Wireless Home Control
System

Grant Hernandez, Jimmy Campbell
and Joseph Love

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract—The presence of wireless technologies and pro-
liferation of mobile controlled devices have inspired a push
toward consumer based home automation systems. Wireless
Home Control System is a home automation framework
designed to compete with popular solutions in the domain.
The system features peripheral control modules capable of
interacting with lights, outlets, doors, and sensors. All control
modules communicate with a central hub that is paired with a
mobile device to provide total control to the user. We describe
the hardware and software necessary to conceive this system.

Keywords-bluetooth, Home automation, mobile, power con-
trol, scalable platform, sensors, wireless.

1. INTRODUCTION

Wireless Home Control System (WHCS) is a solution
for any homeowner to be able to remotely control core
appliances of their home. WHCS allows the user to control
lights, outlets, doors, and sensors around their home. The
system’s design philosophy emphasizes ease of use, afford-
ability, and effectiveness. An Android phone application
developed for WHCS allows users to monitor the state of
the installed components and activate them remotely. A
central base station equipped with a touch-enabled LCD
is present, allowing the users to interact with the system
without the need of a phone. Peripheral control modules
may be installed into targeted appliances such as lights,
outlets, and doors for WHCS to control. As shown in
Figure 1, the phone, base station, and peripheral control
modules constitute WHCS.

The implementation of such a system required research
in a myriad of fields to produce a full-fledged product. A
well designed Android application is the key to creating a
positive first impression of WHCS. Thus, care was taken
to conform to the design philosophies of the Android
ecosystem. The alternative interface offered for WHCS is
the base station’s display. Communication devices form the
foundation for the wireless aspect of WHCS, thus an in-
vestigation into the advantages of different communication
modules was required to realize the system. A network
protocol has been developed and implemented in order

to form a unified system from the independent modules.
The activation of appliances around the home requires high
voltage control, so methodologies for properly harnessing
the power provided by homes were researched. To extend
upon harnessing the home’s power, our individual control
modules and base station’s logic level voltages (5V) depend
upon the creation of an efficient way to step down the high
voltage supplied from the home.

r & q
N

LCD
MOBILE
DEVICE DISPLAY

3 =]

Base Station

o+
.
g

End points

=)
[1
3 10 KA

-

Fig. 1: WHCS System Overview

2. BASE STATION

The heart of WHCS resides with the base station (BS).
When users think of WHCS, they will think of the base
station as it is the most visible hardware component of the
system. Powered by an AVR Atmega32-A, the base station
is responsible for managing, collecting, and displaying
information from all of the control modules. If the BS were
to fail, WHCS would cease to function.

A. Subsystems

The base station has the hardest job in the entire WHCS
architecture. It has to juggle a lot of data with limited mem-
ory and processing speed. Packets need to be processed and
queued to keep the pipeline flowing smoothly. The radio,
bluetooth, LCD, and touchpanel need to be managed and
updated in real time.

1) NRF24L01+: The NRF radio is directly connected
to the Atmega32-A microcontroller through the SPI bus.
The radio job is to constantly listen for new packets from
the control modules and sending responses in turn. Also,
when a command such as “open door” needs to be sent,
the radio switches to transmit mode in order to send the
corresponding packet.

In WHCS’ architecture, the main loop of the base station
is not interacting directly with the radio. This is due to

the abstraction we built around the low-level radio driver.
All driver specific functions are be wrapped in to a facade
pattern, network library. This allows WHCS to swap out
the underlying network hardware for another, similar radio
if needed. Due to this radio being the most critical for
WHCS, it needed to have the most attention to detail when
constructing the layout and software design. In order to
meet these tight constraints, we chose the popular and
well support RF24 library. This library is used by many
other projects and has a proven track record. Additionally,
members already had experience working with the API,
therefore the learning curve was quite low.

2) HC-05: The HC-05 Bluetooth module is quite simple
in its operations. Data is sent over a two line serial bus
and if there is an active connection to a bluetooth enabled
device, it is easily able to receive the data and handle
it. In this case the device on the other end is expected
to be a phone, but not limited to one. As long as the
device on the other end of the Bluetooth link follows the
WHCS Bluetooth application protocol, then WHCS is able
to receive commands from arbitrary devices. In order to
pass messages across this medium, a binary protocol has
been developed. A simple diagram showing a very high
level interaction of a Bluetooth device with the base station
is for reference in Figure 14. Once again this underlying
protocol is abstracted away from the underlying hardware.
For example, if the HC-05 were to fail to meet WHCS’
strict requirements, then we would have to switch it for the
next best unit - the RN-41. If we wrote the underlying driver
to be the “top level” layer that the base station interacts
with, then a large amount of code and possibly architecture
would have to be swapped out to meet the needs of another
hardware device.

In regards to the application level protocol for WHCS,
there is a well defined, easy way, for the Bluetooth library
to gather information from WHCS’ state. This is handled
on the top-level flow of the base station by gluing together
two different libraries without them knowing about each
other. This is a good approach because it decouples the
two modules from each other, making their individual
implementations separate. Two tightly coupled modules
may start to take on the appearance of a “ball of mud.”
A connected phone is able to accomplish any task that
manually interacting with the LCD can handle. This in-
cludes controlling the function of individual modules and
querying their current state. The BT connection tries to
avoid generating too many packets over the NRF radio
in response to user events. Instead it merely lookups the
cached state from the base station’s memory. This is faster
and the round trip time is quick. Also, if a bluetooth packet
requires a radio packet to be generated, this interaction is
asynchronously tracked until the request has been fulfilled.

3) LCD: In what could be considered the ‘“face of
WHCS”, the LCD module is situated directly over the
Atmega32-A. It has the tough job of accurately and
quickly conveying any desired information about the state
of WHCS’ control modules. This was no simple task as not
only does it have to display, but with an attached touch-
panel, it has to react to user touches. What functionality
is exported to the LCD is only limited by the underlying
processor speed and the UI library. The high level design
of the WHCS LCD only had to worry about what the end
goals are for its usage. An example of this abstraction may
be viewed in Figure 2.

(UILibrary |)
A TextView
GfxLibrary I
ﬁﬁ ListView Drawable
ﬁ I Ul Elements
ILI9431Drv I ImageButton
|
9 4

Fig. 2: the level of abstractions for the LCD subsystem

As the state of the WHCS network changes, the base
station fires off redraw events in order to keep the LCD
up-to-date. These redraws sync the internal state of WHCS
with the user viewable interface. The physical connections
to the LCD consist of data signaling and an 8-bit wide
parallel data bus. There is an optional reset pin that WHCS
uses for emergency resets and debugging. The high level
interface with the LCD works directly with the high-level
UI library and if necessary the underlying graphics library.
The base station should never use the direct driver interface
as this is subject to change due to hardware revision.
In addition, a subtle feature that WHCS may choose to
implement would be dynamic power saving through screen
dimming. Although we assume the base station has wall
power at all times, there may come a time where the system
may migrate over to a lower wattage current source, such
as power stealing from an HVAC unit. In this case, the
system would most certainly have to be power efficient.
Despite not needing to worry about power, this function
would be simple to implement as only one microcontroller
pin is required to control the screen brightness.

4) Touchpanel: In order to provide a way for an end user
to be able to control WHCS from the LCD unit, there is a
requirement to poll for touch events. This subsystem can be
considered a part of the LCD, but the driver is independent
from the graphics and ILI9431 (LCD) drivers. These events
are be dispatched to the appropriate Ul element based on
the X and Y position of the touch event. There is an optional
Z “‘position” which represents the pressure, which is used to

gather more fine grained information about the touch itself.
One of the unfortunate properties of the touchpanel is that
it must be actively polled for new touches. This required
that the ADC be constantly providing conversions, which
raises the dynamic power of the MCU. This isn’t a major
concern as the base station is expected to have power from
the wall most of the time.

The extent of the touchpanel interaction occurs from a
getTouch () method. This method returns the latest touch
event, if any. The base station has full control over where
this touch event is dispatched to. Depending on the LCD
scene (i.e main menu, boot screen), this event is be handled
in different ways.

B. Software Architecture

The code for the base station is the most complicated
in WHCS. It has to manage three separate devices sim-
ulatenously and be able to service each one in a timely
manner. The LCD, NRF radio, and Bluetooth module are
all being controlled and commanded by one ATMega32-
A chip. There isn’t much room for busy waiting or any
expensive operations as everything has to be running as fast
as possible. Given this, the BS is the least point of failure
for the WHCS. This complicated main loop, including early
initialization, may be seen in Figure 3.

Init

Load
Initialize Saved
Bluetooth Config
Initialize Initialize
LcD UART

Process
LCD Events

Bluetooth

yes
Available

Battery

Process
Radio
Events

Process T Update
Bluetooth imers

Battery
Events Tick/Fire Indicator

Fig. 3: The high level software flow for the base station

Starting from reset, the base station first loads any
saved settings from the EEPROM (saved control modules,
behavior settings, LCD settings, etc.), then it brings up all
of the main classes (radio, LCD, Bluetooth, and UART).
Each subsystem has a unique sequence of “commands”
with parameters that are required to configure the device.
The NRF radio has to have its power, channel, payload
length, and other parameters set before usage. Once these

basic options are set, any further configuration is done
at run time. This includes switching from listening to
transmitting mode and enabling or disabling the automatic
acknowledgement feature. The built-in Atmel UART only
needs to know the baud rate at which data will be sent
and received. The LCD happens to have the most extensive
initialization sequence due to required screen configuration,
gamma settings, pixel order and other more archaic options.

Once all of the subsystems are brought up correctly,
the BS begins the main loop. Radio events, Bluetooth
events, and LCD state are all processed as required. For
both the Bluetooth and radio, new packets are checked and
serviced as needed. From these packets, internal state would
updated and any response packets would be generated and
sent. Internally, WHCS has an internal event queue with
different event types. These events are processed and any
responses are generated, if any. These responses include a
confirmation packet over the NRF radio and a status update
through Bluetooth. The base station may also initialize
actions despite not receiving events.

All of the above tasks are executing in the same way as
single core CPU would: in pseudo-parallel. The faster the
whole system runs, the better the appearance of everything
executing at once.

C. Control Module Abstraction

For WHCS to function smoothly and scale well, a neat
and abstracted interface must be defined to accept any type
of control module. New control module types should be
easily added to the system without affecting older types and
there should be a set of generic data structures for managing
and storing information on modules. These structures must
be carefully defined to wrap more specific control module
packets in all of the shared metadata. Think of it like a
hierarchy where all of the common attributes and actions
shared by control modules have packets that can be sent
to any module. Whereas the more specific packets (get
temperature, engage door, etc.) would be wrapped up in the
generic ones (essentially a derived object from the generic
control module.) This can be visualized in Figure 4.

CtrIModule

Generic Operations

Specific Operations .~ /7~ VT T~~~ T~~~ °~7

(TimeService) (LightControler)

Fig. 4: showing the control module hierarchy for WHCS

Beyond sending packets, the base station must accurately
record and update state for all of the control modules.
Depending on the control module, additional state is stored.
Each control module has its own state machine that controls
its function in relation to the base station.

D. Schematic Breakdown

To tie the whole design of the base station together, the
schematic, created in KiCad is broken down below.

In Figure 5 we see a focused view of the Atmega32-A
microcontroller with an attached 16MHz crystal and power
passives. The crystal has two capacitors that are dependent
on the target crystal. These are required to get the correct
oscillation for the external crystal. Also the AREF, VCC,
and AVCC lines of the MCU have decoupling capacitors.
These are used to make sure that the base station performs
well under a large current spike. When designing the board,
these capacitors should be placed as close as possible to the
MCU to avoid a long high-current path through the ground
plane. The capacitor on the analog reference pin (AREF)
is used to stabilize the reference to make ADC conversions
more accurate.

C

i
c
Lve

C

The analog reference is VCC

TPF
LV

S |J&_GND

T
vee s Lvee
vee 7

RST 4 ey (rocojpao (Y=
(apc1)pat |36 X=
s (anc2)paz |35 ;:
N (ADC3)PA3 |34
7 | a2 (apc)Pay |33 PAL
o o] (ADcs)Pas |32 Eﬁ
o e 31
20O = (ADC6)PAG
5 (oc7)pa7 [30PA
s 8 fxrms
N (ro/xcypeo |40 CE
X (raypes |41 KEY
Capacitor values (ano/int2ypez |52 BTEN
dependent on crystal CL vce 20 | \oer (anocoppes |43 LITE PWM Pin
=] (S)rou |4 CSN
(vosipes |+ MOSI
Toonr (uisojres |2 MISO
a) (scxypo7 [3-SCK
= Tareky
e e 19 DO

Fig. 5: Base Station crystal and decoupling capacitors

In Figure 6 we see the buses used to connect the LCD to
the MCU. This is the most pin heavy component and care
must be taken not to mix up any of the signal paths. All
of the data control signals are connected to PORTD of the
MCU, the touchpanel signals to PORTA (ADC), and the
8-bit parallel data bus completely uses PORTC. There are
a few one off signals such as LITE which is a PWM input
to control the LCD’s backlight brightness.

In Figure 7 we see the 3.3V 3 terminal regulator con-
verting the 5V VCC line down. Additionally, we see the
external RESET pull-up resistor and a manual reset push
button. The left corner has the pinout for the NRF breakout
board we are using.

In Figure 8 we see the header for the HC-05. We examine
this further because of the unique electrical characteristics

Avee

(ADCO)PAO
(apctypat |36 X=
(ADC2)PA2
(ADC3)PA3
(ADC4)PAL
(ADC5)PAS
(ADCE)PAE
(ADC7)PAT

(T0/XCK)PBO
(T1)PBL
(AIND/INT2)PB2
(AINL/0CO)PB3
(55)PB4

)

)

)

(MOSI)PBS
(MIS0)PBE
(SCK)PBT

(sCL)Pco

PORTC taken up by
the LCD parallel
(TDO)PCH interface
(TDI)PCS
(Tosc1)PCE
(Tosc2)pc7

)
)

)
(TMS)PC3
)

)

)

)

o BRRRRREREE
» lolololololololo
2 SEIFEERES

(RXD)PDO
(Txp)ppy [0 \T;(Q
(INTo)PD2 |1
(T1)pp3 |12 LRST

)
)
)
)
(0C1B)PD4
)
)
)

(0C14)POS
(IcP)PO6

FPRTUe LM108B4IT-3.3/NOPB
(ac2)P07

vce 3w 002
Fig. 6: Base Station LCD header to MCU

SND
ND

PRI LM10841T-3.3/NOPB

vee s [y oy e 3v3
o

GN

NRF24L01+ Header

GND

SN (] (0815

SCK
MISO

Fig. 7: Base Station power schematic and NRF header

of the HC-05 module. The module only accepts 3.3V power
and logic. Our MCU is running at 5V, which means we need
a 5V to 3.3V logic shifter. To simply implement this, we
used a resistor voltage divider which provided the required
logic level for the TX pin. The RX pin does not need a
shifter because 3.3V is still above the V;y minimum for
the MCU.

Finally, in Figure 9 we see the standard ICSP header that
most AVR line microcontrollers use. This pin array serves
as a quick and easy way to connect an external programmer
to our base station while in the field. In this schematic
revision, this header can provide power directly to the 3.3V
regulator and MCU.

3. CONTROL MODULES

What can be thought of as the “arms of WHCS”, the
control modules serve as the main devices that seed the
network with data. This data is specific to the control
module that is emitting it. The control modules are as

HC-05 Header

5V —> 3V3

O
=z
=
(@}
(]

R3

2000 }—e—{ 1000

onp

Fig. 8: Base Station HC-05 header

ICSP Header
CON1
MISOHSQI 1 2 Qyec VCC
SCK 3 4 MOSI
=20 sk — 3 4 X Mo T2
RST 5 6 0 enp GND
AVR-ISP-6

Fig. 9: Base Station ISP header

lightweight as possible to save cost and keep power usage
down. If the control modules were too complex, then the
entire cost of WHCS would increase proportionally to the
number of control modules.

A. Software Flowchart

The general flow for the control modules is much simpler
than the base station just due to the requirements of the
system. There isn’t as much that needs to be done on
each loop iteration. The only main module that the control
module needs to work with is the NRF radio. This can
be seen in Figure 10. Due to the capabilities for the NRF
radio to provide an interrupt signal on the reception of a
packet, the control module actually has the ability to sleep
when not doing anything. Control modules are be as mobile
as possible, which limits their overall functionality and
processing power. Without these limits, any battery attached
would quickly be drained.

B. Electronic Strike

WHCS features an electronic strike which allows control
modules to lock and unlock doors within the system. The
electronic strike was chosen over an electronic deadbolt
because the strike can still be used with a normal door
knob. If the electronic strike ever fails during operation the

Load
Saved
Config

Initialize
Radio

Initialize
UART

Process
Radio
Events

i

Timers
Tick/Fire

Queue
Battery
Packet

Check
Battery

Service Update

Actuators

l

New Read
Data Sensors

no

yes

Queue
Radio
Packet

Generate
Update

Fig. 10: the high level software flow for a generic control
module

door knob can be unlocked and therefore bypass the strike
system. This design principle gets rid of safety hazards that
could occur if the WHCS system lost power. The operating
mode for the electronic strike is normally open. This means
the strike requires power to be unlocked and is otherwise
locked. As a result, power is saved within the system which
is beneficial because the electronic strike consumes roughly
450mA at 12V during operation.

C. Sensor Data Collection

The temperature sensor that we used for WHCS is the
TMP36. The temperature sensor is simple in design as it
has only three pins that require connection. The schematic
shown in Figure 11 shows how the temperature sensor is
connected to the ATmega328 on the control modules. The
VOUT pin of the TMP36 outputs a voltage signal that
varies based on the temperature surrounding the compo-
nent. The voltage range is between 2.7 to 5.5 volts which
is supplied through or logic level voltage lines. This sensor
has a rated temperature range of -40 to 125 degrees Celsius
which is broad enough for a household temperature sensor.

D. Light and Outlet Control

The solution to controlling lights and outlets in WHCS
is through an AC solid state relay. The solid state relay
that we use is capable of switching a load of 120V AC up
to 16A. The activation voltage is 1.2V and the activation
current is 15mA. The ratings of the chip allow the relay to

Fig. 11: Temperature Sensor Connection Schematic

be controlled directly from the control modules microcon-
troller GPIO pins. This solid state relays small activation
requirements provide low power operation capabilities as
well as design simplicity. Figure 12 shows a schematic
using this solid state relay.

[

—_GND

Fig. 12: Wiring Schematic for Solid State Relay

E. Schematic Breakdown

The control modules for WHCS have to be able to
support communication via a radio transceiver as well as
interaction with their target endpoints. Figure 13 shows the
schematic for the control modules that is be implemented
in WHCS. Everything in the schematic is connected to
the microcontroller in some way. In the schematic three
different VCC lines are shown. This is because the control
modules will have to access to a 3.3V line, a 5V line,
and a 12V line. The power board will supply these power
lines to the control module. The 5V and 3.3V lines are
necessary because they provide power to the logic chips
like the microcontroller and the radio transceiver. The 12V
line is necessary solely for the electronic strike that we have
chosen.

i

v B
Jo 77 g i =
— [o 7 ¥ ‘ ATOR LEf
— — o 33

4’7

Fig. 13: WHCS Control Module Schematic

4. ANDROID APPLICATION

For most WHCS users the mobile application will be the
only physical interaction they have with the application.
When we set out for development we wanted to make an
easy to use application that would attract users to stick with
our system. Operability and usability were emphasized in
our design process. We wanted an appealing U.I. without
complexity, after all we are targeting a simple solution to
home automation.

A. Bluetooth Software Design

Bluetooth is the technology allowing the Android ap-
plication to communicate with the base station. The first
step of the Bluetooth lifecycle is to ensure that Bluetooth
is enabled. When it has confirmed that Bluetooth is on,
the application will the user to connect to a base station.
When connecting to a device there are two possibilities
for connection, paired devices and non-paired devices. The
application will first show the user all devices that their
phone has paired with previously such as the base station.
If the base station does not show up in the paired devices
list, the user will be able to search for active Bluetooth
devices and select the base station. At the end of this
start up cycle the WHCS application will have an active
Bluetooth connection with the base station that can be used
for full duplex communication. A socket can be opened
within the android application for communication between
the two Bluetooth devices.

Once a BluetoothSocket has been opened on the
Android device the application can begin communicating
with the base station. We use a custom communication
protocol between the Android device and base station to
ensure proper interaction. This protocol allows the Android
application to give commands to the base station such as
inquire about the state of the control modules or to toggle
state within the system. Whenever the Android application

wants to send a message to the base station the software cre-
ates a packet with a certain structure. The packet contains
a byte for letting the base station know that a command
is being given, the command itself, any variables for the
command, and then a byte for finishing the command. The
base station receives one byte at a time due to the serial
nature of Bluetooth communication but it is able to parse
the packets it receives in order to figure out what action
the application is trying to perform. Figure 14 shows a
visual representation of the communication between the
application and the base station.

Control Blue

Module Command | Command Tooth
Header

Target Code Req l.D.
Base Station

BlueTooth
Socket

A
Blue Command

Tooth Ack
Header LD.

Command
Response

Fig. 14: Visual of Communication Between Android Device
and Base Station

B. Speech Recognition

The Android application for WHCS offers speech ac-
tivation capabilities. These are on top of GUI activation
capabilities. The speech activation sequence begins with
the press of a button to start the speech recognition. The
user is prompted with a microphone and can then give his
command. The commands are formatted similarly to light
one on. When the user gives commands using the speech
method, a notification is given indicating the success of
interpreting the speech into a known command. If the users
speech does not match a known command, the speech is
shown back to the user to show what went wrong. The
following flowchart in Figure 15 displays the sequence of
events happening when a user performs speech activation.

5. POWER HARDWARE

In order to power our system we stepped down the
120VAC found in homes to the voltages that our system
requires. For our system we need a 12V, 5V, and 3.3V
lines. To provide these lines we used a traditional full bridge
rectifier design using a 60 Hz 120:14 transformer to convert
our AC voltage down to 19.8VDC. We considered using a
switched mode power supply, yet based on the increase of
complexity of SMPS designs we decided that we would
not have enough time to incorporate this type of design for
our AC to DC power step down. After having stepped down

User’s words are
returned from
speech recognition
service

Checkif user's
speech matches a
command

User prompts
speech recognition

Application requests

speech recognition
service

Inform user of how
they were
interpreted and no
command exists

Inform user of the
command they gave,
then perform it

Microphone is
displayed to prompt
user to speak

Fig. 15: Android app speech activation chart

the power we used TI WEBENCH to convert the 19.8VDC
to 12V, 5V, and 3.3V lines. Each line was made using
switching regulators in order to have maximum efficiency.

A. Power Consumption

Power consumption wasn’t a top priority in our design.
While it is important not to be incredibly wasteful to the
point that it becomes a problem, power was not something
that we decided we wanted to be competitive on. Had we
wanted to be more competitive with power, we would have
taken a lot more into account and made different design
decisions. For example with the microcontrollers we would
have looked more carefully into the amount of current
that they drew to help us weigh our decisions. MSP430
boards for example would have been attractive because of
the low amounts of current that they draw. With that said
we made all of our decisions based on their performance
and ease of integration. We merely needed to know how
much current our system drew to properly design of our
switching regulators as well as choose our transformer.

Figure 16 and Figure 17 were used in making our design
decisions.

Operating Voltage Device Current Draw (mA)
v LCD 150
Bluetooth 35
nRF 135
Temp Sensor 0.05
Sv Atmegal2dP 1
Atmegal2A 16
AC Relay 20
Strike Relay 5
Power LED 20
Board LED 20
12V Strike 450

Fig. 16: shows the current requirements of each device in
our system.

Voltage Max Current (mA)

3 1958.55
5V 76
12V 450

Fig. 17: shows what the max current for each line in our
system at any point in time.

B. Transformer and Capacitor Choice

To choose the transformer we needed to take into account
the apparent power rating as well as the winding ratio.
Given that the highest voltage output needed for our design
was 12VDC we decided on a 120:14 winding ratio. This
gave us about 20VDC to be stepped down by our switching
regulators. To choose the apparent power rating we had to
consider the current draw. From Figure 17 we find that the
max current the system would ever draw would be below
725mA. The apparent power rating can be calculated by
I %V,s. Given the information of our system we required
an apparent power rating of at least 0.725 x 14 = 11VA.
The transformer we chose had an apparent power rating of
20VA.

We chose our capacitor using the equation V. = 2*1”#*0
for an approximation of the expected ripple (Millman-
Halkias, pg. 112-114). Using a capacitor of 4700uF' gives
us a ripple of .887V (for most applications our current draw
will be below 500mA).

6. CONCLUSION

Through extensive research, design, and implementation
WHCS was realized to meet all requirements set. The
Android application was architected successfully for sim-
plistic interaction. All use cases were implemented in order
to provide the optimal experience. The base station was
fabricated according to specifications. It has proved it is
capable of managing all state of WHCS and acting as the
middleman between the user and the home. The individual
control modules do the tasks that they were created for so
that the home can be controlled by the push of a button.
Future work includes extending the number and type of
control modules supported by WHCS.

7. ENGINEERING TEAM

Grant Hernandez is a senior
at the University of Central
Florida. He will be graduating
with a Bachelor of Science in
Computer Engineering this sum-
mer. In his spare time, Grant
writes lots of code, reverse en-
gineers binaries, plays in cyber

Capture the Flag competitions,
dabbles in computer graphics, and tinkers with embedded
systems. He will be attending the University of Florida in
fall 2015 to begin his Ph.D in Computer Engineering with
a security research lab.

Jimmy Campbell is a se-
nior at the University of Cen-
tral Florida. He will be receiv-
ing a Bachelor of Science in
Computer Engineering in Au-
gust 2015. His interests include
embedded programming, mobile
development, and web back-end
development. Jimmy will be tak-
ing a full time position with Mi-
crosoft as a Software Development Engineer after graduat-
ing.

Joseph Love is currently a se-
nior at the University of Cen-
tral Florida and will receive his
Bachelor of Science in Electrical
Engineering in August of 2015.
He is currently working with
Direct Beam Incorporated and
plans to pursue his masters in
Electrical Engineering during the Fall of 2015 at UCF with
a focus in Electromagnetics.

	Introduction
	Base Station
	Subsystems
	NRF24L01+
	HC-05
	LCD
	Touchpanel

	Software Architecture
	Control Module Abstraction
	Schematic Breakdown

	Control Modules
	Software Flowchart
	Electronic Strike
	Sensor Data Collection
	Light and Outlet Control
	Schematic Breakdown

	Android Application
	Bluetooth Software Design
	Speech Recognition

	Power Hardware
	Power Consumption
	Transformer and Capacitor Choice

	Conclusion
	Engineering Team

