The method formatResult( )( ) is the 
only one that need be changed. This method will now be changed to return the 
string representation of the double value that was returned by the ELM3211. The 
value is returned as a straight number therefore we do not need to grab bytes or 
convert it in anyway, the value simply needs to be converted to a string formatted 
to display the number with one digit following the decimal place. 

11.4 Error Codes/ Clearing   

Diagnostic Trouble Codes or DTCs are codes that occur when something in a 
vehicle becomes faulty such as a sensor or misfire. When an error is triggered 
the check engine light (CEL) on the vehicle shall turn on. To figure out this error 
normally one would plug in a SCANTOOL to read this data from the OBDII port. 
This data comes through as an error code that must be deciphered based on 
make and model of the car. After these codes are fixed the check engine light 
may still remain on until it is either reset through a lengthy complicated method of 
switching the vehicle on and off or by simply sending a signal from the reader to 
the OBDII port to clear it. DTC is one of the most appealing features of any 
OBDII scanner. The ability to then connect to the internet to find a solution almost 
instantaneously will also add to the value of this device.  

The first thing one would want to do when trying to read error codes is first find 
out how many faults are present. To do this we must do a mode 01 request on 
PID 01. In this case one must send the string represented by figure 11.4a below: 

  Mode PID 

Request 01 01 

   Figure 11.4a –  DTC Code Count Request 
 

Then the OBD will respond to the request with a string. This string will need to be 
converted because if the Malfunction Indicator Light (MIL) is on the most 
significant bit (MSB) in the third bit will be set to 1. The string sent by the OBD is 
represented by figure 11.4b: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 41 01 XX YY ZZ AA BB 

Figure 11.4b – Response to DTC Count Request 
 

41 indicates mode 01, 01 shows PID 01 and XX is the actual number of error 
codes. However one must subtract this number by 80 hex to find the actual true 
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number of error codes. This will only work of course if the check engine light is on 
because it will set the most significant bit or MSB to 1.The main use of this is to 
check whether or not the malfunction indicator light (MIL) also known as CEL is 
on or not. A better method however to find the number of error codes is to and(&) 
the hex value with 7f hex and that will return the number of error codes, in other 
words number of error codes = XX & 7f. Also, if you and that value with 80 and 
get 1 then you will know if the check engine light was on or not. The following bits 
after YY, ZZ AA and BB are bit mapped and are use to describe which tests were 
and were not supported and completed. 

After one determines the number of errors the next step is to find out specifically 
what those error codes are. To do this one simply sends a mode 03 request. 
Mode 03 requires no PID therefore, the string sent will simply be “03”. The 
response to this request from the OBD will be a bit string that is similar to what is 
represented in figure 11.4c 

 Mode PID Byte 

A 

Byte 

B 

Byte 

C 

Byte 

D 

Byte 

E 

Response 43 XX YY ZZ AA BB CC 

Figure 11.4c – Response to DTC Request 
  

43 indicates that it is a mode 03 request (43 – 40 = 3) and XX and YY is the 
actual trouble code read as XXYY. There may be more data to this in which case 
it is every 2 bytes that must be read in pairs to obtain what the codes are. A 
“0000” indicates padding and the end of the actual transmission. These pairs of 
values must be decoded first by replacing the first hex digit received using this 
chart: 

1ST Digit Replace 

w/ 

Description 

0 P0 Power Train Code – SAE defined 

1 P1 “      “ – Manufacturer  Defined 

2 P2 “    “ – SAE Defined 

3 P3 “    “ – Jointly Defined 

4 C0 Chassis Code – SAE defined 

5 C1 “      “ – Manufacturer  Defined 

6 C2 “    “ – Manufacturer Defined 

7 C3 “    “ – Reserved for Future 

8 B0 Body Code – SAE defined 

9 B1 “      “ – Manufacturer  Defined 
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A B2 “    “ – Manufacturer Defined 

B B3 “    “ – Reserved for Future 

C U0 Network Code – SAE defined 

D U1 “      “ – Manufacturer  Defined 

E U2 “    “ – Manufacturer Defined 

F U3 “    “ – Reserved for Future 

Figure 11.4d – Decoding of Error Codes 
 

For example, let us assume that the string sent by the OBD in a request for the 
trouble codes was “43013300000000”. Then we would separate the string out to 
fit the form of figure 11.3c. The resultant of this is depicted in figure 11.4e: 

 Mode PID Byte A Byte B Byte C Byte D Byte E 

Response 43 01 33 00 00 00 00 

Figure 11.4e - Example Response to DTC Request 
 

Then you would notice that it is a mode 03 response and that the next two bytes 
combined are “0133”. The first digit of this value is 0 which corresponds to P0 on 
the chart. Next, we must concatenate this value to the rest of the string to obtain 
P0133 as the error code. When one researches this error code one will see that 
this is the error code for “oxygen sensor circuit slow response”. Knowing what the 
error is one may now set in motion the appropriate methods to fix this fault. 

Finally, once the Check engine light is fixed one will want that light to go away. 
The only way to do this is to clear it through the OBD. This is achieved by simply 
sending a mode 04 request with no PID to the OBD. Once that request is 
received by the OBD the OBD will respond with the byte string “44” to indicate 
that it has received this and has completed the operation. However, one must 
wary of sending this command as issuing this command will perform all these 
operations: 

 Reset the number of trouble codes 

 Erase any diagnostic trouble codes 

 Erase stored freeze frame data 

 Erase DTC that initiated freeze frame 

 Erase oxygen sensor test data 

 Erase mode 06 and 07 information 

 However, it will not erase permanent (Mode 0A) trouble codes, which 
can only be reset by the ECU 
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The issue that may occur by doing this however is that the vehicle may not 
perform correctly as it recalibrates or “relearns” information that was necessary to 
run properly. After a short period however the vehicle should begin operating 
normally or at the very least begin to operate as it did before the reset request 
was issued. Also if what caused the check engine light was not fixed eventually it 
will turn on again as the car cycles itself. To avoid erasing all this data by 
accident the device will need to verify that the user really wants to erase the data 
by displaying a prompt that will explain what the repercussions of issuing this 
request may be and asking the user if they are certain they want to perform this 
task. 

DtcNumFunction( ) is the class that will take care of the first function discussed in 
this section. DtcNumFunction( ) will be the function that finds out exactly how 
many error codes are in the system and if the check engine light (CEL) has been 
activated. This function, according to figure 11.1.1a, will directly inherit from 
OBDFunction( ). This class will overload the formatResult( ) method found in 
OBDFunction( ) by returning a string that will say whether or not the check 
engine light is on followed by how many codes are in the system, using the 
formulas supplied earlier in this section. This method will not only set the amount 
of error codes in the system but it will also set whether or not the check engine 
light (CEL) is on or not. This class also contains two of its own functions 
getCodeCount( ) and getCelOn( ), which will return how many error codes there 
are and whether or not the malfunction indicator light is on respectively. After that 
object has been created and the code count is achieved the next step is to look 
to the ErrorCodesFunction( ) which will display the actual error codes 
themselves. Again this method also inherits from the OBDFunction( ) class but it 
creates a DtcNumFunction( ) object and uses this to get the amount of codes so 
that it may use it in its run( ) method, which this class overloads from 
OBDFunction( ). The run method here creates a DtcNumFunction( ) object, 
obtains the code count adds 2 to it and divides by 3,  code count +2 /3,  in order 
to obtain how many loops are needed to get all the error codes. We then check 
the first value of the error code change it to the proper letter and finally append 
the rest of code to it to obtain what the error code is and return each one using 
the overloaded formatResult( ) method. 

12.0 Logging 

The On Board Diagnostic system in a vehicle reports data in real time to the user 
based on certain requests as shown in all of section 11. However, the OBD has 
no way of saving this data to be viewed at a later time to see if there are any 
important changes when certain things have been done to a vehicle. For 
instance, if one has put an aftermarket part on their vehicle they can see how 
their average fuel economy was affected if this data was saved. Same goes for 
using different grades of gasoline. In order to achieve this, our system will need 
to implement a logging feature that will save away the data that was received 
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from the On Board Diagnostics on the vehicle. This will allow the user to view the 
date and time that the data was recording along with the actual value of that 
data. Also, the user will be able to calculate an average value and then clear that 
log to get a new data set that the user may use to put against their old log and 
see what changes have taken effect. This feature may also be used in the future 
to help further diagnose malfunctions in the vehicle. This can be useful in repairs 
and provide useful assistance to mechanics in the field. 

To implement this we will need to add a new log object that will be created every 
time data is read from the OBD. We will also need to create a new activity within 
the activity package to display the logs to the user depending on which log the 
user wants to see. Figure 12.0.a below shows a class diagram of how this 
system will be added to the current system. This is not the overall diagram 
though; it is merely enough of the class diagram to show what is necessary to 
this section of the entire system. It shows how the main activity class will interact 
with the log class and how the new log activity class will interact with the system 
as well. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
Figure 12.0.a - Logging Class Diagram 

+onCreate(in savedInstance: Bundle)
+onItemSelected()
+onNothingSelected()
+setText(in num : String, in clear : Boolean)
+onDestroy()
+onResume()
+onPause()
+updateTextView()
+setAirTemp(in airTemp : String)
+setCoolTemp(in coolant : String)
+setSpeed(in speedv : String)
+setRpm(in rpm : String)
+setFuelEconomy(in fuel : String)
+setEngineRunTime(in runTime : String)
+setTimingAdvance(in timingAdvance : String)
+setFuelLevel(in fuelLevel : String)

-powerManager: PowerManager
-prefs: SharedPreferences 

ObdMainActivity

+add(in value : String, in date : Date)
+clear()
+checkFull()
+removeOld()
+getAvg() : Integer

+fileName : String
+count : Integer
-value : String
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ObdLog
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n

+showLog(in fileName : String)
+onItemSelected()
+onNothingSelected()
+onDestroy()
+onResume()
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+fuelEconomy : ObdLog
+speed : ObdLog
+massAirFlow : ObdLog
+timingAdvance : ObdLog
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+coolantTemp : ObdLog
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From the diagram above we can see what methods and how each class relates 
to one another to create and view the logs. When a log is created it is added to 
the log file with the name of the value that the log contains. The log file will be a 
simple text file in which the first line will be the number of log entries and every 
line following will consist of the date and time the log was taken along with the 
value of the log. The first class that will be discussed is OBDLog( ). An OBDLog( 
) will consist of a string that denotes what the name of the log file will be and a 
count which will be the amount of logs inside the specific log file. The add( ) 
method in this class has the job of taking the specific logs date, time and value 
and adding it to the log file specified by file name. The add( ) method must also 
increase the count variable. Before add( ) does these operations it must first call 
checkFull( ), which will check if the log file has too much data in it. Since the data 
is all text a value of 10,000 or even more should not harm the performance of the 
system too much. Therefore, if the log has more than 10,000 values in it the 
system will then call removeOld( ) which will remove the first 5,000 values from 
the system so that more values may be added. RemoveOld( ) will then update 
count to reflect this change. The final method of this class is getAvg( ). This 
methods purpose is to sum up all the values in the log and then divide that by 
count to return the average of all the values. This average will then be displayed 
to the user in the OBDLog( )Activity( ) class. 
 
The OBDLogActivity( ) class consists of many OBDLog( ) objects. Not all the 
OBD functions will have logs tied to them. For instance, a log of the RPM values 
would not be informative as the RPM of a vehicle varies too rapidly. 
OBDLogActivity( ) is the class that deals with displaying the all the logs to the 
user along with the average value. Therefore, this class contains methods 
inherited from the Activity class such as; onDestroy( ), onResume( ), 
onNothingSelected( ) and onItemSelected( ). It will also contain onCreate( ) 
which is called as soon as the user selects the log item from the main menu. 
When onCreate( ) runs it will create a drop box of the different logs that the user 
may view. When the user selects a log the onItemSelected( ) method comes in 
and from there showLog( ) will be called. ShowLog( ) will display the log that its 
fileName parameter dictates. It will achieve this by simply opening the log file 
given by fileName and showing it to the user. The display will contain the last 20 
values entered in to the log file with a button to display the older values. The 
purpose of this is to improve performance as showing the entire log will take too 
much time and is usually not needed.  The system will then call the getAvg( ) 
method in the OBDLog( ) class to obtain the average and display that to the user 
as well. All the data is tied to text files that must be located in the android system. 
Therefore, if this file is not found the program should create a blank log file that 
must be filled. We will code the program to perform this check every time the 
program is run. 
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In order to add logs to the log file the OBD reader must be run and values must 
be read from the OBDII port. To do this the user must select the OBD Reader 
from the main menu in which case the ObdMainActivity( ) would be called. When 
ObdMainActivity( ) is called the onCreate( ) method is run which will create a 
view for the user based on the functions the user has chosen to run. Then the 
proper set methods will be called. Next the system will send and receive data to 
the OBDII port. When this happens the data received will be formatted and then 
displayed to the user within the set method. Each time the data is displayed an 
OBDLog( ) object will be created. That objects data will then be added to the 
specific log by using the add( ) method in OBDLog( ). This is how the log files will 
be filled up.  It is within the specific set method that this is done in order to ensure 
that the data goes into the proper log file. As the log files are filled up the user will 
then be able to switch to the log section and view the values entered. Also,  if the 
user chooses to view the values on a bigger screen the user only need to open 
the log file on a computer by either sending it to a computer or mounting the 
phone as a disk and viewing the log file on the disk.  
 

13.0 Other Functions 

Alongside the functions for reading data from the OBDII port discussed in 
section 7 this application will also be able to perform other functions thanks to 
the output ports on the microcontroller board. The application will also be able to 
roll up/down the windows, unlock/lock the car, start the car and possibly pop the 
trunk depending on if the vehicle has that feature. In order to do this we must first 
add this ability to the user interface of the android powered device. We then must 
add hardware with this capability to the chip that the android talks to and finally 
we must find the correct wires that deal with the functions discussed so that we 
may tap into those wires to implement these functions. The following sections will 
discuss how the software on the phone and how the hardware of the chip must 
be modified to allow these functions to be implemented for this application. 
 

13.1 Software Implementation 

Implementing these functions will require us to make a new protocol for these 
functions. What will happen is that when the user clicks for a function to be 
performed a message will be sent from the android device to the microcontroller 
and the microcontroller will then read the header and know what to do from there. 
Normally it will send the entire string to the ELM327, but if it receives the header 
of the protocol we have created the microcontroller will know that it must now 
handle the request by loading the proper voltages in the right ports. The chart in 
figure 13.1a below shows what the new protocol will be: 
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Function Header Data 

Unlock FC 01 

Lock FC 02 

Pop Trunk FC 03 

Panic FC 04 

Windows Down FC 05 

Windows Up FC 06 

Start FC 07 

  Figure 13.1.a - Protocol for Other Functions 

We can see that the header for this protocol is “FC” for all functions, therefore 
once the microcontroller reads the header is FC it will know it is to perform a 
function that is not on the OBD. It will then read the data and follow the 
instructions discussed in section 13.2 below. To perform these functions on the 
software side we must first create a menu that the user can see and use. The 
user interface is discussed in the GUI section above. To create the interface for 
the user we must add a class to the activity package in the android application. 
This activity labeled remoteStartActivity( ) will contain methods to create and 
handle the selections of the user. This class will create 7 objects from the 
org.obdDroid.otherFunction package. These 7 objects are:  unlockFunction( ), 
lockFunction( ), trunkFunction( ), panicFunction( ),  windowDownFunction( ), 
windowUpFunction( ) and startFunction( ). These functions will inherit from a 
super class otherFunction( ). The class diagram is shown in figure 13.1b below 
followed by a walkthrough of each class and how they are implemented together 
which includes a description of the methods and variables in each class and their 
purpose. 

 

 

  

 

 

 

Figure 13.1b  Other Functions Class Diagram 
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+onDestroy()

+unlock : otherFunction
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The first class from the figure above is the remoteStartActivity( ) class. When this 
class is run from the android device it will create the seven objects that inherit 
from the otherFunction( ) class. Next, remoteStartActivity( )‟s onCreate( ) method 
is called which will create the user interface. The onSelectedItem( ) method is the 
method that will be invoked when a user selects a function on the screen.  The 
way this works is that if the user selects an item onSelectedItem( ) will then call 
the sendFunc( ) method with the string specified in the protocol of the specific 
function that the user has selected as the parameter. SendFunc( ) will send that 
to the microcontroller to be evaluated and initiated. The sendFunc( ) method 
comes from the otherFunction( ) class in which all of the other functions will 
inherit from. This class will also contain the setInputStream( ) and 
setOutputStream( ) method that will send data to the microcontroller. Each class 
beneath the otherFunction( ) method really only needs its constructor which will 
contain the string of what its protocol should be as a parameter for instance, the 
string for the unlock( ) class is “FC01”, similar to the form of the OBDFunction( ) 
classes. 

 

13.2 Hardware Implementation 

In order to perform the functions discussed in this section we must tap the trigger 
wires located in various positions in the vehicle. The tap must come from the i/o 
port on the microcontroller. Depending on how the vehicle is wired the voltage 
that comes out of the I/O port must be either a positive trigger or a negative 
trigger. Positive trigger means that the voltage must be +12 where as negative 
trigger indicates that a -12 volt signal must come out of the specific port. For this 
project we will be using a 1998 Honda Accord LX. This vehicle is a negative 
trigger vehicle which means all the voltages that come out of the microcontroller 
need to be negative. The microcontroller will be programmed to hand both 
negative and positive triggering. Figure 13.2.a below depicts a chart that 
describes the location and color of the wire that needs to be tapped in order to 
perform the function indicated under the column called device. This chart is of 
course specific only to the Honda LX but the implementation will be similar for 
any vehicle. In order to tap the wires we must use a vampire tap as described in 
section x. This way we will not need to completely splice the wire on the vehicle 
and disturb the wiring of the factory system since this is just an add-on to the 
vehicle and not a replacement for any system currently on the vehicle. 
 

 PART   COLOR  LOCATION 

 12 VOLT CONSTANT   WHITE (+)    IGNITION SWITCH HARNESS  

 STARTER  BLACK/WHITE (+) See NOTE *1   IGNITION SWITCH HARNESS  

 IGNITION 1  BLACK/YELLOW (+)  IGNITION SWITCH HARNESS 
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 PARKING LIGHTS ( - )  RED/YELLOW (-)   @ STEERING COLUMN HARNESS  

 PARKING LIGHTS ( + )  RED/BLACK (+)   IN DRIVER SIDE FUSEBOX  

 POWER LOCK 
 BLACK/BLUE (Negative (-)) See 
NOTE *2  

 IN PASSENGER SIDE FUSEBOX  

 POWER UNLOCK  ORANGE (Negative (-)) See NOTE *2   IN PASSENGER SIDE FUSEBOX  

 DOOR TRIGGER  BLACK/WHITE (-)   IN PASSENGER SIDE FUSEBOX  

 DOMELIGHT SUPERVISION 
 USE DOOR TRIGGER, Requires Part 
#R30-H Relay  

   

 TRUNK RELEASE 
 WHITE/RED (+), Requires Part #R30-
H Relay  

 IN DRIVERS KICK PANEL  

 HORN  LIGHT GREEN/BLUE (-)   @ STEERING COLUMN HARNESS  

 BRAKE  WHITE/BLACK (+)   @ SWITCH ABOVE BRAKE PEDAL  

 FACTORY ALARM DISARM   BLUE (-) See NOTE *4     

 ANTI-THEFT 
 TRANSPONDER ANTI-THEFT 
SYSTEM, REQUIRES 791 BYPASS 
MODULE AND EXTRA IGNITION KEY  

 TRANSPONDER @ IGNITION 
SWITCH TUMBLER  

 Figure 13.2a - Honda Accord Wiring Chart 

Using the chart above we can now create a diagram of how the wiring from the 
chip to the vehicle should be. The diagram in figure 13.2b below will display 
where the wires will come from the chip and where they will go to the vehicle to 
perform these specific functions. Also we will place a clip on the wires from the 
chip to the car so that we can plug and unplug the wires to remove the chip so 
that we do not have wires hanging everywhere which will be shown in the 
diagram which we will refer to below:  

 

 

 

 

 

 

 

Figure 13.2c - Chip to Harness Diagram 
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The diagram above shows how the wiring of the system will be done. It shows 
which wires need to go to which port from the harness on the vehicle and it also 
includes the clip that we will use so that the wires may be disconnected for the 
chip to be easily removed. Although the chip doesn‟t exactly show how the 
microcontroller needs to be programmed. For instance if one wants to unlock and 
lock the car the microcontroller will need to send the -12 volt signal to the port 
that either unlocks or locks the car however, for starting the car first a signal must 
be sent to disarm the alarm, then the ignition and finally the starter which will 
then trigger the car to start. Also when the car locks we may also send the port 
for the parking lights with a -12 volt signal twice to initiate a blinking of the 
parking lights along with the signal going to the horn to initiate honk of a horn to 
indicate the car has been locked and one blink of the parking lights to indicate 
the car has been unlocked. Also we may use the horn to sound off when the 
panic button is hit, in which the port for the horn will be loaded with -12 volts in 
sequential succession, meaning that it will have -12 volts then 0 then -12 volts 
again. It will continually perform this pattern until another button is hit on the 
android device or the microcontroller is unplugged. We must remember that this 
sequence is specific to the Honda Accord, as some vehicles have an extra 
ignition that must be triggered before the car can start. Also some vehicles do not 
have a factory alarm while some vehicles may have an alarm system so complex 
that starting the car with this method simply cannot be done. However, this will 
work for many cars and will work for almost all cars with OBDII in the market with 
slight modifications. To allow for these modifications we will ensure that the chip 
has extra I/O ports in-case the vehicle would need them. 

One may notice however that the window up and window down function is not 
discussed in the chart or the diagram. To perform this we still need to load the 
port on the chip with a -12v output but it will need to tap into the vehicle in a 
different way.  Also because winding down the window is not just a single trigger 
the system will be programmed to load the port with -12 volts while the button is 
pressed rather than if the button is pressed. That way when the button is 
released the window will stop rolling down.  

Normally the way that the window works is that it is tied to the battery and when 
the switch is closed the circuit is closed because all the parts are tied to the same 
ground. While the circuit is closed the motor will run to wind the windows down. 
This wiring will be the same for the other windows as well as for the winding up of 
the windows. So, in order to roll the windows up/down we simply need to mimic a 
close in the circuit to the motor. Therefore, we simply tap into the wire after the 
switch from the chip and send a -12 volt signal on that wire which will turn the 
motor on to perform its function and once the signal is stopped so will the motor. 
Now one may wonder, “what if the window is all the way down and the roll down 
button is pressed again?”  This is actually not an issue as these windows are tied 
to relays that cut off once the window has reached its maximum or minimum 
distance. This is why when you press the switch if the window is already all the 
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way down it does nothing. Since we are simply tapping the wire this feature will 
still hold and work the same way. The only drawback is if the user wishes the 
window to go all the way down or up they must hold the button until it goes all the 
way up, there will be no auto up feature. 

14.0 User Interface Design and Implementation 

The user interface is the primary point of interaction for the user. A good interface 
can make or break a program. With a program as complicated and feature-filled 
as ours, it‟s important to have an interface that clearly and simply shows all of the 
options and features available. When designing the interface, we tried to keep 
things similar to what a typical driver would have seen before. For example, the 
physical function controls are organized like a normal electronic key fob that 
you‟d have on a keychain. The various gauges are arranged to look reminiscent 
of a normal car dashboard, and everything is large and easy to see so it‟s not as 
dangerous to glance at while driving. 
 
It‟s not only important to keep the interface similar to what one would expect from 
a normal car, but also to stick with standard Android user interface conventions. 
To anyone familiar with the Android operating system, when you hit the physical 
“Menu” key you expect a menu to pop up in the lower part of the screen with 
various settings and options. Likewise, single pressing a gauge in the OBD 
Reader screen to view more in-depth information, or long-pressing it to 
customize it are natural extensions of similar behavior on the Android home 
screen. Since the program is on a touchscreen, the interface also can‟t be 
cluttered or small. Everything is large and easy to press and navigate around. 
Our goal in designing this interface was to make a clean, natural, and easy to 
use user interface, and we feel we have achieved that goal. 
 

14.1 Research 

When we started designing the Android user interface for our project, we began 
by looking at other similar programs for Android and PC and seeing how we 
could effectively portray the data the OBD would give us, and how to create an 
intuitive input interface for the physical car functions. 
 
Ideally we would have as much screen resolution as possible and be able to fit 
several dials and gauges and graphs onscreen at once like in the popular laptop 
OBD scanner program ScanXL seen in Figure 14.1a. Since we‟re working on a 
phone interface however, we can‟t show as much data all at once. To get around 
this, we split these views into a few different screens so that it‟s still intuitive to 
use, but the screen doesn‟t get clogged with information. We did this by having 
separate gauge and graph screens, and only showing one graphed variable at a 
time instead of four or more. 
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Figure 14.1a – ScanXL Professional graph screen 

 
Similarly, we are much more limited with showing hard data as seen in Figure 
14.1b. Though we have logs and graphs of data, they have to be separated. 
There‟s simply no way to cram all of this data onto a single screen in a legible 
way. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.1b – ScanXL Professional data view 
 
Looking more at Android-specific OBD reading programs, we found that we really 
liked some of the concepts found in the Android app Torque, shown below in 
Figure 14.1c. There are several swipe-able customizable screens. All of the 
gauges can be configured by the user to read whatever information from the 
OBD reader that they want. We incorporated this into our design by having a 
main screen with several gauges, and allowing the user to long-press any of the 
gauges to customize it to their liking. 
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Figure 14.1c – Torque main interface 

 
One homebrew program that specifically helped with creating/designing the 
gauges was “Vintage Thermometer, seen in Figure 14.1d. The actual code used 
in the program was available for this program, and it was very helpful in learning 
how to draw on the Canvas in Android, and importantly, how to accept data input 
to move a dial in a circle. It was also useful for learning how to efficiently refresh 
the gauge without taxing the phone‟s CPU. 
 

 
Figure 14.1d – Vintage Thermometer example 

 
Another program that we used for inspiration for our design was alOBD Scanner., 
shown in Figure 14.1e. Though the main menu screen is a bit simplistic for our 
purposes, there is one really nice feature: in the program, there is an option to 
view a real-time graph of the incoming data while seeing the data itself above. 
Our design is similar, but replaces the simple number in the top portion with a 
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large graphical gauge showing the data. This graph view is an intuitive way to 
view and graph data from the OBD. You could, for example, use this view as a 
graphical speedometer, and also see your speed over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.1e – alOBD Scanner graph view 
 
For the electronic key fob part of our project, we looked to existing programs that 
performed a similar function. The Viper SmartStart user interface shown in 
Figure 14.1f is an elegant way to portray the functions we needed, with a large 
“Start” button in the center, surrounded by the four hardware functions. For our 
keypad however, we also wanted to include the functionality to roll the windows 
up or down, so some modifications were necessary. These will be discussed in 
the section 14.2.6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.1f – Viper SmartStart main interface 
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14.2 User Interface Walkthrough 

The next few pages will be dedicated to showing each screen of the UI and 
explaining some of the functions and reasoning behind each one.  

14.2.1 Splash Screen 

Figure 14.2.1a shows a simple loading screen that tells the user what the 
program does, who designed it, and masks any load time the program may have. 
It was eventually scrapped when we found that the program loaded fast enough 
by itself. 
 

 
Figure 14.2.1a – Splash/Loading screen 

 

14.2.2 Main Menu 

Figure 14.2.2a is the main menu of the program, done in the familiar list view 
format seen in the Android Settings menu. The user can choose Start 
Connection to manually enable Bluetooth and send a connection request to our 
device to let them interact with the car. The connection is normally started 
automatically, but this option is available in case there was an error in getting 
connected – whether our device was out of range, there was an error pairing, or 
any other bug – this lets the user conveniently retry the connection. OBD II 
Reader lets the user access the OBD interface and read data from gauges or 
graphs. The Keypad button gives to access the physical functions of the car 
(starting, unlocking, rolling the window up and down, etc.). Logs lets the user 
view log files previously taken from the OBD reader and average or graph them. 
Error Codes lets the user read and clear error codes from the car via the OBD 
port. Finally, settings will let the user configure various options about the 
program. 
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Figure 14.2.2a – Main menu 

 

14.2.3 OBD Reader 

Figure 14.2.3a shows the original mockup of our main view of the OBD reader. It 
was scrapped and replaced with just the obd gauge view, described below. It 
shows four different gauges which display various data streaming live from the 
physical OBD reader. Four gauges were chosen to be on the screen at once due 
to size and complexity. Putting more gauges on the screen would look too 
cluttered and would not be large enough to be readable at a glance. This layout 
also helps with performance because the CPU only has to redraw four gauges 
for every refresh instead of 6 or more. By default, the four functions shown on the 
screen will be Speed, Throttle, Boost and Acceleration. However, these functions 
are completely customizable, as seen and discussed further below in section 
14.2.4. There is also a way to view a larger gauge display and real-time graph of 
the incoming data by single pressing a gauge, discussed more in section 14.2.5. 
The range of values displayed on the face of each gauge will be hardcoded in 
and set to an appropriate range. The numbers and ticks on each gauge will then 
be scaled appropriately for each function. Because there is no standard view that 
looks like this, a custom view will have to be implemented. This is discussed in 
detail in section 14.3.2. 
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Figure 14.2.3a – OBD Reader view 

 
14.2.4 Customize Gauge Screen 

All of the gauges can be customized to read and display almost any value 
obtainable from the OBD reader. The user accomplishes this by long-pressing on 
the gauge they wish to customize and selecting a function, pulling up the menu 
shown in Figure 14.2.4a. The “long press to customize” function is a well-known 
function in Android to signify an ancillary function (similar to right-clicking in 
Windows). From here, the user can choose the function that they desire from the 
list of possible functions that can be read from the OBD reader. When an item is 
pressed, this screen recedes and the previously selected gauge is updated to 
read the new value. The name on the gauge and the scale used are also 
adjusted accordingly. This functionality was inspired by similar functionality in 
Torque, though in that program the user is allowed to not only customize the 
value of each gauge, but move them around, resize them and put them on 
multiple pages, similar to the Android home screen. We considered doing this, 
but decided it would not be feasible to add all of this extra functionality in the 
amount of time allotted for the senior design project. We decided to stick simply 
to being able to customize the readout of the four standard gauges on the main 
screen. 
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Figure 14.2.4a – Customize gauge screen 

 

14.2.5 OBD Graph Screen 

If the user single-presses on the gauge from the main OBD reader screen, they 
are brought to the screen shown in Figure 14.2.5a. This is based somewhat on 
the design of the alOBD reader program, specifically the screen shown in Figure 
14.1e, but instead of simply showing a changing number above the graph, a 
large gauge is displayed. The gauge is enlarged to show more detail, and a 
graph underneath it graphs the data over time with an appropriate range of 
values on the y-axis. The gauge uses the same custom gauge view used in the 
OBD reader screen, discussed in detail in section 14.3.2. The graph below is 
also a custom view, which is discussed in section 14.3.3. This is likely to be the 
most computationally intensive screen, since it has a real-time graph and a 
gauge running at once. If the user interface becomes choppy or unresponsive we 
may have to lower the refresh rate on one or both views. We feel this is one of 
the most important screens, since it gives the user a very clear view of a specific 
function. The user could use it as a digital speedometer for example, and be able 
to see (and log) their speed over time. Pressing the back button on the Android 
phone will return the user back to the main OBD reader view. 
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Figure 14.2.5a – Graph View 

 

14.2.6 Keypad 

Mentioned previously, our virtual electronic key fob shown in Figure 14.2.6a is 
based roughly on the Viper Smart Start main menu screen seen in Figure 14.1f. 
It has a similar layout to a standard key fob, with some modifications for our 
program. It has the standard functions that most users are used to: remotely 
locking and unlocking the car, sounding the horn and opening the trunk. We have 
the large start button in the center, mimicking the Viper UI and fashioned to look 
like a modern keyless start button. We made the Lock, Unlock and Start the 
largest buttons since they will likely be the functions used the most. Since the 
interface is obviously on a touchscreen instead of a more tactile medium some 
slight adjustments have to be made. There are no ridges or rubber buttons to let 
the user know where their fingers are. To avoid accidental button presses, we will 
make it so that once a user initiates a command, no other button can be pressed 
for a second or two. This way, if the user quickly hits the “unlock” button and 
slides their finger away, they won‟t accidentally then set off the car alarm. It will 
be important that when the user accesses the Keypad function he is connected 
to our device over Bluetooth first. If the phone is not connected to our device, 
then a warning message will pop up and inform them of the situation and go back 
to the menu instead of letting the user press buttons and frustratingly think that 
nothing is happening. 
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Figure 14.2.6a – Keypad view 

 

14.2.7 Log Selection Screen 

One of the features of our program is the log recorder, accessible via the main 
menu, which can be seen in Figure 14.2.7a. While the OBD reader is connected, 
timestamped logs are recorded of each variable and stored in a text file on the 
user‟s SD card. The user can access this text file from the log selection screen 
by scrolling through the list of saved logs and pressing on the name of the 
appropriate function. Not every function of the OBD is logged however; for some 
functions, it just doesn‟t make sense (DTC codes) and for others the numbers 
would change too rapidly to really have any significance - for example, the 
throttle jumps and changes wildly depending on what you‟re doing, and a log of 
that would be mostly meaningless. The logging of data is automatically stopped 
and saved if the OBD Reader is turned off or if the phone loses connection to the 
device for any reason. If there is no existing log data and the user attempts to 
access the logs from that function, a blank file will be presented with a message 
stating the absence of any log data.  
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Figure 14.2.7a – Log Selection Screen 
 

14.2.8 Log Viewing Screen 

Figure 14.2.8a shows the screen view when viewing the log for one of the 
functions. By default, twenty entries are shown for performance/legibility 
purposes. At the bottom of the screen is a “Show more…” button that loads the 
next twenty entries in the log file (if available). Showing more still lets the user 
view the original sets entries, and scroll through everything that has been loaded 
up to that point. Though if the user really wants to view the entire log file all at 
once, it would be much easier and convenient to simply connect the phone to a 
computer and manually open the log file on the computer. It‟s important that the 
log data is in an easily parse-able format, so when the data is extracted into an 
array for graphing, the process to separate the actual data and the time is easy 
and fast. Up to 10,000 entries can be stored in a single log file before being 
culled by removing the first 5,000 entries. This keeps the file size down (since we 
have to have log files for every function) and keeps down the computation cost of 
opening and writing to a large file. If the user presses the physical menu button 
on their Android phone, a menu is pulled up that gives the user the option to 
average all of the values in the log – so they could, for example, find their 
average speed during a trip, or their average gas mileage. Also in the menu 
screen is the option to view a graph of the data, discussed further below with 
Figure 14.2.9a. 
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Figure 14.2.8a – Log viewing screen 

 

14.2.9 Log Graph Screen 

The graph view seen in Figure 14.2.9a is a plot of the data contained in the log 
file the user is currently viewing. It creates large, readable graphs using all of the 
data in the log file. The graph requires a custom view to generate, which is 
explained in further detail in section 14.3.3. Because it‟s a non-moving static 
graph it‟s easier to generate than the dynamic graphs used in the OBD reader 
graphs. The top contains text stating the function being graphed and the time 
period in which it was recorded. The Y-axis uses the same range used in the 
OBD reader gauge view. There are options below the graph to return back to the 
text view of the log and to select a different log function. The log can contain a 
very large amount of data (mentioned previously, up to 10,000 log entries before 
being culled), so it can quickly become unwieldy to graph all of the data at once. 
This is especially true with data that is separated by long periods of time. The 
graphing function will only graph from the most recent set of data so that strange 
or broken looking graphs don‟t result from a long period of time passing between 
log data.  
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Figure 14.2.9a – Log Graph View 

 

14.2.10 Error Code Screen 

The error code screen is shown in Figure 14.2.10a. If an error light shows up on 
the user‟s car dashboard, they can check the specific fault code, known as a 
DTC (Diagnostic Trouble Code). They can also clear it if they so desire from this 
screen. In order for this screen to be useful, the user must first be connected to 
the device over Bluetooth. If there is no connection, an error message will appear 
and the user will be sent back to the main menu to try to manually connect to the 
device. Once connected, this screen displays a scrollable list of the names of all 
of the errors retrieved. If the user presses on any of the errors, a menu will pop 
up stating the specific error code (P0128 for “Coolant Thermostat Malfunction,” 
for example), an option to send a message back to the OBD to clear that error – 
not recommended if you haven‟t actually fixed the problem – and a link to a 
website that brings up more specific information and research about that specific 
DTC code. Alternatively, the user can press the “Clear All” button on the bottom 
of the screen to clear every error from the OBD. 
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Figure 14.2.10a – Error code screen 

 

14.2.11 Settings Screen 

The settings screen, accessed from the Main Menu, is seen in Figure 14.2.11a. 
It keeps things familiar to regular Android users by again using the familiar list 
view and checkbox configuration of the stock Android OS settings screen. Our 
Settings screen contains several program-wide options. The user can choose 
metric or English units for several different types of measurements and readings 
taken from the OBD, including miles vs. kilometers, Celsius vs. Fahrenheit, feet 
vs. meters, and PSI vs. Bar. The user also has the choice of whether the 
program pops up a notification when quitting to make sure that they want to – 
enabled by default so the user doesn‟t accidentally quit the program. By default, 
the program forces the screen to always be turned on so the user can monitor 
whatever they want while they‟re driving. This behavior can be turned off by 
checking the “Power Saver Mode” checkbox. There is also an option for 
connecting automatically. Enabled by default, this will have the phone attempt to 
connect to the Bluetooth device whenever the program is first launched. If 
disabled, the user will have to manually Start Connection each time they want to 
connect. 
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Figure 14.2.11a – Settings screen 

14.2.12 UI Block Diagram 

Figure 14.2.12a is the overall block diagram of how the different UI screens are 
arranged and flow into each other. The program flow is designed to be relatively 
simple without having to delve deep into menus to get to the important functions. 
Most functions branch off of the main menu screen, with some ancillary functions 
available to the OBD II reader and Log screen. Each one of these boxes 
represents a separate Android “activity” comprised of multiple Views and 
ViewGroups (discussed more in Section 14.4). 
 

 
Figure 14.2.12a – UI Block Diagram 

 

14.3 GUI Software Implementation 

In the following sections we will describe how to implement the various Android 
GUI processes in the program. First, however, it‟s important to understand how 
GUIs are created in Android, and the choice that we have when designing them. 



Team 9 Senior Design 2011 
 

 

86  

 
 

There are two major ways to declare a layout. You can declare the layout for a 
view as an XML file, which uses mostly standard XML vocabulary and syntax for 
creating classes and subclasses. The other method is to put the UI structure 
inside the program itself and instantiate the elements of your layout at runtime. 
While either choice is valid, XML is the preferred method to use when designing 
a UI in Android. This is because it allows the developer to keep the program code 
separate from the presentation, similar to how CSS controls the look and feel of a 
webpage while the HTML contains the actual content. Using XML lets the 
developer modify the UI without having to worry about creating new bugs or 
problems in the code. The XML file is created separately, and then it is simply 
called inside the activity with the setContentView() command. It also makes it 
easier and simpler to create new layout for different screen resolutions, vertical 
or horizontal screen orientations, and support for different languages. For the 
most part we will be using XML to create our GUI. 
 
An Activity represents a single screen in Android. Our program has several 
interconnected activities that make up the core of the program. The activity‟s UI 
is itself is built from a hierarchy of View and ViewGroup objects. Views are the 
basic building blocks of UI creation, and the class includes subclasses like 
widgets that let the developer place GUI items such as text boxes and buttons. 
ViewGroups are more overarching classes and control the overall layout of an 
Activity. Views and ViewGroups form a tree – each ViewGroup is a branch that 
can contain either more ViewGroups or terminate with a View which acts as the 
leaf. setContentView() is called by the Activity and is passed the root of the tree, 
and each child draws itself, traversing down the hierarchy until everything is 
drawn in order. This helps to determine which views overlap and which order 
they go in. 
 
Once the UI is built, it‟s important to be able to handle UI events, which are 
basically just some form of user input, whether it‟s a click, touch, trackball 
movement, etc. We first have to create an event listener and pair it with a View. 
Our program only accepts touch events, so we use View.OnTouchListener() TO 
detect touch events and interpret them appropriately. Also, because some of our 
activities will be custom classes that don‟t use the default views, we will have to 
override some of the callback methods to View, such as onTouchEvent(). This is 
only necessary when building custom components like gauges, and is not 
required for more standard Views. 
 
Helpfully, menus – that is, the popup menus that appear when the physical menu 
button on the phone is pressed - are a special type of View and are handled 
separately. We simply call the onCreateOptionsMenu() method for the activities 
that use them – in our case, the OBD Reader screen and the Log viewing 
screen, and insert the menu items that we want. Android automatically handles 
their position in the View hierarchy and places them appropriately. There‟s also 
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no need to create unique event handlers for menus – it‟s taken care of by 
onOptionsItemSelected() to easily control what happens when one of the menu 
items is pressed (switching to a new activity, deleting a log file, etc.).  
 

14.3.1 Bluetooth Implementation 

The Android phone‟s Bluetooth connection is the primary communication method 
for talking with our device, so it is very important that our program is able to 
quickly and efficiently connect. All of the APIs that we need are available in the 
android.bluetooth package. There are a few main classes required for creating 
Bluetooth connections and connecting to a device. The BluetoothAdapter class is 
required for any Bluetooth activity. It represents the adapter located on the phone 
itself, lets it instantiate new BluetoothDevice classes, and can create a 
BluetoothServerSocket to let it listen for other devices. The BluetoothDevice 
class is used for remote devices and can create a BluetoothSocket or request 
information from the remote device. BluetoothSocket lets two Bluetooth devices 
connect with a socket and exchange data. In order to create a connection, at 
least one device must open the BluetoothServerSocket class, which listens for 
incoming requests and returns a BluetoothSocket in order to connect. Finally, 
BluetoothClass is a read-only list of a device‟s properties, though it is not an 
exhaustive list. 
 
The first thing you have to do before setting up a Bluetooth connection is setting 
the right permissions in the application manifest file: BLUETOOTH and 
BLUETOOTH_ADMIN. BLUETOOTH lets you request/accept connections and 
communicate over Bluetooth, but BLUETOOTH_ADMIN is needed to start device 
discovery and change Bluetooth settings. Our device will require the 
BLUETOOTH_ADMIN permission (which in turn also needs the lower 
BLUETOOTH permission) since our program will be modifying the Bluetooth 
settings. Next, before we can do anything the program first has to ensure that 
Bluetooth is turned on in the phone. Using the BluetoothAdapter class, the 
isEnabled() function is called to check its status. If it‟s disabled, we can call 
startActivityForResult() to pop up a dialog box (without leaving the program) 
asking to enable Bluetooth. RESULT_OK will be returned if Bluetooth was 
successfully enabled, and RESULT_CANCELED if not. If the user canceled the 
request he can enable it again from the main menu screen. 
 
Once enabled, the Android phone must now be able to find our device, either 
using device discovery or by finding it in the list of previously paired devices. Our 
device will always be discoverable, so we don‟t have to worry about making the 
phone itself discoverable. This whole process is done (again) through the 
BluetoothAdapter class. Before doing the more intensive device discovery 
process, we should first check if our device is already in the list of paired devices. 
To do this we call getBondedDevices() which returns a list of paired devices. If 
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our device is on there, we‟re good to go. If not, we have to search for it. Calling 
startDiscovery() begins this process. Our application must register a 
BroadcastReceiver for the ACTION_FOUND Intent so we can get information on 
each device found. All that‟s needed in order to start the connection is the MAC 
address of the device. Note that in Android the remote device must be paired 
before the two devices are allowed to connect. 
 
In order for two devices to connect, both must hold a connected BluetoothSocket 
on the same RFCOMM (Radio Frequency COMMunication) channel. This can be 
done a few different ways, but in our program, we will be connecting as a client to 
the device. First we have to get a BluetoothSocket by calling 
createRfcommSocketToServiceRecord(UUID). The UUID (Universally Unique 
Identifier) is a 128-bit string used to uniquely identify the program‟s Bluetooth 
service. Once the socket is created, we initiate the connection with connect(), 
where the remote device ensures the UUID is correct and accepts the 
connection. Because connect() is a blocking call, it should be run on a separate 
thread outside of the main Activity UI thread so it doesn‟t prevent any other 
interaction with the program. The program also needs to make sure that device 
discovery is not happening while trying to connect, since this slows down the 
connection and could cause it to fail. 
 
Finally, once the two devices are paired and connected, the program has to 
manage the data connection and read/write over the Bluetooth connection. Using 
the BluetoothSocket, we handle Input and Output streams via getInputStream() 
and getOutputStream(). We read and write data to the streams using read(byte[]) 
and write(byte[]). It is important to create a separate thread for stream reading 
and writing, since they are blocking methods. It is also important to close the 
connection once the program is closed, using the cancel() command on a 
BluetoothSocket. 
 

14.3.2 Gauge Implementation 

In order to create our main OBD reader screen, we need gauges that can show 
the status of the desired OBD value. In order to do this, we first have to create a 
custom view since there isn‟t any kind of “gauge view” by default built into 
Android, like how TextView or ListView are. To start, we first have to create a 
new class derived from the built-in class View. In order to make our gauges 
circles (instead of ovals), we must make the view square by overriding the 
onMeasure() method and forcing the width and height to be the same. This also 
lets us scale the gauges to an appropriate size. One convenient thing to do 
before delving into drawing gauges is to create a toolbox of sorts – basically just 
methods that bring together a few of the basic drawing tools into more useful 
ones. The methods are contained in a class called initDrawingTools(). These 
include methods such as drawRim() which draws a light circle inside of a dark 
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circle to create an offset look, with a LinearGradient used to make it look more 
metallic. The method drawFace() uses a bitmap texture from the BitmapShader 
class to draw the background picture of the gauge for us. It‟s important to set 
setFilterBitmap() in the Paint instance to true so that it scales smoothly 
regardless of the resolution on the phone. Our custom method drawScale() is 
one of the most important. With the range of values hard-coded in for each 
function, the program determines an appropriate scale and number of notches for 
each OBD reader function. Canvas.rotate() is used to draw each notch and 
number on the gauge, and call Canvas.restore() afterward to set the canvas 
upright again. DrawTitle() is used with Canvas.drawTextOnPath() to draw the 
name of the function on the gauge. This gives us some leeway about how we 
draw the text, so it can be curved around the bottom if we want it to. This method 
also lets us change the text when the function that a gauge is displaying gets 
changed – everything (name, scale, etc.) should change appropriate with it and 
be redrawn. Finally, drawHand() is used to create the moving dial on our gauge. 
It‟s drawn using a solid color Path and using Canvas.rotate() to make it move in a 
circle the way a real dial does. To make the the dial move to match the data 
being received from the OBD reader, we set up a sensor event for the Bluetooth 
input stream and whenever it changes, we update the rotational position of the 
dial so that it matches the current value. Once this view is created, we can use it 
within the activities for the OBD Reader and OBD Reader Graph screens.  
 
Optimization is important as well, especially since the hardware is relatively 
limited compared to a PC environment. We noticed while using the Android 
program Torque that the display could be choppy and laggy at times. We want 
our program to be as fast and efficient as possible, and able to be used on 
Android phones that aren‟t super high-end. One simple way to optimize UI 
drawing is to separate moving parts from non-moving parts. Moving parts would 
just be the dial itself – we don‟t plan to implement any other changing lights or 
colors into the gauges. Non-moving parts would include the rim, the notches and 
numbers around the edges, and the background of the gauge. Parts of the gauge 
that do not move can be drawn all together onto a single bitmap using 
Canvas.drawBitmap() in onDraw(). This makes it so only the moving parts are 
updated with each refresh, while the rest of it just sits in the background and 
doesn‟t have to be redrawn every single time. Instead of drawing to the “real” 
canvas we draw to the bitmap background. Then only after we‟ve done that do 
we call the draw() command for the entire bitmap, and then the draw() command 
for the dial.. This trades some phone memory for an increase in performance. 
Limiting the number of gauges drawn to four, besides being good from a 
design/visibility standpoint, is also good for performance since it doesn‟t have to 
draw the updates to too many gauges for every refresh. We hope to keep the 
OBD reader interface feeling snappy and responsive while still being fully 
functional. 
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14.3.3 Graph Implementation 

Support for graphing 2D plots is surprisingly lackluster on Android – there is no 
built-in support to create dynamic line graphs (to be used in the OBD Reader 
graph screen), or even static, unmoving line graphs such as those we are using 
to view  graphs from the log screen. After researching the methods used to get 
around this, we found that there are basically two things usually done about this. 
One rather clever solution is to just bypass all of the native Android code and use 
a webview. Using a jQuery-based javascript library called “Flot”, a developer can 
basically create a local HTML webpage that contains the graph which is written in 
javascript. This webpage is then displayed in a webview inside the program. 
While clever and easy to implement, this wasn‟t the solution for our program. For 
one thing, this method doesn‟t support dynamic charts that update the data in 
real time, which would make it useless for us for the OBD graphs. Another issue 
with this method is performance – creating graphs on a webpage and then 
displaying it is inherently less efficient than directly creating the graph in code. 
The other commonly used method to get around Android‟s graphing limitations is 
the use a third party graphing library. There are several available, but most of 
them either were unable to do dynamic charts (which are necessary for our 
project) or cost money. We finally found a third party API called AndroidPlot that 
was both free and supported dynamic chart creation, so we could use it for log 
screen graphing and for graphing the OBD values in real-time. We simply import 
the AndroidPlot libraries and use them like any other to create a custom 
GraphView that we can reuse multiple times throughout our program to fit our 
requirements. 
 
Creating the static graphs for the logs isn‟t too difficult. First, we have to edit 
/res/layout/main.xml to include an entry for the XYPlot view. Next we create the 
activity LogActivity.java and import the AndroidPlot libraries as well as the other 
standard Android libraries. We create the onCreate() method and 
setContentView() to main.xml inside it to set the view to be the plot we want. The 
plot is initialized using findViewById() using the name we gave it in the xml file as 
the parameter. This allows us to distinguish between graph definitions in the XML 
file, so if we were to have multiple graphs onscreen at once we would be able to 
keep them straight by their names. To actually retrieve the data used to populate 
the graph, we have to open the log text file and loop through it, collecting the 
data in an array for the y-value and collecting the timestamp data into a separate 
array for the x-value data. Once we have our two arrays, we use the 
SimpleXYSeries constructor to turn them into a graph-able list of numbers. 
LineAndPointFormatter() is used to format the colors of the lines and points on 
the graph – important, otherwise it would just be black on black and unreadable. 
We plan to use an easily distinguishable red-on-black color scheme for our 
graphs. The number lists are added to the plot with the addSeries() command. 
Finally, since the AndroidPlot library displays a developer debugging guide by 
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default, we use the disableAllMarkup command to remove it so our graph is nice 
and clean. By the end of it all, we will have a screen that neatly displays the log 
data in graph form. Graphing real-time data from the OBD however, is a little 
more complicated. 
 
We are reading real-time data from the OBD reader and displaying it in graph 
form whenever a user presses on a gauge in the OBD reader view. The 
procedure begins the same way as a static graph – adding an entry with an id for 
the plot in main.xml. Also similar to static plots, we have to set up and initialize 
the plots using the addSeries command, set the range (hard coded for each 
specific OBD function) with setRangeBoundaries() and the domain (30 points of 
data shown onscreen at once) with setDomainBoundaries(). For the data itself, 
we will create a custom event listener that parses data from the Bluetooth input 
stream and turns it into OBD codes. Every time a new sensor data is read, an 
event is created. A separate method, onSensorChanged() will handle what 
happens when a new event occurs. An array will read in the data and update the 
values currently held in the array. We call removeFirst() to get rid of the oldest 
sample in the history, then update the list with setModel(). Finally, the plot is 
redrawn with the aptly named redraw() command to include the new data. 
onSensorChanged is looped through and whenever it receives new data will 
update the array and redraw the graph. This process effectively creates a real-
time dynamic graph of the incoming OBD data.  
 

14.4 Activities 

Discussed briefly in section 14.3, activities are the main building blocks of an 
Android program. Each activity represents a “screen” of our program, and the 
activities are linked to create a cohesive program. While running, an activity can 
be Resumed (in the foreground with user focus), Paused (in the background but 
still running/partially visible) or Stopped (completely obscured by another activity, 
can be killed to free memory of necessary). Managing the activity lifecycle is 
important. There are callback methods such as onCreate() for when the activity is 
just being started, onResume() for when an activity becomes visible again, and 
onDestroy() to control what to do when an activity is about to be destroyed (for 
example, save some data before the activity is destroyed). In our program, the 
user navigates back and forth frequently through the menus, so it‟s important to 
specify what happens when an activity is paused or resumed or destroyed. 
 
For the UI, each activity contains a view hierarchy. View objects are individual 
widgets that can be placed on the screen. Views include things like text boxes, 
images, buttons, checkboxes, etc. ViewGroups are overall layouts for a set of 
view objects. In the linear layout, every view object follows the next sequentially, 
either horizontally or vertically (specified in the main.xml file). Relative layout is 
useful when we need to place things spatially relative to one another. The list 
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view layout provides a scrollable list of view objects – text in our case. There can 
be nested ViewGroups, which is often the case when using linear layout, though 
if the nesting goes too deep it‟s usually better to go with a relative layout instead. 
Figure 14.4a shows an activity diagram showing each of the activities or screens 
in the program, and the ViewGroups and Views that make up each one. The tree 
is traversed from top to bottom, left to right, and the order is important. 
 
The SplashScreen activity uses the linear layout, arranging vertically a text view 
with the name of the program, an image view with a logo of our device, and 
another text view for our group number and other information. The main menu, 
though very important as a portal for the rest of the program, is relatively simple 
view-wise. It simply uses a list view with a set of TextViews representing each 
menu item. The Settings activity acts the same way: just a basic list view with 
text items. The checkboxes to turn on or off the options displayed are actually 
included as part of TextView. Keypad is an interesting design challenge. Getting 
the boxes displayed is relatively simple, but putting the big start button in the 
center of them all will be a challenge. The screen is essentially just several 
pictures with actions tied to them – the square sections are placed relative to 
each other – one below or under the other one, with the square representing to 
big Start button (stylized to look like a circle) must be the last view object to be 
placed so that it overlaps the other buttons and images.  
 
The LogSelect activity is another simple list view – just a textual list of the logs 
that are available to be read. Branching off of this however are two more 
activities: LogView and LogGraph. LogView is pretty much just viewing a text file, 
with a “read more” button on the bottom. We use a vertical linear layout, with a 
text view first of the text read from the log, followed by a Button to activate the 
read more functionality and access twenty more logs. LogGraph is relatively 
tricky UI-wise. There is a base vertical linear layout. First in line is our custom-
created view to show graphs from the log data, GraphView. The details of 
GraphView are discussed in section 14.3.3. Below our custom GraphView is yet 
another linear layout, this time horizontal. This ViewGroup contains two buttons, 
one for returning to the LogView activity, and one for returning to the LogSelect 
activity. 
 
The Error Code activity, though it looks relatively simple, is also one of the more 
complex UI designs. The overall ViewGroup is a linear layout. Starting at the top 
is a TextView for the “Error Codes” title. Below that is another ViewGroup, a list 
view with a list of all of the error codes that are available to be displayed. This is 
accomplished, as usual, with text view. Back into the first linear layout, there‟s a 
Button object used for the “clear all” button at the bottom of the activity. 
 
Finally, the all-important OBDReader activity uses a relative layout to easily place 
the four gauges symmetrically on the screen. The gauges themselves are 
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created from another custom class, GaugeView, the implementation of which is 
discussed in detail in section 14.3.2. The customize gauge screen accessed 
when long-pressing on a gauge is actually not its own activity. It is a context 
menu that is “registered” to the gauge view with registerForContextMenu() and 
then “inflated” to populate the menu with items. The OBDGraph screen however 
is it‟s own activity. It‟s the only one that uses both of our custom-created views, 
GaugeView and GraphView. It uses a vertical linear layout with a single gauge 
on top and a dynamic graph below.  
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Figure 14.4a – Activity Diagram 
 

 

15.0 Prototype Testing 

Testing is a crucial part of any project, big or small.  It‟s not uncommon that 
testing take the longest of any of the phases from start to finish.  The testing 
phase will uncover problems of all sorts.  The problems may range anywhere 
from design, logical or your common mistake.  In a project like this, testing needs 
to be thought-out and efficient.  We will test the hardware and software as 
individual components before interfacing or connecting them with another project 
component.  As soon as two components are connected, we will ensure that their 
functionality is still valid as a unit. This “build-and-test” strategy will be used from 
the point that two components are connected, until the last component is added 
to the prototype. This form of testing may seem tedious and more time 
consuming in the beginning, but it will allow us to narrow the scope of problems 
when they occur.   The smaller the scope of the problem is, the easier the 
problem is to find and fix.  Different strategies will be used for both the hardware 
and software aspects, as well as the technology that interfaces the different 
systems together. The key strategy to effective testing is the “build-and-test” 
strategy we‟ve come up with. 
 

15.1 Hardware Test Environment 

The ultimate test environment for the prototype will be in a 1998 Honda Accord.  
The testing location will take place in a parking lot or parking garage.  Individual 
hardware parts of the prototype will be tested indoors in the electrical engineering 
lab at ideal temperatures and environments.  
 

15.2 Hardware Specific Testing 

Each piece of hardware needs to be tested for correct functionality before it can 
be used in the prototype.  All hardware parts need to be tested, including the 
smart-phone and test vehicle. We cannot assume that the vehicle and smart-
phone are functional.  
 

15.2.1 Vehicle OBDII Port Testing 

To ensure that the OBDII port of the 1998 Honda Accord is functional, we will test 
the port by inspection and electrical functionality.  Once the OBDII port is located, 
we will inspect the port visually to make sure the sockets are not clogged with 
debris.  We will also visually inspect the back of J1850 connector to make sure 
that all of the wires running from the contacts to their respective destinations are 
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intact.  Once the OBDII port passes a visual inspection, we can do additional 
testing with an OBDII reader.  For multiple testing purposes we will purchase a 
commercial ELM327 OBDII reader.  We will use the commercial OBDII reader to 
test the functionality of the ODBII port in the 1998 Honda Accord.  Since we don‟t 
know for sure that the Android application written for this project works, we‟ll test 
the OBDII port with a free Android application that has similar functionality.  By 
downloading the free version of “Torque” from the Android Market, we can test 
the OBDII port of the 1998 Honda Accord.  A smart-phone and the ELM327 
OBDII reader will connect via Bluetooth Technology.  Once a connection has 
been made, the Torque application should be able to receive data from the car.  
We will perform every function that the free version of Torque will allow us to do.  
Once we can confirm that the OBDII port in the 1998 Honda Accord is functional, 
we can move forward with our testing. 
 

15.2.2 Smart-Phone Testing 

The smart-phone will need to be heavily tested for Bluetooth functionality. This 
first test will be simple on and off testing. We‟ll go to the settings of the phone 
and turn the Bluetooth on and off, while checking to see if the icon appears in the 
taskbar located at the top of the screen. Once the taskbar indicates that the 
Bluetooth is being turned on and off correctly, we can move to the test 
procedure. 
 
The second test will require a laptop. The smart-phone will have to be in a mode 
named “discoverable.” This mode allows for other Bluetooth enabled devices to 
search for the smart-phone for Bluetooth connection. While the smart-phone and 
laptop have their Bluetooth enabled and the laptop is discoverable by other 
devices, we will search for other Bluetooth enabled devices in the area from the 
smart-phone. If everything is working correctly, the laptop will appear in the list of 
Bluetooth enabled devices within the range of the smart-phone. At this point we 
can request to make a connection with the laptop. The smart-phone user will 
then have to enter an arbitrary four-digit password to start the connection. The 
laptop user will be prompted with a request to connect to the smart-phone via 
Bluetooth and asked to enter the arbitrary password that the smart-phone user 
entered to start the connection. The laptop user will enter the arbitrary password 
and attempt to send a random picture to the smart-phone. If the smart-phone 
successfully receives the picture, then we are certain that the smart-phone is 
capable of receiving data from another device via Bluetooth.  
 
The last test that the smart-phone will endure, will be with a similar application to 
the one created in this project and a commercial Bluetooth enabled OBDII 
reader. We will download the free version of the application “Torque” and 
connect, via Bluetooth, to the ELM327 OBDII reader while it‟s plugged into the 
1998 Honda Accord. To narrow the scope of the possible failures, the OBDII port 
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on the 1998 Honda Accord will have to pass it‟s testing prior to attempting the 
last test for the smart-phone. If we did not test the OBDII port on the vehicle prior, 
a failed test could be a result of a nonfunctional OBDII port. The smart-phone 
user will open the Torque application and search for devices via Bluetooth. The 
commercial OBDII reader will then appear in the list of Bluetooth devices in the 
area. When the smart-phone user attempts to connect to the ELM327 OBDII 
reader, they will be prompted to enter a pass-code. The ELM327 OBDII reader 
has a built-in pass-code that the smart-phone user will have to enter to make a 
successful connection.  The standard pass-code for the ELM327 OBDII reader is 
“1234.”  Once the Bluetooth connection is made, the smart-phone user will go 
through all of the possible functions on the free version of Torque to confirm the 
functionality of the smart-phone‟s Bluetooth capability.  Pressing the accelerator 
on the vehicle should cause the RPM gauge in the free version of Torque to 
display the same measurement as the RPM gauge in the vehicle.  We must note 
that there will be some time delay for the reading being displayed on the smart-
phone due to the time it takes the Torque application to receive the necessary 
data. Once we can confirm that the free Torque application is displaying accurate 
data from the car, we can assure that the smart-phone‟s Bluetooth capabilities 
are functional. 
 

15.3 Software Test Environment 

Software will be tested several different ways and in different environments.  The 
common syntax examining and testing will be done in the same environment that 
it will be written in, Eclipse. As individual functions are completed and added to 
the Android application, they‟ll be tested on the smart-phone. For consistent 
testing and accurate results, we will test each function on the 1998 Honda 
Accord with components that have already passed their respective tests. This 
testing strategy allows us to eliminate the possibility of hardware deficiencies and 
focus in on the software aspect when troubleshooting.  A small amount of 
software testing, for the microcontroller, will take place in an Electrical 
Engineering lab at ideal temperatures and conditions. 
 

15.3.1 Testbed 

All testing will be run in both software (Eclipse) and hardware (phone) 
environments. Coding and testing will be done in Eclipse 2.6.2, with ADT 
(Android Development Tools) version 15.01. The test computer runs Windows 7 
64-bit, and two separate AVDs (Android Virtual Device) running Android version 
2.1 and 2.2 will be used to test software compatibility when hardware-specific 
things (Bluetooth, GPS, etc.) are not required. Hardware testing will be done on 
an LG Optimus T running Android version 2.2. We‟re targetting the application to 
require at least Android 2.1, since it is widely available on most Android devices, 
and included many changes to the underlying Android system since Android 1.6. 
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While we don‟t know of any specific function or feature available in 2.1 that‟s not 
available in previous versions, it makes testing and debugging easier since we 
don‟t have to worry about supporting deprecated features or using something 
that‟s not supported by the older version. 

15.4 Software Specific Testing 

Software testing is a critical aspect to finishing this project in a timely manner.  A 
commonly and simplistic strategy is to test as you go.  In a project this large, we 
actually have to apply this strategy that our professors have been pounding in 
our heads for the last four years. 

 
15.4.1 Android Application Testing 

The Android application will be examined and debugged at the code level by 
each of the group members.  After a function or chunk of code has passed the 
syntax check done by Eclipse‟s compiler we can move onto the next step of 
testing.  Since a compiler like the one in Eclipse cannot check code for anything 
besides correct syntax, we must examine the code as a group to check for logical 
errors.  In typical homework programs from programming classes, we can 
bypass logical examinations because we can base the program‟s functionality 
upon a correct output response from the user‟s input.   In our Android application, 
this testing shortcut isn‟t an option because the user environment is not the same 
place that the source code is written.  Every time that a function or chunk of code 
needs to be tested for functionality, the application needs to be loaded to the 
smart-phone and then tested using the vehicle commercial OBDII reader. Testing 
the application for correct functionality just got much more time consuming with 
respect to typical homework-assigned programs.  Another issue is that the input 
for our application is being sent from the vehicle and not from a user.   This 
implies that there‟s only one test case coming from the user, while typical 
programs have many different test cases.  Once our group examines the code for 
simplistic logical errors, we can agree that it‟s worth the time to setup the vehicle 
to test the application for correct functionality.  The code will be compiled an 
additional time in Android‟s platform, Android Virtual Device (AVD).  We do not 
suspect that the compiler in AVD would find any errors since the code was 
already compiled in Eclipse.  AVD‟s purpose is to load the code, in application 
form, onto the smart-phone.  After AVD indicated that the application was 
successfully loaded to the smart-phone, we can disconnect the smart-phone and 
attempt to use the application. The smart-phone user can quickly inspect the 
application‟s GUI to make sure that the prior content was not effected by the 
update and that the recently added content is the desired appearance.  Not only 
do we need to make sure that the function recently added works, but we need to 
make sure that the prior existing functions still perform properly.  The amount of 
time needed to thoroughly test each function as it‟s added to the Android 
application, makes the premature, logical inspection a critical step in completing 
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the project in a timely manner. After inspecting the GUI of the entire application, 
we can move forward with the actual functionality testing on the 1998 Honda 
Accord with the commercially purchased OBDII reader. 

 
15.4.1.1 Bluetooth Connectivity Testing 
 
Once the basic GUI and Bluetooth functionality is done at the coding level, we 
can load the application to the smart-phone for it‟s first functional test. At this 
point, all that we want to test is that the application will successfully connect to 
another wireless device via Bluetooth. Since the OBDII reader doesn‟t have a 
screen to easily indicate a Bluetooth connection has been made, we will test the 
application‟s Bluetooth functionality using a laptop and another smart-phone. 
First we will test the application by entering an exiting all of the GUI screens 
multiple times. This test is to check for bugs that would cause the application to 
crash while doing simple navigation within the application itself. Once the 
application is stable we can try to make a Bluetooth connection with another 
device.  After both devices have their Bluetooth capabilities enabled, the person 
testing the application will search for discoverable Bluetooth enabled devices in 
range by selecting the Bluetooth search function. When a list of Bluetooth 
enabled devices appear on the screen, we can proceed to the next step of 
making a successful Bluetooth connection. The user would then select the 
desired device for connectivity and enter a password if necessary. We can then 
check the Bluetooth connection of the laptop that the application is attempting to 
connect with to see if the connection was successful. This check can be made by 
going into the Bluetooth properties of any typical laptop. After we ca confirm one 
successful Bluetooth connection, we need to test the Bluetooth capability of the 
application on at least two other devices, while connecting to each device a 
minimum of five times. The excessive connecting and disconnecting to multiple 
devices should uncover any issues with our applications Bluetooth capabilities.  
 

15.4.1.2 RPM Function Testing 
 
The RPM function will be the first function implemented into the application for a 
few different reasons, including testing purposes. First of all, the function at the 
code level isn‟t too complex and it doesn‟t rely on other functions to operate. 
Since the RPM function doesn‟t rely on other functions to operate, the testing is 
simple. We will load the application onto the smart-phone using AVD. Then we 
can connect the application with the commercial OBDII reader via Bluetooth. 
When a successful connection is established, the smart-phone user will then 
navigate to the RPM function. Upon arrival of the RPM function, the smart-phone 
user will examine the reading of the RPM‟s on the RPM gauge in the GUI and 
compare that value to the value being display on the RPM gauge of the test 
vehicle. The user will have to use their best judgment to decide if the RPM 
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readings are accurate. The user will need to understand that there‟s a time delay 
in the readings that are displayed on the application because of the time it takes 
to get the reading from the ECU and ultimately send it to the smart-phone. 
Although we cannot guarantee the readings on the application are ideal, we can 
get a great deal of confidence through specific testing tactics. One group 
member will vary the throttle position between high and low while another group 
member examines the application RPM gauge and RPM gauge of the vehicle. 
The application RPM gauge should behave in the same manner as the RPM 
gauge on the vehicle, but with a small time delay. The same low and high RPM‟s 
should be achieved while keeping a similar motion. Although this test is purely by 
inspection, it deems to be accurate. 

 
15.4.1.3 Logging Function Testing 
 
Every function in the application will be tested for accuracy, but may require 
different forms of testing. The second function we plan to implement is what we 
call the “Logging Function.” This function records the data that is sent to the 
smart-phone from the OBDII reader in a data log. The data is necessary for both 
the car enthusiast that would use this application and to help the developers test 
other functions within the application. First we need to make sure that the logging 
function works correctly. Each piece of data that is recorded will have a time 
stamp attached to it. The time stamp will play a key factor in testing the logging 
function for accuracy. Once the logging function compiles without any errors or 
warnings, we can inspect the code for logic mistakes. After the code has been 
inspected for logic mistakes, we can load the application onto the smart-phone 
for the final stage of testing. We will use the RPM function we implemented 
earlier, to help us test the logging function. When testing the logging function, we 
will do multiple trials to see how accurate the logging really is. Once we have the 
smart-phone successfully connected to the vehicle via a Bluetooth connection 
with the commercial OBDII reader, we can start the series of testing. The testing 
will follow the following steps and be repeated ten times. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Document the time the testing begins. 
3. Select the RPM function on the Android application. 
4. Have the vehicle operator press the accelerator while analyzing the RPM 

reading on the vehicle. 
5. Vehicle operator shall document the maximum RPM reading reached to 

the greatest degree of accuracy. 
6. The smart-phone operator shall analyze and document the maximum 

RPM reading reached on the android application. 
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7. The smart-phone operator shall then select the logging function and 
record the highest RPM reading that was logged along with the associated 
time stamp in the logging function. 

8. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there should be five pieces of test data to help decide if the 
logging function is functioning properly. The figure below, figure 15.4.1.3a, will be 
filled out to help analyze the data with more accuracy. 
 

Logging Function Testing 

Trial 

Number 

Actual 

Time 

Logging 

Time 

Vehicle 

RPM 

Reading 

RPM 

Application 

Reading 

Logging 

Function 

Reading 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

Figure 15.4.1.3a – Table used to test Logging Function 
 
After all ten trials are recorded we can analyze the data to see how accurate the 
time stamp is. The far left column represents what trial number the data is 
associated with. The second column, “Actual Time”, represents the time 
manually recorded by the tester. The third column, “Logging Time”, represents 
the time stamp in the logging function‟s log, when the highest RPM reading was 
recorded. The fourth column, “Vehicle RPM Reading”, represents the highest 
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RPM reading read from the vehicle‟s in-dash odometer by the tester. The fifth 
column, “RPM Application Reading”, is the highest reading read from the GUI of 
the application‟s RPM function by the tester. Since multiple readings have to be 
read at the same time, this test will take a minimum of two people. A third tester 
to try to collect both, the vehicle RPM reading and the RPM application reading, 
is preferred, but not mandatory. The third tester would allow for debate among 
the collected readings and ultimately help collect better test data. The last 
column, “Logging Function Reading”, is the highest RPM that was logged in the 
logging function during that specific trial. Since the testing will take a few seconds 
alone, we will not be looking for the time stamp to be incredibly accurate. We 
expect the times logged and actual times to be within a minute of each other. If 
our data indicates a difference of a minute or greater, we will do further testing 
with emphasis on the logging time stamp. The main concern with the logging 
function is that it is logging accurate readings from the car. All three of the RPM 
data recordings need to be within 300 RPM‟s of each other. If the RPM readings 
deviate much further than 300 RPM‟s of each other, we will need to analyze and 
re-test the function. 
 

15.4.1.4 Fuel Level Function Testing 
 
The third function that will be implemented is the fuel level function. This function 
will read the amount of fuel that is left in the tank of the vehicle. After completing 
the fuel level function code, we will implement and test the completed code for 
the application at the code level. We will ensure that all of the code compiles 
without any errors or warnings. Once the code successfully compiles, we will 
analyze the code for logical mistakes. When the code has passed visual 
inspection, it‟s time to upload the partially completed application to the smart-
phone for field-testing. For testing purposes, Firoz Umran can confirm that the 
fuel level odometer in his 1998 Honda Accord is an accurate representation of 
the amount of fuel left in the gas tank. We will keep a standard field test setup for 
testing each of the functions. The standard procedure will include using the 
commercially bought ELM327 OBDII reader, the smart-phone and the 1998 
Honda Accord. Once a successful connection between the smart-phone and the 
OBDII reader has been established, the fuel level function will be ready for field-
testing. To help ensure the degree of accuracy of our application, we will test the 
fuel level function ten different times. At the beginning of each trial, the tester will 
clear the data log in the logging function and record the time the testing is taking 
place. The smart-phone user will select the fuel level function in the GUI menu 
and record the reading of the fuel level according to the GUI on the application 
screen. The tester will then record the fuel level that is displayed on the odometer 
in the 1998 Honda Accord. The smart-phone user will then exit the fuel level 
function and select the logging function. The tester shall analyze the logged data 
within the logging function and record the time stamp and fuel level indicated. 
The steps below shall be followed for each trial, for ten trials. 
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1. The smart-phone user shall ensure that the data log in the logging function 

is cleared prior to each testing trial. 
2. Analyze and record the time testing begins. 
3. Select the Fuel Level Function on the Android application menu. 
4. The smart-phone user shall record the fuel level measurement indicated 

on the GUI of the smart-phone to the best accuracy possible. 
5. The vehicle operator shall record the fuel level measurement displayed on 

the in-dash gauge to the greatest degree of accuracy. 
6. The smart-phone operator shall then select the logging function and 

record the fuel level measurement that was logged along with the 
associated time stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
The field-testing of the fuel level function will take more time than most of the 
other functions. For each of the trials‟ data to have value, the fuel level needs to 
vary from trial to trial. If time allows, we will do one trial per day for ten days. The 
time between trials allows for the 1998 Honda Accord to be driven, which 
consumes fuel and ultimately changes the fuel level for the following trial. A 
backup plan for quicker testing has been created in the event that time is scarce 
and the testing needs to be done promptly. 
The faster testing method that allows for the trials to be done consecutively will 
require the vehicle‟s fuel level for the first trial to be between empty and an eighth 
of a tank. If the fuel level is any higher than an eighth of a tank, we will need to 
siphon the fuel into five-gallon gasoline containers. Once the fuel level is an 
eighth of a tank or less, the first trial is ready to begin. If the fuel level is already 
in the desired range, we will need about ten gallons of fuel in external gasoline 
containers. After each trial, about a gallon of gasoline will be added to the 
vehicle‟s fuel tank for the following trial. The addition of fuel after each trial should 
alter the fuel level enough to notice a difference in the data from trial to trial. 
 
After each test trial, there should be five pieces of test data to help decide if the 
fuel level function is functioning properly. The figure below, figure 15.4.1.4a, will 
be filled out to help analyze the data with more accuracy. 
 
 

Fuel Level Function Testing 

Trial 

Number 

Actual 

Time 

Logging 

Time 

Vehicle 

Fuel 

Reading 

Application 

Fuel 

Reading 

Logging 

Fuel 

Reading 
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1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

Figure 15.4.1.4a – Table used to test Fuel Level Function 
 
After all ten trials have been recorded we must analyze the data to understand 
the accuracy of the fuel level function. Although, the time stamp from the logging 
function was specifically tested and analyzed during the Logging Function 
testing, it is possible that the addition of the fuel level function altered the 
functionality of the logging function, therefore we cannot take the time stamp 
reading for granted. The far left column represents what trial number the data is 
associated with. The second column, “Actual Time”, represents the time 
manually recorded by the tester. The third column, “Logging Time”, represents 
the time stamp in the logging function‟s log, when the fuel level reading was 
recorded. The fourth column, “Vehicle Fuel Reading”, represents the fuel level 
reading read by the tester, from the vehicle‟s in-dash gauge. The fifth column, 
“Fuel Level Application Reading”, is the fuel level reading read from the GUI of 
the application‟s Fuel Level function, by the tester. The last column, “Logging 
Function Reading”, is the fuel level that was logged in the logging function during 
that specific trial.  
 
As a group we will analyze the data gathered over all ten trials. Since the time 
stamp in the logging function was previously tested, we will look for consistency 
among all time stamps from all test trials, but not emphasize it as our main 
concern. We expect the times logged and actual times to be within a minute of 
each other. If our data indicates a difference of a minute or greater, we will do 
further testing with emphasis on the logging time stamp. The greatest concern is 
that the fuel level, for all three readings, are within a reasonable margin of error. 
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We would like the fuel level readings to be within a sixteenth of a tank from one 
another. If the fuel level readings deviate much further than a sixteenth of a tank 
from one another, we will have to decide if the readings are inaccurate or if the 
margin of error is larger than anticipated. In vehicles with relatively small fuel 
tanks, such as the 1998 Honda Accord, it‟s more difficult to get an accurate 
reading from the fuel gauge.  
 

15.4.1.5 Time Since Engine Start Function Testing 

 
The fourth function that will be implemented is the Time Since Engine Start 
(TSES) function. This function will read the last time that the engine in the 1998 
Honda Accord was started. After completing the TSES function code, we will 
implement and test the completed code for the application at the code level. We 
will ensure that all of the code compiles without any errors or warnings. Once the 
code successfully compiles, we will analyze the code for logical mistakes. When 
the code has passed visual inspection, it‟s time to upload the partially completed 
application to the smart-phone for field-testing. The standard field test procedure 
will include using the commercially bought ELM327 OBDII reader, the smart-
phone and the 1998 Honda Accord. Once a successful connection between the 
smart-phone and the OBDII reader has been established, the TSES function will 
be ready for field-testing. To help ensure the degree of accuracy of our 
application, we will test the TSES function ten different times. At the beginning of 
each trial, the tester will clear the data log in the logging function and record the 
time the testing is taking place. The tester will begin the test by starting the 
vehicle and recording the time that the engine started. After a successful start 
and recorded time, the engine will be shut off. The smart-phone user will select 
the TSES function in the GUI menu and record the time of that the engine was 
started last, according to the GUI on the application screen. The smart-phone 
user must also record the time that the TSES was recorded to ensure that the 
logging function‟s time stamp is still accurate. The smart-phone user will then exit 
the TSES function and select the logging function. The tester shall analyze the 
logged data within the logging function and record the time that the engine was 
last started according to the log along with it‟s time stamp. It‟s important to 
understand that the difference between the time stamp and the time that the 
engine was last started. The time stamp indicates when the data was sent from 
the car to the smart-phone, while the time next to it is the actual data that was 
requested, the TSES. The steps below shall be followed for each trial, for ten 
trials. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Start the vehicle while recording start time, then turn vehicle off. 
3. Select the Time Since Engine Start Function on the Android application 

menu. 
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4. The smart-phone user shall record the TSES indicated on the GUI of the 
smart-phone and the time the reading occurred. 

5. The smart-phone operator shall then select the logging function and 
record the TSES that was logged along with the associated time stamp in 
the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
The tester shall allow anywhere from a few minutes to a few hours between trials 
to vary the test data. Random test data will allow for a higher degree of 
confidence in the results. After each test trial, there will be five pieces of test data 
to help decide if the TSES function is functioning properly. The figure below, 
figure 15.4.1.5a, will be filled out to help analyze the data with more accuracy. 
 

Time Since Engine Start Function Testing 

Trial 

Number 

Actual 

Reading 

Time 

Logging 

Time Stamp 

Actual 

TSES 

Application 

TSES 

Reading 

Logging 

TSES 

Reading 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

Figure 15.4.1.5a – Table used to test Time Since Engine Start Function 
 

After all ten trials have been recorded we must analyze the data to understand 
the accuracy of the TSES function. Although, the time stamp from the logging 
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function was specifically tested and analyzed during the Logging Function 
testing, it is possible that the addition of the TSES function altered the 
functionality of the logging function, therefore we cannot take the time stamp 
reading for granted. The far left column represents what trial number the data is 
associated with. The second column, “Actual Reading Time”, represents the time 
that the tester read the reading for the TSES from the application‟s TSES 
function itself. The third column, “Logging Time Stamp”, represents the time 
stamp in the logging function‟s log, when the TSES reading was sent to the 
smart-phone. The fourth column, “Actual TSES Reading”, represents the TSES 
calculation. This calculation is simply the difference in time between the time the 
tester started the engine to the time the tester uses the TSES function on the 
smart-phone. This reading is accurate and will be used as the correct amount of 
time that the engine was last started. The fifth column, “Application TSES 
Reading”, is the TSES reading read from the GUI of the application‟s TSES 
function, by the tester. The last column, “Logging TSES Reading”, is the TSES 
that was logged in the logging function during that specific trial.  
 
As a group we shall analyze the data gathered over all ten trials. Since the time 
stamp in the logging function was previously tested, we will look for consistency 
among all time stamps from all test trials, but not emphasize it as our main 
concern. We expect the times logged and actual times to be within a minute of 
each other. If our data indicates a difference of a minute or greater, we will do 
further testing with emphasis on the logging time stamp. The greatest concern is 
that the TSES, for all three readings, are accurate and within a reasonable 
margin of error. As testers, we understand that the calculated TSES should be 
the most accurate reading, therefore our goal is achieve readings that are within 
45 seconds of the calculated TSES. If the test results deviate significantly from 
our expectations, we shall analyze the data further to determine the outcome.  
 

15.4.1.6 Fuel Economy Function Testing 
 
The fifth function that will be added to the application is the Fuel Economy 
function. This function tells the smart-phone user their fuel economy, average 
fuel economy and how many miles until the fuel tank is empty. Once the fuel 
economy function compiles without any errors or warnings, we can inspect the 
code for logic mistakes. After the code has been inspected for logic mistakes, we 
can load the application onto the smart-phone for the final stage of testing. We 
will use the logging function that was implemented earlier, to help test the fuel 
economy function. When testing the fuel economy function, we will do multiple 
trials to understand the accuracy of the user readings. The fuel economy function 
will be tested under the assumption that the logging function is accurate. Only 
one test trial per day shall be performed to help vary test results. For each trial 
the smart-phone will have to be successfully connected to the vehicle via a 
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Bluetooth connection with the commercial OBDII reader before we can start 
testing. The testing will follow the following steps and be repeated ten times. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Fuel Economy Function in the 
application menu and read and record the three fuel economy readings 
supplied. The time of the readings shall also be recorded. 

3. Smart-phone user shall exit the Fuel Economy Function and navigate to 
the logging function. 

4. The smart-phone operator shall then select the logging function and 
record the fuel economy data that was logged along with the associated 
time stamp in the logging function. 

5. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be eight pieces of test data to help decide if the fuel 
economy function is functioning properly. After all ten trials are recorded we can 
analyze the data to see how accurate the fuel economy function is. The purpose 
of recording the time that the tester performed the fuel economy reading from the 
GUI, is to ensure that the implementation of the new function to the already 
existing android application, did not alter the functionality of the logging function. 
The fuel economy readings read from the GUI will be checked against the data 
that was logged in the logging function. By this point in the testing phase, we 
anticipate that the logging function will be completely accurate since it was one of 
the first functions added to the application. The fuel economy readings will be 
inspected by Firoz Umran because of his familiarity with the vehicle. 
 

15.4.1.7 Speed Function Testing 
 
The sixth function that will be added to the application is the Speed function. This 
function tells the smart-phone user their speed or average speed or a length of 
time. Once the speed function compiles without any errors or warnings, we can 
inspect the code for logic mistakes. After the code has been inspected for logic 
mistakes, we can load the application onto the smart-phone for the final stage of 
testing. We will use the logging function that was implemented earlier, to help 
test the speed function. When testing the speed function, we will do multiple trials 
to understand the accuracy of the user readings. The speed function will be 
tested under the assumption that the logging function is accurate. Each testing 
trial will require at least three testers for best results. One tester is needed to 
operate the vehicle, one to operate the smart-phone and another to observe the 
vehicle odometers. For each trial the smart-phone will have to be successfully 
connected to the vehicle via a Bluetooth connection with the commercial OBDII 
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reader before we can start testing. The testing will follow the following steps and 
be repeated ten times. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Speed Function in the application 
menu. 

3. The vehicle driver will set the trip on the dashboard then proceed to drive 
for about three minutes (just enough time to allow for average speed 
calculations). 

4. While the vehicle is in motion: The smart-phone user will compare the 
speed indicated on the GUI and the speed indicated on the odometer in 
the dashboard of the vehicle. Note: The speed on the android application 
will have a time delay, with respect to the vehicle‟s odometer, due to the 
time taken to send data to the smart-phone. The observer shall time the 
length of the trip with a stopwatch. 

5. After about three minutes of driving the test is over. The smart-phone user 
shall exit the Speed Function and navigate to the logging function. 

6. The smart-phone operator shall then select the logging function and 
record the Speed data that was logged along with the associated time 
stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be eight pieces of test data to help decide if the 
speed function is functioning properly. After all ten trials are recorded we can 
analyze the data to see how accurate the speed function is. The purpose of 
recording the time that the tester performed the speed and average speed 
reading from the GUI, is to ensure that the implementation of the new function to 
the already existing android application, did not alter the functionality of the 
logging function. The speed data read from the GUI will be checked against the 
data that was logged in the logging function and the observed speed from the 
odometers in the vehicle. By this point in the testing phase, we anticipate that the 
logging function will be completely accurate since it was one of the first functions 
added to the application. 
 
 

15.4.1.8 Coolant Temperature Function Testing 

 
The seventh function that will be added to the application is the Coolant 
Temperature function. This function tells the smart-phone user the temperature 
of their coolant in real time. Once the coolant temperature function compiles 
without any errors or warnings, we can inspect the code for logic mistakes. After 
the code has been inspected for logic mistakes, we can load the application onto 
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the smart-phone for the final stage of testing. We will use the logging function 
that was implemented earlier, to help test the coolant temperature function. 
When testing the coolant temperature function, we will do multiple trials to 
understand the accuracy of the user readings. The coolant temperature function 
will be tested under the assumption that the logging function is accurate. For 
each trial the smart-phone will have to be successfully connected to the vehicle 
via a Bluetooth connection with the commercial OBDII reader before we can start 
testing. The testing will follow the following steps and be repeated ten times. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Coolant Temperature Function in the 
application menu. 

3. The vehicle operator will start the car and leave it in park while observing 
the temperature gauge. 

4. A third tester shall record the time and temperature from the in-dash 
gauge and the application‟s GUI every 30 seconds. 

5. After four minutes or eight readings have been recorded, enough test data 
will have been gathered for one trial. The smart-phone user shall exit the 
Coolant Temperature Function and navigate to the logging function. The 
vehicle can also be shut off. 

6. The smart-phone operator shall then select the logging function and 
record the Coolant Temperature data that was logged along with the 
associated time stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be several pieces of test data to help decide if the 
Coolant Temperature function is functioning properly. After all ten trials are 
recorded we can analyze the data to see how accurate the Coolant Temperature 
function is. The purpose of recording the time that the tester recorded the coolant 
temperature from the GUI and the in-dash odometer is so the logged data in the 
logging function will be associated with the correct set of data. The Coolant 
Temperature data read from the GUI will be checked against the data that was 
logged in the logging function and the observed coolant temperature from the 
odometer in the vehicle. By this point in the testing phase, we anticipate that the 
logging function will be completely accurate since it was one of the first functions 
added to the application. 
 
 

15.4.1.9 Air Intake Temperature Function Testing 
 
The eighth function that will be added to the application is the Air Intake 
Temperature function. This function tells the smart-phone user the temperature 
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of their air intake in real time. Once the air intake temperature function compiles 
without any errors or warnings, we can inspect the code for logic mistakes. After 
the code has been inspected for logic mistakes, we can load the application onto 
the smart-phone for the final stage of testing. We will use the logging function 
that was implemented earlier, to help test the air intake temperature function. 
When testing the air intake temperature function, we will do multiple trials to 
understand the accuracy of the user readings. The air intake temperature 
function will be tested under the assumption that the logging function is accurate. 
For each trial the smart-phone will have to be successfully connected to the 
vehicle via a Bluetooth connection with the commercial OBDII reader before we 
can start testing. The testing will follow the following steps and be repeated ten 
times. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Air Intake Temperature Function in the 
application menu. 

3. The vehicle operator will start the car drive around for four minutes. 
4. A third tester shall record the time and temperature from the application‟s 

GUI every 30 seconds. 
5. After four minutes or eight readings have been recorded, enough test data 

will have been gathered for one trial. The smart-phone user shall exit the 
Air Intake Temperature Function and navigate to the logging function. The 
vehicle can also be shut off after all the data has been recorded. 

6. The smart-phone operator shall then select the logging function and 
record the Air Intake Temperature data that was logged along with the 
associated time stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be several pieces of test data to help decide if the 
Air Intake Temperature function is functioning properly. After all ten trials are 
recorded we can analyze the data to see how accurate the Air Intake 
Temperature function is. The purpose of recording the time that the tester 
recorded the Air Intake temperature from the GUI is so the logged data in the 
logging function will be associated with the correct set of data. The Air Intake 
Temperature data read from the GUI will be checked against the data that was 
logged in the logging function. By this point in the testing phase, we anticipate 
that the logging function will be completely accurate since it was one of the first 
functions added to the application. 
 

15.4.1.10 Timing Advance Function Testing 
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The ninth function that will be added to the application is the Timing Advance 
function. This function tells the smart-phone user the timing advance of the 
engine. Once the Timing Advance function compiles without any errors or 
warnings, we can inspect the code for logic mistakes. After the code has been 
inspected for logic mistakes, we can load the application onto the smart-phone 
for the final stage of testing. We will use the logging function that was 
implemented earlier, to help test the Timing Advance function. The Timing 
Advance function will be tested under the assumption that the logging function is 
accurate. Prior to testing, the smart-phone will have to be successfully connected 
to the vehicle via a Bluetooth connection with the commercial OBDII reader 
before we can start testing. The following steps will be performed to test the 
functionality of the Timing Advance Function. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to testing. 

2. Smart-phone tester shall select the Timing Advance Function in the 
application menu. 

3. The displayed data on the application‟s GUI shall be recorded along with 
the time the data was read. 

4. The smart-phone user shall exit the Timing Advance Function. 
5. The smart-phone operator shall then select the logging function and 

record the Timing Advance data that was logged along with the associated 
time stamp in the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 
logging function. 

 

To test the accuracy of the data read from the GUI of the application‟s Timing 
Advance Function, we will use another application such as Torque to generate a 
third Timing Advance reading. The Timing Advance data read from the GUI will 
be checked against the data that was logged in the logging function and the data 
recorded from another application such as Torque. By this point in the testing 
phase, we anticipate that the logging function will be completely accurate since it 
was one of the first functions added to the application. 
 

15.4.1.11 Mass Air Flow Function Testing 
 

The tenth function that will be added to the application is the Mass Air Flow 
function. This function tells the smart-phone user the Mass Air Flow of the 
engine. Once the Mass Air Flow function compiles without any errors or 
warnings, we can inspect the code for logic mistakes. After the code has been 
inspected for logic mistakes, we can load the application onto the smart-phone 
for the final stage of testing. We will use the logging function that was 
implemented earlier, to help test the Mass Air Flow function. The Mass Air Flow 
function will be tested under the assumption that the logging function is accurate. 
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Prior to testing, the smart-phone will have to be successfully connected to the 
vehicle via a Bluetooth connection with the commercial OBDII reader before we 
can start testing. The following steps will be performed to test the functionality of 
the Mass Air Flow Function. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to testing. 

2. Smart-phone tester shall select the Mass Air Flow Function in the 
application menu. 

3. The displayed data on the application‟s GUI shall be recorded along with 
the time the data was read. 

4. The smart-phone user shall exit the Mass Air Flow Function. 
5. The smart-phone operator shall then select the logging function and 

record the Mass Air Flow data that was logged along with the associated 
time stamp in the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 
logging function. 

 

To test the accuracy of the data read from the GUI of the application‟s Mass Air 
Flow Function, we will use another application such as Torque to generate a third 
Mass Air Flow reading. The Mass Air Flow data read from the GUI will be 
checked against the data that was logged in the logging function and the data 
recorded from another application such as Torque. By this point in the testing 
phase, we anticipate that the logging function will be completely accurate since it 
was one of the first functions added to the application. 
 

15.4.1.12 Intake Manifold Pressure Function Testing 

 
The eleventh function that will be added to the application is the Intake Manifold 
Pressure function. This function tells the smart-phone user the pressure on their 
intake manifold in real time. Once the Intake Manifold Pressure function compiles 
without any errors or warnings, we can inspect the code for logic mistakes. After 
the code has been inspected for logic mistakes, we can load the application onto 
the smart-phone for the final stage of testing. We will use the logging function 
that was implemented earlier, to help test the Intake Manifold Pressure function. 
When testing the Intake Manifold Pressure function, we will do multiple trials to 
understand the accuracy of the user readings. The Intake Manifold Pressure 
function will be tested under the assumption that the logging function is accurate. 
For each trial the smart-phone will have to be successfully connected to the 
vehicle via a Bluetooth connection with the commercial OBDII reader before we 
can start testing. The testing will follow the following steps and be repeated ten 
times. 
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1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Intake Manifold Pressure Function in 
the application menu. 

3. The vehicle operator will start the car drive around for four minutes. 
4. A third tester shall record the time and pressure from the application‟s GUI 

every 30 seconds. 
5. After four minutes or eight readings have been recorded, enough test data 

will have been gathered for one trial. The smart-phone user shall exit the 
Intake Manifold Pressure Function and navigate to the logging function. 
The vehicle can also be shut off after all the data has been recorded. 

6. The smart-phone operator shall then select the logging function and 
record the Intake Manifold Pressure data that was logged along with the 
associated time stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be several pieces of test data to help decide if the 
Intake Manifold Pressure function is functioning properly. After all ten trials are 
recorded we can analyze the data to see how accurate the Intake Manifold 
Pressure function is. The purpose of recording the time that the tester recorded 
the Intake Manifold Pressure from the GUI is so the logged data in the logging 
function will be associated with the correct set of data. The Intake Manifold 
Pressure data read from the GUI will be checked against the data that was 
logged in the logging function. By this point in the testing phase, we anticipate 
that the logging function will be completely accurate since it was one of the first 
functions added to the application. 
 

15.4.1.13 Fuel Pressure Function Testing 
 
The twelfth function that will be added to the application is the Fuel Pressure 
function. This function tells the smart-phone user their fuel pressure in real time. 
Once the Fuel Pressure function compiles without any errors or warnings, we can 
inspect the code for logic mistakes. After the code has been inspected for logic 
mistakes, we can load the application onto the smart-phone for the final stage of 
testing. We will use the logging function that was implemented earlier, to help 
test the Fuel Pressure function. When testing the Fuel Pressure function, we will 
do multiple trials to understand the accuracy of the user readings. The Fuel 
Pressure function will be tested under the assumption that the logging function is 
accurate. For each trial the smart-phone will have to be successfully connected 
to the vehicle via a Bluetooth connection with the commercial OBDII reader 
before we can start testing. The testing will follow the following steps and be 
repeated ten times. 
 



Team 9 Senior Design 2011 
 

 

114  

 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to each testing trial. 

2. Smart-phone tester shall select the Fuel Pressure Function in the 
application menu. 

3. The vehicle operator will start the car drive around for four minutes. 
4. A third tester shall record the time and pressure from the application‟s GUI 

every 30 seconds. 
5. After four minutes or eight readings have been recorded, enough test data 

will have been gathered for one trial. The smart-phone user shall exit the 
Fuel Pressure Function and navigate to the logging function. The vehicle 
can also be shut off after all the data has been recorded. 

6. The smart-phone operator shall then select the logging function and 
record the Fuel Pressure data that was logged along with the associated 
time stamp in the logging function. 

7. The smart-phone user shall clear the contents of the data log in the 
logging function and repeat all the steps above, nine more times. 

 
After each test trial, there will be several pieces of test data to help decide if the 
Fuel Pressure function is functioning properly. After all ten trials are recorded we 
can analyze the data to see how accurate the Fuel Pressure function is. The 
purpose of recording the time that the tester recorded the Fuel Pressure from the 
GUI is so the logged data in the logging function will be associated with the 
correct set of data. The Fuel Pressure data read from the GUI will be checked 
against the data that was logged in the logging function. By this point in the 
testing phase, we anticipate that the logging function will be completely accurate 
since it was one of the first functions added to the application. 
 

15.4.1.14 Engine Load Function Testing 
 
The thirteenth function that will be added to the application is the Engine Load 
function. This function tells the smart-phone user the Engine Load on the engine. 
Once the Engine Load function compiles without any errors or warnings, we can 
inspect the code for logic mistakes. After the code has been inspected for logic 
mistakes, we can load the application onto the smart-phone for the final stage of 
testing. We will use the logging function that was implemented earlier, to help 
test the Engine Load function. The Engine Load function will be tested under the 
assumption that the logging function is accurate. Prior to testing, the smart-phone 
will have to be successfully connected to the vehicle via a Bluetooth connection 
with the commercial OBDII reader before we can start testing. The following 
steps will be performed to test the functionality of the Engine Load Function. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to testing. 
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2. Smart-phone tester shall select the Engine Load Function in the 
application menu. 

3. The displayed data on the application‟s GUI shall be recorded along with 
the time the data was read. 

4. The smart-phone user shall exit the Engine Load Function. 
5. The smart-phone operator shall then select the logging function and 

record the Engine Load data that was logged along with the associated 
time stamp in the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 
logging function. 

 
To test the accuracy of the data read from the GUI of the application‟s Engine 
Load Function, we will use another application such as Torque to generate a 
third Engine Load reading. The Engine Load data read from the GUI will be 
checked against the data that was logged in the logging function and the data 
recorded from another application such as Torque. By this point in the testing 
phase, we anticipate that the logging function will be completely accurate since it 
was one of the first functions added to the application. 
 

15.4.1.15 Battery Voltage Function Testing 
 
The fourteenth function that will be added to the application is the Battery Voltage 
function. This function tells the smart-phone user the voltage of the battery. Once 
the Battery Voltage function compiles without any errors or warnings, we can 
inspect the code for logic mistakes. After the code has been inspected for logic 
mistakes, we can load the application onto the smart-phone for the final stage of 
testing. We will use the logging function that was implemented earlier, to help 
test the Battery Voltage function. The Battery Voltage function will be tested 
under the assumption that the logging function is accurate. Prior to testing, the 
smart-phone will have to be successfully connected to the vehicle via a Bluetooth 
connection with the commercial OBDII reader before we can start testing. The 
following steps will be performed to test the functionality of the Battery Voltage 
Function. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to testing. 

2. Smart-phone tester shall select the Battery Voltage Function in the 
application menu. 

3. The displayed data on the application‟s GUI shall be recorded along with 
the time the data was read. 

4. The smart-phone user shall exit the Battery Voltage Function. 
5. The smart-phone operator shall then select the logging function and 

record the Battery Voltage data that was logged along with the associated 
time stamp in the logging function. 
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6. The smart-phone user shall clear the contents of the data log in the 
logging function. 

 
To test the accuracy of the data read from the GUI of the application‟s Battery 
Voltage Function, we will use another application such as Torque to generate a 
third Battery Voltage reading. The Battery Voltage data read from the GUI will be 
checked against the data that was logged in the logging function and the data 
recorded from another application such as Torque. By this point in the testing 
phase, we anticipate that the logging function will be completely accurate since it 
was one of the first functions added to the application. 
 

15.4.1.16 Error Code Function Testing 
 
The fifteenth function that will be added to the application is the Error Code 

function. This function tells the smart-phone user the error code associated with 

a check engine light. Once the Error Code function compiles without any errors 

or warnings, we can inspect the code for logic mistakes. After the code has been 

inspected for logic mistakes, we can load the application onto the smart-phone 

for the final stage of testing. We will use the logging function that was 

implemented earlier, to help test the Error Code function. The Error Code 

function will be tested under the assumption that the logging function is accurate. 

Prior to testing, the smart-phone will have to be successfully connected to the 

vehicle via a Bluetooth connection with the commercial OBDII reader before we 

can start testing. The following steps will be performed to test the functionality of 

the Error Code Function. 

 

1. The smart-phone user shall ensure that the data log in the logging function 

is cleared prior to testing. 

2. Smart-phone tester shall select the Error Code Function in the application 

menu. 

3. The displayed error code on the application‟s GUI shall be recorded along 

with the time the data was read. 

4. The smart-phone user shall exit the Error Code Function. 

5. The smart-phone operator shall then select the logging function and 

record the error code that was logged along with the associated time 

stamp in the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 

logging function. 
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To test the accuracy of the error code read from the GUI of the application‟s Error 
Code Function, we will use another application such as Torque to generate a 
third Error Code reading. The Error Code read from the GUI will be checked 
against the error codes that were logged in the logging function and the error 
codes recorded from another application such as Torque. By this point in the 
testing phase, we anticipate that the logging function will be completely accurate 
since it was one of the first functions added to the application. 
 

15.4.1.17 Throttle Position Function Testing 
 
The fourteenth function that will be added to the application is the Throttle 
Position function. This function tells the smart-phone user the position of the 
throttle. Once the Throttle Position function compiles without any errors or 
warnings, we can inspect the code for logic mistakes. After the code has been 
inspected for logic mistakes, we can load the application onto the smart-phone 
for the final stage of testing. We will use the logging function that was 
implemented earlier, to help test the Throttle Position function. The Throttle 
Position function will be tested under the assumption that the logging function is 
accurate. Prior to testing, the smart-phone will have to be successfully connected 
to the vehicle via a Bluetooth connection with the commercial OBDII reader 
before we can start testing. The following steps will be performed to test the 
functionality of the Throttle Position Function. 
 

1. The smart-phone user shall ensure that the data log in the logging function 
is cleared prior to testing. 

2. Smart-phone tester shall select the Throttle Position Function in the 
application menu. 

3. The displayed data on the application‟s GUI shall be recorded along with 
the time the data was read. 

4. The smart-phone user shall exit the Throttle Position Function. 
5. The smart-phone operator shall then select the logging function and 

record the Throttle Position data that was logged along with the 
associated time stamp in the logging function. 

6. The smart-phone user shall clear the contents of the data log in the 
logging function. 

 
To test the accuracy of the data read from the GUI of the application‟s Throttle 
Position Function, we will use another application such as Torque to generate a 
third Throttle Position reading. The Throttle Position data read from the GUI will 
be checked against the data that was logged in the logging function and the data 
recorded from another application such as Torque. By this point in the testing 
phase, we anticipate that the logging function will be completely accurate since it 
was one of the first functions added to the application. 
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15.4.2 Microcontroller Testing 

After the microcontroller has been programmed on the test board, we will build a 
circuit on a breadboard to test the functionality. LED lights will be used to indicate 
a successful signal transmission from the microcontroller. The tester shall go 
through all possible signal configurations using the LED lights. Once the 
microcontroller has been successfully tested, we can implement it with the rest of 
the hardware into the PCB board. After the PCB board has been built, it can take 
the place of the commercial ODBII reader. The microcontroller shall then be 
tested using the application itself. 
 

15.4.3 GUI Testing 

OBD gauge testing: connect the device and access the OBD reader screen. By 
default it should contain four gauges for reading speed, acceleration, boost and 
throttle. Ensure that each gauge can be long-pressed to pull up the customization 
dialog. Test each gauge with every function to ensure that not only all of the 
functions work, but that there are no positional bugs depending on which gauge 
is used. There should be no conflict with setting all of the gauges to read the 
same data. The gauges should also be checked to make sure the markings and 
numbers on the scale are correct for each function, and don‟t run into any 
overlapping or drawing conflicts when the function changes.  
 
Graph testing: connect the device, access the OBD reader screen and single 
press each gauge. It should launch the graph view for the appropriate function. 
To make sure it works properly, open the graph view, go back to the OBD reader 
view, change the function, and then go back to the graph view. It should be 
updated to the new function. The graph should start at the left side, slowly make 
its way over to the right edge, and once it hits it should begin scrolling the whole 
graph over to the left, ensuring that the parts of the graph scrolling offscreen are 
cleared from the view. The range of values will be the same as those on the 
gauge. The large gauge above the graph should work like those on the main 
OBD screen and conform to the same testing. 
 
Bluetooth connection testing: when the program is launched, the program should 
check whether or not Bluetooth is enabled. If Bluetooth is disabled, a popup 
message should appear asking if the user would like to turn it on. If the user 
already has Bluetooth enabled, there should be no popup. From the main menu, 
press “Start Connection” to attempt to connect to the device. If the phone has not 
been paired with the device previously, it should bring up the Bluetooth options 
screen and search for available Bluetooth devices. Once paired, the user will 
return to the program where it will establish the connection to it. If the phone was 
already paired with the device, it will connect automatically when “Start 
Connection” is pressed. The program should be able to gracefully handle 
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interruptions to the Bluetooth connection. If the user is on any of the views in the 
program that rely on the input stream from the Bluetooth device, an error 
message should pop up informing the user of the situation and letting them open 
the Bluetooth options screen to see if they can reconnect. If the user is on the 
gauge or graph view the numbers should return to their default (unconnected) 
states – and if recording a log, it will stop reading data and close any associated 
log files. 
 
Keypad view testing: connect to the device and navigate to the Keypad screen. 
Press the Unlock button, and ensure the car unlocks. Press the Lock button and 
ensure that the car locks. Press the Start button and ensure the car starts. Press 
the Up and Down buttons and make sure the windows roll up and down 
respectively. Finally, press the panic and trunk buttons and observe that they 
perform their respective functions. These functions should be tested from a 
variety of distances to make sure any interference doesn‟t produce errant results 
(i.e., it should either perform the function or not, nothing in between). Since the 
car doesn‟t communicate back to the phone whether it has completed the desired 
task, the car will have to be physically observed to make sure each button 
performs its function properly. 
 
Android hardware button testing: pressing the physical buttons on the Android 
device should behave in a predictable and standard way. The back button in 
particular can be troublesome in some applications, where it will close the 
application without warning and return to the Android home screen instead of 
going back by a screen. We would like to avoid this annoying behavior in our 
program. For our purposes, the back button should always return to the previous 
screen, or if a dialog menu is displayed, should dismiss the dialog. If the user is 
on the settings, keypad, OBD reader, error code or log screens, it should return 
back to the main menu. If, on the OBD reader view, the user has pulled up the 
customization menu for one of the gauges, pressing back should dismiss the 
menu but remain on the OBD reader view. If the graph view is accessed pressing 
back should return to the OBD reader view. Similar to other OBD readers, the 
only time the back button should be able to be used to close the program is when 
it‟s at the main menu. If this occurs, the program should prompt the user with 
popup box asking if the user is sure he wants to quit the program. The Android 
“menu” key should also behave in a predictable and standard way. It usually 
pops up a small menu on the lower portion of the screen, with options applicable 
to the screen at hand. We will need to test that the menu button works and pulls 
up the appropriate menu on the views that need it, and that nothing occurs when 
the button is pressed on screens that don‟t utilize it. Also in keeping with Android 
convention, pressing anywhere on the screen that is not the menu while the 
menu is up should dismiss it and not act as a press. The physical search key is 
not used in our program, and it should be tested on each screen to make sure 
there is no aberrant behavior with the button.  
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Log view testing: launch the program and select Log View from the main menu 
without connecting to the device or running the OBD reader view. Since there is 
no log data, the program should create blank files for each of the functions we‟re 
logging if it detects that no such log file exists. An error message should be 
displayed if the user attempts to graph or average values from this blank file. 
Next, to test that it is reading values properly, connect to the device via 
Bluetooth, and run the OBD reader for a while to let the logs collect data. Go 
back to the main menu and select Log View again. From the list of available logs, 
select each one and ensure not only that data has been written to it, but that it‟s 
the correct data (timestamp and value). Only 20 logs are shown by default, with a 
“Show more…” button; we need to make sure that the Show More button works 
as intended, increasing the number of log entries displayed while also letting the 
user scroll back up to see the first set of logs. Press the menu button while 
looking at a log to pull up the log settings menu and select “Find Average.” The 
screen should pop up a message stating the average. To make sure that it‟s 
doing the calculation right, find the average by hand and compare it with the 
number displayed in the Android program to make sure they match up. Next test 
the graph view with each log set. Make sure that it uses an appropriate time 
scale on the X-axis, since the log data might be separated by significant lengths 
of time, and sticking those two data sets right next to each other would be 
incorrect. We also need to test that the Y-axis values are set up correctly, based 
on the range of values chosen for each function from the other gauge and graph 
screens. We also need to test to make sure the Clear log functionality works 
properly. When pressed it should delete any logs contained in the file for that 
particular function, and replace it with a blank log file that behaves the way it‟s 
supposed to (i.e., not allowing graphs or averaging). Finally, we must ensure that 
the log files are being saved properly. Browse on the phone or connect to a 
computer and see that the log files are stored in the pre-established folder on the 
user‟s SD card. There should also be a backup storage location on the phone 
storage in case an SD card is not installed or corrupted/write protected. 
 

16.0 Administrative Content 

Administrative content covers the project‟s planning and financial management.  
In a four-member group project, planning and financing are key aspects to the 
project‟s success.  The project needs to be planned out evenly over the time 
allotted for completion.  Planning and setting milestone dates are crucial to the 
success and quality of the project.  As project administrators, we need to explore 
all options to help keep the cost of the project under budget.  The following two 
sections, 16.1 and 16.2, explain how the project‟s time and budget is managed. 
 

16.1 Milestone Timeline 
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In general, senior design projects are intended to take two, sixteen-week long 
semesters to complete.  However, this project will need to be completed in a 
single sixteen-week semester and a twelve-week semester.  Since we have four 
weeks less to complete the project than the ideal allotted amount of time, we 
need to plan and work efficiently.   
The early stages of the project dealt with research.  Researching similar projects 
and similar applications allowed the group members to find out what has and has 
not been done.  Researching similar projects and applications took roughly three 
weeks to complete.  The research helped determine exact specifications of the 
functionality of the project.  Shortly after the start of research, we we‟re able to 
start the documentation process.  The ideas and knowledge obtained from 
research were documented accordingly.  The documentation is projected to be 
the longest process in the project at 65 days in length.  While still researching 
and documenting simultaneously, we started the design phase.  We designed the 
software and hardware aspects of the project in 24 and 29 days, respectively.  
Once the design was complete, we started purchasing the parts and test 
equipment necessary for the project.  We project having all of the part and 
equipment necessary to the project by the first week of June.  If the projection is 
accurate, we will have acquired the parts and hardware over a 60-day span.  
After all of the documentation is complete, we will begin to write the application.  
The goal is to complete the application programming in 61 days.  While some 
group members are writing the application, others will start building the hardware 
prototype.  The hardware prototype should take about four weeks to complete.  
The hardware prototype should be completed about two and a half weeks into 
June, so there‟s plenty of time to correct the unexpected problems.  While the 
prototype is being constructed, we will program the microcontroller so it‟s ready 
to be tested with the prototype.  The microcontroller should take a little less than 
a week to program.  We anticipate that extensive testing and debugging will be 
necessary.  The testing and debugging process will begin as soon as it is 
possible.  Although, we don‟t foresee extensive testing and debugging will take 
place until after the hardware prototype is complete.  Thorough testing and 
debugging shall take place during the last three and a half weeks of the project to 
ensure prompt delivery by the due date.  Figure 16.1a shown below, is a visual 
representation of the milestones we have and wish to achieve throughout the 
course of the project. 
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Figure 16.1a – Estimated timeline of project from start to finish 

16.2 Budget and Finance 

The financing for this project came from the pocket of each of the group 
members: Alexander Powell, Firoz Umran, Josh Estes and Matthew Huereca.  In 
some cases, the part of software was free or already owned by one of the group 
members.  The ELM327 OBDII reader was purchased for $39.99 and used 
testing purposes.  Each group member contributed $15.00 towards this device.  
The testing subject is a 1998 Honda Accord and was supplied by Firoz Umran for 
free.  We estimate our final PCB board to cost about $150.00, which will be paid 
for by each of the group members.  If the estimation is accurate, each group 
member will contribute $37.50.  The smart-phone used will be contributed by one 
of the group members and is valued at $200.00.  The platform used to program 
the Android application is a free download, courtesy of Eclipse.  The computers 
used during the project are the possessions of each of the group members and 
will not consume any of the project fund.  The microprocessor used cost $15.00 
and will be paid for by each of the group members.  Each group member will 
contribute $2.50 for the microcontroller.  Five wire taps are used in the hardware 
design and cost $0.50 each.  Each group member shall contribute $0.63 for the 
wire taps.  If all of our assumptions are accurate and the hardware design is 
sufficient, we anticipate the total expenditure of the project to be $202.49.  This 
implies that each group member will have to contribute $50.63 towards the 
project.  The table below, figure 16.2.a, shows a complete breakdown of the 
project spending. 
 

Project Cost Analysis 

Part Quantity Cost Financing 
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ELM327 OBDII 

Reader 
1 $39.99 Project Fund 

1998 Honda 

Accord 
1 $3,625.00 

Loan from Firoz 

Umran 

PCB Board 1 $150.00 Project Fund 

Smart-Phone 1 $200.00 
Loan from Group 

Members 

Eclipse Platform 4 $0.00 Free Download 

Computer 4 $4000.00 
Loan from Group 

Members 

Microprocessor 

 
1 $15.00 Project Fund 

Wire Tap 5 $0.50 Each Project Fund 

Total 

Expenditure 
 $202.49 

Project Fund 

 

Figure 16.2a – Project Cost Analysis Table 

 
17.0 Conclusion 

We believe that our project will be a useful tool for reading critical vehicle data as 
well as a handy way to lock and unlock car doors on the go and start the car 
before even entering the vehicle. 
 
We have demonstrated our high level design which will include a connection from 
the android Bluetooth to the Bluetooth PCB.  The ATMega MCU on the PCB 
receives the data and then either passes it on to the ELM 327 to read car data, or 
the MCU performs a function such as car start or door lock. 
 
Our hardware design features our final schematic for the PCB.  It shows the 
connections made between the Bluetooth chip, the MCU and the ELM327.  The 
schematic was designed using EAGLE software. 
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The programming of the functions was done using specific request messages 
that the OBD-II port and car ECU reads.  These messages contain headers, and 
data requests.  The response messages were also discussed and class 
diagrams were created. 
 
We believe the project has a need and motivation despite the existence of similar 
products.  Our project will have more functionality and will be done made at a 
cheaper price than any of the other projects mentioned in the report.  
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Appendices 

A. Copy write permission 

 

 
 

ELM Permission 
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