
Wirele
ss H

ome
Con

trol
Syst

em

Reimagine your home TM

Grant Hernandez
Computer Engineer

Joseph Love
Electrical Engineer

Jimmy Campbell
Computer Engineer

University of Central Florida Senior Design II Group #5
August 4, 2015 Sponsored in part by Boeing

Contents

1 Executive Summary 1

2 Project Description 1
2.1 Motivation . 1
2.2 Overview . 2
2.3 Objectives . 3

2.3.1 Voice Control . 3
2.3.2 Light Activation . 4
2.3.3 Outlet Activation . 4
2.3.4 Door Access . 4
2.3.5 Data Collection . 4

2.4 Requirements and Specifications . 5
2.4.1 Mobile Application . 5
2.4.2 Radio Module . 6
2.4.3 Microcontroller . 6
2.4.4 BlueTooth Module . 6
2.4.5 Printed Circuit Board . 6
2.4.6 Power Specifications . 7
2.4.7 LCD . 7

2.5 Research of Related Products . 7
2.5.1 Z-Wave . 7
2.5.2 Belkin . 8
2.5.3 Apple HomeKit . 9
2.5.4 Nest Labs . 9
2.5.5 X10 . 10

3 Realistic Design Constraints 10
3.1 Economic Constraints . 10
3.2 Time Limitations . 10
3.3 Political Constraints . 11
3.4 Ethical, Environmental, and Sustainability Constraints 11
3.5 Manufacturability Constraints . 11
3.6 Safety and Security . 11
3.7 Spectrum Considerations . 12

4 System Design 13
4.1 Base Station . 13
4.2 Control Module . 14
4.3 BlueTooth Capable Phone . 16
4.4 Software . 16

5 Summary of Related Standards 18
5.1 RS-232 . 18
5.2 BlueTooth . 19
5.3 SPI . 19
5.4 FR-4 . 19

i

5.5 Android Development Guidelines . 19
5.6 ANSI/NEMA 1-15P, 5-15P, C84 . 20

6 Hardware and Software Design 20
6.1 Radio Transceiver . 20

6.1.1 Operating Principles and Usability of NRF24L01+ 20
6.1.2 Driver Use Case . 21
6.1.3 Driver Class Diagram . 22
6.1.4 Network Library . 23

Modes of operation . 25
Join mode detail . 25
Communicate mode detail . 26
Idle mode detail . 26
Leaving mode detail . 26

6.2 Microcontrollers . 26
6.2.1 Microcontroller Brand . 26
6.2.2 Base Station Microcontroller . 27
6.2.3 Control Module’ Microcontrollers . 28
6.2.4 Development Environment . 29
6.2.5 Microcontroller Additions . 30

6.3 BlueTooth Chip . 31
6.3.1 RN-41 . 32
6.3.2 HC-05 . 32

6.4 LCD . 33
6.4.1 Capabilities . 34
6.4.2 ILI9341 Driver . 35

Choosing where to draw . 35
LCD State Management . 35
LCD Performance . 36

6.4.3 Touchscreen Driver . 36
6.4.4 Graphics Driver . 36

Algorithms Necessary . 37
Character Lookup Table . 37

6.4.5 UI Library . 37
View Abstraction . 38

6.5 Android Application . 39
6.5.1 Development Environment . 39
6.5.2 Use Case Diagram . 40
6.5.3 Speech Recognition . 41
6.5.4 BlueTooth Software Design . 42
6.5.5 GUI Philosophy . 44
6.5.6 BlueTooth Listener Class . 46

6.6 Power Hardware . 47
6.6.1 Design Summary . 47
6.6.2 Power Consumption . 50
6.6.3 DC-to-DC Converters vs. Linear Voltage Regulators 51
6.6.4 Backup Battery Configuration . 51
6.6.5 Transformer Choice . 54

ii

6.6.6 Rectifiers, Diodes, Capacitors . 55
Rectifier . 55
Capacitor . 55
Diodes . 56
Relay . 56
Linear Regulators . 56

6.6.7 Isolation . 57
6.6.8 Simulation . 57
6.6.9 Power Through Hole Board . 58
6.6.10 Schematic Breakdown . 59
6.6.11 Board Layout . 60

6.7 Base Station . 60
6.7.1 Software Flow . 61
6.7.2 Control Module Abstraction . 63
6.7.3 Subsystems . 63

NRF24L01+ . 64
HC-05 . 64
LCD . 65
Touchpanel . 66
Timers . 66

6.7.4 Schematic Breakdown . 67
6.7.5 Board Layout . 70

6.8 Control Module . 70
6.8.1 Software Flow . 71
6.8.2 Electronic Strike . 72

Normally Open or Normally Closed 73
Strike vs Deadbolt . 73

6.8.3 Sensor Data Collection . 74
6.8.4 Light and Outlet Control . 75
6.8.5 Schematic Breakdown . 77
6.8.6 Board Layout . 79

7 Printed Circuit Board 80
7.1 Software Considerations . 80

7.1.1 EAGLE . 80
7.1.2 KiCad . 80

8 Prototyping 80
8.1 Point-To-Point Transmission . 80
8.2 Rogers Board Etching Prototyping . 82
8.3 WHCS Proto-Panel . 83

8.3.1 Materials . 83
8.3.2 Dimensions . 84
8.3.3 Sketch . 84

9 Manufacturing 86
9.1 PCB House . 86

9.1.1 Seeed Studio . 86

iii

9.1.2 OSH Park . 86
9.2 Parts . 86

9.2.1 Footprint (SMD vs Through-Hole) 87
9.3 Construction . 87

9.3.1 Soldering . 87
9.3.2 Reflow Oven . 87
9.3.3 Proto-Panel . 88

10 Testing 89
10.1 Power Supply . 89

10.1.1 Line Integrity . 90
10.1.2 Battery Backup . 90

10.2 Base Station . 90
10.2.1 LCD Control . 90
10.2.2 LCD and NRF Simultaneous . 91
10.2.3 UART and Software Serial . 91

10.3 Control Module . 92
10.3.1 UART Chip Testing/Debugging . 92
10.3.2 Command Execution . 92

10.4 Door Access . 93
10.5 Android To Base Station Communication 93

10.5.1 BlueTerm . 93
10.5.2 BlueToothListener . 94
10.5.3 LED activation test . 94

11 Demos 95
11.1 Voice Controlled Light Activation . 95
11.2 LCD Light Activation . 95
11.3 Sensor Query . 96
11.4 Fault Recovery (Loss of Power) . 96
11.5 Remote Door Access . 96

12 Project Management 97
12.1 Budget . 97
12.2 Parts Acquisition . 99
12.3 Milestones . 99
12.4 Project Conclusion . 100
12.5 Final Work Breakdown . 100

13 User Manual 101
13.1 Wiring the boards . 101

13.1.1 Power Board . 101
13.1.2 Control Module . 101
13.1.3 Base Station . 102

13.2 Booting up the modules . 102
13.3 Interacting with the LCD . 102
13.4 Android Application . 103

13.4.1 Obtaining the Application . 103

iv

13.4.2 Connecting to WHCS . 103
13.4.3 Controlling the Control Modules . 103
13.4.4 Speech Activation . 103
13.4.5 Changing Individual Control Module Attributes 104

13.5 Troubleshooting . 104

A Appendix - Complete Schematics 105

B Appendix - Copyright Notices 109

C Appendix - References 109

D Appendix - WHCS Team 110

List of Figures

1 WHCS System Overview . 3
2 A illustration showing the translation of many different sensor nodes to

WHCS’ protocol . 5
3 Base Station Exterior Design for WHCS . 13
4 Base Station PCB Block Diagram . 14
5 Control Module Block Diagram . 16
6 WHCS Software Block Diagram . 18
7 NRF Driver Use-case Diagram . 21
8 NRF Class Diagram . 23
9 Network Library Class Diagram . 24
10 the overall state machine for the network library 25
11 Microcontroller Crystal Schematic . 30
12 a high level outline of the LCD pin configuration and specifications 35
13 A mockup of WHCS’ home screen with each control identified 38
14 View abstraction properties . 38
15 UML representation of the View hierarchy. 39
16 Android App Use-case diagram . 41
17 Android app speech activation chart . 42
18 Android Bluetooth Startup Flowchart . 43
19 Visual of Communication Between Android Device and Base Station 44
20 Android GUI Layout . 45
21 cmAdapter Class Diagram . 46
22 BlueToothListener Class Along With Supporting Data Structures 47
23 Baseline design for power board . 48
24 Additions to the baseline design for the implementation of light and outlet

control module boards . 48
25 Additions to the baseline design for the implementation of door access module

board . 49
26 Additions to the baseline design for the implementation of the base station

board . 49
27 First possible design for the backup battery 52
28 Possible design for back up battery[16] . 53

v

29 Multisim showing the expected ripple of our design 58
30 Power board AC transformation . 59
31 Power board switching regulators . 60
32 Power board OSH park PCB layout . 60
33 the high level software flow for the base station 61
34 showing the control module hierarchy for WHCS 63
35 an example sequence diagram that could occur between a connected blue-

tooth phone and the base station . 65
36 the level of abstractions for the LCD subsystem 66
37 A UML representation of the Timer class 67
38 Base Station crystal and decoupling capacitors 68
39 Base Station LCD header to MCU . 68
40 Base Station power schematic and NRF header 69
41 Base Station HC-05 header . 69
42 Base Station ISP header . 70
43 Base station OSH park PCB layout . 70
44 the high level software flow for a generic control module 71
45 servo motor access control design . 72
46 electric strike entry methods . 74
47 Temperature Sensor Connection Schematic 75
48 Wiring Schematic for Solid State Relay . 77
49 WHCS Control Module Schematic . 78
50 Control Module Indicator LED . 79
51 Control module OSH park PCB layout . 79
52 Point to Point Transmission Prototyping Setup 81
53 Mock up design of WHCS display board . 85
54 Built WHCS display board . 85
55 The master gantt chart for the WHCS project 100

List of Tables

1 comparison of ATMega chips . 28
2 Comparison of Atmel Studio and WinAVR 30
3 Comparison of Two Different AVR Programmers 31
4 comparison of the BlueTooth chips . 33
5 a brief summary of the pertinent features of the LCD module 34
6 Currents and voltages of devices used in WHCS 50
7 a tabularization of control module roles and the available commands 93
8 LED Activation Test Commands . 95
9 a comprehensive break down of WHCS’ budget 98

vi

1 Executive Summary

Wireless Home Control System (WHCS) is a solution for any homeowner to be able to
remotely control core appliances of their home. WHCS allows the user to control lights,
outlets, doors, and sensors around their home. The system’s design philosophy emphasizes
ease of use, affordability, and effectiveness. An Android phone application developed for
WHCS allows users to monitor the state of the installed components and activate them
remotely. A central base station equipped with a touch-enabled LCD is present, allowing
the users to interact with the system without the need of a phone. Peripheral control
modules may be installed into targeted appliances such as lights, outlets, and doors for
WHCS to control.

The implementation of such a system required research in a myriad of fields to produce a
full-fledged product. A well designed Android application is the key to creating a positive
first impression of WHCS. Thus, care was taken to conform to the design philosophies of
the Android ecosystem. The alternative interface offered for WHCS is the base station’s
display. Communication devices form the foundation for the wireless aspect of WHCS, thus
an investigation into the advantages of different communication modules was required to
realize the system. A network protocol has been developed and implemented in order to
form a unified system from the independent modules. The activation of appliances around
the home requires high voltage control, so methodologies for properly harnessing the power
provided by homes were researched. To extend upon harnessing the home’s power, our
individual control modules and base station’s logic level voltages (5V) depend upon the
creation of an efficient way to step down the high voltage supplied from the home.

Wireless Home Control System is a solution targeting the masses and designed by few.
Naturally such a system suffers from the constraints imposed upon the creators. Most
prominent of all constraints are those stemming from economics. The development and
production of WHCS must conform to the low budget available. Design decisions were
made to minimize overall cost of the system to satisfy this constraint. WHCS has the
potential for mass implementation if user reception is positive, therefore the design adheres
to manufacturing constraints. The parts used in the system have been chosen so that they
are widely available. Our boards and parts have been designed so that they are easy to
replicate and manufacture. With a product such as WHCS health and safety is clearly an
issue. The system is meant to be installed inside the home where the user will feel at ease
with the system installed. Thus it is ethical for us to put effort into making the system safe
to use. Things such as controlling the home’s high voltage must be done in a safe manner.

2 Project Description

2.1 Motivation

The goal of this project was to improve the quality of life for people in their homes. Imagine
sitting on the couch at home about to watch a movie, but all the lights are on and it’s a
little warm inside. It is irksome to have to get up and turn off every individual light. With
the technology existing today it is perfectly feasible to be able to turn off the lights and

1

turn on a fan with a mobile phone. With the software available today it is even possible for
this process to be initiated by voice. The problem that exists is these solutions lack mass
implementation. By creating a wireless home control base station that a mobile phone could
connect to these visions can be realized. The need to get up and physically interact with
an appliance can be made a thing of the past.

We developed an easy to use system that allows people at their home to interact with their
appliances without having to be in front of them. Our aim was for the solution to be
reliable and low cost. The use case scenarios were intuitive so that even someone who was
just visiting could utilize the system. A person using WHCS can turn on their lights or an
outlet with the press of a button or with a voice command from their mobile phone. They
can also turn on their coffee pot from their phone when they first wake up. If someone
knocks on the door the person can unlock the door without having to get up. With the
activation capabilities of WHCS there is an opportunity to utilize a foundation that can be
expanded upon. We created the infrastructure for integrating different types of sensors into
the home to provide users with information about things like temperature or air quality.

2.2 Overview

The diagram pictured in Figure 1 shows the highest level overview of WHCS. When the
user wants to begin interacting with WHCS he has the option of choosing to use a mobile
phone or the included LCD screen. Both options provide full capabilities for interacting
with the system. The phone is connected to the system through a BlueTooth connection
that is created by the user in the WHCS application. Using the phone is a more mobile
and easy method for access because the LCD will be connected to the central component of
WHCS, the base station. The base station is the brain of WHCS. It is the base station’s job
to take commands from the user and relay them to the endpoints, while also displaying the
state of the system. The base station has a list of endpoints, also called control modules,
that can be targeted by the system. This list is dynamic and allow for endpoints to be
added or removed from the system during operation. Together the base station and the
control modules form a network through a home and communicate wirelessly to one another
through radio transceivers.

The control modules designed for WHCS allow for all the activation of appliances around
the house. These endpoints are constantly listening for commands from the base station via
a radio transceiver. Each control module is tailored for interacting with a certain device.
There are control modules for toggling outlets, toggling lights, unlocking the front door,
and also for monitoring sensors. The control modules are as similar as possible with a
designated area that allows for assigning specific roles to the control modules.

2

Figure 1: WHCS System Overview

2.3 Objectives

In order to enable homeowners to have the best experience with their new WHCS, we
explain our core project objectives. These describe what the end-users are able to do with
the system at a high level.

2.3.1 Voice Control

Voice control from a supported, BlueTooth enabled, Android device allows the user to re-
motely activate any part of the home that is integrated with WHCS. This would include
activating lights, unlocking doors, turning off and on appliances (by controlling their re-
spective outlets), querying sensors, and any other home specific applications.1All of these
actions and targets are able to be used just from the user’s voice. Voice actions are specific
to each target, but they also consist of generic verbs such as on, off, open, close, and so
on. The list of targets directly correspond to the number of control modules listed in the
home and their type. This this explained in more detail in Section 4.

1WHCS is an extensible system. Control modules are built with a plugin-like interface, allowing for
intrepid home owners to have a fully custom home. This combined with the control module’s free breadboard
area, new applications may be created.

3

2.3.2 Light Activation

Through activating lights and querying their status remotely, a homeowner no longer has
to be present in the same room as the switch. By connecting lights to WHCS, they become
integrated in to the home network and not be isolated in each room of the home. With just
a spoken command or a tap on their smartphone, lights may be controlled. By automating
the process of toggling light switches, WHCS has the ability to be smart about when they
are ON or OFF, freeing the user from having to think about their state at all.

2.3.3 Outlet Activation

Lights aren’t the only actionable thing in the home. There are a multitude of appliances
throughout the home which could benefit from remote control. Some of these include
coffee makers, toasters, or computers. If integrated with WHCS through outlet control,
these appliances would be able to be a part of the home network. Imagine being able to
start the morning coffee from the comfort of the bedroom. This would be possible with
an appropriate coffee maker and WHCS outlet control. An added benefit from having
outlets being automated is that there would be less draw from power leeching devices’
power subsystems, which may be always-on.

2.3.4 Door Access

In addition to controlling home lights and various appliances, giving users remote control
of their doors is a goal of WHCS. Through the use of an electronic door strike, we provide a
specific control module the capability of locking and unlocking a door. This functionality is
demonstrated in Demo 11.5. WHCS sees door access as important for a home automation
system to support because remote access, like a garage door, is simple and easy. We want
to make opening any door simple and easy.

Unlike controlling appliances and reading sensors, correctly managing the operation of a
safety-critical door must be handled with great care. Any flaw in the implementation of the
WHCS network would leave a user’s home vulnerable to outside attack. Unfortunately due
to time constraints, a security framework was not build. This is a common problem that
also occurs in industry where companies do not put adequate enough resources towards
securing their systems from the start. As a result, WHCS is an unauthenticated network,
except for the BlueTooth link. WHCS is a prototype and should not be used in a real home.

2.3.5 Data Collection

In order to give users a broad overview of their home’s state, WHCS supports the collection
of data from arbitrary sensors. Data collected can include temperature, humidity, light level,
sound levels, and so on. Each home may have sensors throughout collecting various data
that the homeowner deems useful. The sensor integration with WHCS is transparent to the
user. All they see is the list of sensors and the corresponding values. WHCS’s pluggable
control module’s are tailored to each sensor or set of sensors, which would relay their data

4

back to the base station. This is illustrated in Figure 2. The base station supports queries
from the LCD interface and simultaneously from a connected phone.

CM

CM

CM

 T
ra

n
sl

a
ti

o
n

L
a

y
e

r

Base Station
Temperature

Sensor

Light
Sensor

Motion
Sensor

Microphone

Figure 2: A illustration showing the translation of many different sensor nodes to WHCS’
protocol

Beyond home sensors, all of the other controllable objects in the WHCS could have metadata
being collected about them at all times. This extra metadata could include connection
status and power status. See Section 6.1.4 for a more detailed description of the sup-
ported network packets and the type of fields they support. This extra metadata was not
implemented due to time constraints.

All of this raw data being collected could be displayed to the user in the form of graphs
and tables. It would also serve as the basis for a set of descriptive statistics for display to
the user. No graphs or tables were implemented.

2.4 Requirements and Specifications

For WHCS to become the product that we wanted it to be we needed to adhere to a strict
set of requirements and specifications. We identified certain requirements for subsystems
involved in our system that we desired to fulfill in the development process. The following
section is devoted to identifying requirements that we needed to meet to completely reach
our goals for WHCS.

2.4.1 Mobile Application

The mobile application must communicate to other components of WHCS through Blue-
Tooth. The process of connecting to the base station within the application must take
no more than eight seconds from when the application is opened. Toggling the state of a
control module within the system such as a light or outlet must also take no more than
eight seconds from anywhere within the application. The user must be able to create sets
of control modules to interact with simultaneously. The Android mobile application must
follow Google’s material design guidelines for Android development. The application must
not request any privileges other than Bluetooth services. The application must support

5

full duplex communication with the base station. The application should be able to react
to disconnections to the base station by polling the connection every thirty seconds and
dropping the BlueTooth connection if no response is received.

2.4.2 Radio Module

The radio module must communicate in ISM allocated radio bands in order not to interfere
with bands requiring radio licenses. The radio module used to communicate between sub-
systems must be able to communicate at ranges up to at least 50 meters. The radio chip
must be able to act as a transmitter and a receiver and must be able to switch roles quickly.
The radio module must be interoperable with common microcontrollers, so it should have a
feasible method for interfacing with a microcontroller’s pins. The radio chip must be capa-
ble of addressing, and further must be able to listen for messages from multiple addresses
when in receiving mode.

2.4.3 Microcontroller

The microcontroller for the base station must have enough GPIO pins for an LCD, radio
transceiver, and a BlueTooth module. The microcontroller must have an on-chip UART
and SPI solution. All microcontrollers in the system must have on board flash memory to
promote design simplicity. The microcontrollers must operate in logic level voltages ranging
from 3.3V-5V. The microcontrollers must be capable of operating with a supply current of
50mA or less. The microcontrollers must have an option for setting the frequency to at least
8 MHz to boost throughput of the system. SMD footprints should be available for whichever
microcontroller is chosen. The microcontrollers must be programmable while in circuit. The
base station and control module microcontrollers must both have on-chip analog to digital
conversion hardware. All microcontrollers must support interrupts to properly implement
the network that is planned for WHCS.

2.4.4 BlueTooth Module

The BlueTooth must communicate with some form of RS232 to be interoperable with a
microcontroller’s UART. The BlueTooth chip must be able to exchange data with a baud
rate of 9600, with higher baud rate options being a plus. The password and name of the
BlueTooth module must be programmable for security measures. The BlueTooth module
should operate at logic level voltages of 3.3V-5V. The BlueTooth module should be capable
of communicating at ranges up to at least 50 meters.

2.4.5 Printed Circuit Board

The printed circuit board layout’s outer dimensions should have a width of .008”. The
size of vias on the PCB should be set to .02”. Isolation of ground pour polygons on the
PCB layout should be set to .012”. Logic level trace sizes should be .01”, and any high
level voltage traces should be set by referencing a trace width calculator. The preferred of
resistor package for the PCB is 0805. SMD components should be used whenever possible

6

in the PCB design. The control module PCB should be no more than 4”x4”. The base
station PCB should be no more than 5”x6”. High level voltages from the power supply
should be isolated from the logic level voltages with an isolation area of at least .75”. A
two layer board design should be used for all of the PCBs in WHCS.

2.4.6 Power Specifications

The power supply developed for WHCS must rectify and downstep 120V AC provided by
household mains. A transformer must be chosen that downsteps 120V AC to a level that is
suitable for a switching buck regulator to regulate with high efficiency. A 5V and 3.3V line
should be provided for each board in WHCS to meet the needs of individual logic chips.
The 5V line must be obtained through a regulator with at least 80% efficiency. The step
down to 3.3V from 5V does not need to be highly efficient. A relay must be chosen for
switching high voltage to control high voltage components. The relay should have a load
voltage capable of tolerating 120V AC. The input voltage required for activating the relay
should be no more than 5V so it can be switched by a microcontroller. The relays forward
current for activation must be no more than 40mA so that it can be supplied by the GPIO
pin of a common microcontroller. At least 500mA should be suppliable to every board in
WHCS. The electronic strike that is used in WHCS must consume no more than 700 mA
while activated. The electronic strike must operate at 12V or less.

2.4.7 LCD

The LCD must have a touch screen interface to allow direct interaction with the system.
Any interaction that can be performed on the system that is available from the mobile
application must be performable from the LCD. The LCD must be operable with a supply
voltage of 3.3V-5V. The LCD must be interoperable with a microcontroller with speeds of
approximately 8 MHz. The LCD must be able to interface with a microcontroller through
SPI or parallel data in. The LCD must be no more than 6”x6” and must be mountable
directly to a PCB through the use of standoffs.

2.5 Research of Related Products

In order to have a successful product, the WHCS has done background research on products
that have similar goals to WHCS. There is a lot to be learned from the “big players” in the
industry. Through a survey of the below companies, we have a better idea of some of the
features WHCS could offer and what the other companies aren’t. This allows us to make
new innovations and avoid mistakes that others have already made. Beyond that, we will
know where WHCS falls in the spectrum of home automation by gathering as much data
about other companies as possible.

2.5.1 Z-Wave

Z-Wave is a wireless technology that serves as a building foundation for home automation
technologies. It is a certain type of home technology networking standard. The idea is

7

that any component for the home that carries the Z-Wave logo is interoperable with any
other Z-Wave product. Certain vendors implement Z-Wave into their technology to give
their products a wide appeal. Z-Wave is not a full home automation solution, it is merely
the basis for wireless home automation products. Vendors like Schlage create components
for the home that are compatible with Z-Wave networks. For example Schlage offers a
door lock that can be controlled from a mobile phone due to its implementation of Z-Wave
technology.

In relation to our product Z-Wave is similar to our implementation of a wireless network.
Our Wireless Home Control System features radio transceivers that use a proprietary proto-
col to exchange information. Only components within our system are able to communicate
within the network. The network also allows user’s mobile phones to join in. So WHCS im-
plements a tiny version of Z-Wave within the whole product. Z-Wave takes the networking
to an extreme and offers it as a platform for vendors to create home automation equipment.
For WHCS the network is a means to get our home automation equipment to communicate
with each other instead of providing a foundation for others to build into.

Z-Wave has a great feature called “scenes.” Scenes allow users to create groups of devices
around the house and specify certain states for those devices that can be activated at the
touch of a button. WHCS implements a feature similar to this. With the ability to control
multiple devices around the home it is a common use case for the user to change the state
of the system to certain common configurations. For example, a user might want to turn
off all the lights in the house with a “sleep mode” every night. This is achievable through
the hardware that WHCS creates for the house.

2.5.2 Belkin

Belkin has a brand of home automation products called WeMo. The WeMo brand consists
of products that broadcast themselves via wifi and are controllable through mobile phone
applications. There are multiple offerings such as heaters, outlet plug ins, light switches, and
cameras. Overall their product line is quite similar to what we are aiming for. They have
things that assist in home automation and are controllable by a mobile application. This
is what want to accomplish with WHCS. They are different from the previously mentioned
company Z-Wave because they actually provide smart appliances that go inside your home
rather than just providing the foundation for a home automation system.

One notable difference between Belkin’s line of WeMo products and our solution is how
outlets are handled. WeMo offers outlet plugins that are put directly into the outlet and
then expose an outlet facade for a user to insert into. Rather than completely turning off
the outlet that is connected to the household main like WHCS does, WeMo shuts off the
insert that has been put into the outlet as a middleman. This type of design is great for
ease of installation but also clutters the outlet. When a WHCS outlet is installed it is not
be noticeable from the outside and it will be a permanent addition to the household. Belkin
also has a solution for toggling the state of lights with their WeMo light switches. These
light switches are different from the outlets because they actually require the stock light
switch in the home to be replaced with the WeMo product. Our version of light control
leaves the stock light switch of the home intact.

8

2.5.3 Apple HomeKit

Apple HomeKit is an application programming interface that Apple develops for program-
mers to interact with any appliance that implements the Apple HomeKit Accessory Proto-
col. This is an approach to home automation that is not very popular. Apple seeks to make
the mobile applications that access home automation systems not proprietary. With Apple
HomeKit any Apple developer is capable of developing applications that interact with a
multitude of appliances. HomeKit does not seek to develop one home automation solution,
it wants to decouple the application development from the hardware. The company that we
mentioned before called Belkin creates a mobile application to go along with the smart ap-
pliances that they sell. With Apple HomeKit the philosophy shifts away from development
like this where the application comes along with the hardware.

With HomeKit multiple developers could develop independent applications all targeting
the same hardware and users could choose which application they like best. Our WHCS
solution for home automation features things that Apple HomeKit does except they will all
be internal to us who are developing the system. There will need to be libraries that interact
with the hardware but they will be proprietary and we will not expose them to developers.
Together Z-Wave, Belkin, and Apple HomeKit complete the spectrum of home automation
solutions. Z-Wave provides a network foundation for people to create appliances for, Belkin
creates hardware and a mobile application to control it, and then Apple HomeKit creates
tools to develop applications for controlling hardware.

2.5.4 Nest Labs

Unlike the previous companies, Nest Labs[19] is quite new, but has certainly claimed its
space in the smart home market with its smart Nest Thermostat. Their other product, the
Nest Protect, a smart smoke and CO2 detector, integrates smoothly with the thermostat
allowing for remote monitoring and control of the home. For their thermostat, the primary
goal is to have a smart learning thermostat that aims to save energy in the home. By keeping
temperatures at energy-saving levels when no one through the use of a motion sensor and
learning algorithms, one of the most expensive home energy costs can be reduced.

In terms of administration, Nest has a online web interface and a mobile app that will
display all of the networked devices, allowing for a highly connected experience. This would
allow you to change your temperature from your warm bed or before you even get home.

Nest Labs was recently purchased by Google for $3.2 billion dollars[20], which certainly
gives the company a powerful position in the market. One of Nest’s goals is to have a
platform for other companies and developers to create new products that Work with Nest
TM[21]. This strategy is clever as now the success of the company will grow with every new
developer who chooses to integrate their products with the Nest suite. Customers will see
the multitude of devices that work with Nest and realize that they can “harness the future
today.” Quite a solid business model. Coming in at $249, the thermostat might be a tough
sell for typical home owners who already have a working, yet “dumb”, thermostat.

9

2.5.5 X10

Founded in 1970s, X10 is one of the oldest home automation companies still on the market.
Home security and automation are the key goals of X10. To meet these goals, X10 offers a
wide selection of products to link every aspect of the home or business. When these products
arrived in the early days, they set the standard for home automation. The architecture is
centered around wireless remotes, transcievers, and appliance modules. The transciever is
a fixed plug-in that is listening for commands from the wireless remote. If it receives a
command, it can send signals through the house power grid to an appliance module.

The applications for X10 products are limitless. One issue with X10 and its goals are that
the entire system is proprietary and encourages lock-in. The frameworks for making new
X10 devices are not open, which could limit any support. WHCS aims to do the opposite
by providing a well documented home automation solution. This became an issue with the
original company of X10, X10 WTI, went bankrupt in 2013. This caused a disruption in the
X10 ecosystem, including dedicated services run by X10 WTI. Luckily another company,
Authinx, picked up the domain[1] and is continuing to offer support and sales for X10
products. Give this recent change of hands, choosing X10 today may not be a sure choice
for the future.

3 Realistic Design Constraints

3.1 Economic Constraints

Economic constraints were the biggest hindrance in the development of WHCS. The amount
of money necessary to complete such a project added up quickly due to the necessity of ob-
taining hardware like printed circuit boards. This project was developed by college students
so the amount of reserve money that was available is low. The average full-time student
schedule can obstruct students from having time to earn extra money. To help alleviate the
lack of funds our group applied for funding through Boeing. Boeing was kind enough to ap-
prove our application for WHCS. Unfortunately we did not get all the money that we asked
for which means part of the project had to be paid for out of pocket. This would have been
an issue had things went wrong during the development process that would have caused us
to have to repurchase certain pieces of hardware. Fortunately this did not happen to us due
to careful planning. In all of our design time decisions cost played the biggest factor. Our
research and development budget was small compared to mass-produced products similar
to WHCS. We recognized this constraint from the offset and planned accordingly.

3.2 Time Limitations

The amount of time that we had to create WHCS was a limiting factor for what we were
trying to create. To begin with, the technologies used in this project were not something
that we were already well-versed in before starting. There was a ramp-up period for figuring
out what technologies would be necessary to implement a system with the capabilities we
desired. This is not even including the research time necessary for finding exact chips that
fit each of the requirements we needed. During the development lifecycle of the project we

10

were not just creating WHCS we were learning things necessary to design in general such
as creating PCB layouts. Learning things like this, necessary to actually create parts of the
project take a measurable chunk of time to do. To add on top of the ramp-up time that we
had to endure, we missed valuable weeks due to the summer semester. Our second semester
of senior design took take place in the summer semester which was 12 weeks instead of the
normal 16 weeks of a semester. This meant that we lost out on almost an entire month due
to the second half of development being in the summer. This whole month of lost time put
a large strain on the group and it is something that we had accounted for early on.

3.3 Political Constraints

There were no relevant political constraints that we attributed to the development of WHCS.
The development of WHCS was not aligned with the ideals of any political party. Our
research results showed that there is not noticeable political involvement in products similar
to ours.

3.4 Ethical, Environmental, and Sustainability Constraints

The discussion of ethical constraints for WHCS is directly related to environmental aware-
ness and sustainability. The most ethically bearing decisions we had had to make during
the development of our system involved power usage. There is no doubt that power usage
has a vast effect on the environment. While developing WHCS our goal when faced with
multiple options for implementation was to take the path which resulted in the least power
consumed. For example, the type of electronic strike we chose was based on which one
wasted less power during operation. We believed that making decisions in this area to help
the environment and promote sustainability gave us the best ethical outlook. This is also
the only ethical involvement we attributed to our project.

3.5 Manufacturability Constraints

WHCS has the potential to be implemented in many homes because consideration was put
into manufacturability during design time. As we made decisions for our system we were
constantly monitoring how it affected the overall ease of replication. We identified the
base station PCB and control module PCBs to be the biggest contributors of our overall
manufacturability. In order to maximize manufacturability we constrained ourselves to only
using highly available parts for incorporation into our PCB designs. Following through
with this commitment ensured that WHCS installations could be standardized and easy to
replicate.

3.6 Safety and Security

The safety and security of WHCS is primary constraint of the project. Due to the integra-
tion with home, especially access control systems, WHCS must not negatively affect home
security. Additionally, as WHCS is in control of large currents involving light control and
outlet control, great care must be taken to design circuits and software to prevent fires

11

and misbehavior. If for instance, we decided to control a light that exceeded the rating of
one of the control relays, then this could be a fire hazard. Also, in terms of door control,
if the mechanism for controlling the door were to fall in to the hands of a burglar or fail
completely this would present a critical safety and security issue.

For example, there is a trade-off that needs to be made for controlling a door with an
electronic strike. Electronic strikes come in two main flavors: normally opened (NO) and
normally closed (NC). NO favors security by failing-secure, meaning the lock will not be
openable if in the event of a power loss. NC on the other hand will fail-safe, meaning the
lock will be openable without power applied. This consideration should be based around
local fire code and depending on the type of door and handle used. We explain our decision
to go with a NO type electronic strike in Section 6.8.2.

In general, some principals for making sure that safety and security problems are taken in
to consideration are

1. Analyze potential problem areas

2. Develop solutions for problem areas

3. Anticipate failures and handle them accordingly

Through premptive analysis, we may determine problem areas. We will develop solutions
for these problems, consisting of a description of the problem, its potential impact, what
area does it impact, and what we plan to do to address it. Finally, we will anticipate failures
and build in the developed solutions directly in to our design. These solutions may be in
the form of warning labels (Ex. DO NOT EXCEED 12V 10A) and software checks.

Due to project time constraints and priorities, the WHCS network is not considered secure
from remote attack. No cryptography has been used to secure the networks. The only
access control mechanism lies with the BlueTooth chip which requires a weak 4 digit pin.

3.7 Spectrum Considerations

For WHCS we provided over the air communication between the android device to the base
station and between the base station and the control modules. Out of the frequency bands
that the FCC has marked as unlicensed we decided to use the band that includes 2.4 GHz.
Although there are other unlicensed bands that could have been used such as the 900MHz
band and the 5GHz band, 2.4GHz provided the best solution. The higher the frequency the
shorter the range yet the better the data rate and the smaller the device. The main reason
why 2.4GHz was chosen is because it is a happy median of good range and acceptable data
rates. Unfortunately because 2.4GHz is such a good frequency to operate at it also has a lot
of interference from other devices that operate at this same frequency. However interference
will happen from whatever frequency band that is chosen, and this issue wasn’t enough of
a problem for our design to deter us from using the 2.4GHz band. Both the NRF chip and
the Bluetooth chip operate within this band.

12

4 System Design

This section contains an overview of the components necessary to create the Wireless Home
Control system. Without going too deep into implementation details, an abstract view of
WHCS is provided. Block diagrams are utilized to show the interaction between WHCS
subsystems. The information in this section covers the central components necessary to
realize the system and fulfill our objectives.

4.1 Base Station

The base station of WHCS is the central component. It is the only component that is
involved in everything that is done with WHCS. Any command going to an endpoint passes
through the base station and any information coming from an endpoint goes through the
base station. The base station acts as the smart middleman between the user and the
control modules that they are targeting. The base station is a small portable device that
can plug into a home outlet for power. The user needs to be able to interface with the
base station in order to control the system. To facilitate this interaction there is a mobile
WHCS application that can be used to communicate to the base station, and there is also
a touch enabled LCD. Both of these methods are available to control the base station. The
base station is designed to be the shape of a rectangular prism and has an LCD flush with
the surface of the top of the prism. This way the PCB is hidden away and does not have
to be known to the user. This provides an aesthetically pleasing look to the base station
and hides away its inner workings. Figure 3 shows what the base station would look like
including the LCD, the inner PCB, and the plug for power in a home installation. The size
of the base station is based off of the size required for the printed circuit board.

Figure 3: Base Station Exterior Design for WHCS

The base station requires a special printed circuit board that is different from the control
modules. It is the only board in the system that has to support BlueTooth communication.
This is how the base station communicates with the Android phone. It also needs to have
space for the installation of the LCD screen. The LCD screen is able to be mounted on

13

the base station PCB so it can be pushed through the display box. Using this architecture
the LCD is all the user has to see. Like the control modules the base station has a radio
transceiver chip. This is the part of the base station that allows it to communicate to the
control modules who have a similar radio transceiver. The LCD, BlueTooth chip, and radio
transceiver connect to the microcontroller that is chosen for the base station. This whole
system is powered by a 120V AC step down circuit. The base station also has room for a
programmer pinout that way any errors in design can be fixed in circuit. The block diagram
of the components for the base station is depicted in Figure 4.

Figure 4: Base Station PCB Block Diagram

As shown in the block diagram the programmer pinout and the radio transceiver will both
be connected using the SPI bus of the microcontroller. SPI allows for selecting which chip
to utilize at any given time so therefore the bus sharing conflict will be able to be resolved.

4.2 Control Module

The control modules of WHCS are the boards that connect to the target endpoints around
the home. Control modules can be of different types due to the fact there are multiple targets
in the system. There are light/outlet modules, door modules, and sensor modules. All of
these different types of control modules have similarities that can be taken advantage of in
order to create a single control module design that can be adapted to the specific endpoint

14

it is targeting. Every control module has a power supply circuit, a microcontroller, and a
radio transceiver at a minimum. The rest of the circuitry revolves around what the control
module is meant to interact with. For example the circuit to activate the electronic strike
on a door needs to switch the electronic strike power, while a temperature sensor circuit
needs to do analog to digital conversion. There are two options that these possibilities
brought about for the creation of control module boards. One option was to create a
control module design that has room to solder the components necessary to interface with
all of the supported endpoints of WHCS on one board. This meant the control module
would have the foundation for adding the electronic strike circuit, the light/outlet circuit,
and the temperature circuit all at once. All that would need to be done is to connect the
circuit to the actual target of choice, and if desired the control module could be removed and
hooked up to a different type of target. The second option was to create a printed circuit
board design that has a section dedicated to the implementation of a single control module
endpoint circuit. This way when the printed circuit board is assembled we could custom
solder components based on what that control module was being used for. Either of these
options would have worked. The option where all control module boards are able to support
all three control module modes is the more involved option so that is the option that we
considered for our design. Figure 5 shows the block diagram for a control module. The
blocks labeled radio transceiver, power, and microcontroller are the only ones necessary for
every single control module. The three blocks on the lower left are the circuits that interact
with specific endpoints around the home. These are the parts of the control module that
can either all be included in every control module, or can appear as lone circuits on every
control module.

15

Figure 5: Control Module Block Diagram

4.3 BlueTooth Capable Phone

The Wireless Home Control System was based around the capability of interacting with
the system from a mobile phone. A phone with BlueTooth communication capabilities was
required for the system to operate at its full capabilities. With the selected BlueTooth phone
platform, a software application was developed to allow users to interact with WHCS. It is
through this application that users can monitor the state of their home and remotely interact
with targeted appliances. The phone application features a low-complexity graphical user
interface as well as the ability to use speech-recognition activation.

4.4 Software

WHCS contains a network consisting of its base station, its peripheral control modules, and
the user’s BlueTooth capable mobile phone. This created the need for three distinct software
models. These three different software implementations follow a custom communication
protocol in order to transmit data throughout the network. Commands frequently flow from
the user’s mobile phone all the way to a control module that they want to interact with.
The data flow can also occur in the reverse direction. It is the goal of WHCS software to
facilitate this interaction. Phone to base station communication is done through BlueTooth.

16

The phone is able to utilize BlueTooth libraries, while the base station microcontroller will
interface with a UART to control a BlueTooth module. Communication between the base
station and control modules relies on a ported driver written for the radio transceiver used
in the system. The base station is the powerhouse in terms of software design. It is at this
central hub that the collection of all active control modules is stored. The base station also
constantly has to be ready to accept requests from any control module or the user. The
main routine needs to have handlers ready for the LCD or the mobile phone because either
choice will be usable to interact with the system. Figure 6 shows the block diagram for the
entire system’s software. This is meant to provide insight into the operation of the large
components of the system

Apart from the networking aspect of WHCS the software also needed to control the interac-
tion with the targets of the individual control modules. This is depicted in Figure 6 as the
bottom-most block. This block had to be custom tailored based on the role of the control
module. The routines running on the microcontrollers need to know the state of the appli-
ance they are interacting with, and how to do any necessary activation that is requested by
the user. For sensor type control modules the microcontroller needs to update at intervals
in order to maintain correct information. For the modules that are activating outlets/lights
or controlling the electronic strike the routine is as simple as toggling the state of a solid
state relay connecting to a GPIO pin. It is the communication between subsystems that
presented the biggest challenge for the microcontroller based boards.

The mobile application software has three main components, the user interface, bluetooth
communication handler, and speech recognition. These blocks are shown at the top of
Figure 6 and together they complete the mobile application. The user interface is the most
involved piece of software. The interface has to constantly display the state of the system
and provide intuitive use cases. All of the capabilities that we created for WHCS had to
be reflected by the user-interface that we designed. The U.I. needed to be linked together
with the BlueTooth communication handler because the user expects state changes in the
system at the press of a button.

17

Figure 6: WHCS Software Block Diagram

5 Summary of Related Standards

In order to speed up development and promote compatibility the WHCS design adheres
to multiple standards. Using standards allows us to rely on certain characteristics for the
devices we use. Standards allow us to stand upon the design decisions made by organizations
before us.

5.1 RS-232

RS-232 (Recommended Standard) is a serial communication standard that specifies hard-
ware and software implementation for serial communication between two connected devices.
Our microcontrollers will be using a UART for debugging and communication through
BlueTooth. The UART module present in our microcontrollers is based off of RS-232. The
microcontrollers use logic voltage levels which are are not the same as those specified in the
standard. This version of RS-232 is often referred to as TTL-serial (Transistor to Transis-
tor Logic). The UART also only uses the Rx and Tx lines specified in the standard. The
software and algorithm used to communicate with the UART is the same as RS-232, so the
deviation from the standard is hardware only.

18

5.2 BlueTooth

BlueTooth is the standard that we will rely upon for communication between the base sta-
tion of WHCS and the mobile application. BlueTooth was originally standardized by IEEE
as standard 802.15.1. The standard is now maintained by the BlueTooth special interest
group. Devices that implement BlueTooth are able to connect to one another wirelessly
to exchange data serially. The wireless signal’s frequency is regulated to be between 2400
and 2483.5 MHz. The base station will contain a BlueTooth module which implements
the BlueTooth standard. This module will allow communication with the mobile phone,
who’s hardware will support the BlueTooth standard. BlueTooth’s serial communication
characteristics make it well-suited for communicating with a microcontroller’s UART. The
UART to BlueTooth module connection is what we will be performing.

5.3 SPI

SPI (Serial Peripheral Interface) communication is a de facto standard so there is no reg-
ulatory body that develops or maintains the specification. SPI is used in microchips for
communicating to multiple connected devices through one bus. SPI features a slave se-
lect line that allows the microchip (the master) to pick a target device (slave) to speak
to. WHCS will use SPI for interfacing with the radio transceiver module from the micro-
controller on the base station and control modules. SPI will also be used to program the
microcontrollers we use. The slave select feature will allow us to have our radio transceiver
still attached to the SPI bus while we are programming our microcontrollers.

5.4 FR-4

FR-4 (Flame Resistant) is a standard for flame resistant glass-reinforced epoxy laminate
sheets. These provide the basis for printed circuit boards. The FR-4 standard was developed
for complying with the regulations for flammable plastics set in standard UL94V-0. The
core of PCBs are built around a laminate sheet that meets the FR-4 standard. We will be
populating printed circuit boards for WHCS so we will rely on this standard for the proper
operation and safety of our PCBs.

5.5 Android Development Guidelines

The Android developer’s guide has a list of guidelines that are strongly recommended for
Android applications. These are standardized guidelines, but they are not standards be-
cause they are not required. These guidelines are relevant to our project because we will be
developing an Android application and we will be adhering to the specifications. The guide-
lines all have individual ID codes. Some noteable guidelines that we will be following during
the development of the WHCS application are UX-B1, UX-N1, and FN-S1. Respectively
these standards involve not redefining the functionality of on system icons, supporting back
button operation in applications, and not leaving services such as BlueTooth open while an
application is in the background.

19

5.6 ANSI/NEMA 1-15P, 5-15P, C84

WHCS will get its source power from household mains. The connectors for household mains,
and the voltage levels provided are standardized by ANSI/NEMA. The plugs that will allow
the base station to be connected to a United States structure’s outlets are standardized by
1-15p (2 prong) and 5-15P (3 prong). We can count on the input voltage of WHCS being
120v AC because of standard C84 which standardizes the power supplied to household
mains in the United States.

6 Hardware and Software Design

6.1 Radio Transceiver

For the radio transceiver of WHCS the chip that we decided to use was Nordic Semiconduc-
tor’s NRF24L01+. This chip met all the requirements that we set for our radio transceiver.
The NRF is also a very popular chip that is easy to find and rarely out of stock. This was
a benefit to the manufacturability of WHCS because NRFs are cheap and easy to buy in
bulk. Alternatively we could have chosen to use an XBee radio device which implements
the zigbee 802.15.4 IEEE standard, however we did not see the need for this. XBee devices
are also more expensive than the NRF chips that we have decided to utilize.

6.1.1 Operating Principles and Usability of NRF24L01+

The NRF24L01+ is a radio transceiver that operates in the ISM (Industrial, Scientific, and
Medical) radio band. The range of channels for the NRF is 2.4GHz to 2.527 GHz, however
because the designated ISM band that we used only ranges from 2.4GHz to 2.5GHz we were
not be able to use all of the NRF’s available channels. With the NRF we were capable of
sending payloads with a maximum size of 32 bytes per transmission from module to module.
We were able to change the data length from 1 to 32 bytes in order to find the optimal
mix between reliability and speed. Every NRF chip has the ability to simultaneously store
1 transmission address and 6 receiving addresses. The first receiving address is utilized if
the auto-acknowledgement feature is enabled, so effectively there are 5 receiving addresses.
This capability gave us flexibility for implementing our network because we could make
decisions such as having a dedicated address to each node in the network as well as an
address for broadcasts of certain types. The addresses of the NRF are 5 bytes wide so we
were be able to have many NRF modules within the network. A very useful feature of the
NRF is the ability to enable auto-acknowledgement. When this feature is activated the
receipt of a transmission from one NRF to the other is auto-acked without the need from
any upper level software. This simplified the work necessary for creating our own network
of NRF chips. We were able to confirm the receipt of data therefore increasing reliability.
This auto-ack also allows the NRF to perform retries up to a given limit, so just in case
there is noise during the transmission the NRF will repeatedly try to transmit again. The
NRF also allows for low power mode and long range mode. For WHCS we are able to tweak
whether or not to use long range mode or not depending on the performance of the system
within its environment.

20

The NRF requires 3.3v of electricity to operate so all parts of WHCS require a 3.3v line. The
datasheet lists the current consumption while in receive mode as 18mA. This is the most
common mode for the NRF chips present in WHCS so they can be ready to receive com-
mands at any time. The chip receives commands from a microcontroller through SPI (Serial
Peripheral Interface). This is great because the NRF design philosophy fit perfectly with
our microcontroller based base station and control modules. Beside the standard MOSI,
MISO, and SCK for SPI, the NRF also has a csn pin for telling it to receive commands, ce
pin for telling to transmit or receive at that moment, and an interrupt pin for notifying the
microcontroller of important situations. The csn pin allows the SPI bus to be shared with
other components such as the LCD being used for the base station. The interrupt wire pin
can be monitored in order to listen for data received, data sent, and data failed to send
notifications. In total the NRF takes up 6 pins whilst three of the pins are shareable with
other SPI components.

6.1.2 Driver Use Case

The NRF chip that we decided to use for communication in WHCS needed to have a driver
written for it. This was to help keep the way we interface with the NRF consistent and
to provide clean code. All of the network code that we write for the base station and
the control modules was relying on the integrity of the NRF driver that we wrote. The
driver provides the foundation and if it is not reliable then none of the code we wrote for
our system would have been reliable. The focus for the development of the NRF driver
was elegance. We wanted everything the NRF driver offered to be simple yet accomplish
everything necessary. We developed the use case diagram pictured in Figure 7 as a guideline
for the development of the NRF driver. The NRF driver provides the functionality included
in the use case diagram in an easy to use format. These are the most common uses of the
NRF.

Figure 7: NRF Driver Use-case Diagram

21

The core use of the NRF driver is transmitting and receiving payloads. Every other use case
is a supporting role for the final goal of transmission. The basis of the driver is reading and
writing registers. Everything builds off of this capability, especially reading and writing
the payload for transmission. Other use cases such as changing power mode, checking
the status of the chip, and changing from a transmitter to a receiver are special forms of
writing to a register. Thus reading and writing to registers is a use of the driver, however it
is abstracted in a way that provides ease of use. A user of the NRF driver spends most of the
time setting addresses, writing payloads, transmitting payloads, and analyzing interrupts.
These use cases needed to be implemented perfectly to provide a strong foundation for the
networking of WHCS.

Originally it was our plan to develop a NRF driver from the ground up to fully utilize the
communication capabilities provided by the chip. We made good progress on this endeavor
and were already able to access a large amount of the NRF’s capabilities. At some point
during the development process we found that there was a library called RF24 that was
designed for use with NRF chips on Arduino boards. Since the microcontroller family that
we used in WHCS was the same family that Arduino uses we thought that we would be able
to port this library and compile it with AVR-GCC. We had to stub out and replace Arduino
specific functions like digitalwrite() and timer calls. We also had to write an underlying
SPI library for the RF24 register read and write functions to call upon. We were able to
get the RF24 library fully ported and working with our base station and microcontroller.
This saved us a large amount of time during the development process.

6.1.3 Driver Class Diagram

It was decided that the best design approach for implementing the NRF driver was as a
class in C++. We used Atmel ATMega microcontrollers in WHCS so C++ was supported
as a development language. Using C++ allowed us to create a class that can leverage object
oriented programming techniques such as encapsulation. The class diagram for the driver
is shown in Figure 8. Primitive functions such as ReadByte and WriteByte can be hidden
from a user while PowerUp will be exposed as a public function. Using C++ also gave us
the ability to use a constructor when using the WHCSNrf class, and in this constructor we
can assign the only thing varying between uses of the NRF, the chip enable pin and the
chip select not pin. Assigning the ce pin and the csn pin are the first step of using the NRF
driver. Any communication between the microcontroller and the NRF relies on the proper
assignment of these pins.

22

Figure 8: NRF Class Diagram

Usage of the NRF driver involves first constructing the class by telling the microcontroller
which pins the NRF is connected to. Then the user does everything necessary to customize
the way that data is transmitted and received. The driver exposes the common settings in
an easy to access manner. Enabling things such as auto-acknowledgement and the number
of retries for the transceiver is done with the call of a function with simple parameters.
Setting the address for receiving and transmitting data is done in one line of code. The
SetTxAddr function will be one of the most utilized function for an NRF involved in a
network constantly sending payloads to other chips. A typical use will involve powering up
the NRF with the PowerUp call, setting the transmission address, writing a payload, and
then transmitting a payload. With this driver, the user does not need to know the registers
involved with the NRF. The hardware interactions with the chip are all abstracted away.

In the final version of WHCS the driver that we used for the NRF was actually very close
to this initial class design. The RF24 library used a C++ class and fully encapsulated the
logic needed to operate the NRF. Our WHCSNrf class would have been a great solution to
using the NRF but there was no need to continue implementing it once we found we were
able to port the RF24 library.

6.1.4 Network Library

In order for WHCS to be networked, a set of networking functions have been constructed on
top of the radio driver to form a network library or NetLib. Abstraction of the raw driver
allowed for the concept of a node to be created. The network consists of a set of nodes
capable of direct communication and reception of logical packets. These packets contain
metadata describing their purpose and the data that they contain. For example, the base
station to control module communication includes a ”from” field to let the receiver know
where the packet is from. By dividing up the required network features of WHCS in to

23

packets, we ended up with a library of datagrams. Individula datagrams no longer have to
worry about low-level details such as when to transmit – they merely have to worry about
who they are sending to and receiving from. This can be seen in Figure 9.

NetworkLibrary

ctrlID : netid_t
netstate : state_t

+init()
+reset()
+join(id)
+leave()
+txPkt(pkt)
+rxPkt()
+setRetries(int)
+lowPower(bool)
+available()

RadioDriver

txbuffer : char
rxbuffer : char

+init()
+reset()
+setTarget(id)
+writeBytes(data)
+readBytes()
+available()
- onPacket()

Figure 9: Network Library Class Diagram

Similar to network protocols today, WHCS implements a lightweight protocol stack similar
to the OSI model. The physical layer is handled by the NRF chip itself, the logical link
layer by the NRF driver, and all other layers by the NetLib. In WHCS’s case, our version
of an “Internet Protocol” is to assign each node with unique ID that can be targeted by
other nodes for sending and receiving data. In terms of the transport layer, our application
is similar to User Datagram Protocol, which is “best effort” in terms of reliability. We
planned on adding additional code and sequencing to allow for this unreliable medium to
withstand lost packets, but ran out of program space before being able to do so. The NRF
already provides the ability to retransmit on a non-acked frame, but this just fails after a
certain amount of attempts. This can handle transient errors, but not a complete loss of
connectivity, which may occur if the base station lost power.

In order to keep the network topology simple, we opted to have a simple module to base
network. This means modules talk directly to the base station and to no other modules.
This is a simplification based on the underlying radio’s range and our project requirements.
We did not need a complicated mesh network as all of the nodes are within range of the base
station during their lifetime. For larger or noisier households this architecture would break
down, but for the purposes of an initial design, this configuration does the job. Additionally,
the network topology is not fixed in hardware - it is merely additional code that needs to be
written and implemented in to the overall design. More research wasn’t be done along the
direction of a full mesh network, as it wasn’t necessary for good performance. The direct
benefit of this simple architecture is that is easy to test and easy to program. The logic
only expects transactions to occur between two nodes. That fact drives the construction of
a specific and optimized network communication protocol that doesn’t waste unnecessary
bytes during transmission. The lower the byte count for each transmission, the more likely
the packet will reach the destination in tact.

24

Modes of operation Before diving in to the specific functions required for implementing
a robust NetLib, we discuss the high-level modality of the library. The state of a network
link can be broken in to the following modes:

• Joining

• Communicating

• Idling

• Leaving

The network library is in the joining mode when it is first powered on or in the event of
a disassociation. A node shall attempt to join on to a local network of nodes through a
master node that is defined at the initial hardware configuration of the network. The joining
process has its own state machine describing the required processes for association on the
WHCS network. The communicating mode is active if the node is joined to a network
and if there are data to be sent or received. Otherwise the node is in the idling state,
which includes a reduction in power consumption. If for some reason the network needs to
be reconfigured dynamically, the base station or a control module can begin the leaving
mode. This frees any resources present for maintaining state on the active network join and
prevent the leaving node from communicating on the network. A graphical overview of the
NetLib modes and the transitions between modes is shown in Figure 10.

Harsh disconnect Graceful Disconnect

LEAVE

JOIN

IDLECOM

No data

New data

WAIT

Joining

Join failed

Join success

Figure 10: the overall state machine for the network library

Join mode detail The join mode is fired when a new node wants to associate to an
existing WHCS network as maintained by a base station. The base station is the arbiter of
all communication for the WHCS network and as such, handles initial join requests. It is the
node’s responsibility to know and maintain any necessary access tokens for a join request
along with the required channel of the network. Having the required channel is required for
the sender and receiver to communicate. The base station validates the joining node and
grants or denies access to the WHCS network. This process is necessary to provide some
assurance and tracking for the active nodes on the network.

25

Communicate mode detail Once a node has been successfully joined to the WHCS
network, it is able to communicate directly with the base station as its network gateway.
All communication flows through this node, which processes the data, and if required,
generates a response. This response may be directed back at the transmitting node, such as
an acknowledgement of the packet. Packets of control modules have the ability to change
state in the base station through the use of “update packets.” These packets provide some
periodic or event information about the transmitting node. This includes arbitrary data
and is parsed based off of the node type. For example, a temperature node has a specific
data format that the base station knows how to unmarshal and store.

The overall flow of the communicate mode is to pump out packets to be sent, wait for any
responses, and generate any actions as required by the packets. This loop is performed by
any node with a radio. The base station is the only special case as it has to receive from
multiple nodes simultaneously. Therefore some packet dispatching is required in order to
make sure the appropriate packed reaches the target data structures.

Idle mode detail The idle mode is the simplest mode for the NetLib. This state is where
the library has no data to send or receive. During this mode, the underlying radio is free to
sleep in order to conserve power usage. Also interrupts are used to avoid polling the radio
for new data, which would eat a lot of power. When a new packet is received or one needs
to be sent, the radio wakes up and enters in to the communication mode.

Leaving mode detail The final mode of the network library is the leaving state. This is
the state where the node decided or is ordered to leave the network. It disassociates from
the WHCS network thereby causing its state and all of the resources associated with the
join to be freed. Additional cleanup may be performed in order to get the library ready for a
new join request. Any outstanding packet sends or received are dropped and any potential
data is lost. A safer shutdown would assert that the radio must be in the idle mode. That
way no data would be lost to the leave transition.

6.2 Microcontrollers

For the proper operation of WHCS, microcontrollers needed to be installed into all of the
control modules as well as the base station. This meant research was needed to choose what
the best microcontroller for each of the modules was. The base station is a bit more hefty
than the control modules so the design considerations were different for the two. The first
step was to figure out what family of microcontrollers to use.

6.2.1 Microcontroller Brand

Choosing the microcontroller brand would set the path for all the development that we do
with the microcontroller. Every other choice would stem from this decision so we wanted
to make a smart choice. We weighed out the documentation, support, ease of acquisition,
ease of use, and community for the brands that we considered. Our initial choice was Texas
Instruments because of the use of the MSP430 launchpad board in the UCF curriculum.
The fact that using the MSP430 was required in EEL 4742 (Embedded Systems) meant

26

that everyone was already at least somewhat familiar with it. The familiarity factor was a
plus for the MSP, and we all knew that T.I. has very good, albeit lengthy, documentation
for their chips. A quick look at digikey showed that MSP430 microcontroller chips were well
in stock so there would be no problem acquiring them if they were the chip that we wanted
to use. The thing that we were unsure about with using Texas Instruments chips was the
community surrounding the brand. For example if we encountered a problem rewriting a
fuse on the microcontroller would we be able to find a forum of people who knew how to
solve the problem, and things of that nature.

While we researched Texas Instruments based microcontrollers we also researched the Atmel
brand. We knew Atmel is very popular especially because they produce the chip used on
the Arduino development boards. We checked how the Atmel chips were documented by
looking at the datasheet for the Atmega 88, and were pleased with how well things were
laid out. Digikey had most of the common brands of Atmel chips in stock so acquisition
would be no problem. We didn’t feel the need to consider any other brands because we felt
that between the two choices we looked into they could both suit our needs. Atmel offered
chips and brand support similar to that of Texas Instruments, so for whatever kind of chip
we required we could use Atmel or T.I. For us the choice came down to how prominent the
communities for the two brands are. Ultimately we decided that the Atmel brand had a
very pervasive community that was sure to aid us in our utilization of any chips produced
by the company. While the MSP430 was familiar to all of us the Texas Instruments chips
did not seem as broadly used across the open source populus. So our final decision was to
use the Atmel brand of microcontrollers for WHCS.

6.2.2 Base Station Microcontroller

The base station is the center of operations for WHCS so it needs the most computing
power. It has the most data structures to take care of, the most commands to process, and
the longest compiled program. The microcontroller for the base station also needs to be able
to connect to the LCD screen, the radio transceiver, and BlueTooth transceiver all at the
same time. So taking all these things into consideration for choosing the microcontroller
was important. We needed a large amount of pins to interface with all the peripherals,
especially because we knew we wanted a parallel interface LCD. A large amount of flash
memory was also a trait that we looked for since we knew the base station would be doing
a lot, thus making its program long. The first big decision was whether to use an ARM
based microcontroller for our base station since it was the brains of the system. ARM
microcontrollers have much higher processing power, but also introduce complexity. Many
ARM microcontrollers don’t have on board flash memory so that is an added layer of design
that is needed to get the unit working. After considering the processing necessary in the
base station and the bandwidth of the network in WHCS we realized that an ARM based
microcontroller would not be necessary. There was not enough data to be processed to
warrant the use of an ARM microcontroller. Using an ARM unit would introduce design
complexity for a solution that could be attained through easier means.

Eventually our research efforts landed us upon the Atmega series of Atmel microcontrollers.
These microcontrollers are often thought of as the flagship Atmel chips in the DIY commu-
nity and they did seem highly capable. The chips were cheap, had plenty of pins, plenty
of on-chip peripheral support such as the UART, were easy to program, and were highly

27

available. After browsing the Atmega series of chips we narrowed down the chip that we
would be using for the base station to the three chips listed in Table 1. The table shows that
the lowest maximum operating frequency between the three is 16 MHz which is more than
capable of powering the low bandwidth network of WHCS. 16 MHz is enough to handle
communication, the LCD display and interrupt vectors, so all the chips are viable options
in that feature. The 8 KB of flash memory was low compared to the 32 KB offered by the
other two so we actually took that chip out of the running when we considered that the
base station would have a large routine. When we were down to choosing between the At-
mega328 and the Atmega32A we realized that the Atmega32A was actually the only option
between the two chips that would work. The reason for this was the number of I/O pins.
We had picked the LCD, radio transceiver, and BlueTooth chip that we would be using and
the Atmega32A was the only chip with enough I/O pins to support all the peripherals. Our
final decision was to use the Atmega32A as the microcontroller for the base station.

Atmega MCU Flash Memory (KB) Max I/O Pins Max freq. (MHz)

Atmega88 8 23 20

Atmega328 32 23 20

Atmega32A 32 32 16

Table 1: comparison of ATMega chips

After we had decided to use the Atmega32A as the microcontroller for the base station
there were still some things that needed researching to make it usable. The main issue
was disabling the JTAG interface on port C to make the pins usable as general I/O. After
researching the data sheet and the community forums we found that to be able to use port
C pins as GPIO the JTAG fuse must be disabled. Otherwise setting these pins on port C
to high or low will have no effect.

6.2.3 Control Module’ Microcontrollers

The control modules are the parts of WHCS that do the interacting with the endpoint
appliances. The microcontroller that we selected for the control modules would have to
have the pin count and processing capabilities necessary to be able to interface with any
of the appliances. This means that the microcontroller would need to have gpio pins for
activating relays for the outlets and lights, and it would also need to be able to do analog
to digital conversion for sensors. The control modules also receive commands from the base
station and send status replies back, so the control module microcontroller would have to
have an SPI interface for utilizing the radio transceiver that we chose for WHCS.

The list of constraints on the selection of the control modules’ microcontroller was not long.
The control modules were not going to be as demanding as the base station. We could
choose a minimalistic chip for the control modules, but we knew it would help with the
design and development process if we used a microcontroller similar to the one in the base
station for the control modules. This led us back to the ATmega series. Referring back
to Table 1 we see the three main ATmega series chips that we researched. All the chips
had the SPI interface necessary to communicate with the radio transceiver. They all had
enough pins to interface with the most demanding control module, and the all had analog

28

to digital conversion capabilities. Any one of the three chips would have been able to satisfy
the needs of the control modules. The ATmega88 was the first chip out of the three that
was removed from consideration for the base station. This was because the on-chip flash
memory was quite low. We decided not to use it in the control modules for the same reason.
The ATmega328 is only slightly more expensive than the ATmega328 but has 4 times the
flash memory. The ATmega32A, while useful for the base station, would have been overkill
for the control modules. The amount of pins on the ATmega32A would have taken up
too much room on the board. Therefore we decided to use the ATmega328 for the control
modules.

For the control module microcontroller we also put research into using an ATtiny microcon-
troller. The ATtiny series of Atmel microcontrollers are meant to be low power and low pin
count. If we could use an eight pin or similarly sized microcontroller for the control module
boards then it would save space and therefore money on the printed circuit board. One
issue that turned us away from the ATtiny series was the lack of SPI and UART hardware
modules on the low pin count chips. For the chips that had SPI and UART support the
pin count was upwards of 20. This meant that there would be no large savings in terms of
pin count from the ATmega328 to a viable ATtiny chip. Thus we saw no reason to use an
ATtiny chip for the control modules rather than an ATmega chip.

6.2.4 Development Environment

To begin utilizing the microcontrollers that we chose we had to decide upon a development
environment to use. We believed that having everyone in the group use the same environ-
ment would allow for easier collaboration and shorten development time. Research showed
that there were two popular choices for writing programs for Atmel chips, Atmel Studio
and WinAVR. Each of these two environments had pros and cons. Table 2 shows relevant
comparisons between the two environments that led to the decision of what to use. The first
thing that we considered when choosing a development environment was cost. We knew
that certain IDEs, such as Visual Studio, require a license in order to use. We thought
that since Atmel Studio was based off of Visual Studio that it probably required a similar
license. After looking into this issue we found that Atmel Studio is free and WinAVR is also
free. Knowing both are free we took under consideration that part of the group mainly uses
Linux. Unfortunately neither of these development environments are usable on linux so we
all agreed to use the Windows operating system to host whichever option we chose. Our
next consideration was which IDE worked best along with the programmer that we decided
to use for the microcontroller. We decided to use an AVR Pocket Programmer which uses a
program called AVRDude for programming Atmel microcontrollers. The Atmel Studio de-
velopment environment could be set up so the Pocket Programmer could be activated with
the press of a button. This capability was a noticeable win over WinAVR which elongated
the process. The feature that made Atmel Studio the clear winner of the two was the fact
that it provided so much sample code. Things such as the utilizing the UART or the SPI
interface for certain chips were about three clicks away while in Atmel Studio. While the
two IDEs did have many similarities, we all agreed that Atmel Studio was the best choice
for developing for our Atmel microcontrollers.

29

Atmel Studio WinAVR

Free Yes Yes

Linux Compatible No No

Integrated Compiler Yes (GNU) Yes (GNU)

AVRDude Integration Yes No

Sample Projects Yes No

Table 2: Comparison of Atmel Studio and WinAVR

6.2.5 Microcontroller Additions

To ensure that the microcontrollers we used on the base station and the control modules were
operating at their full capabilities we added external crystals to their circuits. The external
crystals boosted the microcontrollers operating frequency from their factory ratings of 1
MHz to the native frequency of the crystal. Because the lowest max operating frequency
for the microcontrollers we chose is 16 MHz this is the frequency we looked for when
choosing a crystal to use for the microcontrollers. We decided to use the NDK NX5032GA-
16.000000MHZ-LN-CD-1 as the crystal for our microcontrollers. This crystal has a 16 MHz
operating frequency and has the simple two connection design. For adding the crystal to
our microcontroller we used the circuit pictured in Figure 11. The crystal connects to the
XTAL pins on the microcontroller and the microcontroller gets its driving wave from the
crystal. As the diagram shows there are two capacitors that must be utilized to get the
circuit working. These capacitors are C1 and C2 and there is an equation for choosing their
value.

Figure 11: Microcontroller Crystal Schematic

The equation is for choosing the values for C1 and C2 is shown in Equation 1 where Cstray

is dependent on board layout and is approximately 2-5 pF and CL is a property of the
crystal. For our calculations we used Cstray = 3pF. C1 also is equal to C2 so this simplifies
the calculations. The value of CL for the crystal we listed is shown as 8pF in the datasheet.

30

Using the given equation we found that the best value for the capacitors C1 and C2 necessary
in the crystal circuit was 10pF.

CL = (C1 ∗ C2)/(C1 + C2) + Cstray (1)

To make the external crystals work with the microcontrollers, certain fuses needed to be
set through a programmer connected to the microcontroller. The datasheets for the micro-
controllers have a fuse list that were used to make the proper alterations for incorporating
an external crystal into the design. There is also a free online fuse calculator tool for AVR
microcontrollers at [2] that can be used to quickly get the necessary fuses that must be
changed for any sort of microcontroller alteration such as changing the operating frequency.

To get the microcontrollers running, the code we write needed to be programmed onto the
chips flash memory. Atmega microcontrollers use SPI to transfer programs to the chip.
There are different programmers that can be used to complete the task of uploading code
to the microcontroller. We put research into which programmer to use in order to be the
most cost effective with our design. The two programmers that our decision came down to
are listed in Table 3. Atmel has a programmer called the AVRISP mkII. This programmer
is supported by the designers of the chips so it was sure to work when ordered however it
also came with a large price tag compared to other options. The online vendor SparkFun
offers a product called AVR Pocket Programmer for $15 that accomplished all that we
needed to get our programs onto our microcontrollers. The programmer relies on an open
source program called AVRDUDE to get the hex file from the development computer to
the chips flash memory. The program is free and the pocket programmer is much cheaper
than the Atmel programmer which costs $34 if ordered from the Atmel site. The AVR
Pocket Programmer was a clear winner when it came time to choose the programmer for
our microcontrollers.

Programmer Supplier Price Atmel Studio Compatible

AVRISP mkII Atmel $34 Yes

Pocket AVR Programmer SparkFun $14.95 Yes

Table 3: Comparison of Two Different AVR Programmers

6.3 BlueTooth Chip

The BlueTooth device for WHCS enables the base station to communicate with the mobile
phone controller. Our guidelines for choosing a BlueTooth device included ease of use,
reliability, size, cost, availability, and documentation. There were a multitude of BlueTooth
devices to choose from. Special attention was paid to how well the BlueTooth device could
connect to a microcontroller UART. Two BlueTooth devices, the HC-05 and the RN-41,
showed the most promise. Our research of the two devices showed that they both had their
advantages and either one could be implemented in our design. After careful consideration
we chose to utilize the HC-05 in our design, however the RN-41 could still replace the HC-05
if necessary.

An important factor for considering the BlueTooth devices was if the internal settings of
the BlueTooth devices could be changed and if possible how. Such internal settings include

31

things such as the device’s BlueTooth name, baud rate, and passcode. These things need to
be changed from their default settings or else many BlueTooth devices would have similar
names, and they would all have default passcodes. We want to implement good security
into WHCS so we need to be able to change the default passcode for the BlueTooth device.
Also the baud rate is usually low in BlueTooth devices by default, which can be bumped
up depending on the microcontroller being used. A BlueTooth device that could not be
programmed easily was not an option.

6.3.1 RN-41

The RN-41 is a BlueTooth module designed by Microchip. This module is designed to be
an all inclusive solution for embedded BlueTooth. It is clear that a lot of design went into
this chip because it is very high quality and the data sheet is very thorough. Along with the
high quality of the module comes the high cost. Of the two considered BlueTooth modules
the RN-41 was much more expensive with a price of $21.74 from Microchip. The high
price tag makes it a less appealing option out of the BlueTooth devices because they are
effectively accomplishing the same thing. The module itself appears well designed visually
and it has dimensions of 25.8x13.2mm so it is not obtrusive and could fit well onto a
PCB. There are 24 pins on this device and the datasheet gives the dimensions down to
the pin spacing allowing for easy PCB layout design. The RN-41 makes communicating
with microcontroller UARTs easy by simplifying RS-232 down to the Rx and Tx wires.
This means the only connections necessary for using the RN-41 with a microcontroller are
power, ground, Rx, and Tx. The microcontroller’s that we have decided to use include Rx
and Tx pins that hook up directly to the RN-41. From the microcontroller’s point of view
the BlueTooth device does not even exist. The RN-41 acts as a transparent man-in-the
middle and simply relays messages from a BlueTooth device to the microcontroller and vice
versa. This is perfect for our design because the RN-41 could just be plug and play. With
an advertised 100 meter transmission range the RN-41 meets the requirements we set for
distance of BlueTooth reception. According to the datasheet the RN-41 has a maximum
baud rate of 921K which means it goes above and beyond the transmission rates necessary
for communicating between the mobile device and the base station.

The RN-41 has a manageable means of programming the internal settings. When the RN-41
is on, sending “$$$” over the UART lines puts the chip into command mode. From here
there are a list of commands that can be passed in order to inquire or manipulate the state
of the module. There are advantages and disadvantages to this approach. It is great that
it is easy to program the RN-41 just by passing certain data while it is wired normally,
however in the event that the sequence “$$$” was ever passed during operation it could
throw off the whole system. This is not a terrible thing but it is worthy of consideration.

6.3.2 HC-05

The HC-05 is a BlueTooth module that shares many similarities with the RN-41. It is
of comparable size to the RN-41 with dimensions of 27x13mm. HC-05 modules are also
commonly sold along with a breakout board with male headers. This makes it an option to
have the PCB include female headers and use them for installing the HC-05. Our intention
for the base station containing the BlueTooth module is to have the PCB board hidden,

32

so using female headers for plugging in the HC-05 to the PCB is a viable option. The
module is advertised as a low power class 2 BlueTooth device with power consumption for
communication listed at 8 mA. This is lower power consumption than the RN-41. The
max signal range is not listed in the data sheet, however we have tested this chip and have
achieved a signal range of more than 50m which is more than enough for what we desired
in our BlueTooth chip. Just like the RN-41 the HC-05 communicates to microcontrollers
by simplifying RS-232 and only using the Rx and Tx pin. The maximum supported baud
rate is 460800 which will allow for very fast data transfer and will exceed the needs of
communication speeds in our system.

The HC-05 comes with default settings similar to most BlueTooth modules. The default
baud rate is 9600 and the default passcode is 1234. In order to change this the module
must be accessed in AT mode. AT mode is entered by utilizing pin 11 “key” on the HC-
05. When this pin is held high, the module enters AT mode on startup and is ready to
take commands. This means that whenever we want to program the BlueTooth module
we will need to use a microcontroller with a UART connection to a terminal as well as a
UART connection to the HC-05. This will require the implementation of a software Rx
and Tx pin. This will only need to be done once because once the BlueTooth module has
been programmed it retains that configuration. The requirement of holding the key pin
high during startup of the module eliminates the danger of entering the programming mode
during normal operation.

For WHCS we have decided to use the HC-05 as our BlueTooth module instead of the
RN-41. Table 4 shows highlights of the features of each BlueTooth module that led to
the decision. The main factors deciding this were the cheaper price of the HC-05 and the
fact that they both accomplish the same thing. The table shows clearly that the HC-05 is
a much more affordable option. The two chips were comparable in size, features, wiring,
layout, and usability however at the price of $6.64 the HC-05 cost less than half of the
RN-41. The RN-41 is the second best choice and can serve as a fallback if HC-05 chips went
out of stock or an unforeseen circumstance occurred.

Cost Range (meters) Breakout? Configurable Size

RN-41 $21.70 100 No Yes 25.8x13.2mm

HC-05 $6.64 50+ Yes Yes 27x13mm

Table 4: comparison of the BlueTooth chips

6.4 LCD

Being able to interface with WHCS like a normal wall thermostat is one of our project goals.
Having a centralized display that can quickly display the most important information for
homeowners is step up from traditional “dumb” thermostats. With a simple LCD combined
with a touchscreen, users can have a way to control and query their home without having
to find their phone.

To make this a reality, we chose the versatile, premade, and well supported Adafruit 2.8”
TFT LCD[3] with a resistive touchscreen. Internally, the display is driven by the feature-rich
ILI9341 chipset.[22] This chip is specifically created for a 240x320 pixel LCD with a focus on
small, power-conscious mobile devices. Another reason we chose to buy this from Adafruit

33

and not integrate the chip directly is due to the complexity of the design. Also, with the
abstracted product, there are plenty of usage examples[23]and Adafruit’s excellent technical
documentation.[24] This combined with Adafruit’s libraries[25], assured that integrating the
LCD was straight forward. The one issue with this solution was with the ILI9341 driver
code: it was written to target the Arduino platform. Luckily, the Arduino platform is
fairly close to bare AVR, minus the remapped pin numbers and some support libraries, so
porting Adafruit’s library was a feasible solution. It was also the simplest and most efficient
solutions, therefore our base station uses a ported Adafruit graphics and ILI9341 controller
library.

6.4.1 Capabilities

In terms of capabilities, we summarize the main features of the LCD module in Table 5

Specification Description

Resolution 240x320

Colors 262K @ 18bits, 65K @ 16bits

Voltage Input 3.3 - 5V

Weight 40 grams

Dimensions (LCD itself) 2.8” diagonal

MCU Interface Multiple. See Section 6.4.2

Touchscreen technology Resistive (one finger)

Table 5: a brief summary of the pertinent features of the LCD module

These features are more than sufficient for our application as most of the drawing we did
is non-realtime. Nearly all of the displayed information was text and UI elements, which
don’t change often. For an overview of our UI elements, see Section 6.4.5.

One of the beneficial features of the LCD is that it gives developers a choice of which interface
to use. The broken out interfaces are 4-bit SPI and 8-bit parallel. For prototyping, we used
the low pin count SPI interface, but for our final design, we used the 8-bit interface to avoid
having to wait for lengthy SPI transfers. Also, our NRF radio is using the SPI bus, which
needs priority over that bus. You may view a high level overview of the LCD module in
Figure 12.

34

2.8"
240x320

8-bit Parallel

Resistive Touch

Backlight PWM

LCD Control

Power

Interface Mode

Resistive Touch

Backlight PWM

SPI Interface

Power

SD Card Control

Figure 12: a high level outline of the LCD pin configuration and specifications

Another feature of Adafruit’s module is the resistive touchscreen present on top of the LCD.
With this, we don’t just have to display information about WHCS, we can receive actions
as well. Using this simple interface, we created a featureful UI library to communicate up-
to-date information about the home while allowing for user control. The specific interface
for the touchscreen requires 4 pins, 2 of which must be connected to the MCU’s Analog
to Digital Converter. By reading the resistance of the touchscreen, we were be able to
calculate the position of a single finger. Using state tracking, we could generate separate
TOUCH DOWN and TOUCH UP events for distribution to the appropriate UI element.

Finally, one extra component on the LCD module is an SD card slot. We are free to read
and write directly to this card to store large images, such as logos for display on the LCD.
We planned on storing at least our logo, but we didn’t end up needing this feature as our
logo is just text with colored lines;

6.4.2 ILI9341 Driver

In order to perform the required operations for drawing pixels to the LCD, we needed
a robust driver to manage the state of the ILI9341 chip. This driver must implement
primitives for choosing a position to draw and the ability to fill pixels.

Choosing where to draw The ILI9341 works like many chips in which it has a command
set for controlling display parameters. One of these commands sets the window in which
pixel data is drawn. Before a batch drawing operation, a window is selected by specifying
the column and page addresses. These are set using the Column Address Set (0x2A)
and the Page Address Set (0x2B) commands. From this point, the RAMWR command
is sent followed by N different 16-bit pixel colors. This scheme of setting the window and
filling the pixels is why the graphics transfers end up being so slow, which is discussed more
in Section 6.4.2.

LCD State Management Beyond just drawing pixels, the LCD module has a wide
variety of bonus features that could assist us in making a fully-featured interface. One of

35

these is vertical scrolling, which could enable us to cheaply draw familiar UI elements, such
as list views. The most intensive state management comes from the early initialization of the
LCD module straight from power on. This requires a long incantation of LCD commands
with equally archaic parameters in order to reach the initialized zen. Luckily, there are
multiple examples of slightly different LCD initialization sequences online for reference. In
terms of power management, the LCD controller provides a command set to set the power
mode. Although, the base station is on wall power, dimming the screen saves energy and
looks professional.

LCD Performance Due to the real-time nature of microcontrollers, everything must be
juggled as quickly as possible in order to have a good responsive design. A user event such
as a touch event followed by a graphics redraw never takes prioirity over more important op-
erations, such as sending and receving from the radios. This is a common theme throughout
real time environments, so much so that highly specialized Real Time Operating Systems
have been created to provide assurance that some operation/action will complete within a
specified amount of time. We didn’t have that luxury – instead we considered performance
before hitting any performance walls.

The slowest part about managing the LCD is the synchronous transfer of commands and
pixel data between the MCU and the graphics controller. Each ILI9341 command is 8-
bits and before any pixel operation the CAS and PAS commands need to be set. These
commands have two 16-bit arguments each. For settting just one arbitrary pixel 104 bits
needs to be sent. This is a considerable overhead, so care must be taken to perform pixel
operations in batch. Obviously, an algorithm that generates random pixels on the screen
would have very low performance.

One other hit to potential performance is the lack of double buffering. The LCD chip only
has enough RAM for one set of graphics memory, which means active drawing occurs on
the viewing surface. In modern day graphics pipelines, double buffering and even triple
buffering are common place as they eliminate tearing and free the developer from having to
clear the screen. On modern day graphics cards, clearing the screen is an extremely cheap
operation – on the ILI9341, it’s just as expensive as every other drawing operation.

6.4.3 Touchscreen Driver

The touchscreen has code dedicated to polling the X+, X-, Y+, and Y- pins of the LCD.
These pins give voltage readings that can be used to calculate the position of a single touch.
They are read by using the built-in ATMega ADC. Due to there not being a dedicated
touch controller, interrupts cannot be used to sense sharp changes (i.e a touch). This added
to the processing time of the microcontroller’s main loop as it has to constantly perform
ADC operations and comparisons.

6.4.4 Graphics Driver

Unlike the previous ILI9341 driver, our graphics driver is in charge of taking the low-level
primitives exported by the LCD driver and using them to draw useful screen elements.
These include text, lines, rectangles, circles, and images. The driver essentially contain a

36

set of routines for drawing these objects given a set of parameters such as length/width for
rectangles, radius and position for circles, and bitmap lookup-tables for the text. These
functions and more are already created by Adafruit and we decided to go with their imple-
mentation.

Due to the unique hardware and software constraints (i.e limited clock speed and memory),
we took take care to not exceed the capabilities of the hardware. This means floating
point operations, which are required for shapes such as a circle must be optimized or used
sparingly. A quick optimization for floating point operations, if necessary, would be to use
a sin() lookup table and only integer multiplications. The performance of the graphics
driver was poor (50ms for a full screen draw), but given the slow clock rate, there was no
significant improvements to be made to the library.

Algorithms Necessary The functionality of the graphics driver depends on some core
algorithms for efficiently creating meaningful screen objects. One of these core algorithms
is Bresenham’s line algorithm.[26] This algorithm needed to be efficiently implemented as it
serves as the base for nearly every derived graphics operation. For example, a transparent
rectangle has four sides which results in four calls to this line drawing function.

Character Lookup Table In order to convey useful information, we display text to the
user. This text is be stored in an efficient lookup table for quick drawing operations similar.
On a limited embedded system like this, there is a limited amount of time that can be
dedicated for font rendering. To save on time, used the existing 5x7 pixel font included in
the Adafruit library.

Due to the very limited memory constraints of the base station microcontroller, this char-
acter lookup table is stored in PROGMEM. This embedded the bitfile in to flash, which
then has to be read out using the AVR LDM instruction. This incurs a performance hit,
but storing the characters in memory is impossible given only 2048 bytes of memory for the
Atmega32-A.

6.4.5 UI Library

An LCD is nothing without a good library driving it. But even if all possible shapes and
text can be drawn, without a good user interface library, the system is a painting. WHCS
aims to have an LCD users want to interact with. This was accomplished with a feature
rich UI library that enabled text, buttons, lists, and images to be drawn and organized
simply. A sample WHCS home screen is mocked up and shows the required controls in
Figure 13. In normal UI libraries, such as the Android View hierarchy, UI elements can
be added on the fly. Unfortunately, unless the UI elements for WHCS are extremely low
memory, storing dynamic UI elements may prove to be too costly for the microcontroller.
This is primary due to malloc() (i.e dynamic memory) Until further testing is done, there
is no way to say that this is possible or not beyond data structure size predictions.

37

W H C S

ON

Settings

TempSense 28 C Info

DoorStrike ARMED InfoInfo

LightSwitch Info

Custom Line
Drawing

ImageView

ButtonView

TextView

TextView

Scroll bar
for ListView

ListView
Element

Custom
Views

Figure 13: A mockup of WHCS’ home screen with each control identified

View Abstraction When constructing a UI library, we use an Object Oriented class
hierarchy to describe the controls. All drawable controls have the View class and a parent,
which serve to contain all of the common properties that a control can have. This includes
basic drawing and placement information, such as width, height, and X-Y position. This is
illustrated in Figure 14.

Width

H
e
ig

h
t View

Content

(x, y)

Figure 14: View abstraction properties

Making this abstraction allows for code reuse and simplifies the design of individual com-
ponents. Specific components derive directly from the View class or each other to form
more and more complex UI elements. Using Figure 13, created a UML representation of a
potential view hierarchy, including properties and methods. This can be seen in Figure 15.

38

View

x : dim_t
y : dim_t
depth : uint8_t
w : dim_t
h : dim_t
parent : View
onClick : callback_t

+layout()
+raise()
+lower()
+setOnClickListener()

TextView

text : char

+setText
+getText

ListView

items : View
numItems : uint8_t
onScroll : callback_t
scrollY : uint16_t

+addItem
+setOnScrollListener
+onTouch
+setScrollY

ButtonView

onClickHandler : callback_t
state : button_state_t

+setText
+getText
+setState
+setOnClickHandler

ImageView

icon : resID_t

+setText
+getText
+setState

ImageButton

icon : resID_t

+decorate()

Figure 15: UML representation of the View hierarchy.

This hierarchy is modeled after Android’s UI abstraction. This is done because reinventing
the wheel for UI elements would have cost developer time. Android has more than proven
that the hierarchy works in practice as well.

6.5 Android Application

For most WHCS users the mobile application will be the only physical interaction they have
with the application. When we set out for development we made an easy to use application
that should attract users enough to stick with our system. Operability and usability are
emphasized in our design process. We made an appealing U.I. without complexity – after
all we are targeting a simple solution to home automation.

6.5.1 Development Environment

Android is the mobile operating system that we chose to utilize for our BlueTooth enabled
phone. The Android operating system is accessed through the Java language, which is a
staple in the UCF curriculum therefore everyone in our group is versed in it. Developing on

39

Android is also a free endeavour where as developing on an iPhone requires enrolling in the
Apple Developer Program. These programs actually cost a good amount of money that is
unnecessary to spend. The Windows Phone platform is another option for the BlueTooth
enabled phone, but they are very unpopular so we chose not to target this platform. With
our target narrowed down to the Android operating system, we had to research what the
best environment for developing our application would be. There were three options that
we considered for managing the Android project each with their own perks: command line
tools, Eclipse, and Android Studio.

The first development environment we considered for our Android project was creating
our own project structure and using command line build tools. There are also debug
tools available on the command line for Android projects. These tools would be necessary
in order to do our testing on Android Virtual Machines running on our computers. This
approach favors people who are command line or terminal oriented. Linux is popular within
our group and the ability to do things from the terminal is appealing so this approach
seemed like a good one. We realized that with the design we used for our project, it would
become quite large and it might be difficult to handle without a dedicated IDE (Interactive
Development Environment). This led us to looking into using Eclipse for developing our
Android application. Eclipse seemed like a natural choice because it is what is recommended
for using in the Java oriented UCF programming classes. The Android SDK provides an
add-on for Eclipse that makes it a viable Android development environment. We were able
to get this running and create sample Android applications. Inside of Eclipse the project
structure for Android applications is laid out nicely. The debug tools are all organized at
the top of the screen resulting in an easier development experience than debugging from
the command line. The problem with using Eclipse as our IDE is that Eclipse is notorious
for being slow and unwieldy.

Recently Google released a development environment named Android Studio that is made
specifically for developing Android Applications. No one in our group had any prior ex-
perience using this IDE, however we realized that due to it being tailored specifically for
Android it was probably better than anything else. This turned out to be correct, because
it was much easier for us to create an Android project and navigate our code from within
this IDE. We also decided to use Android Studio because it has built in Git support for
source control. This meant that as we were writing our code we could easily submit our
changes to a remote Git repository.

6.5.2 Use Case Diagram

The central use cases for WHCS are toggling the state of certain devices within the home
and monitoring certain states. For example a user of WHCS will spend most of the time
turning on lights, checking whether a light is on, or checking the temperature reading of a
certain sensor. There are certain other use cases that were necessary in order for WHCS to
be a functioning application, as well as to make it have a robust feel. Features like speech
activation and creating endpoint groups are usability features that are not necessary in order
to accomplish the central goals of WHCS but add to the applications value. Connecting to
the base station the first time you use the application was a necessary use case that had to
be incorporated into the application. Figure 16 shows the use case diagram for the WHCS
application.

40

The design for the WHCS application involved making sure that performing the common
use cases such as checking status and toggling endpoints were very fast. It was our intent
for the user to be able to perform these tasks without having any knowledge of how the
application works. Speech recognition is a supporting feature so it did not need to be a
central focus like the area that will visualize the control modules. When the user wants to
perform speech activation it involves pressing a button to prompt the speech recognizer,
and then giving a command to WHCS. In order to make the speech activation feature more
promising, the user has the ability to rename endpoints for activation. Creating endpoint
groups is a feature that is not used frequently but adds a lot of value to the application.
Users only have to create an endpoint group once for it to last in the application. Creating
an endpoint group is a simple task involving assigning a group number to endpoints. That
number is the endpoint group, then that endpoint group’s state can be toggled.

Figure 16: Android App Use-case diagram

6.5.3 Speech Recognition

The Android application for WHCS offers speech activation capabilities. These are on top
of GUI activation capabilities. The speech activation sequence begins with the press of a
button to start the speech recognition. The user is prompted with a microphone and can
then give his command. The commands are formatted like “light one on.” When the user
gives commands using the speech method, a notification is given indicating the success of
interpreting the speech into a known command. If the user’s speech does not match a known
command, the speech is shown back to the user to show what went wrong. We predicted

41

that the most frequent cause of this will be the Android phone mishearing the user. In the
event that the speech matches a command, the application displays the command to the
user and then perform it. The following flow chart in Figure 17 displays the sequence of
events happening when a user performs speech activation.

Figure 17: Android app speech activation chart

The goal of the speech activation feature is to be easy to use. In order to promote the
usage of this feature we added the ability for users to rename the endpoints that the speech
commands can target. For example the user can change “light 1” into “living room light.”
This way the user can say “living room light on” to the application in order to turn on the
living room light. To do this, data structures need to be stored in the application which
hold the preferred name of each type of endpoint. Endpoints can be distinguished by the
type they are, their individual identifier number and their preferred name. The preferred
name is stored when the application is closed so a permanent source of storage is needed
to do this. The solution that we use for permanent storage is a SQLite database which is
a common tool in Android applications.

In the code for our application we use the Android speech recognition API (Application
Program Interface). Android has a speech recognition service that can be started by re-
questing it within an application. We request this service to be run by using an Android
construct called an intent, specifically the recognizer intent. Once we request the service to
be run, it gives us the text that it produced from listening to the user’s speech. The code
that performs this process ends up bloating up the application so we sought to develop a
wrapper class in order to perform the request for the speech service and simply hand back
the text. However because of the Android design philosophy, creating a wrapper class to
start the speech recognition service was not easy enough to make it a worthwhile endeavor.
Thus we concluded the best approach is to keep the calls to the Android speech recognition
API within the class we use for our main activity.

6.5.4 BlueTooth Software Design

Bluetooth is the technology that allows WHCS users to interact with the base station from
the mobile phone. This means that proper functioning BlueTooth software needed to be

42

written to ensure that users could interact with WHCS. From the user’s standpoint the
only knowledge of Bluetooth required is the ability to perform an initial connection to the
base station. Once a user has connected to the base station once through the WHCS app
we are able to cache the base station device and allow for automatic reconnection every
time the application is launched. This is an important abstraction for the user because the
user should not have to spend time handling BlueTooth connections every time they open
the application. Figure 18 shows what the BlueTooth software will be doing whenever the
user opens the Android application.

Figure 18: Android Bluetooth Startup Flowchart

In Figure 18 we see that the first check that is made is to ensure that Bluetooth is enabled.
The Android operating system requires applications to ask the user whether they want to
activate Bluetooth or not. It cannot just be turned on. If the WHCS application is opened
and Bluetooth is off we prompt to the user to turn it on and if they refuse we exit the
application. When it has confirmed that Bluetooth is on, the application can check to see
if it knows the base station device. If the base station device is known then the application
can skip asking the user what to connect to and can perform the connection automatically.
This is what should be happening most of the time. If the base station is not stored in
the applications data then the application will have to prompt the user to connect to a
base station. When connecting to a device there are two possibilities for connection, paired
devices and non-paired devices. The application first shows the user all devices that their
phone has paired with previously, in case the application somehow forgot the base station.
If the base station does not show up in the paired devices list, the user is able to search for
active Bluetooth devices and select the base station. At the end of this start up cycle the
WHCS application has an active Bluetooth connection with the base station that can be
used for full duplex communication.

43

Our application leverages the API and design guideline for using Bluetooth from Android
phones. The underlying driver for Bluetooth communication utilizes sockets similar to
network sockets in other languages. Android offers a class named BluetoothDevice which
contains all the address information necessary for opening a socket. When our application
scans for devices or asks the user to pick an option from the list of paired devices this is to get
the BluetoothDevice to open a socket from. Once we have obtained that BluetoothDevice
we create a BluetoothSocket through one of its methods. Once a BluetoothSocket has been
opened through calling connect, input and output streams become available that allow us
to send and receive raw byte data. This is a primitive form of communication but it is
also exactly what we wanted. All data that we send or receive from the base station over
Bluetooth is in the form of a byte array. This form of primitive data transmission allowed us
to implement certain communication protocols between the Android application and base
station.

Once a BluetoothSocket has been opened on the Android device the application can begin
communicating with the base station. We use a custom communication protocol between
the Android device to ensure the base station can properly interact with the application.
This protocol allows the Android application to give commands to the base station such
as inquire about the state of the control modules or to toggle state within the system.
Whenever the Android application wants to send a message to the base station the software
creates a packet with a certain structure. The packet contains a byte for letting the base
station know that a command is being given, the command itself, any variables for the
command, and then a byte for finishing the command. The base station receives one byte
at a time due to the serial nature of Bluetooth communication but it is able to parse the
packets it receives in order to figure out what action the application is trying to perform.
Figure 19 shows a visual representation of the communication between the aplication and
the base station.

Figure 19: Visual of Communication Between Android Device and Base Station

6.5.5 GUI Philosophy

Our goal for the development of the user interface was to make something simple that users
could navigate quickly and efficiently. There was no need for the UI to be deep or hold the
user’s attention. The only purpose of the GUI is to provide intuitive visuals for interacting
with WHCS. When we developed the GUI we wanted to minimize the time it took for

44

the user to open the application and make a change within the system. For example the
user should be able to open the application and turn a light on or off in the shortest time
possible. This means opening up to a screen that lists all possible end points in the system
that can be targeted by a command. The middle layout in Figure 20 shows the view that
lists all of the accessible control modules in the system.

Figure 20: Android GUI Layout

As shown in Figure 20 there are layouts that provide support around the main list layout.
The first layout in the left side of the figure is what the user would see when the base
station is not known to the application yet. The user would need to select the base station
from a list of paired devices or perform a BlueTooth scan for active devices. Once the user
has selected a base station then the base station can be saved in the application and the
user should be able to avoid seeing this screen again. The user would be viewing the main
list layout at this point. From the main list layout the user can navigate to the individual
control module viewer. This is achievable by clicking on the name of a control module. The
individual detail viewer allows the user to toggle the state of the control module, change the
speech recognition name of the control module, and assign the control module to a group.
The detail viewer also lists the current state of the control module.

In Android different aspects of a GUI can be created in two different ways, fragments
and activities. Typically fragments are used when two different screens serve very similar
purposes or are trying to accomplish a shared goal. Fragments are typically used when
exchanges are meant to be done very fast between screens. In the case of our application
we use separate activities for each of the screens. This is a logical approach because the
layouts in our application are independent of one another. The base station connection
layout serves as the root activity and any other screen is an activity that is placed upon it.
For example when the application opens up the first time it tries to open the connection
activity and if it successfully connects it places the list activity on the top of the GUI stack.

45

When the detail viewer activity is called it stacks on top of the list activity and when the
user is done with it, it is removed off of the stack.

To make our list activity look clean and function effectively we created a custom adapter.
In Android, adapters are the classes that allow objects to be transformed into data that a
listview can turn into list items to be displayed to the user. The name of the adapter is
cmAdapter. The cmAdapter that we created has an array of control modules as one of its
fields, as well as a function named getRow that it inherits from its base class Adapter. The
cmAdapter knows how to get the data from a control module object necessary to populate
the main list. The main list activity constantly calls the getRow method that is present in
our adapter to fill the list. This creates a nice object oriented design for listing all of our
control modules. If we want to display different data for control modules, we can simply
alter the getRow method that is implemented in cmAdapter. Figure 21 shows the class
diagram for the cmAdapter. The class is simple but provides important functionality for
the Android application.

Figure 21: cmAdapter Class Diagram

6.5.6 BlueTooth Listener Class

When the WHCS application is communicating with the base station it is easy for the
base station to be interrupted and start parsing communication using the UART interrupt
vectors on the microcontroller. We wanted our application to possess the same event driven
capability so we created the BlueToothListener class. This class handles listening for any
incoming BlueTooth communication aimed at the phone. The class must be initialized by
telling it what BlueTooth device it should be listening for. Once this happens it can create
a thread and constantly check to see if the BluetoothSocket’s input stream contains any
data from the target device. If the inputstream contains data then we know that the target
device has transmitted to the application. The BlueToothListener class raises an event
whenever receipt of data has been confirmed. This allows the application to conform to
event-driven Android philosophy. We can design around the BlueToothListener class and
subscribe to the event it raises whenever data has been received. This is one of the core
classes for communicating with the base station. Figure 22 shows the class diagram for the
BlueToothListener class as well as the classes associated with it.

46

Figure 22: BlueToothListener Class Along With Supporting Data Structures

The BlueToothListener allows the application to directly hook up a parser for the incoming
data. We can create a custom class that parses incoming byte arrays and transforms them
into an understandable format for the application. This class would implement the interface
for handling the data received event and could dictate what happens when certain data
sequences are received. For example when the application asks the base station what control
modules are currently known and active the base station would respond raising the data
received event. The parser would begin working on the data received because it would
have been subscribed to the event. The parser would realize that the data received is an
indication of the state of the system and would have a case for handling what to do when
this type of information is received. This would be how the communication protocol for
receipt is implemented on the Android application.

6.6 Power Hardware

Throughout this section we will be discussing all that deals with the power. For reasons
that will be discussed in greater detail in Section 6.6.9 we decided that each control module
and the base station would have a power board that would be separate from the PCB of the
control modules and base station. The reason for each power board is to convert 120VAC to
DC lines of 3.3V 5V and 12V. We will also needed to be able to switch on and off 120VAC
for the outlet and light switching control modules as well switch on and off the 12V used to
operate the strike. The designs for each board will be mostly the same with slight variations
depending on the application. This section will also not go into the specifics of why certain
designs were chosen over other designs but will provide a big picture view of how our design
works.

6.6.1 Design Summary

To start off we will explain the baseline design of our board. Figure 23 is used to explain what
is constant for every board design. This basic design provides power to the microcontroller
using AC outlet power. First the AC power is transformed with a transformer down from
120VAC to 14VAC this 14VAC is rectified using diodes into 19.8 VDC. At this point the
line goes through a DC to DC converter that will transform the 19.8 V to 5V. This 5V line
leaves the power board and enters the PCB containing the microcontroller and turns it on.

47

Figure 23: Baseline design for power board

Off this baseline design we will start to explain how the control modules and base station
power boards differ in design. The first board that I’d like to go into is the design for the
light control and outlet control. The basic function of these control modules is to switch
on and off power to either lights or outlets. Basically in addition to the line taken from
the 120VAC to power the microcontroller we have a line to power the actual application
(the light and/or outlet). This is shown in Figure 24 shown below. This extra line will
run along our power board and is only interrupted by a 5V operated relay. This relay
will be connected to the microcontroller so that from the microcontroller WHCS will be
able to open and close the 120VAC line. Initially we considered placing the relay on the
power board, but in the end we decided it made most sense to place the relay on the control
module. This is the easiest way to implement switching into our design. The only difference
between the light and outlet modules is the load that is placed at the end of it.

Figure 24: Additions to the baseline design for the implementation of light and outlet
control module boards

The next board design to be addressed is the design for the door access module. The design
of this module is actually very similar to the design of the light and outlet control modules .
Door access is fairly simple, it consists of providing or not providing power to the electronic
strike in order to allow the user to lock and unlock the door. The strike runs on 12V of
DC power and draws 450mA. Figure 25 shows the basic design of the door access control
module. Similarly to the light and outlet control modules it too has a relay that is used in
order to provide the switching. The only change is that electric strikes operate on 12VDC
instead of AC power. In order to provide the 12V an additional DC to DC converter (in
addition to the DC to DC converter used for the microcontroller) is used after the rectifier.
The 12V line in combination with the relay from the microcontroller is all this module needs
to perform its task of providing power to the door access module. We also considered adding
a back up battery to this design. The reason for this is that we wanted the microcontroller

48

to be powered even if a power failure occurred. The backup battery would not provide
power to the 12V line meaning the strike would remain in locked mode. However having
the microcontroller powered would allow it continue completing tasks such as checking the
state of the system. In the end we decided not to implement a backup battery.

Figure 25: Additions to the baseline design for the implementation of door access module
board

Another control module that must be discussed is the temperature sensor control module.
There is no flowchart used to explain the module of the temperature sensors. This module
really only needed the basic design that provides the microcontroller with 5V. if we had
implemented a backup battery the information about the temperature of the home could
still be gathered from the sensors even if there is a power failure.

Lastly and arguably the most important is the design of the board for the base station. The
base station in addition to the microcontroller will make use of NRF and Bluetooth which
require 3.3V lines. The 3.3V line will stem out from the the 5V line as shown in Figure 26.
In order to make this step down we used a switching regulator. Like the temperature sensor
module and the door access modules, we also considered equipping the base station with
a backup battery in case of power failure. This would have allowed the base station to be
fully operational even if the power goes out.

Figure 26: Additions to the baseline design for the implementation of the base station board

The only reason we didn’t consider equipping the light and outlet modules with a backup
battery is because a backup battery for these modules would serve no purpose. The backup
batteries allow the microcontrollers of the control modules to remain operational, thus
allowing the microcontrollers to complete small tasks such as checking the state of the
system. For light and outlet applications however there is no need for this. In the case of a

49

power outage it can be assumed that the state of the lights and outlets if off. There is no
need to check this with a microcontroller and therefore a back up battery would be useless.

6.6.2 Power Consumption

In this section we will discuss the amount of power consumed by the boards. First of all it is
important to make note of the fact that saving power is not of incredible importance to us.
While it is important not to be incredibly wasteful to the point that it becomes a problem,
power was not something that we decided we wanted to be competitive on. Had we wanted
to be more competitive with power, we would have taken a lot more into account and made
different design decisions. For example with the microcontrollers we would have looked
more carefully into the amount of current that they drew to help us weigh our decisions.
MSP430 boards for example would have been attractive because of the low amounts of
current that they draw. With that said we made all of our decisions based on performance
in other aspects. The comparisons that we made and the details that were of importance
to us can be shown in the sections were we decided on each component that we selected.

In Table 6 below we have all the information on the amount of current drawn from the
different elements in our design. Note that the information from the datasheet about the
current drawn for the microcontrollers is under a clock speed of 16MHz. We choose to run
everything at 16 MHz because is was the maximum speed for the Atmega32A. Although
the Atmega328P can run at a higher clock speed of 20 MHz, we decided tomake everything
consistent to run at 16MHz. The reason why we give ranges for the currents and voltages of
the microcontrollers is because there are a number of different current voltage relationships
that can achieve the same clock speed. This isn’t to say however that any combination will
work. If a lower current is selected a higher voltage must be selected in order to maintain
the same clock speed of 16MHz.

Operating Voltages Current Drawn

Atmega32A 4.5-5.5V 12-16mA

Atmega328P 4-5.5V Active: 7-11mA Savings: 1.75-2.75mA

Electric Strike 12V 450mA

Adafruit TFT LCD 3.3V 150mA

Bluetooth HC 05 1.8-3.6V 35mA

nRF24L01+ 1.9-3.6V 13.5mA

TMP 35 36 37 2.7-5.5V .05mA

Table 6: Currents and voltages of devices used in WHCS

Note that the microcontroller of the control modules shows both an active and a power
saving mode. When the module is in operation it runs in active mode, however since our
microcontroller has the capability switch into a less consuming power mode, we will utilize
this mode in order to save power. The microcontroller for the base station also has a low
power setting for idle use, yet we do not run in this mode for the base station because it
is impractical. Some of the datasheets gave us specific information on how much current
would be drawn while for others we were simply able to estimate the limit. For example the
LCD (most of it’s current is drawn from the backlight) only gave a description of the LDO

50

that would be 3.3V at 150mA. Therefore we were able to assume that the current would
not surpass 150mA.

As you can see the components in WHCS do not draw a lot of power. This is because the
components that constitute the system are all intrinsically low power devices. Based on the
fact that Power = Voltage*Current and that not all these devices are used at a time. We
can see that the devices themselves never really draw that much power.

This data is used as a reference later when the amount of power drawn plays a part in
design decisions. Again this section was not made to try and explain why certain decisions
were made in order to try and conserve power. Our design is not heavily concerned with
testing the limits of low power applications. Rather this section was made to present the
data of the power usage that comes from the devices that have already been selected to be
used in our design.

6.6.3 DC-to-DC Converters vs. Linear Voltage Regulators

In our control modules and base stations we are required to provide lines of three different
voltages 12V, 5V and 3.3V. This could have been accomplished with a voltage regulator
or a DC to DC converter. Voltage regulators are variable resistors that dissipate energy
as heat to get the desired voltage levels. The advantage of voltage regulators is that they
are cheap. The issue is that they are highly inefficient. Linear voltage regulators are good
for low power applications where not too much power will be wasted due to inefficiency.
Whereas DC to DC converters are more appropriate for large step downs in voltage.

The basic tradeoff between the two technologies is cost vs efficiency. Dc to DC converters
are capable of achieving efficiency levels as high as 95% but cost close to $10. The efficiency
of linear voltage regulators depends on the difference between the input and the output
voltage. Yet the cost of a linear voltage regulator is usually below $2. Power wasted in a
linear voltage regulator can be determined by using Equation 2.

Pwasted = (Vi − Vo) ∗ il (2)

Where Pwasted is the power wasted, Vi is the input voltage, Vo the output voltage, and il
the load current.

The basic question becomes how large of a stepdown are you expecting to have from your
regulators. In our design we decided to have a step down from 19.8 volts down to 5V and/or
12V, as well as a step down from 5V down to 3.3V. Based on these step down values it
made most sense for us to use a DC to DC converter to step down 19.8V to 5V and/or 12V,
and to step down from 5V to 3.3 volts.

6.6.4 Backup Battery Configuration

Initially we considered equipping each control module along with the base station in WHCS
would be equipped with a backup battery. In the case of power failure WHCS would still be
able to carry out the basic function of checking the state of the system. Actual operation
of some of the control modules would be impossible without the use of AC power. Yet

51

checking statuses such as temperature and the position of door locks would still be fully
operational. This was meant only to serve as a short term solution to power failure.

Although we decided not to use backup battery into our final design, here are some of the
designs we considered for the backup battery. The circuit below in Figure 27 was made in
Multisim. [4]

Figure 27: First possible design for the backup battery

This design is simple. The circuit being open indicates when there is a power failure,
while a closed circuit signifies normal operation. The circuit shows two sources, one (the
one farthest to the left) that is of a higher voltage and acts as the primary source and a
secondary lower backup voltage source. Since the secondary source is of lower voltage it will
not discharge until the voltage of the first source drops below a certain level. This is how
tradeoff occurs. The secondary source has no potential until the first sources potential drops
below a certain level. In Figure 27 we see that during normal operation (closed switch) that
this design will recharge the batteries, that is if the batteries are rechargeable. This feature
can easily be taken out by removing the diode and the resistor that feed into the secondary
battery.

In this design it is very important that the secondary source be of a lower voltage than the
primary source. If this is not the case the batteries will discharge even when the primary
source is functioning properly. Initially we believed that this would be a handicap for our
project and that the design could not be used. Yet we realized that there was a way to
ensure that the primary voltage was higher than the secondary voltage. If we were to place
the backup battery before the DC to DC converter, and allow the DC to DC converter to
do a large portion of the voltage step down. Say we had the transformer only transform
down to 24VAC (roughly equivalent to 34 VDC) then had the DC to DC converter bring
the voltage down to 5VDC. Our primary voltage would be 34V and our secondary backup
source could be anything lower than 34V that is accepted by the DC to DC converter.

Designing in such a fashion has it’s advantages and it’s disadvantages. The benefit of
placing this design right before the DC to DC converter is that no matter what the voltage
is coming into the converter (as long as it is within the range or acceptable voltages for the

52

converter) the output will always hold the same voltage level. The main disadvantage is
that the required voltage rage needed by the voltage regulator may cause us to need higher
voltage batteries than we would have needed otherwise. Say for example we need a 5V line,
the DC to DC converter takes voltages from 9V-40V and converts it to 5V. For our back
up battery we are now required to use a 9V battery whereas in another design we may have
been able to get away with a 6V battery source.

Because of the high efficiency level of the DC to DC converters using a higher voltage
battery than may have been required is not a problem of wasting power rather a problem
of design cost. 9V batteries cost around $6 for a pack of two while AA batteries cost about
$14 for a pack of 24. The cost difference a 9V battery and a 6V source with AA batteries
is $0.33. The 9V battery is more expensive but it actually isn’t that much more expensive.
The cost/volt of a 9V battery is better than that of the AA batteries. Unfortunately later
we realized another problem. The average AA or 9V battery could not supply the current
requirements we needed. This was largely why we decided not to implement the backup
battery.

The design above works because we have decided to use a DC to DC converter with a
decently sized voltage step down.If however this were not the case and the primary and
secondary designs were much closer in voltage levels than an alternative design would have
to be used. There are a few other design possibilities that were explored.

Another design that was explored was to use a relay in order to drive the switch. In Figure 28
current flows from the primary source to ground which activates the relay allowing the
primary source to power the load. If there were a power failure in the primary source the
relay would switch to circuit with the backup battery and thus the secondary source would
take over. The main issue with this circuit is that it requires a line that goes directly to
ground, thus wasting energy. The effect of this can be lessened by choosing a large resistor
value.

Figure 28: Possible design for back up battery[16]

In the end trouble finding the appropriate battery is what stopped us from building a backup
battery for WHCS. We would have liked to have found a small battery that was at least

53

9V and could supply our current requirements.

6.6.5 Transformer Choice

One of the basic requirements for our project is to have a transformer to convert the AC
power to DC power. There were however a lot of different transformers to choose from.
With size and performance having a large impact on which transformer we chose. From
previous sections we decided that our transformer would convert 120VAC to 14VAC. The
first thing we considered was how much current our circuit would load draw. We first
consider the amount of current drawn so that we could determine the VA (volt amperes)
rating. The VA rating is an actual specification of the transformers that helped us make
our decision. Volt amperes is different from watts in that it is the “apparent power” instead
of the “real power”. In order to find the VA rating we needed the currents and voltages
used in our system.

The devices that our system powers needed to be taken into account in order to make sure
we are making the correct approximation for how much current is being drawn. Initially we
made approximations of the amount of current drawn based on datasheets and component
characteristics. When we were in the prototyping stage we were able to run test to see if the
actual amount of current drawn matched the amount that was expected.Yet in the design
stage we just drew our information from the datasheets. If we look to Section 6.6.2 there is
a table that makes a nice summary of the current and voltage requirements of each device.

There are quite a few devices to consider that draw current. There’s the microcontroller
for the base station, the microcontrollers for the control modules, the electric strike, the
temperature sensor, the LCD screen, the bluetooth module, and the nRF chip. Now not
all of these devices are used at the same time. Therefore we don’t really need to take into
account everything at the same time. We made our conclusions of current based on the max
current drawn at a time. The operation that would draw the most current would come from
using the electric strike from the base station. When we add the currents involved with
operating the strike the current would be 665mA. The VA can be calculated by I*Vrms.
Were “I” pertains to the current directly after the transformer. The voltage we already
know to be 24 Vrms. Using the current from the device endpoints as an approximation of
what the current would be directly after the transformer we would calculated the VA rating
to be 16. When selecting our transformer we needed to pick a value that is above 16, we
decided on 20VA.

After determining the VA rating there were still other factors that we need to take into
account. Another thing we considered was the type of transformer. Did we want a regular
transformer or a center tapped transformer. This was decided by the type of rectifier we
used. We decided on a full wave bridge rectifier and therefore used a regular transformer as
opposed to a center tapped transformer. There are also a whole list of mounting methods
for transformers: Chassis, DIN Rail, PCB, Snap in, Surface Mount, Through Hole, Wall
Mount. As will be discussed in Section 9.3.3 our design is a full installation design meaning
that the power board along with the control module and base station boards are placed into
the framing of the home. Now that means that the transformer could have been directly
connected to the framework of the house, that would be a very sturdy way to do it but
would also require extra steps for installation. Having a transformer that is part of our

54

power board kept things simpler as far as installation goes. In Section 6.6.9 we discuss
why our power board is a through hole power board. Therefore our transformer is also a
through hole transformer. Size had some influence but was of less influence than the other
constraints involved with choosing the part for our design.

6.6.6 Rectifiers, Diodes, Capacitors

The outline of the components needed for our design are fairly simple. It’s already been
discussed in other sections that we needed to use a rectifier, capacitors, diodes, relays, and
a linear regulator in our design. The point of this section is to go into the specifics of what
type and what components will be used, as well as what size of components were used. In
this section we explain all the possible options that could have been selected for our design
along with why what was chosen was chosen.

Rectifier First let’s discuss the rectifier used after the transformer. Not to explain how
rectifiers work, rather to justify the choice of rectifier made for our design. Now there are
two types of rectifiers; full wave and half wave rectifiers. For our design we used a full wave
rectifier. Full wave rectifiers are far more efficient because they utilize the full cycle, plus
they have less ripple with peaks occurring at twice the frequency of half wave rectifiers.
Of the full wave rectifiers there are center tapped rectifiers and full-wave bridge rectifiers.
Center tapped rectifiers use two less diodes and a transformer tapped at the center. Using
less diodes is an advantage because of the reduction in voltage drop (meaning less power is
wasted). The problem with the center tapped rectifier is that it requires a transformer of
twice the size for the same voltage step down. In the end full-wave bridge rectifiers are the
best choice for power supplies because transformer size is of high importance.

Capacitor Having decided what type of rectifier we want we still needed to determine the
specifics on the components used for the rectifier. The two components under discussion
were the diodes and the capacitors. The capacitor determined the voltage ripple. To calcu-
late the ripple in full wave bridge rectifiers we used the following equation Vr = I/(2*f*C)
for an approximation of the expected ripple (Millman-Halkias, pp 112–114). Where I is the
current in the circuit, f is the frequency, and C is the capacitor value chosen. In the United
States f=60 Hz for wiring used in the home. For the sake of our design we will assume
“I” to be at approximately .5A. Knowing the values of I and f we controlled the amount of
ripple by adjusting C. The real question became what is the acceptable amount of ripple
in our circuit. Since the circuit goes through a DC to DC converter after this smoothing
capacitor, there is actually no real need for the capacitor to smooth out the ripple since the
DC to DC converter will ensure that a steady voltage is made at the output. Yet regardless
we made our design such that 1V is the allowable amount of ripple. With an acceptable
ripple of 1V the corresponding capacitor value of 4150 microfarad. With a capacitor of this
size we ensured that the ripple would be less than 1V. Having a capacitor of this size is
really quite unnecessary though, we would’ve done fine with using a smaller capacitor. Yet
using a 4700 microfarads capacitor does the trick.

There are many types of capacitors. Yet the capacitor that we used was an electrolytic
capacitor. These capacitors are highly used in rectifier circuits due to the fact that they

55

have a small size for their level of capacitance.[6] The capacitor that we will be using in
our board will be a through hole capacitor. The main thing that we had to take into
consideration was if the capacitor would be able to handle the voltage used for the power
board. This stage in the circuit is right after the 14VAC has been rectified into DC. Meaning
we will get a DC voltage equivalent to the 14/.707 or 19.8VDC. We had to make sure that
the capacitor used was at least able to handle this level of voltage. Capacitors with this
sort of requirement can easily be found on sites like mouser or digikey. The peak voltage
depends on the input voltage and the type of diodes used in our circuit.

Diodes Now let’s discuss the diodes used for the power board. There are many different
types of diodes. For the rectifier their is no need for any type of special diode. The diode
that we used for our rectifier was the 1N4001 diode. This diode is a simple rectifier diode. It
is not as fast as other diodes such as a schottky diode that could have been used; however,
there is no real need for a higher performing diode. Because of the simplicity and economy
of this diode it is highly used, even though it is less efficient than other diodes. This diode
is rated to be able to handle 1A of current and 50 V which is sufficient for our design. This
diode however is not the only diode that we used. There is also a diode in the DC to DC
converter. This diode however does have a much stricter requirement for diode speeds. In
this case we were required to use a schottky diode. [7]

Relay Next let us discuss the relay. The requirements of the relays used in our power
boards is that they must be able to handle switching an AC circuit with a DC driving
circuit of 5V. This was the main requirement of the relay. Now when evaluating relays you
run into one key design choice, solid state relay or electromechanical relay. Let’s discuss the
advantages and disadvantages of each. Electromechanical relays run with actual inductors
that pull the switch by induction when voltage is applied across the terminals. Because
the electromechanical relay uses these parts they tend to be much larger than the solid
state relays. Solid state relays produce very little interference and they consume very little
power. Solid state relays also have no arc meaning that they are very good for situations
that require large amounts of isolation. A disadvantage of solid state relays is that they are
more likely to overheat, and could require heat sinks. Electromechanical relays are better
for applications where there is a potential of large current or voltage surges. Both could be
used in our design, however for our design we decided to use a solid state relay rather than
an electromechanical one. [8]

Linear Regulators There are two types of linear regulators standard regulators and
LDO regulators. LDO stands for Low Drop Out. The difference between the two regulators
is in the dropout voltage. Regulators with a higher dropout voltage have a larger required
difference in size between the input and output voltages. The reason why LDO’s are often
talked about as more efficient is because they allow a closer input and output voltage, thus
making them more efficient. If however you are using a drop out voltage large enough to
use a standard linear regulator, using an LDO won’t have much of an impact on efficiency.
We would have needed a linear regulator in order to drop 5V down to 3.3V for use with our
bluetooth module as well as with the nRF chip. In the end we ended up using a switching
regulator instead of a linear regulator, but had we used linear regulators we would have
considered the research above. [9]

56

Converting 5.5V to 3.3V is a voltage drop of 2.2V. For this application we could use either
a standard regulator or a linear regulator as long as the dropout voltage is less than 2.2V.
Other things that have to be taken into consideration are the maximum and minimum input
voltage. For our design the maximum can’t be above 5.5V and the minimum shouldn’t be
below 4.5V. The output current is also very important. For our design the current drawn
from the nRF chip along with the bluetooth module is lower than 50mA. The linear regulator
would have to be a through hole regulator since that is what is used in the power board.
An acceptable part would be the texas instruments UA7M33. It gives an output of 3.3V
takes a max voltage of 25V. Our input will always be around 5V. The output current of the
device can be as large as 500mA, which is about 10 times what we need.

6.6.7 Isolation

There are a few different interpretations for what is meant by isolation when we are dis-
cussing electronics. Isolation can sometimes be used to describe the ability to couple two
wires together without the use of wire connections. But for the sake of this paper we are
discussing isolation as a means of safety. A proper definition of the word isolation would
be the electrical or physical separation from an electrical circuit. Isolation is important not
only to stop two wires from interfering with one another, but also to prevent dangerous hu-
man encounters with circuits. There are a few isolation design considerations we will make
in our power board in order to keep safe operation. The first things are actually accounted
for by using a design software to construct our boards. The built in Design Rule Checking
(DRC) will ensure that our wires are not too closely placed together, thus ensuring we are
isolating our wires correctly. Next we should discuss the isolation of our transformer. We
must discuss isolation transformer and autotransformers. The main difference between an
autotransformer and a isolation transformer is that in an isolation transformer there are
two separate winding, while with an autotransformer the primary and secondary coils share
their winding. Autotransformers may be smaller but they have less isolation. Isolation
transformers keep the input ground and the output ground separate. Isolation transformers
protect voltage spikes from crossing the primary coil to the secondary coil. For our design
we will be using an isolation transformer in order to provide more isolation and therefore
have a safer design.[10]

6.6.8 Simulation

In this section we show the preliminary testing of the systems that are part of the power
circuit. This is accomplished using Multisim. Multisim is a highly capable simulation
software that is freely available to engineering students at any of the computers in the
engineering department at UCF. Simulation is an important step to take in project design
because it is a very low risk method for checking if circuits work in the same manner
that they are expected to work in. Although multisim may not be able to account for
everything it prevents us from making silly mistakes at an early stage in our design process.
Mistakes made while prototyping virtually are much better than mistakes discovered in
actual physical prototyping or in our worse in our final project. Simulation may be an extra
step, yet we expect it to save us time in the long run by allowing us to avoid mistakes that
can be easily overlooked.

57

One of the things that is of interest in our design is the ripple. In multisim we can rebuild
the circuit and test to see what ripple values we are returning. Using multisim allows us
to reconfirm our assumptions made in our calculations. The circuit found in the Figure 29
below shows the expected ripple value with a drawn current of approximately 500mA. If we
compare this to our calculations we find that the resulted ripple is a little larger than what
we expected. What we expected was a ripple of approximately 1 volt, and what we got was
a ripple about 1.6 volts. Now this could mean that there is an error in our calculation of
the expected ripple or it could just be due to error. Regardless if we now have two sources
that tell us that the ripple is below 2V, and since this voltage is still going to go through a
DC to DC regulator this level of ripple is still acceptable.

Figure 29: Multisim showing the expected ripple of our design

There are many other things that could also be tested in Multisim. One of the things that
would have been nice to have tested would have been the integrity of the 5 V line after
having gone through the buck regulator. Unfortunately Multisim is a little limited in part
numbers and they didn’t have the buck regulator we wanted to test the LM2576 regulator.
In fact we had a hard time finding any switching regulator in multisim.

Regardless testing things first in multisim will give an extra way to test the design. In
addition to avoiding mistakes made in the actual prototyping, it allows us to troubleshoot.
If the prototype were to have not worked as it ought to, yet the simulation was working
correctly, then we could test the current and voltage levels for the nodes in multisim and
the nodes in our design and see how they compare.

6.6.9 Power Through Hole Board

Sending in PCB’s to be built can be expensive. Also the size of the boards have a large
impact on the cost. Due to the fact that components found in power designs are large
and will therefore be costly to place on a PCB we initially wanted to self build a separate
board for power. Not only is this an advantage because it is cheaper but it allows us keep
high voltage AC isolated from the DC used for our control modules and the base station.

58

Additionally we initially thought each of our power boards were going to be slightly different
from one another so making our own boards would have made it easy to customize each
board for their specific needs.

After deciding that we were going to build a separate power board we had to decide how
to build the board. The three candidates were: perf boards, vero boards, and etched PCB
boards. Out of the three the team decided that an etched PCB would be the cleanest and
would look more professional than an a perfboard or stripboard. Next we decided that a
through hole board would be superior to a surface mounted board; mostly due to the fact
that power boards can contain heavy components (for example transformers) and through
hole boards are more mechanically sound than surface mounted boards. Later we realized
that we could do a board that was both surface mount and through hole so we decided to
make it through hole for large components and surface mount for everything else.

If we were to have built our own boards we would have used Rogers RO4003. The primary
reason we decided to use Rogers was because they provide free samples for learning purposes
through their University Sample Orders Program. Since this is in fact a non commercial
academic project we were able to order a sufficient amount of laminate material to complete
our project. RO4003 is a double sided laminate typically used for high frequency applica-
tions. Building this board from scratch will give added experience to the members of the
group, which is the ultimate goal of this project. In the end we decided not to build our
own boards for a number of reasons. One it was well within our budget to have the boards
made and it was also a lot simpler of a process.

6.6.10 Schematic Breakdown

This section breaks down the full schematic of our power board (full schematic is available
in Appendix A). Although there is a difference on what is populated for each board, below
is a design that has all the components of all the boards. For our boards we only attach
the components needed per application. As you can see from Figure 30, our power board
has a simple textbook AC to DC transformation.

Figure 30: Power board AC transformation

Our base station and control modules require a mix of 5V, 3.3V, and 12V (for the electronic
strike). You can see the regulators and extra components required to create these voltages
in Figure 31. These switching regulator were designed with texas instruments WEBENCH.

59

Figure 31: Power board switching regulators

6.6.11 Board Layout

After designing the PCB to the layout specification, the front and back images below are
the result after sending the Gerbers to OSH park.

Figure 32: Power board OSH park PCB layout

6.7 Base Station

The heart of WHCS resides with the base station (BS). When users think of WHCS, they
will think of the base station as it is the most visible part of the system. The base station
is responsible for managing, collecting, and displaying information from all of the control
modules. If the BS were to fail, WHCS would cease to function.

When a new control module is introduced in to the system, it must first pair with the
BS, which will authenticate it on to the network. Once it joins, the control module can be
abstracted as an “API” meaning, the specific hardware details do not have to be considered.
This abstraction is excellent in keeping the system clean from one-off cases and allow for a
Domain Specific API to be formed.

60

6.7.1 Software Flow

The main software flow for the base station is the most complicated in WHCS. It has to
manage three separate devices simulatenously and be able to service each one in a timely
manner. The LCD, NRF radio, and Bluetooth module are all being controlled and com-
manded by one ATMega32-A chip. There isn’t much room for busy waiting or any expensive
operations as everything has to be running as fast as possible. Given this, the BS is the
least point of failure for the WHCS.

In Figure 33, we have constructed the general architecure of the main loop for the BS,
including some early initialization. Most of the implementation details are left out as they
are very specific to the final drivers.

Process
LCD Events

Radio
Available

Poll
Touch

no

Service

yes

Touch
Event

Queue
Touch Event

Bluetooth
Available

no

yes
Service

Timers
Tick/Fire

Process
Radio
Events

Process
Bluetooth

Events

Initialize
UART

Initialize
LCD

Initialize
Bluetooth

Load
Saved
Config

Init

yes

no

Figure 33: the high level software flow for the base station

The large amount of tasks that are required of the BS become clear when viewing Figure 33.

The base station from reset first loads any saved settings from the EEPROM (saved control
modules, behavior settings, LCD settings, etc.), then it brings up all of the main modules
(radio, LCD, BlueTooth, and UART). If any of these initialization steps were to fail, the BS
would indicate through an LED or from a UART debug message. An initialization failure
shouldn’t be handled as it’s a critical failure of the system along with its assumptions. We

61

believe that by assuring that the initialization sequences for all modules is well defined, we
will be able to diagnose hardware issues quickly and without strenuous debugging. One
of the issues we found while prototyping is that it’s difficult to determine if the issue with
module initialization is with the wiring or code. Having a golden model for code that is
know to work on our target setup would allow us to have a good working state.

Each module has a unique sequence of “commands” with parameters that are required to
configure the device. The NRF radio has to have its power, channel, payload length, and
other parameters set before usage. Once these basic options, any further configuration is
done at run time. This includes switching from listening to transmitting mode and enabling
or disabling the automatic acknowledgement feature. The built-in Atmel UART only needs
to know the baud rate at which data will be sent and received. There are also other options
relating to other bits used (parody, stop, etc.). In our case, we are using the default 8 bit
data, 1 stop bit, which is simple enough for our needs. The LCD happens to have the most
extensive initialization sequence due to required screen configuration, gamma settings, pixel
order and other more archaic options.

Once all of the modules are brought up correctly, the BS begins the main loop. Radio events,
BlueTooth events, and LCD state are all be processed as required. For both the BlueTooth
and radio, new packets are checked for and serviced as needed. From these packets, internal
state is updated and any response packets are generated and sent. Internally, WHCS has
an internal event queue with different event types. These events are be processed and any
responses are generated, if any. These responses include a confirmation packet over the
NRF radio, or a status update through BlueTooth. The base station may also initialize
actions despite not receiving events.

In terms of the NRF radio, the module we have chosen exports an interrupt pin which goes
low on the reception of a new packet. This feature is great for the WHCS architecture
as the radio requires a significant amount of power while actively receiving SPI commands
and transmitting. By avoiding the polling of the NRF, the main loops for both the control
module and base station have more cycles to process more important and intensive tasks.
Essentially, the NRF is kept in the listening mode at all times, waiting for a packet from a
control module to be received.

The BlueTooth module won’t require as much time to service as the other modules due
to the low data rate. It is connected directly to the hardware UART of the base station,
instead of the normal serial debugger. This is connected to some free GPIO ports and
software serial is be used. This is unfortunate as “bit banging” serial isn’t efficient and
takes up many more cycles than just using the hardware UART. Packets over BlueTooth
are be sent asynchronously from the main loop due to the hardware UART. If the micro
loops fast enough, then it is as if there is no delay in transmission. Due to the real time
nature of the NRF radio and LCD, WHCS takes steps to avoid blocking too long on a
single activity. Blocking too much lowers the overall performance and responsiveness of the
system. At worst, touch events could be lost and packet buffers could overflow. An effort
has been made to profile the main loop’s average time using hardware timers. This was an
invaluable statistic when developing the base station code.

One of the most important parts of WHCS is its usage of timers. A global list of timers is
constantly maintained and updated to schedule events in the future, instead of having to
handle them immediately. The granularity of the timers depends on the average execution

62

time of the main loop along with how many timers are processed at once. If the main loop is
slow on average, then timers have to wait for extended periods to be serviced (starvation).

All of the above tasks are be executing in the same way as single core CPU would: in
pseudo-parallel. The faster the whole system runs, the better the appearance of everything
executing at once.

6.7.2 Control Module Abstraction

For WHCS to function smoothly and scale well, a neat and abstracted interface must be
defined to accept any type of control module. New control module types are easily added
to the system without affecting older types and there is be a set of generic data structures
for managing and storing information on modules. These structures care carefully defined
to wrap more specific control module packets in all of the shared metadata. Think of it
like a hierarchy where all of the common attributes and actions shared by control modules
have packets that can be sent to any module. Whereas the more specific packets (get
temperature, engage door, etc.) is be wrapped up in the generic ones (essentially a derived
object from the generic control module.) This can be visualized in Figure 34. The details
of a network structure that enables this clean interface is further described in Section 6.1.4.

TempSensor

TimeService

DoorStrike

LightControler

CtrlModule

Generic Operations

Specific Operations

Figure 34: showing the control module hierarchy for WHCS

Beyond sending packets, the base station must accurately record and update state for all
of the control modules. Depending on the control module, additional state is needed to be
stored and functions were written to query that state. Each control module has its own
state machine that controls its function in relation to the base station.

6.7.3 Subsystems

The base station has the hardest job in the entire WHCS architecture. It has to juggle a
lot of data with limited memory and processing speed. Packets are processed and queued
to keep the pipeline flowing smoothly. The following sections break down the individual
subsystems and how they work in concert to make the base station a well oiled microcon-
troller.

63

NRF24L01+ The NRF radio is directly connected to the Atmega32-A microcontroller
which controls its state. This module is be constantly listening for new packets from the
control modules and sending responses in turn. Due to this link being the most critical
for WHCS, it had the most attention to detail when constructing the layout and software
design. Also, besides the expensive drawing operations for the LCD, this takes up the
most CPU time to process packets and perform data transfers. This is partly due to the
slow SPI interface that is used to transfer the data. the NRF24LO1+ breakout board
does not offer any other options for transferring data to and from a microcontroller. The
overall system speed is limited by the maximum transfer speed of this radio (2 MBPS).
When the considerations for the WHCS topology were brought forward, it was obvious
that the organization relies solely on the speed of the base station. We considered this fact
throughout the system design - for example, the LCD could have also been controlled over
SPI, but we made a trade-off for pin count in order to use the parallel interface. This freed
up the SPI bus for programming (infrequent) and the NRF. Essentially, the NRF has full
control over the SPI bus and receives the full attention of the microcontroller.

Assuming the NRF is not limited by the transfer rate of the SPI bus, the additional consider-
ations can now be focused on. The microcontroller needed a way to quickly assess the state
of the NRF chip. This state query could include the status of the radio’s transfer queues -
meaning if there is a packet to be received or if a packet has been successfully sent. This is
something that is checked very frequently, as the radio usage will increase linearly with the
amount of control modules that are a part of WHCS. If any algorithms or tight loops in the
microcontroller were to not have linear performance, then the system speed would suffer as
more control modules were brought in to the network. Luckily most operations were O(n).
We focused on WHCS’ scalability for more complex households than a small demo setup.
Of course, once the network becomes too crowded, the somewhat weak Atmega32-A will no
longer be able to sustain the flood of packets that are required to maintain WHCS. At this
point, more base stations would need to be operating simultaneously in order to handle the
load. Our implementation of WHCS briefly considered this fact, but due to the prototype
nature of this endeavour, we left these more complicated details to another, more scalable
revision of WHCS.

In WHCS’ architecture, the main loop of the base station will not be interacting directly
with the radio. This is due to the abstraction we plan on building around the low-level
radio driver. All driver specific functions will be wrapped in to a façade pattern, network
library. This would allow WHCS to swap out the underlying network hardware for another,
similar radio. This would encourage code reuse and prevent massive, expensive rewrites of
the net code. The high-level interface that the BS will know about will be sufficient and
feature rich enough to carry out all of the actions required for WHCS to come to fruition.

HC-05 The HC-05 BlueTooth module is quite simple in its operations. Data is sent over
a two line serial bus and if there is an active connection to a bluetooth enabled device, it
is able to easily receive the data and handle it. In this case the device on the other end
is expected to be a phone, but not limited to one. As long as the device on the other end
of the BlueTooth link follows the WHCS BlueTooth application protocol, then WHCS is
able to receive commands from arbitrary devices. Assuming that the only thing that will
connected to WHCS is a phone, then a suitable protocol for querying and changing WHCS’
state has been derived. This set of functions is important for more than just the BlueTooth

64

link as it could scale to many different consumers and producers of commands. A simple
diagram showing a very high level interaction of a BT device with the base station is for
reference in Figure 35. Once again this underlying protocol is abstracted away from the
underlying hardware.

BlueTooth Phone Base Station

QUERY MODULE 1

QUERY RESPONSE

SET BT PIN TO 9876

BT PIN SET

LIGHT ON MODULE 1

CONFIRM LIGHT ON

Figure 35: an example sequence diagram that could occur between a connected bluetooth
phone and the base station

In regards to the application level protocol for WHCS, there is a well defined, easy way,
for the BlueTooth library to gather information from WHCS’ state. This can be handled
on the top-level flow of the base station by gluing together two different libraries without
them knowing about each other. This is a good approach because it decouples the two
modules from each other, making their individual implementations separate. Two tightly
coupled modules may start to take on the appearance of a “ball of mud.” A connected
phone will be able to accomplish any task that manually interacting with the LCD could
handle. This includes controlling the function of individual modules and querying their
current state. The BT connection try to avoid generating too many packets over the NRF
radio in response to user events. Instead it merely looks up the cached state from the base
station’s memory. This is faster and the round trip time is lower.

LCD In what could be considered the “face of WHCS”, the LCD module, which is situated
directly over the Atmega32-A, has the tough job of accurately and quickly conveying any
desired information about the state of WHCS’ control modules. This is no simple task as
not only does it have to display, but with an attached touchpanel, it reacts to user touches.
What functionality is exported to the LCD is only limited by the underlying processor speed
and the UI library. The high level design of the WHCS LCD only had to worry about what
the end goals are for its usage. An example of this abstraction may be viewed in Figure 36.

65

TextView

ListView

ImageButton

UILibrary

GfxLibrary

ILI9431Drv

Drawable
UI Elements

Figure 36: the level of abstractions for the LCD subsystem

As the state of the WHCS network changes, the base station has to fire off redraw events
in order to keep the LCD up-to-date. These redraws sync the internal state of WHCS with
the user viewable interface. The physical connections to the LCD consist of data signaling
and an 8-bit wide parallel data bus. There is an optional reset pin that WHCS uses for
emergency resets and debugging. The high level interface with the LCD occurs directly
with the high-level UI library and if necessary the underlying graphics library. The base
station never uses the direct driver interface, if it can avoid it, as this is subject to change in
a new revision. In addition, a subtle feature that WHCS choose to implement was dynamic
power saving through screen dimming. Although we assumed the base station would have
wall power at all times, there may come a time where the system may migrate over to a
lower wattage current source, such as power stealing from an HVAC unit. In this case,
the system would most certainly have to be power efficient. Despite not needing to worry
about power, this function would be simple to implement as only one microcontroller pin
is required to control the screen brightness.

Touchpanel In order to provide a way for an end user to be able to control WHCS from
the LCD unit, there is a requirement to poll for touch events. This subsystem can be
considered a part of the LCD, but the driver is independent from the graphics and ILI9431
drivers. These events are dispatched to the appropriate UI element based on the X and Y
position of the touch event. There is also an optional Z “position” which represents the
pressure of the touch event. This is used to gather more fine grained information about the
touch itself. One of the unfortunate properties of the touchpanel is that it must be actively
polled for new touches. This requires that the ADC be constantly providing conversions,
which raises the dynamic power of the MCU. This isn’t a major concern as the base station
is expected to have power from the wall most of the time.

The extent of the touchpanel interaction occurs from a getTouch() method. This method
returns the latest touch event, if any. The base station has full control over where this
touch event is dispatched to. Depending on the LCD scene (i.e main menu, boot screen),
this event will be handled in different ways. Further details are discussed in Section 6.4.5
for the UI library.

Timers Accurate timing is one of the tasks microcontrollers excel at. The WHCS base
station is using timers to schedule periodic events, wake up from sleep modes, to provide
automated send and resend delays, and much more. A simple Timer class serves as the

66

mechanism and state for a single Timer object. These objects are be kept track of in a
global list and ticked every loop. When a timer has expired (now() - start ¿ timeToWait),
then it will be fired. This firing may cause an action to occur, which is programmable to the
specific need of the Timer client. This action could be something like scheduling a network
health check or to increase the step of an LCD graphics animation. A UML representation
of the WHCS timer class is shown in Figure 37.

Timer

state : uint8_t
type : uint8_t
start : time_t
length : time_t
onFire : callback_t

+start()
+stop()
+restart()
+fire()
+percentComplete()
+isRunning()
+hasFired()

TimerFactory

timerList : Timer
numTimers : int

+periodic(interval)
+periodic(interval, callback)
+oneshot(time)
+oneshot(time, callback)

1..N

Figure 37: A UML representation of the Timer class

6.7.4 Schematic Breakdown

To tie the whole design of the base station together, the schematic, created in KiCad is
broken down below. The full schematic is available for viewing in Appendix A.

In Figure 38 we see a focused view of the Atmega32-A microcontroller with an attached
16MHz crystal and power passives. The crystal has two capacitors that are dependent on
the target crystal. These are required to get the correct oscillation for the external crystal.
Also the AREF, VCC, and AVCC lines of the MCU have decoupling capacitors. These are
used to make sure that the base station performs well under a large current spike. When
designing the board, these capacitors are be placed as close as possible to the MCU to avoid
a long high-current path through the ground plane. The capacitor on the analog reference
pin (AREF) is used to stabilize the reference to make ADC conversions more accurate.

67

1

1

2

2

3

3

4

4

5

5

A A

B B

C C

Date: 27 apr 2015
KiCad E.D.A.

Rev: 1Size: USLetter
Id: 1/1

Title: Base Station

File: base-station.sch
Sheet: /

WHCS

(MOSI)PB5 1

(MISO)PB6 2

(SCK)PB7 3

RESET4 V
C

C
5

G
N

D
6

XTAL27

XTAL18

(RXD)PD0 9

(TXD)PD1 10

(SDA)PC1 20

(ADC7)PA7 30

(T0/XCK)PB0 40

(INT0)PD2 11

(TCK)PC2 21

(ADC6)PA6 31

(T1)PB1 41

(INT1)PD3 12

(TMS)PC3 22

(ADC5)PA5 32

(AIN0/INT2)PB2 42

(OC1B)PD4 13

(TDO)PC4 23

(ADC4)PA4 33

(AIN1/OC0)PB3 43

(OC1A)PD5 14

(TDI)PC5 24

(ADC3)PA3 34

(SS)PB4 44

(ICP)PD6 15

(TOSC1)PC6 25

(ADC2)PA2 35

(OC2)PD7 16

(TOSC2)PC7 26

(ADC1)PA1 36

V
C

C
17

A
V

C
C

27

(ADC0)PA0 37

G
N

D
18

G
N

D
28

V
C

C
38

(SCL)PC0 19

AREF29

G
N

D
39

IC1

ATMEGA32-A

TQFP44

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
4

LC
D

1

PA4
PA5
PA6
PA7

CE
KEY
BTEN

CSN
MOSI
MISO
SCK

D7
D6
D5
D4
D3
D2
D1
D0

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
5

LC
D

1

CD
CCS

Y-
X-
Y+
X+

LRST
RD
WR
C/D
LCS

D0
D1
D2
D3
D4
D5
D6
D7

X
1

16
M

H
z

C
1 22

pF

C
2 22

pF

The analog reference is VCC

Y-
X-
Y+
X+

PORTC taken up by
the LCD parallel
interface

C3

100nF

SCK

VCC

GND

MISO

MOSI

RST

1 2

3 4

5 6

CON1

AVR-ISP-6

MISO
SCK
RST

RST

R
2

10
00

1
2
3
4
5
6

P
1

C
O

N
N

_6

1 2
3 4
5 6
7 8

P2

C
O

N
N

_4
X

2

RX
TX

NRF24L01+ Header

HC-05 Header

3V3

GND

TX

RX
KEY

STATUS

R
3

20
00

VCC
MOSI
GND

GND

VCC

GND
VCC

G
N

D

5V -> 3V3

GND
CE

SCK
MISO

3V3
CSN
MOSI
IRQ

IRQ

D

G

S

Q1

MOS_N

BTEN
R1

1000

ICSP Header

LITE PWM Pin

LRST
RD
WR
C/D
LCS

LITE

C
6 22

pF

C
5 22

pF

C
4 22

pF

C
7 22

pF

GND

GND

Capacitor values
dependent on crystal CL

R
4

47
00

VCC

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D
1

OUT 2IN3

U1

LM1084IT-3.3/NOPB

TO-220

GND

3V3

PWR_FLAG

VCC

SW1

RESET

GNDRST

GND

G
N

D

PWR_FLAG

Figure 38: Base Station crystal and decoupling capacitors

In Figure 39 we see the buses used to connect the LCD to the MCU. This is the most
pin heavy component and care must be taken not to mix up any of the signal paths. All
of the data control signals are connected to PORTD of the MCU, the touchpanel signals
to PORTA (ADC), and the 8-bit parallel data bus completely uses PORTC. There are a
few one off signals such as LITE which is a PWM input to control the LCD’s backlight
brightness.

1

1

2

2

3

3

4

4

5

5

A A

B B

C C

Date: 27 apr 2015
KiCad E.D.A.

Rev: 1Size: USLetter
Id: 1/1

Title: Base Station

File: base-station.sch
Sheet: /

WHCS

(MOSI)PB5 1

(MISO)PB6 2

(SCK)PB7 3

RESET4 V
C

C
5

G
N

D
6

XTAL27

XTAL18

(RXD)PD0 9

(TXD)PD1 10

(SDA)PC1 20

(ADC7)PA7 30

(T0/XCK)PB0 40

(INT0)PD2 11

(TCK)PC2 21

(ADC6)PA6 31

(T1)PB1 41

(INT1)PD3 12

(TMS)PC3 22

(ADC5)PA5 32

(AIN0/INT2)PB2 42

(OC1B)PD4 13

(TDO)PC4 23

(ADC4)PA4 33

(AIN1/OC0)PB3 43

(OC1A)PD5 14

(TDI)PC5 24

(ADC3)PA3 34

(SS)PB4 44

(ICP)PD6 15

(TOSC1)PC6 25

(ADC2)PA2 35

(OC2)PD7 16

(TOSC2)PC7 26

(ADC1)PA1 36

V
C

C
17

A
V

C
C

27

(ADC0)PA0 37

G
N

D
18

G
N

D
28

V
C

C
38

(SCL)PC0 19

AREF29

G
N

D
39

IC1

ATMEGA32-A

TQFP44

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
4

LC
D

1

PA4
PA5
PA6
PA7

CE
KEY
BTEN

CSN
MOSI
MISO
SCK

D7
D6
D5
D4
D3
D2
D1
D0

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
5

LC
D

1

CD
CCS

Y-
X-
Y+
X+

LRST
RD
WR
C/D
LCS

D0
D1
D2
D3
D4
D5
D6
D7

X
1

16
M

H
z

C
1 22

pF

C
2 22

pF

The analog reference is VCC

Y-
X-
Y+
X+

PORTC taken up by
the LCD parallel
interface

C3

100nF

SCK

VCC

GND

MISO

MOSI

RST

1 2

3 4

5 6

CON1

AVR-ISP-6

MISO
SCK
RST

RST

R
2

10
00

1
2
3
4
5
6

P
1

C
O

N
N

_6

1 2
3 4
5 6
7 8

P2

C
O

N
N

_4
X

2

RX
TX

NRF24L01+ Header

HC-05 Header

3V3

GND

TX

RX
KEY

STATUS

R
3

20
00

VCC
MOSI
GND

GND

VCC

GND
VCC

G
N

D

5V -> 3V3

GND
CE

SCK
MISO

3V3
CSN
MOSI
IRQ

IRQ

D

G

S

Q1

MOS_N

BTEN
R1

1000

ICSP Header

LITE PWM Pin

LRST
RD
WR
C/D
LCS

LITE

C
6 22

pF

C
5 22

pF

C
4 22

pF

C
7 22

pF

GND

GND

Capacitor values
dependent on crystal CL

R
4

47
00

VCC

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D
1

OUT 2IN3

U1

LM1084IT-3.3/NOPB

TO-220

GND

3V3

PWR_FLAG

VCC

SW1

RESET

GNDRST

GND

G
N

D

PWR_FLAG

Figure 39: Base Station LCD header to MCU

68

In Figure 40 we see the 3.3V 3 terminal regulator converting the 5V VCC line down.
Additionally, we see the external RESET pull-up resistor and a manual reset push button.
The left corner has the pinout for the NRF breakout board we are using.

1

1

2

2

3

3

4

4

5

5

A A

B B

C C

Date: 27 apr 2015
KiCad E.D.A.

Rev: 1Size: USLetter
Id: 1/1

Title: Base Station

File: base-station.sch
Sheet: /

WHCS

(MOSI)PB5 1

(MISO)PB6 2

(SCK)PB7 3

RESET4 V
C

C
5

G
N

D
6

XTAL27

XTAL18

(RXD)PD0 9

(TXD)PD1 10

(SDA)PC1 20

(ADC7)PA7 30

(T0/XCK)PB0 40

(INT0)PD2 11

(TCK)PC2 21

(ADC6)PA6 31

(T1)PB1 41

(INT1)PD3 12

(TMS)PC3 22

(ADC5)PA5 32

(AIN0/INT2)PB2 42

(OC1B)PD4 13

(TDO)PC4 23

(ADC4)PA4 33

(AIN1/OC0)PB3 43

(OC1A)PD5 14

(TDI)PC5 24

(ADC3)PA3 34

(SS)PB4 44

(ICP)PD6 15

(TOSC1)PC6 25

(ADC2)PA2 35

(OC2)PD7 16

(TOSC2)PC7 26

(ADC1)PA1 36

V
C

C
17

A
V

C
C

27

(ADC0)PA0 37

G
N

D
18

G
N

D
28

V
C

C
38

(SCL)PC0 19

AREF29

G
N

D
39

IC1

ATMEGA32-A

TQFP44

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
4

LC
D

1

PA4
PA5
PA6
PA7

CE
KEY
BTEN

CSN
MOSI
MISO
SCK

D7
D6
D5
D4
D3
D2
D1
D0

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
5

LC
D

1

CD
CCS

Y-
X-
Y+
X+

LRST
RD
WR
C/D
LCS

D0
D1
D2
D3
D4
D5
D6
D7

X
1

16
M

H
z

C
1 22

pF

C
2 22

pF

The analog reference is VCC

Y-
X-
Y+
X+

PORTC taken up by
the LCD parallel
interface

C3

100nF

SCK

VCC

GND

MISO

MOSI

RST

1 2

3 4

5 6

CON1

AVR-ISP-6

MISO
SCK
RST

RST
R

2
10

00

1
2
3
4
5
6

P
1

C
O

N
N

_6

1 2
3 4
5 6
7 8

P2

C
O

N
N

_4
X

2

RX
TX

NRF24L01+ Header

HC-05 Header

3V3

GND

TX

RX
KEY

STATUS

R
3

20
00

VCC
MOSI
GND

GND

VCC

GND
VCC

G
N

D

5V -> 3V3

GND
CE

SCK
MISO

3V3
CSN
MOSI
IRQ

IRQ

D

G

S

Q1

MOS_N

BTEN
R1

1000

ICSP Header

LITE PWM Pin

LRST
RD
WR
C/D
LCS

LITE

C
6 22

pF

C
5 22

pF

C
4 22

pF

C
7 22

pF

GND

GND

Capacitor values
dependent on crystal CL

R
4

47
00

VCC

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D
1

OUT 2IN3

U1

LM1084IT-3.3/NOPB

TO-220

GND

3V3

PWR_FLAG

VCC

SW1

RESET

GNDRST

GND

G
N

D

PWR_FLAG

Figure 40: Base Station power schematic and NRF header

In Figure 41 we see the header for the HC-05. We examine this further because of the
unique electrical characteristics of the HC-05 module. The module only accepts 3.3V power
and logic. Our MCU is running at 5V, which means we need a 5V to 3.3V logic shifter. To
simply implement this, we used a resistor voltage divider which provides the required logic
level for the TX pin. The RX pin does not need a shifter because 3.3V is still above the
VIH minimum for the MCU.

1

1

2

2

3

3

4

4

5

5

A A

B B

C C

Date: 27 apr 2015
KiCad E.D.A.

Rev: 1Size: USLetter
Id: 1/1

Title: Base Station

File: base-station.sch
Sheet: /

WHCS

(MOSI)PB5 1

(MISO)PB6 2

(SCK)PB7 3

RESET4 V
C

C
5

G
N

D
6

XTAL27

XTAL18

(RXD)PD0 9

(TXD)PD1 10

(SDA)PC1 20

(ADC7)PA7 30

(T0/XCK)PB0 40

(INT0)PD2 11

(TCK)PC2 21

(ADC6)PA6 31

(T1)PB1 41

(INT1)PD3 12

(TMS)PC3 22

(ADC5)PA5 32

(AIN0/INT2)PB2 42

(OC1B)PD4 13

(TDO)PC4 23

(ADC4)PA4 33

(AIN1/OC0)PB3 43

(OC1A)PD5 14

(TDI)PC5 24

(ADC3)PA3 34

(SS)PB4 44

(ICP)PD6 15

(TOSC1)PC6 25

(ADC2)PA2 35

(OC2)PD7 16

(TOSC2)PC7 26

(ADC1)PA1 36

V
C

C
17

A
V

C
C

27

(ADC0)PA0 37

G
N

D
18

G
N

D
28

V
C

C
38

(SCL)PC0 19

AREF29

G
N

D
39

IC1

ATMEGA32-A

TQFP44

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
4

LC
D

1

PA4
PA5
PA6
PA7

CE
KEY
BTEN

CSN
MOSI
MISO
SCK

D7
D6
D5
D4
D3
D2
D1
D0

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
5

LC
D

1

CD
CCS

Y-
X-
Y+
X+

LRST
RD
WR
C/D
LCS

D0
D1
D2
D3
D4
D5
D6
D7

X
1

16
M

H
z

C
1 22

pF

C
2 22

pF

The analog reference is VCC

Y-
X-
Y+
X+

PORTC taken up by
the LCD parallel
interface

C3

100nF

SCK

VCC

GND

MISO

MOSI

RST

1 2

3 4

5 6

CON1

AVR-ISP-6

MISO
SCK
RST

RST

R
2

10
00

1
2
3
4
5
6

P
1

C
O

N
N

_6

1 2
3 4
5 6
7 8

P2

C
O

N
N

_4
X

2

RX
TX

NRF24L01+ Header

HC-05 Header

3V3

GND

TX

RX
KEY

STATUS

R
3

20
00

VCC
MOSI
GND

GND

VCC

GND
VCC

G
N

D

5V -> 3V3

GND
CE

SCK
MISO

3V3
CSN
MOSI
IRQ

IRQ

D

G

S

Q1

MOS_N

BTEN
R1

1000

ICSP Header

LITE PWM Pin

LRST
RD
WR
C/D
LCS

LITE

C
6 22

pF

C
5 22

pF

C
4 22

pF

C
7 22

pF

GND

GND

Capacitor values
dependent on crystal CL

R
4

47
00

VCC

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D
1

OUT 2IN3

U1

LM1084IT-3.3/NOPB

TO-220

GND

3V3

PWR_FLAG

VCC

SW1

RESET

GNDRST

GND

G
N

D

PWR_FLAG

Figure 41: Base Station HC-05 header

69

Finally, in Figure 42 we see the standard ICSP header that most AVR line microcontrollers
use. This pin array serves as a quick and easy way to connect an external programmer to
our base station while in the field. In this schematic revision, this header can provide power
directly to the 3.3V regulator and MCU.

1

1

2

2

3

3

4

4

5

5

A A

B B

C C

Date: 27 apr 2015
KiCad E.D.A.

Rev: 1Size: USLetter
Id: 1/1

Title: Base Station

File: base-station.sch
Sheet: /

WHCS

(MOSI)PB5 1

(MISO)PB6 2

(SCK)PB7 3

RESET4 V
C

C
5

G
N

D
6

XTAL27

XTAL18

(RXD)PD0 9

(TXD)PD1 10

(SDA)PC1 20

(ADC7)PA7 30

(T0/XCK)PB0 40

(INT0)PD2 11

(TCK)PC2 21

(ADC6)PA6 31

(T1)PB1 41

(INT1)PD3 12

(TMS)PC3 22

(ADC5)PA5 32

(AIN0/INT2)PB2 42

(OC1B)PD4 13

(TDO)PC4 23

(ADC4)PA4 33

(AIN1/OC0)PB3 43

(OC1A)PD5 14

(TDI)PC5 24

(ADC3)PA3 34

(SS)PB4 44

(ICP)PD6 15

(TOSC1)PC6 25

(ADC2)PA2 35

(OC2)PD7 16

(TOSC2)PC7 26

(ADC1)PA1 36

V
C

C
17

A
V

C
C

27

(ADC0)PA0 37

G
N

D
18

G
N

D
28

V
C

C
38

(SCL)PC0 19

AREF29

G
N

D
39

IC1

ATMEGA32-A

TQFP44

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
4

LC
D

1

PA4
PA5
PA6
PA7

CE
KEY
BTEN

CSN
MOSI
MISO
SCK

D7
D6
D5
D4
D3
D2
D1
D0

1
2
3
4
5
6
7
8
9
10

20

11
12
13
14
15
16
17
18
19

P
5

LC
D

1

CD
CCS

Y-
X-
Y+
X+

LRST
RD
WR
C/D
LCS

D0
D1
D2
D3
D4
D5
D6
D7

X
1

16
M

H
z

C
1 22

pF

C
2 22

pF

The analog reference is VCC

Y-
X-
Y+
X+

PORTC taken up by
the LCD parallel
interface

C3

100nF

SCK

VCC

GND

MISO

MOSI

RST

1 2

3 4

5 6

CON1

AVR-ISP-6

MISO
SCK
RST

RST

R
2

10
00

1
2
3
4
5
6

P
1

C
O

N
N

_6

1 2
3 4
5 6
7 8

P2

C
O

N
N

_4
X

2

RX
TX

NRF24L01+ Header

HC-05 Header

3V3

GND

TX

RX
KEY

STATUS

R
3

20
00

VCC
MOSI
GND

GND

VCC

GND
VCC

G
N

D

5V -> 3V3

GND
CE

SCK
MISO

3V3
CSN
MOSI
IRQ

IRQ

D

G

S

Q1

MOS_N

BTEN
R1

1000

ICSP Header

LITE PWM Pin

LRST
RD
WR
C/D
LCS

LITE

C
6 22

pF

C
5 22

pF

C
4 22

pF

C
7 22

pF

GND

GND

Capacitor values
dependent on crystal CL

R
4

47
00

VCC

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D
1

OUT 2IN3

U1

LM1084IT-3.3/NOPB

TO-220

GND

3V3

PWR_FLAG

VCC

SW1

RESET

GNDRST

GND

G
N

D

PWR_FLAG

Figure 42: Base Station ISP header

6.7.5 Board Layout

After designing the PCB to the layout specification, the front and back images below are
the result after sending the Gerbers to OSH park.

Figure 43: Base station OSH park PCB layout

6.8 Control Module

What can be thought of as the “arms of WHCS”, the control modules serve as the main
devices that seed the network with data. This data is specific to the control module that is
emitting it. The base station is more complex than an individual control module because
it needs to be2 . The control modules should be as lightweight as possible to save cost and
keep power usage down. If the control modules were too complex, then the entire cost of
WHCS would increase proportionally to the number of control modules.

2Seriously, it really needs to be. Take our word for it.

70

6.8.1 Software Flow

The general flow for the control modules is much simpler than the base station just due to
the requirements of the system. There isn’t as much that needs to be done on each loop
iteration. The only main module that the control module needs to work with is the NRF
radio. This can be seen in Figure 44. Due to the capabilities for the NRF radio to provide
an interrupt signal on the reception of a packet, the control module actually has the ability
to sleep when not doing anything. Control modules should be as mobile as possible, which
limits their overall functionality and processing power. Without these limits, any battery
attached would quickly be drained.

Radio
Available

no

Service

yes

Read
Sensors

Process
Radio
Events

Initialize
UART

Initialize
Radio

Load
Saved
Config

Init

New
Data

Generate
Update

Queue
Radio
Packet

yes

no

Timers
Tick/Fire

Update
Actuators

Figure 44: the high level software flow for a generic control module

Beyond scheduling packets and receving responses, the sensor or actuator that the control
module is responsible needs to be serviced. The rate at which the sensor is polled is
depending on the required data rate. For instance, if this control module is controlling the
door, then it needs to be actively listening for a packet to open or close it. This is quite
different from the requirements of a control module that is gathering temperature data.
Like the base station, the control module will also have a global list of timers that will
govern the timing of events and actions to be taken. The timer list can be associated to
any thing that is required to run in the future or periodically.

71

Events spawned from receiving packets from the base station will change the internal state
of the control modules. This state is going to be transitioned between using a specific set of
functions that act as an API to the base station. This API will extend across the network
layer through a network protocol that will enable the control and querying of the control
module’s state from remote locations. It is important that this is done right in and in a
sustainable manner in order to have clean API for usage across the entire network. With
out a clean and well thought API, each control module will have duplicate functionality
to handle common tasks. This has already been in further detail in the base station and
network library sections.

The mobile nature of WHCS’ control modules means that they need to be aware of their
power state. We want our modules to consume as little power as possible in order to sustain
an isolated power outage. Also, some modules may opt to be battery only if their power
requirements are low enough. For instance, a temperature module may be a low enough
power consumption that it could last on a battery long enough to be feasible. This requires
further field testing and research in order to prove right or wrong. Regardless of the end
goals for WHCS control modules, the state of the battery for each control module should
be known to the base station for analytics and tracking.

6.8.2 Electronic Strike

For WHCS we knew that we wanted access control to be part of our design. Basically a way
for the user to unlock and lock the doors from their smart device. We explored a number
of different options for what kind of locking and unlocking mechanism we would use. First
we considered servo motors. The advantage of using servo motors is that they allow for
very precise control. The design would be fairly simple the rotating motor would slide a
deadbolt that could lock and unlock the door. Figure 45 shows a simple graphic of how
such a system would operate.

Figure 45: servo motor access control design

The fact that the servo motors allow us to control exactly how much rotate is an advantage
for two reasons. One once the servo is done rotating we know exactly what position the
lock is in, and two we know for sure that the lock will stay in that position. The other
design consideration was using a solenoid to move a deadbolt lock. When activated the
solenoid would push or pull the deadbolt into the locked or unlocked position. While this

72

would work it’s design is a little more complicated than the servo motors. Unfortunately
the solenoid design would require some sort of locking mechanism once the deadbolt is fully
extended. Plus it would be hard to measure whether or not the door really did get locked
or not.

While both of these methods would have worked, in the end we decided that these designs
were too mechanically involved and we wanted to focus our efforts on electrical and computer
engineering designs. The alternative was to use a premanufactured electric strike. In the
following sections we will discuss what design considerations were taken when selecting our
strike.

Normally Open or Normally Closed The first thing we considered was whether we
wanted a normally open lock or a normally closed lock. Normally opened means that the
door requires power to be unlocked and is otherwise locked without power, while normally
closed means that the door needs power in order to be locked and is only unlocked when
the power is shut off. It was pretty easy for our group to decide that normally open was the
better design choice because it would allow the door to be locked most of the time without
wasting power. The only issue we saw initially was that it might be a potential safety hazard
to have doors locked while there is a power failure. In the case of an emergency this could
be a huge problem. We did however find an easy way to have a mechanical alternative (this
will be discussed in the next Section 6.8.2) so that the safety hazard was no longer present.

Strike vs Deadbolt There are two main types of electric locks to choose from, electric
strikes and deadbolts. While some may argue that deadbolts are more secure, electric strikes
have the advantage that they can be used with a regular door knob. This is an advantage
because it allows us to include a door knob with a mechanical lock. That way if there is
ever a power failure the mechanical lock can still be used. This gets rid of the safety hazard
that could arise if for example a fire where to occur. It also allows for a backup system in
case you were to lose your phone or if there were some sort of failure in the electronics that
give the command to unlock the door. While perhaps there is a higher level of security that
could result from using a deadbolt, the advantage that comes from using an electric strike
outweighs the benefit of an electric deadbolt. Figure 46 shows the two methods for opening
the door when an electric strike and a door knob with a lock is used.

73

Figure 46: electric strike entry methods

6.8.3 Sensor Data Collection

The control modules of WHCS are not only used for switching things on and off. They also
provide a foundation for sensing data around the house. For example any sensor that can
turn physical data into an analog or digital signal can be connected to a control module and
then be a part of WHCS. Examples of these would be temperature sensors and humidity
sensors. For our project’s prototype we used a temperature sensor to demonstrate WHCS’s
data collection. With the way the circuit was designed only the sensor chip would need to
be removed and any other sensor would be able to be hooked up.

The temperature sensor that we decided to use for WHCS was the TMP36. The TMP36 is
widely available and comes in through hole and smd packages. The temperature sensor is
simple in design as it has only three pins that require connection. The schematic shown in
Figure 47 shows how the temperature sensor is connected to the ATmega328 on the control
modules. The VOUT pin of the TMP36 outputs a voltage signal that varies based on the
temperature surrounding the component. The voltage range is between 2.7 to 5.5 volts
which is suppliable through or logic level voltage lines. This model of temperature sensor
is capable of sensing temperatures within the range of -40 to 125 degrees Celsius. This
covers all the temperatures that one would encounter in a home and more. Connecting
to the analog sensor required the use of one of the ATmega328’s ADC (Analog to Digital
Conversion) pins for converting the analog signal to a digital signal. There were plenty of
ADC pins available on the microcontroller and even when one pin on the ADC port was
connected for conversion the other pins could still be used as GPIO pins. The schematic
shows the output of the temperature sensor going to pin ACD0 but any ADC pin would be
able to accomplish converting the signal to digital.

74

Figure 47: Temperature Sensor Connection Schematic

Utilizing the ADC pins required working with special registers inside the microcontroller.
The ADMUX register allows for selecting which pin out of the 8 ADC pins should be
connected to the internal hardware for doing the conversion. This register also holds bits
necessary for setting up the reference values used in the conversion. The reference voltage
in the conversion was important because the digital value that was obtained was a result of
where that voltage level fell in between ground and the reference voltage that was supplied.
For our design we used the power supply of the microcontroller as the reference for the ADC
which meant setting bits 7 and 6 of the microcontroller to 0. The ADCSRA register was
also very important because this is where we set the prescaler that divided the clock rate of
the chip into the frequency that we wanted to use for ADC. We are ran our microcontrollers
at 16 MHz in WHCS which is too fast for good accuracy in the ADC. We set the prescaler
in the ADCSRA register to 128 in order to achieve an ADC sampling rate that provided
reliable accuracy.

6.8.4 Light and Outlet Control

The control modules of WHCS are capable of controlling lights and outlets around the
home. To be able to support this functionality the control modules needed to be able to
switch 120V AC circuits. A simple circuit with a transistor was not capable of switching
such high voltages using the logic voltage levels of microcontrollers. In order to switch such
high voltages we used relays. There are two different forms of relays, mechanical and solid
state. For our purposes we investigated both to see which would be the best option. We
originally considered mechanical relays in our design. For mechanical relays an actual arm
inside the device is being physically moved due to the current going through the device. A
side effect of this mechanical motion is that the current and voltage requirements to drive
the relay are relatively high. Our prototyping of the system originally used a mechanical
relay but the relay required 9V input to activate the large 120V load voltage. Mechanical
relays are cheap because they are made out of simple components, and low cost is always
a big factor. The biggest down side to the mechanical relay is that using one would limit
us to not being able to directly activate the relay from our microcontroller. The required

75

current and voltage to activate a mechanical relay is too high for any of our microcontrollers
to supply.

We wanted to be able to control the relay that is switching 120V AC directly from the control
module microcontroller’s GPIO pins. We concluded that this would not be achievable
through the use of mechanical relays. A mechanical relay would require extra transistors to
switch another voltage source to the relay. Solid state relays solved the problem of supply
voltage and current which is posed by mechanical relays. Solid state relays do not move
any physical components to switch a circuit, instead they operate through semiconductors.
As a result they require much less input to complete the circuit for the load voltage. One
tradeoff for solid state relays is that they are generally more expensive than their mechanical
counterparts. In this situation the price jump was not large enough dissuade us from
utilizing SSRs (Solid State Relays) instead of mechanical relays. If we decided to use
mechanical instead of solid state we would not have gotten the behavior that we desired in
our circuit so the decision is easy to make.

Once we narrowed down our solution to controlling lights and outlets through the use of
a SSR, we searched for a chip that had the electrical characteristics we were searching for.
The GPIO pins of the ATmega328 that we are using for the control modules are capable
of outputting a maximum of 40mA DC current. We needed a solid state relay that had a
tolerance for 120V AC as a load voltage, could be supplied by 5V, and needed less than 40mA
for activation/forward current. We found a solid state relay made by Sharp Microelectronics
with the part number S116T02F that met all the requirements that we set. We confirmed
that the chip is in stock and suppliable by digikey. The chip is available at an affordable
price of $5.10. Figure 48 Shows a schematic using this solid state relay. The schematic for
the control module mimics the one shown in this figure. The activation input is directly
connected to the microcontroller’s GPIO pin in order to toggle on and off the state of the
relay. This particular relay has an activation voltage of 1.2V DC which means that when
the relay is on this is the voltage across the diode shown in the schematic. Thus the forward
current for this schematic can be calculated through the equation (5V-1.2V)/R1. The SSR
in the figure requires at least 15mA for activation. The microcontroller’s pins are adequate
for supplying this low current. When the microcontroller’s activation pin, pin PB1 in the
figure, is set to high, the 120V AC is free to flow through the triac of the SSR and power
the component in place of the load resistor. In WHCS the load resistor RL in the figure is
replaced with an outlet or a light. Whenever the microcontroller pin goes high, the light or
outlet will receive the power it normally would from the household main.

76

Figure 48: Wiring Schematic for Solid State Relay

6.8.5 Schematic Breakdown

The control modules for WHCS had to be able to support communication via a radio
transceiver as well as interaction with their target endpoints. Figure 49 shows the schematic
for the control modules that was implemented in WHCS. The full schematic is available for
viewing in Appendix A. The main component of the schematic is the ATmega328. Every-
thing in the schematic is connected to the microcontroller in some way. In the schematic
three different VCC lines are shown. This is because the control modules have to access
to a 3.3V line, a 5V line, and a 12V line. The power board supplies these power lines to
the control module. The 5V and 3.3V lines are necessary because they provide power to
the logic chips like the microcontroller and the radio transceiver. The 12V line is necessary
solely for the electronic strike that we have chosen.

77

Figure 49: WHCS Control Module Schematic

All the control module endpoint targets are featured in this schematic. In the upper right of
the schematic you can see the TMP36 temperature sensor, the electronic strike representa-
tion, and the solid state relay for switching AC. We are able to create all the control modules
with the same design and just put whichever parts we want onto each individual control
module based on which one of the three endpoint types it will be targeting. One option we
were thinking of during design for modularity is instead of putting the footprints for the
circuits necessary for interacting with endpoint targets directly on the control module PCB,
we could put a section on each control module that acted similarly to a breadboard. This
way we could shrink the size of the control module PCB because the circuit for each target
would not be on every control module. A smaller PCB meant less money spent ordering it
to be made. The issue with the breadboard imitation design is it does not look as good and
it allows for mistakes to be made when soldering the circuit to the PCB. When we weighed
the two options we decided that just having every circuit on each control module and only
soldering the parts on to the circuit we were utilizing was the best option.

The control module schematic is quite similar to the base station schematic. It is missing
the Bluetooth module and replaces that with all the different circuits for interacting with
appliances around the house. The microcontroller is also smaller. The crystal that is shown
in the figure is the same on the base station and the control module. Our goal during
design was to make the boards for the control module and the base station to be as similar
as possible. There was no reason to make them very different and it saved research and
development time for us to be able to recycle footprints and things of that nature. One
thing we realized when we were designing the control module and referencing other PCB
designs is the importance of an indicator LED. We originally did not have any indicator
LEDs in our design. We ended up having an indicator LED in every PCB we created if
there was a pin available. The indicator LED for the control module is shown in Figure 50

78

along with the resistor necessary for forward biasing it. The LED indicator is valuable for
showing that the board is getting power which can save a large amount of time during
testing. The LED can also be programmed to blink while the control module is in certain
states. The usefulness of the indicator LED should not be underestimated.

Figure 50: Control Module Indicator LED

The areas where we connect the electronic strike and the AC voltage to the control module
are screw terminals. This is the best way we found to connect these components. The
electronic strike is not able to be mounted directly to the control module because of it’s
large size, so wires will have to go from the screw terminals to the leads on the strike.
Using the screw terminals for the AC voltage allowed us to shorten the traces carrying that
voltage on our PCB because we could put the terminal wherever we wish. Similarly to the
base station the NRF radio transceiver is connected to the board via female pin headers.
The NRF comes with a breakout option so this is the easiest way to get it on our board
from the prototyping phase.

6.8.6 Board Layout

After designing the PCB to the layout specification, the front and back images below are
the result after sending the Gerbers to OSH park.

Figure 51: Control module OSH park PCB layout

79

7 Printed Circuit Board

7.1 Software Considerations

Before designing any of our Printed Circuit Boards, we decided to analyze which software
would allow us to do the job the quickest and easiest. Nearly all of the team was familiar
with EAGLE as it’s one of the most talked about board design software due to its EAGLE
Lite version. Instead of going with the most common solution, we decided to compare
EAGLE CAD to another open source solution: KiCad.

7.1.1 EAGLE

EAGLE PCB is commercial software for schematic capture and board layout. It supports
a wide variety of features that would help us make our board. The only issue is that the
normal software costs money. Luckily, they offer a free evaluation version that can only be
used for non-commercial purposes.

This freeware version of EAGLE has strict limitations in the size of the board that can be
designed and how many signal layers there may be. The size of any board is limited to 4
x 3.2 inches[17] and there may only be a top and bottom copper layer. These limitations
would be a show stopper for a moderately complex board, but considering our project
requirements, it would be suitable. If we are to consider future board designs for WHCS,
we may want a more flexible solution.

7.1.2 KiCad

As an alternative to EAGLE PCB, KiCad performs admirably well. It has all of the primary
features of EAGLE and yet, is completely free and open source. The benefit of this is that
the whole suite of tools is cross platform, allowing group members to easily work together
despite different operating systems.

One issue with KiCad is the lack of a built in Autorouter. KiCad provides an external router,
FreeRouting[18], but it has experienced recent legal trouble due to one of the developers
previous employers.

Another nifty feature that KiCad has is its 3D board view. This feature is great for getting
a sense of your board layout in relation to the selected footprints.

8 Prototyping

8.1 Point-To-Point Transmission

The most essential part of WHCS is the ability for the modules and the base station to
be able to communicate wirelessly. In our research and prototyping phase we made sure
that this feat would be achievable. To ensure that we were able to communicate using

80

our radio transceivers we set up a prototype for point-to-point transmission. The setup
involved the use of two breadboards each populated with a microcontroller and a radio
transceiver. One microcontroller out of the two was operating as the symbolic base station.
The HC-05 BlueTooth module was connected to the Atmega328 microcontroller and through
this module we were able to administer tests with the prototype setup. The microcontroller
acting as the base station had a routine that enabled reading and writing to the NRF24L01’s
registers. We were able to ensure that the state of the radio transceiver is the state that
we needed to communicate. The other microcontroller was connected to the other radio
transceiver as well as a TTL-serial module for connecting to a computer’s terminal. The
control module microcontroller also had LED’s connected to two of the GPIO pins. The
setup that we created is shown in Figure 52 This setup allowed for us to make sure that
the radio transceivers were able to send packets to one another and that the packets could
be read into the microcontrollers.

Figure 52: Point to Point Transmission Prototyping Setup

When we finished connecting and hooking up this prototype setup we were able to run the
routine on the microcontroller that acted as the base station to take input from the Blue-
Tooth module. Using an Android phone we communicated with the microcontroller and
manipulated registers of the NRF24L01 to ensure that the microcontroller was communi-
cating with the device using the correct timing protocol. Once we ensured we were correctly
interfacing with the NRF24L01 from the base stations side we connected the NRF24L01 to
the control module chip. The control module chip was connected to a computer terminal
via the TTL-serial chip located in the top center of Fig. 8.1.1. We made sure that we were
able to interface with the radio transceiver for this microcontroller in the same way as the
first. Once both radio transceivers were confirmed to be connected and interacting correctly
we ordered the base station to transmit data to the control module. The command was
initiating from the Android application. The data was transmitted to the control module
and was successfully received. As a result, one of the LEDs attached to the control module

81

breadboard toggled to an on state.

This prototype was able to give us a good gauge of how feasible our approach to designing a
wireless home automation solution was. We were successfully able to get an Android device
to communicate to a stripped down base station and then to a stripped down control module.
The actions that were done with this prototype will be the core of WHCS. Every action
done in the system centers around the ability to communicate between microcontrollers and
to and from the mobile phone. When the control module microcontroller is doing more than
just toggling an LED is when WHCS will be impressive.

8.2 Rogers Board Etching Prototyping

In our design we wanted to make the most use out of prototyping as possible. the worst
mistakes are always the mistakes that are discovered to be mistakes in the last stage of a
design. The first way to go about prototyping is to test things at a very low level. Checking
if individual subsystems work the way that you would expect them to work, this level can
definitely be done with a breadboard. Once the individual subsystems have been tested the
next step is to check how these systems integrate, this too can be done with a bread board.
At this point you already have a complete proof of concept. The final stage in prototyping
is to do everything possible to make a design that is as close to what the final product will
be as possible. Initially we thought we were etching our own powerboards. We figured that
testing the control modules and base station with an etched PCB design would be the best
way to know if our drawings from our gerber files lined up the way we wanted them too.
As a prior step you can also compare dimensions of the parts of the design with the gerber
file drawing by simply printing out the gerber file on to copy paper and placing elements on
top. Etching would have added add an even further advantage in that it will allow us to see
if the electrical connections in our drawing worked out the way we would expect them too.
If we had proved the concept to the level that it has been etched on to practice boards we
would have known that our design would work as it was intended to work. We did however
decide not to make etched boards when prototyping our designs. We were pretty confident
in our designs and thought it would be best to get our boards fabricated as soon as possible.

Etching is actually a fairly simple process. If we had etched we would have used toner paper
to transfer the gerber file from the computer onto the board. Next we would have utilized
TRF paper to further protect the design. Finally we would have used an etchant to eat away
the copper that is not part of our design. There are many different options for etchants that
could have been chosen in order to complete this step. The most easily accessible though is
made by combining vinegar, hydrogen peroxide, and salt together. After using the etching
solution it is important to dispose of it properly (it can’t just be poured down the sink).
Since the solution is very acidic balancing it with a strong base such as baking soda or
soap will prepare the solution for a better disposal. We would have used rogers corporation
boards because they provide free laminate samples to students. Once the board was etched
we would have simply soldered on the components to the board.

82

8.3 WHCS Proto-Panel

Presentation plays a huge part on how the public feels about a product. This is why it
was so important that the display of the project was well put together. Not only is it
important to have a nice display for the purpose of it being a proper representation of our
design, but also so that it is aesthetically appealing. If WHCS were to be launched into
industry, marketing would play a huge part in it’s success. People’s first impressions are
always driven by what they see. If what they see causes them to believe that the product is
of high quality, they are less likely to be highly skeptical of how the product performs. In
this section we will be going into detail about how we made our display in order to showcase
the functions of WHCS. This section will not go into the practical side of how the display
is coming together; rather it will lay the framework for what goals we want to accomplish
with the display.

Our design is not a plug and play design, therefore installation will require more than simply
plugging in the system. We had to find some way to duplicate what the installation of a
house would look like. In a home what we’re provided with is interior wiring. When we are
actually presenting our idea what we’ll be presented with is an outlet that we can use to
draw power from. Therefore the first thing we did was convert this outlet back into wiring.
To do this we took a basic power cord that had a hot, neutral, and ground wire and spliced
it with 14 gauge wire that we got from home depot that is meant to be used in a home. We
spliced this wire into may different branches and used it to power the control modules and
the base station.

We wanted to make the display as accurate of a representation of what would be found in
a home as possible. Therefore we tried to follow as many codes and standards for home
construction as possible. Since we ourselves do not have a homeowners electrical permit
we are not equipped to actually install the system in a real home. Yet for demonstrative
purposes we did fine to follow codes and present them in our display. In Section 9.3.3 we
go into further detail of what was done to follow these codes and standards.

Our display consists of the frame, the wiring, and drywall. Each made to follow standards.
We also decided to make it such that each board was displayed in our proto-panel. To do
this we replaced part of the drywall with plexiglass and displayed the temperature sensor
control module and the power board.

8.3.1 Materials

The first thing we needed was a plug. It was important that we used a three prong plug
because wiring in the home uses three wires. In addition to the wiring, the interior walls
of homes consist of drywall, insulation, and a wooden frame. The wooden frame of homes
is made out of 2 by 4 wood. These pieces of 2 by 4 wood are usually put together with
either screws or nails. Drywall will also be needed to provide the presentation side of our
wall. For drywall all we needed was enough drywall to cover the entire wall along with some
screws in order to attach the drywall. Insulation wasn’t necessary since we weren’t worried
about temperature or sound insulation for our project. Also insulation in a regular home
wouldn’t interfere with the installation of our project so really the insulation is irrelevant.

In addition to these basic materials made to construct the walls we needed a few other

83

things. First we needed the actual control module and base station boards. If this design
were a final product these boards along with the power board would be housed in a case that
would be attached to the wooden framework. However for our project we simply mounted
the boards directly to the frame of our display. For the light control module we needed to
buy a wall mounted lamp with a three wire connection. For the outlet we needed to buy
an outlet. For the outlet and light control modules the relays were placed along the hot
wires in order to switch them on and back off. To display the outlet control module we
needed to have something plugged into our display board outlet (we used a coffee maker).
Additionally we needed a door knob, the strike, a lamp shade, and some plexiglass to display
a power board and the temperature sensor control module.

8.3.2 Dimensions

The dimension of our project was pretty arbitrary, it just had to be large enough to fit each
control module along with the base station. The first thing that we decided was whether
or not we wanted to use a full size door for our design. Although the idea was tempting,
because it would really give the user the feel of a home experience, we decided against it
mostly because of weight. If the fame had to be of that size all the wood used in the frame
along with the weight of an actual door would have made the project very difficult to move
around. Also it would have been extremely bulky. Getting an entire door (actually even
larger than an entire door because of the other attached components) through a door can
be quite a struggle, add weight to the mess and you’re asking for difficulties.

The door we used was a homemade door. Fortunately because we designed the frame that
will be used for the wall, we simply made the gap in-between the studs the same size as
the door we wished to make. We decided to use a 2 by 12 piece of wood in order to make
the door. As a rough estimate we decided that 2 feet by 2 feet would be a large enough
area of space to display each individual module. The total square footage of the five control
modules would be 20 square feet. We decided that a 4 by 5 feet display wall would showcase
our design quite nicely. Yet ended up going with a 4 by 6 feet display because it was easier
to view and play with.

8.3.3 Sketch

This section shows the original mock up of our 4 by 5 display (even though we ended up
using a 4 by 6 display). The most important interactive parts of our design are the door
access control module and the base station. We made sure that these two modules were at
an acceptable height where they could be interacted with. In the mock up we decided to
place three of the modules on the bottom portion and two modules on the top portion. The
two on top were at a more accessible height therefore the door access and the base station
were placed there for our mock up. The light outlet and temperature sensor were placed
on the bottom half. To make things look symmetrical the lamp was placed in the middle
while the outlet and the temperature sensor were placed on the side. The design we came
up with in the mock up is shown below in Figure 53.

84

Figure 53: Mock up design of WHCS display board

What we actually ended up building is shown in Figure 54 below.

Figure 54: Built WHCS display board

85

9 Manufacturing

9.1 PCB House

After carefully designing our schematics, we first need to decide on a PCB manufacturer to
use for our printed circuit boards. There are a few popular and affordable options available
for hobbyists and small run jobs. We weigh the options available in the following sections.

9.1.1 Seeed Studio

This PCB house offers many services including a low cost PCB service. The pricing model
is based off of the number of layers, thickness, and size class. The size class of 10cm x 10cm
would have a base cost of around $21.00. This is quite fair and would meet our needs for
manufacturing. Seeed Studio is based in China, which is something to take in to considering
if we are ordering boards and need them quickly. Also, even ordering initial boards would
have a long enough turn around time that we wouldn’t be able to test and construct our
design iteratively. Seeed’s cost is very competitive, but we would be losing time to save
cost.

9.1.2 OSH Park

OSH park is quite a popular option due to their low price point for small boards. They are
known by their distinctive purple boards. WHCS has decided to choose OSH Park due to
the fair price for a 2 layer board run. A single run would yield 3 copies for $5 a square inch.
Unfortunately, this pricing model will make any significantly large boards too expensive.
For the control modules, it is possible to create a very small design that still meets the
WHCS requirements. WHCS has no special PCB requirements beyond being able to create
surface mount pads for the control module and base station boards. The base station PCB
will be limited by the size of the LCD, but this is only around 2 by 3 inches.

Overall, OSH park is the best choice for WHCS’ budget and technical requirements. Its
fast shipping time will ensure that we have plenty of time to test our board and make any
additional runs if the worst happens. We ended up going with OSH park for all of our
boards. We had two orders of three control modules, one order of base stations, and only
one order of power boards to save on cost.

9.2 Parts

This section discusses how parts came into play of the manufacturing of our PCB. With
choosing parts there was much to consider. In addition to whether or not the part performs
as we needed them to, and whether or not these parts were in stock we also had to take a
look at how each part would be implemented into our design.

86

9.2.1 Footprint (SMD vs Through-Hole)

The footprints of our board relied mostly on the parts that were chosen to be part of our
design. The parts needed for a surface mounted board and the parts needed for a through
hole boards are different. Therefore in order to continue make our boards we had to make
a design choice. In WHCS we considered both through hole boards and surface mounted
boards. Through hole board technology is the older of the two technologies and is currently
much less popular than surface mounting. One of the of the advantages of surface mounting
is that it takes up less space allowing more real estate for parts for a given board. Because
surface mounting does not involve drilling it is simpler and faster to construct. Although
there are some advantages in through hole boards for most applications surface mounted
technology wins. Therefore in our design we will be using surface mounted technology.
With the exception of the power board which will indeed take advantage of through hole
for our heavier components. The footprints in our control module.

9.3 Construction

In this section discuss the assembly of our project. This involves decisions that were made
for the PCB board construction along with the construction of the display that shows how
WHCS operates.

9.3.1 Soldering

Once we received our etched boards we had to consider methods to solder on the compo-
nents. There are various methods that can be used to accomplish soldering. Note that any
of the methodologies described could have been used to accomplish the task. The first of
the methods to be described is the use of hand soldering. This is by far the simplest and the
easiest conceptually for our group to implement. Every member of our group has some ex-
perience soldering by hand. This method is cheap as it only really requires a soldering iron,
which most if not all members in our group own. The main take back with this method is
that while it is easy by methodology it is difficult in the fact that it can be time consuming.
Also since everything is done by hand this method tends to be a little messy and may tend
to look less professional. This is even more so the case if we make use of flux, which can
tend to make the board look dirty. We initially wanted to use this method as a last resort.

9.3.2 Reflow Oven

We also considered refow. Reflow methods are different from hand soldering in that it
separates the placement of the components from the soldering. It tends to be less time
consuming and does a more consistent professional looking job. There are various method
that our group could use to reflow the solder for our PCBs. The UCF amateur radio club
has access to a professional reflow oven that we could have taken advantage of. Additionally,
there are online methods describing how to use a toaster oven to achieve the same affect.

In the end we actually did a combination of both reflow and hand soldering. We achieved
the reflow by using solder paste and a heat gun. Hand soldering SMD parts was actually

87

easier than expected with the use of magnifying glass.

9.3.3 Proto-Panel

In this section we will focus on some of the details of the construction of our design, the
general overview of how the display board was put together is given in Section 8.3 This
section will not explain how the proto-panel came together, rather it will explain the non
obvious construction details. We discuss the design considerations that had to be accounted
for. This section takes into consideration the norms that go into home construction. It also
goes into the specifics of safety precautions as well as regular sizes and spacing used in a
home.

First let’s talk about the wiring. The amount of current that can be drawn from an outlet
is 15 amps if not 20 amps, therefore we had no problems in drawing enough current from
the outlet to power our board. 15 amps is more than enough to satisfy our needs even when
the current is divided into five different applications. Something we had to consider was
the gauge of the wire used. The gauge of the wire dependents on the amount of current it
can safely handle. As discussed previously 1 amp is larger than anything we ever see from
our circuit. Therefore we designed our wire gauge for 1 amp. However as stated before
most homes are designed to be able to draw 15 if not 20 amps. This level of amperable is
equivalent with wire of gauge 14 and 12. A common brand of wiring used for these tyes
of applications is Romex. Just for the sake of being consistent with what is used in the
home we used 14 gauge wire. To splice the wire we considered either hand soldering it or
we using a wire nut. Both are an acceptable methods for joining the wires, and both are
used in homes. Wire nuts are considered to be an easier/ faster method for doing the job.
While soldering is seen as the higher performing link. We will made our links by soldering
them because it is slightly more professional than using a wire nut but really this is simply
a matter of preference.

When wiring something it is often a good idea to attach your wire at more locations than
simply the location where the connection is made. This way if for whatever reason the
wire is pulled the stress will not go completely to the connection. Before splicing the wire
and connecting the wires to the different control modules and base station, it was a smart
safety precaution to run the unspliced wire through the wood framing and attaching it.
After splitting the wire it was a smart idea to continue the practice of attaching the wire
at more places than the connections. While doing our wiring we made sure to match the
understood color scheme. In our design we have a single phase hot and neutral and ground.
In the US the ground wire matches with green, the black wire matches with the hot wire,
and the white wire matches with neutral. [14] Using these color codes made it easier to
keep the project neat and organized. It made it easier to avoid making mistakes in wiring
our circuits.

Now let’s discuss the boards themselves and how they were placed into the framework of
our wall. originally we wanted to place the boards in some sort of casing that would easily
be attached to the framework of the home. Our thinking was the less the number of things
needed for installation the better. The easiest way to do this would have been to attach
them to or place them inside of the electrical boxes. Having only one thing to install per
control module or base station would have made real installation of our device more realistic

88

for actual use in the future. In our design we wanted to make use of electrical boxes since
they are used in home electrical wiring. The boxes can be either metal or plastic, yet plastic
boxes are a little easier to work with as they the holes are easier to punch out. In the end
we just mounted the boards to the frame, yet if we had more time we would have made
some sort of casing similar to what was described. [15]

There are some specific considerations that were made with the different control modules.
First off for the light it was important that we used an actual wall mounted light, as this is
the type of light fixture that we would be controlling in an actual home. It was important
that it was not simply a plug in light, because this would defeat the purpose of having
light fixture control module. It would have been the same thing as the outlet module. The
wall mounted light we used came with three wires; a hot, a neutral, and a ground wire.
From these three wires we were able to install the fixture in the same way as what would
be expected in a real home. The hot wire is the wire that we interrupted with the relay in
order to switch the light on and off.

The outlet we used was a GFIC. GFIC stands for ground fault interrupter. Using this outlet
provided an extra safety precaution. What a GFIC outlet does is constantly compare the
output current from the neutral wire to the input current from the hot wire. If there’s a
difference in current, within the range of a few milliamps, the outlet will shut off in 20-30
milliseconds. In the case that someone were to be electrocuted by this outlet, the current
that goes into their body would cause a current leakage that would cause the GFIC to have
a current difference and thus shut off. GFIC outlet are normally required for kitchen and
bathrooms. Since none of the members in our group have extensive experience in working
with AC power it was best that we took every safety precaution available. We do not expect
that homes that actually implement our design will use GFIC outlets, it is simply an extra
safety precaution that our group decided to take. [16]

For the door control module we decided to make our own door with a 2” by 12” piece of
wood. Since we did not buy the door but are custom made it ourselves we needed to cut
the holes ourselves. The first order of business is cutting the door to length and leaving a
frame of the right size. To cut the hole of the latch we will needed to use a 7

8” spade bit.
The hole for the door knob will had to be made with 2-18” diameter hole saw. A 1” wide
chisel was used to cut out the recess of the latch. After all that cutting we were able to
install the door knob.

10 Testing

10.1 Power Supply

When in the process of building something it is important to check to see if what you
designed for is similar to the results you are receiving. That is why it was important to
run test occasionally to see if the results matched. In this section we will be going through
the steps that we took in order to verify the accuracy of our designed power supply. It was
of great importance that the power supply worked as expected otherwise the entire project
would fail to work properly. Our power supply consists of various lines each operating at
different voltage levels. It was important that we checked each level to see if they were as

89

we anticipate them to be.

10.1.1 Line Integrity

For our boards we have a 12V line, a 12V line, a 5V line, a 3.3V line, and another line
at 120VAC. Each line had to be tested and measured. This testing was done as early a
the prototyping stage of assembling our design. The earlier boards are tested the better.
We intended to recheck our values at each progression (from one type of prototyping to
another) by doing this we could ensure that nothing abnormal happened as we continue to
make changes. The first level of prototyping that could have occurred was at the breadboard
level. At this stage we would have had nothing more than the parts we wish to put on the
board along with the breadboard. First we would hook up the AC power to the transformer,
on the other end of the transformer we could check to see if the 120VAC was converted as
expected into 14VAC. Although this could be done using a basic multimeter, using an
oscilloscope is nice because it allows us to see the entire waveform. Next we were also
able to test the circuit after the rectifying diodes. Once the voltage was measured we saw
voltages of about 20V since the AC voltage level does not translate exactly into the DC
values. At this point we could see what our ripple was, either by having the oscilloscope
give the max and min values of the circuit. Finally we were able to test if the DC buck
regulators were working as expected. At the breadboard level we were able to use the probes
to pinch the circuit, yet once we were testing our fabricated boards we needed to hold the
probes onto wire of the boards.

10.1.2 Battery Backup

If we had implemented it the backup battery would have been another power source that
would have needed to be checked. Usually for most buck regulators there is a minimum
voltage level that they will accept in order to convert that voltage to the level that they
are designed to yield on the output. The only buck regulator that we would have needed
to use with the backup battery would have been the 5V regulator. We would have wanted
to test the back up battery to make sure that the battery that we used was a high enough
voltage to be steped down by the buck regulator. Although this information can be found
in the datasheet, it would have still been a good idea for us to test different input voltage
levels to see what the cutoff would be for our specific regulator. With that information we
could have made sure to put in a backup battery of a high enough voltage. However since
a back up battery was never placed in our design we never had to worry about testing it.

10.2 Base Station

The base station is the most complex item to test and verify functionality. There are a lot
of modules working together to make the base station work with the WHCS network. This
is why testing these certain aspects of the system will help ensure good performance and
prove that the individual subsystems are functioning properly.

90

10.2.1 LCD Control

Controlling the WHCS network from the LCD is a key part of the design. The base station
should be able to accept touch inputs from the resistive touch screen on top of the LCD,
dispatch that event to an underlying UI element, and cause some action to occur. If the
button to command the control module that is responsible for the electronic door strike is
pressed, this information must flow quickly and correctly through the base station’s code.
A simpler test would be the toggling of a remote LED by hitting a button on the LCD.
This test would prove many things correct simultaneously.

10.2.2 LCD and NRF Simultaneous

One consideration that was discussed earlier was the fact that the base station’s microcon-
troller has a limited speed. The NRF, LCD, and BlueTooth modules will need to be serviced
as quickly as possible by the base station MCU. If there were to be an error in the code
that handles the LCD drawing, such as a slow graphics drawing loop, then the performance
of all the other modules would suffer. In order to stress test the system, a test case where
many packets are being sent and received over the NRF radio, while an expensive graphics
drawing operation is occurring. If either module takes too much execution such that the
other suffers, then the code structure will have to be rethought and designed in order to
avoid this starvation. A solution to this problem if it arises would be to have points in
either process where the action can be paused or canceled to be resumed at a later time.
That way the MCU can perform the most important task at any one time. This would
be partially handled by the NRF radio generating interrupts when a new packet has been
delievered, but the packet still needs to be fetched and processed.

10.2.3 UART and Software Serial

The UART is a quintessential part of a microcontroller development system because it allows
for easy debugging and testing. The UART can be used to log information to a screen to
show the internal state of the microcontroller and therefore the system it is controlling.
The UART can also be used to give simple commands to the microcontroller that would
otherwise be given through other components attached to the microcontroller. The base
station for WHCS will have a BlueTooth module connected directly to the Rx and Tx lines so
the lines will be blocked for a simple UART chip. However the BlueTooth module itself can
be used for debugging. In WHCS an Android device will be used to host the application to
interact with the system. The Android play store has an application available for download
called BlueTerm. With this application any Android phone will be able to easily connect
to the BlueTooth module that is connected to the base station. An Android phone will be
a viable option for printing out debug information and performing tests that would benefit
from the ability to manually input certain commands directly through the UART.

We realized that there may be certain times during testing and debugging that the Blue-
Tooth module would not serve as a good method for printing out information to a terminal.
For example the BlueTooth module won’t be usable for testing when we are programming
the BlueTooth module as mentioned in Section 6.3.2 or when we are testing things that
require interaction with the WHCS Android application. For these cases we will have an

91

alternate UART chip, the FT232RL FTDI, designated for debugging and testing. This will
be a simple UART module that connects to two pins on the base station’s microcontroller
and then to a computer’s USB port through a mini-USB to USB connector. Since the base
station’s Rx and Tx lines will be occupied by the BlueTooth module, this serial module will
have to be connected to two GPIO pins of the microcontroller and we will have to utilize
software serial. There are already public libraries and routines available for implementing
software serial both in half-duplex and full-duplex operating modes. The forum AVRF-
reaks.com has plenty of information on the topic and we will base our routines for software
serial debugging and testing off of the examples listed on their site. The only things that
we should have to specify are the two pins that will operate as the transmitter and the
receiver on the microcontroller. It is possible that we will only need half-duplex operation
to confirm all of our test-cases and debugging.

10.3 Control Module

The control modules are significantly easier to test than the base station because of the
usage of a single major module - the NRF radio. Some control modules will have specific
roles that require specialized testing, but the common functionality is the most important
to be tested. All other verification will build off of the results of this initial testing.

10.3.1 UART Chip Testing/Debugging

Unlike the base station the control modules do not have a Bluetooth module attached to the
UART that can be used for debugging. The absence of the Bluetooth module frees the Rx
and Tx lines of the control module microcontroller’s UART. This means that the FT232RL
FTDI chip that is used for debugging and testing the base station when the Bluetooth
module is unavailable is a suitable option for the control modules. The ATmega328 registers
for operating the UART are fully operational for debugging and testing and we can even
leave the serial module in circuit for UART debugging access at any time. This is because
there is no other need to use the Rx and Tx pins of the control module microcontrollers.
Unlike the base station the control modules suffer no limitations from the implementation
of software serial routines. The control modules are able to operate in full-duplex mode. In
full-duplex mode we are able to give commands to the control modules that would otherwise
have to be received from the base station through the radio transceiver. This allows for
ease of development and testing.

10.3.2 Command Execution

The control modules frequently receive commands from the base station. There are different
types of control modules that execute different commands. Whenever the control module
receives data from the base station that signifies that a command should be executed the
control module should carry out certain operations to fulfill the request. Tests need to
be carried out when the control modules are setup so we know that the control modules
are all capable of completely executing the command sets that are available to them. The
tests need to be decoupled from the communication pipeline of the base station in order
to ensure that no factors outside of the control modules scope are interfering with the

92

test. Command execution testing is executed through the microcontroller’s UART port.
Commands are given just as they would be given via the base station, the only difference
will be the method through which the control module receives the command.

For each type of control module the full set of actions available to it is listed. From the
list for each control module the commands to perform those actions are given through
the UART. The tester documents the success of each individual command given. The
command execution tests are passed once the control modules for every independent role
can perform their tasks completely and without error. The known control modules roles and
actions available to them are listed in Table 7. All of the actions listed in the “Commands
Available” column must be performed correctly in order to ensure the proper operation of
the control modules for WHCS.

Control Module Role Commands Available

Light/Outlet Module Toggle On, Toggle Off, Check State

Door Strike Module Lock Strike, Unlock Strike, Check State

Sensor Module Read value

Table 7: a tabularization of control module roles and the available commands

10.4 Door Access

One of the most critical functions for WHCS is the control over a door. WHCS must verify
that the door can be correctly engaged and disengaged wirelessly from commands by the
base station LCD or Android phone. Both paths of execution need to be tested and verified
for correct functionality in these areas to ensure that no homeowner will be left stranded
with out a way in to their home.

10.5 Android To Base Station Communication

Once all of the independent components of the base station have been tested and shown to
be working correctly it will be time to see if the base station is able to communicate with
the Android device. This test will require that the base station’s microcontroller is hooked
up to the HC-05 BlueTooth module and that the Android device has BlueTooth enabled.
Confirmation that the base station can communicate to the mobile phone is essential for
the proper operating of our system.

10.5.1 BlueTerm

The simplest method we have for full-duplex communication between the base station and
an Android phone is BlueTerm. BlueTerm is a free terminal application on Android. It
allows for scanning for BlueTooth devices, connecting to other devices, and setting up the
framing of packets. Using BlueTerm we are able to connect to the HC-05 on the base station
and send serial data to the microcontroller. The microcontroller is able to receive the data
from BlueTerm and also reply with data by using the HC-05. By writing a simple echo
routine on the base station microcontroller that receives data from the UART and then

93

echoing it back out of the UART we can test whether or not the BlueTooth communication
is working. With this simple test setup we are able to quickly test the functionality of our
circuits once we create our printed circuit boards. We just need to open up BlueTerm,
connect to the HC-05 module, and then type any letter into BlueTerm while awaiting the
letter to be echoed back. If the letter is echoed back then we know that the connection is
good and we are able to send data from Android to the base station. If the letter is not
received then there is an issue in the base station. The error could be coming from the
UART routine, the circuit connection, or the BlueTooth module, but most likely if this test
fails it will be because of the base stations circuit connections.

10.5.2 BlueToothListener

BlueTerm is a very useful application that we can rely on to ensure that the link between
the Android device and the base station is functional. BlueTerm will not suffice to ensure
that our application can communicate to the base station. In our application we use raw
BlueTooth sockets for data exchange with the base station. The main class that handles
communicating to the base station is the BlueToothListener which is mentioned in the
Android application section of this document. Testing this class is essential to ensure
that the communication link is working correctly for our application. BlueToothListener
has access to the socket that wraps the buffers for communicating with the base station
microcontroller so writing to and reading from this socket needs to be performed. When
we have tested and confirmed that we are able to use the socket in the BlueToothListener
class for full-duplex communication then we know that our application is fully capable of
sending whatever data we wish to exchange.

The BlueToothListener class is decoupled from other classes that handle what is done with
the data received. This design allows for modularity in testing. We can make a test class
that subscribes to the BlueToothListener class’s data received event and then asserts that
the data is what we expected. Then when we want to use the BlueToothListener for the
actual application and not just testing we can simply unsubscribe the test asserting class
from the data received event.

10.5.3 LED activation test

Activating an LED is a standard test that we used during prototyping and testing for
WHCS. For Android to base station communication testing, activating an LED ensured that
the base station was able to perform commands based on the data exchanged between the
Android device and the microcontroller. The LED activation test can be performed through
BlueTerm or through the raw BlueTooth socket that is present in the BlueToothListener
class. This models situations where the user of WHCS wants to alter the state of the
system from the Android phone. Toggling the state of an LED is the simplest form of
physical state change. When we were able to turn our LED on and off we knew that the
Android to base station communication link was fully operational and we were be able to
control the system from the mobile device. Table 8 shows the way the test was implemented.
The microcontroller receives bytes from the mobile device. Based on the byte that we send
the microcontroller will perform the required action. The table shows what data results in
the LED on state as well as the LED off state.

94

Data sent to microcontroller LED state

‘A’ (0x41) ON

Anything but ‘A’ OFF

Table 8: LED Activation Test Commands

11 Demos

11.1 Voice Controlled Light Activation

The first demo that we would like to perform with the functioning prototype of WHCS
will be voice controlled light activation. Voice control is one of the big features of WHCS
because it adds a lot of interest to any project. Light activation through the system will be
one of the most common use cases. Voice controlled light activation combines an exciting
feature with one of the most common use cases so it will be a frequent demo. To perform
this demo the Android application will have to be paired with the base station already and
ready to communicate to the system. We can allow any person that wishes to participate to
utilize the application and access the voice command feature. The person performing the
voice activation will be able to say something similar to on or off and toggle the state of a
light in the system. This demo can be extended to include outlets as well. We will have a
coffee pot hooked up to an outlet being controlled by WHCS. After activating the light the
performer will be able to turn off the light and then start interacting with the outlet. The
outlet can be turned on, thus turning on the coffee pot. This is a preferable way to start
the day so it should be a relatable demo for an audience. From this point we can show that
this feature is also accessible through the GUI of the Android application. The voice chat
feature is only a replication of the GUI capabilities and this is an important point to make.

An extension that would help this demo would be letting participants create their own
commands for interacting with WHCS. This is a feature that we will be incorporating into
the Android application. This demonstrates how WHCS is designed to be customizable for
each household. A participant of the team will be able to add a setting that merely saying
mouse turns off all the lights and outlets connected to the system. Then the performer
would say mouse into the voice control system and the result should be the lights and
outlets of the display being turned off. The point of this demo is to show the ease of use
and the power of the voice control in the Android application.

11.2 LCD Light Activation

In order to demonstrate how the base station LCD works separately from the Android
phone, we show that all of the WHCS functions can be controlled from the touch panel.
The simplest test is to press a button on the LCD and have a controlled light toggle off
and on. This demonstrates that WHCS is functional on many levels: the LCD works and
can receive input, the base station can send packets to a specific control module, and that
specific control module can correctly execute a received command. Members present during
the demo were able to see for themselves how the LCD operates. They could explore the
menus and try to control some modules themselves.

95

11.3 Sensor Query

Sensors are a passive part of WHCS that enhance the overall appeal of the system but
do not demo as well as turning things on or off. Our prototype of WHCS will have a
functioning temperature sensor control module that is updating based on the temperature
of the environment. In our demos we want to make sure to show the operation of this sensor.
WHCS allows sensors like temperature sensors to be mobile around the home. The sensor
can be plugged in anywhere and receive power and update for the temperature of that
environment. When we are demoing WHCS we want to show this mobility by showing the
sensor being moved around and updating accordingly. The demo will show how the sensors
information is viewable from the LCD as well as the Android application. If the sensors
data is not recent enough we can prompt the sensor to update its most recent reading and
this should be performed during the demo. This demo could be made more powerful for
viewers if the system reacted to changes in the sensors reading. At this point in time we
have not considered methods for WHCS to react to sensor data. For our purposes the
sensors will only serve as information providers for users.

11.4 Fault Recovery (Loss of Power)

A demo that would have a lot of impact would be to pull the power on WHCS. To prove
that the backup battery failover systems work, physically yanking the power cord from
the wall would show that the system is able to quickly recover from an unexpected power
outage. Technically this would be like watching a uninterruptible power supply activate,
but on a smaller scale and with hardware that is visible and easier to understand. Also,
the battery indicator on the LCD could reflect the detected power event and spread that
event to all listening control modules and connected phones. That way the user could be
remotely notified in the event of a power outage. Of course due to the limited range of the
BlueTooth connection the owner would most likely know when the power goes out as they
are probably in the home.

Due to design changes, this demo was never done, nor implemented. It required a backup
battery infrastructure, which was removed from the design.

11.5 Remote Door Access

The electric strike of WHCS will provide us with a door access demo. This will be a great
demo because it is very appealing to be able to unlock your door wirelessly and it will
show off the scalability of our system. The electric strike will be physically mounted to the
proto-panel that we will be using with our demo. While the command to unlock the strike
has not been given it will be impossible to open the imitation door that is attached to the
electric strike. The point of this demo will be to show that from the Android application
it will be possible to activate the electric strike and therefore allow the door to be opened.
The electric strike will also be available to be unlocked from the LCD. During this demo we
will explain that the electric strike that we use for WHCS does not consume power while
it is in the locked state. It is only drawing current when it is toggled to the open state and
this happens for a maximum of thirty seconds. This will also be a great time to mention
how the utilization of an electric strike does not impede normal home access. As long as

96

the doorknob on the door has a key lock on it it can remain in the locked position at all
times. if the electric strike ever fails and is unaccessible from the application then the door
knob can simply be unlocked and bypass the electric strike.

12 Project Management

The large effort required to create a functional, working product, wouldn’t have been pos-
sible without careful planning. The project management of WHCS is paramount to our
success as a team. We needed to be able to estimate our costs, discover parts for our de-
sign, and make sure we kept on track of our timeline. Planning these aspects of our project
before hand created a well defined roadmap that all group members could follow. Without
such planning, everyone would have had their own perception of time and responsibility
and the project would’ve floundered.

12.1 Budget

To help discover the costs of WHCS before diving straight in to the project, we planned a
comprehensive budget. This budget contained names, quantities, and estimated costs of all
the major parts of our project. This itemized breakdown of WHCS allowed us to budget
our funds amongst the group members and also to apply for external funding. Through the
use of our detailed budget, we were able to land a funding offer of $434.42 from Boeing.
This covered all WHCS expenses except for a few items bought by the members themselves.
Beyond this funding offer, the group members stated that they were to provide up to $300
each.

The costs listed in Table 9 are derived from costs researched online. These are the best
estimate at the time of creation for each item. Some items are special in that the costs
are dependent on other factors, such as size. This items have a note specifying the method
used to come to the final price. This is important to note for auditors and for our future
purchasing.

97

Item Cost Qt. Item Total Note

Base Station Bluetooth
Module $7.95 1 $7.95

Base Station RF Chip $0.97 1 $0.97

Base Station PCB $90.00 1 $90.00

OSH Park[11] $5 per
square inch. Assumed
4x4 board, and $10
shipping

Base Station LCD $30.00 1 $30.00 Comes assembled

Control Module RF Chip $0.97 4 $3.88 Per control module

Control Module PCB $33.00 4 $132.00 [12]

Control module MCU $4.00 4 $16.00 Per control module

Pocket AVR Programmer $15.00 1 $15.00 [13]

Solid-State Relay $17.00 4 $68.00
Alternative to mechani-
cal relay

Bluetooth Capable Phone $0.00 1 $0.00

Members possess a
Bluetooth capable
phone

Casing for Modules $2.00 5 $10.00

Battery Holder $2.50 5 $12.50

DC-DC Step Down (LDO) $1.00 5 $5.00
1 per board (including
control modules)

AC Rectifier $5.00 1 $5.00

Self-built and assem-
bled (diodes, capaci-
tors)

GFIC Outlet $17.00 1 $17.00 With safety features

Electronic Strike $50.00 1 $50.00 For access control

Temperature Sensor $1.50 1 $1.50

Light Fixture $4.50 1 $4.50 Bulb and socket

Tranformer $15.00 4 $60.00
120v AC to AC voltage
of logical DC

Shipping Costs $8 12 $96.00
Boards , parts, proto-
typing equipment

Project Miscellaneous N/A N/A $50.00

Wire, Resistors, Capac-
itors, Inductors, LED’s
prototyping equipment,
etc

TOTAL $675.30

Table 9: a comprehensive break down of WHCS’ budget

Naturally making a completely correct budget that covers every possible expense was diffi-
cult and time consuming. There will always be items and purchases made that are below,
above, or not even on the list. With sufficiently complex projects this is to be expected,
but will not be a problem. The individual money offered to support the group will cover
any additional, unplanned expenses.

98

In order to keep track of what was reimbursed versus what was purchased by group members,
all receipts were kept for the record. Any purchases made were documented and a running
sum of used funds were maintained. This kept our purchases within the range of the budget
and prevent large, unexpected costs from surprising group members.

12.2 Parts Acquisition

In order to fulfill WHCS’s Bill of Materials, we identified manufacturers, retailers, and any
other online and offline resources for purchasing. Initial research gave the beginning insight
in to where to look for specific products. This was considered early on in order to consolidate
purchases, which simplified shipping and ultimately saved on cost. Some items were special
enough to warrant their purchase from a “one-off” retailer, such as the electronic strike.

For all of our bulk electronic parts, we purchased from Digikey. Digikey was familiar to us as
engineers and their interface for purchasing is straight forward. Additionally they shipped
from the United States, which ensured that we got our parts in a timely manner. Shipping
parts from China may have been cheaper overall, but the cost would have returned in time
lost to waiting for their arrival. To avoid this we didn’t purchase anything from overseas,
except for the NRFs, which we bought very early.

12.3 Milestones

The WHCS project had a limited amount of time to complete its end goal of having a
working system. When thought of all at once, this seemed like an insurmountable task. To
simplify this large problem, broke up the task in to smaller, more achievable, milestones.
These milestones gave us a target window for completion and also the interdependencies
between milestones. For instance, if the PCB board for the base station was not finished,
the next step of sending it off for manufacturing would have been delayed with every day.
The gantt chat shown in Figure 55 was used to keep our project goals in check with the
reality that we had a final deadline.

99

Figure 55: The master gantt chart for the WHCS project

12.4 Project Conclusion

Through extensive research, design, and implementation WHCS was realized to meet all
requirements set. The Android application was architected successfully for simplistic inter-
action. All use cases were implemented in order to provide the optimal experience. The
base station was fabricated according to specifications. It has proved it is capable of man-
aging all state of WHCS and acting as the middleman between the user and the home. The
individual control modules do the tasks that they were created for so that the home can be
controlled by the push of a button. Future work includes extending the number and type
of control modules supported by WHCS.

12.5 Final Work Breakdown

Grant

• Designed Base Station board

• Wrote code for base station and control modules

• Interfaced with Bluetooth and NRF chips

100

Joseph

• Designed power boards

• Prototyped AC control

• Solely designed and built WHCS display panel and wired base station and control
modules to it

Jimmy

• Designed control module boards

• Prototyped the code for all modules early on

• Completely designed and wrote WHCS Android app

13 User Manual

In order to get WHCS operational, a control module, power board, and base station need
to be gathered. Once these modules are gathered, verify that control module you have
contains the required circuity for the target role (i.e. if it’s slotted to be a temperature
sensor, it must have a TMP36 installed.)

13.1 Wiring the boards

Here we will discuss how the boards must be wired in order to use WHCS in a home. If
WHCS were to be made into a product, installation would be a service provided with the
product. Regardless, instruction on how the boards are assembled together will be presented
below. Every single board in WHCS makes use of screw terminals in order to be connected
with the rest of the system. We will discuss each board individually.

13.1.1 Power Board

The layout of the power board is shown in Figure 32. When looking at the front side of the
board, the bottom left corner is labeled 120VAC followed by a H, N, and G. This is where
the screw terminal for the AC input is located. H represents the hot wire. N represents the
neutral wire. G represents the ground wire. This screw terminal is where the line from the
home will be fed into the power board. On the opposite end are the output screw terminals
each labeled accordingly. The GND located at the very top is the DC ground. Using wires
these screw terminals will be used to power the entire system.

13.1.2 Control Module

The layout of the control module is shown in Figure 51. On the left hand side of the front
of the board there are three screw terminals inputs labeled 5V, 3.3V, and GND. These are
the screw terminals that are to be used to connect the power board to the control module.

101

At the top on the right hand side are the screw terminals for the AC relay. To implement
the AC relay you must cut the hot wire going to the application you wish to control. The
severed ends must be placed into the top and bottom terminals in top right hand side (The
middle terminal does nothing).

Finally in the bottom of the left hand side of the board you will find a GND screw terminal.
This is to be used to interrupt the connection of a DC device you wish to control (such as
an electronic strike). The device will connected directly to hot line of the power source, its
ground connection will however be made through the control module. To use the DC relay
the ground of your device must be connected to the GND screw terminals located in the
bottom left hand side of the board.

13.1.3 Base Station

The base station is simple its layout can be seen in Figure 43. On bottom end of the front
of the board are three screw terminals inputs labeled 5V, 3.3V, and GND. These are the
screw terminals that are to be used to connect the power board to the base station. There
are no other connections required for the base station.

13.2 Booting up the modules

Normal operation of the control modules is visible if the main LED is lit and periodically
blinks on the reception of a packet from the base station. If you do not see the control
modules(s) blinking at least every 5 seconds, there could be a connectivity problem.

The base station when booted will display the WHCS main menu. This menu will have a
list of all possible control modules with their corresponding actions (if any) and a “Credits”
button.

The name of each module is colored corresponding to its connection status. If the name is
colored green, then a PONG packet has been successfully received from the target control
module in the last 10 seconds. If the name is red, then there appear to be connectivity
issues. At this point, you should restart the control modules and base station and make
sure that every NRF is well connected to their respective headers.

13.3 Interacting with the LCD

Just like the WHCS Android app, you are able to interact with the control modules directly
from the base station LCD. The LCD and Android app should be synced. When a control
module is turned off on the app, the LCD should update to reflect the new control module
state. A control modules that toggles AC or DC circuits will have a green or red square
next to its name. A red square indicates that the control module is off and a green that its
on.

On every module except the temperature sensor, you will see a “Toggle” button. This
button is the same as the switch on the Android app and it allows for you to switch the
module’s state. If you hit the toggle button when the control module’s name is red, it is

102

unlikely that the command will be received. This is noted by the square which should not
change colors.

At the top next to the WHCS logo, you will see a “Credits” button. This button if pressed
will start a new UI scene to display ASCII representations of the creators of WHCS.

13.4 Android Application

13.4.1 Obtaining the Application

The application for WHCS can be obtained from github. It is hosted by the WHCS-
UCF organization and the repositories name is WHCS-Android. The repository can be
downloaded to a local computer for uploading to a compatible Android device. The project
structure for WHCS-Android is built around Android Studio so obtaining this IDE is the
easiest way to build the Android application and prepare it for upload to an Android
device. Once the repository is on the local computer the project can be imported into
Android Studio and then uploaded to an Android device through a usb cable.

13.4.2 Connecting to WHCS

The Android application connects to WHCS by connecting to the base station. When the
user first runs the application they will be prompted to connect to the base station of the
local installation of WHCS. They will be able to see devices that they have connected to
before in the paired devices section, and they will also be able to search for new Bluetooth
devices that are in the surrounding area. For users that have already connected to the base
station the best option for connecting would be to refresh the list of paired devices and
click on the base station that was connected to previously. For users connecting for the
first time the best option would be to press the scan devices button and wait for the base
stations name to show up in the list. Clicking on the base station will connect the Android
application to WHCS. This setup only needs to be performed once because the application
saves the information of the base station once connected.

13.4.3 Controlling the Control Modules

The main view of the WHCS application is the list containing all the control modules that
are a part of the system. Any control module that has the ability to be turned on or off
will have a toggleable switch to the right of the name of the control module. To toggle the
control module simply click on the switch. The switch will reflect the state of the control
module within the system. Data collection control modules are not capable of being turned
on or off and instead of having a switch they display the value that the sensor is reporting.

13.4.4 Speech Activation

Turning on and off control modules can be done through voice. To achieve this, the speech
button should be pressed and this will prompt the user with a microphone. The user should

103

say the full name of the control module that they wish to interact with and the state that
they wish to put the control module in. For example kitchen light on will turn on the
kitchen light. For electronic strike modules the words lock and unlock work for changing
the state of the door.

13.4.5 Changing Individual Control Module Attributes

By clicking on a control module from the list in the main view the details view for that
specific control module can be accessed. This will display the state of the control module,
what type of control module it is, an editable text field for the control modules name, and
a check box group of what control module groups the control module belongs to. The name
of the control module can be changed by typing into the editable text field for the control
modules name and then clicking the save button at the bottom of the detail viewer. In
the same way that a control modules name can be changed, the control modules group
associations can be changed. Unchecking or checking check boxes in the detail view assigns
the control module to groups, and clicking save saves the changes.

13.5 Troubleshooting

1. The LCD shows all connected modules as green, but sometimes they go
red
This is normal given the operation of WHCS as there are no guarantees that a PING
from the base station will reach the control module. Also a PONG from a control
module may be lost due to the high processing time for WHCS.

2. The WHCS Android app is unable to find the HC-05 BlueTooth device.
Verify that the HC-05 is powered and blinking rapidly (twice a second). If the module
isn’t blinking at all, remove the module from its header and replug it it. If the module
is blinking slowly, then another client is connected to the HC-05. You must disconnect
this client by disassociating it from the phone or by unpowering the HC-05.

3. Why isn’t anything powered?
Double check all of the connections from the wall outlet to each power board and from
each power board to the base station and control modules.

Use a multimeter to verify that the headers are suppling the required voltages. If
there are zero volts present, the issue is with the power supply. If the voltage is under
voltage, then the power supply is shorted or there may be a short.

4. Why is the base station LED blinking once a second?
This indicates a critical base station error, specificly that an unassigned interrupt
vector has been called. The only fix for this is reseting the base station, finding the
bug in software, and reflashing the board.

5. Why isn’t the base station LED lighting up?
Verify the connections to the base station. Make sure it is getting 5V in and ground as
well. Make sure that the LCD display is correctly situated in the correct orientation
and firmly plugged in. Check that the NRF and HC-05 modules are present and
connected in the right headers.

104

If all of the above is okay, use a multimeter to measure the voltage between the 5V
and ground terminals. If there is a voltage present, then the fault lies further up the
power trace and possibly with the microcontroller itself.

6. Why isn’t a control module LED lighting up?
Verify that nothing is shorted on the control module board. This can be done while
powered by feeling the board for hot spots. If none are found, unpower the board and
repower it. Check the NRF module’s connect to the header.

A Appendix - Complete Schematics

105

1 1

2 2

3 3

4 4

5 5

A
A

B
B

C
C

D
at

e:
 2

7
ap

r
20

15
K

iC
ad

 E
.D

.A
.

R
ev

: 1
S

iz
e:

 U
S

Le
tte

r
Id

: 1
/1

T
itl

e:
 B

as
e

S
ta

tio
n

F
ile

: b
as

e-
st

at
io

n.
sc

h
S

he
et

: /

W
H

C
S

(M
O

S
I)

P
B

5
1

(M
IS

O
)P

B
6

2

(S
C

K
)P

B
7

3

R
E

S
E

T
4

VCC5

GND 6

X
T

A
L2

7

X
T

A
L1

8

(R
X

D
)P

D
0

9

(T
X

D
)P

D
1

10

(S
D

A
)P

C
1

20

(A
D

C
7)

P
A

7
30

(T
0/

X
C

K
)P

B
0

40

(I
N

T
0)

P
D

2
11

(T
C

K
)P

C
2

21

(A
D

C
6)

P
A

6
31

(T
1)

P
B

1
41

(I
N

T
1)

P
D

3
12

(T
M

S
)P

C
3

22

(A
D

C
5)

P
A

5
32

(A
IN

0/
IN

T
2)

P
B

2
42

(O
C

1B
)P

D
4

13

(T
D

O
)P

C
4

23

(A
D

C
4)

P
A

4
33

(A
IN

1/
O

C
0)

P
B

3
43

(O
C

1A
)P

D
5

14

(T
D

I)
P

C
5

24

(A
D

C
3)

P
A

3
34

(S
S

)P
B

4
44

(I
C

P
)P

D
6

15

(T
O

S
C

1)
P

C
6

25

(A
D

C
2)

P
A

2
35

(O
C

2)
P

D
7

16

(T
O

S
C

2)
P

C
7

26

(A
D

C
1)

P
A

1
36

VCC17

AVCC27

(A
D

C
0)

P
A

0
37

GND 18

GND 28

VCC38

(S
C

L)
P

C
0

19

A
R

E
F

29

GND 39

IC
1

A
T

M
E

G
A

32
-A

T
Q

F
P

44

1 2 3 4 5 6 7 8 9 10 2011 12 13 14 15 16 17 18 19

P4
LCD1

P
A

4
P

A
5

P
A

6
P

A
7

C
E

K
E

Y
B

T
E

N

C
S

N
M

O
S

I
M

IS
O

S
C

K

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

1 2 3 4 5 6 7 8 9 10 2011 12 13 14 15 16 17 18 19

P5
LCD1

C
D

C
C

S

Y
-

X
-

Y
+

X
+

LR
S

T
R

D
W

R
C

/D
LC

S

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

X1

16MHz

C1

22pF

C2

22pF

T
he

 a
na

lo
g

re
fe

re
nc

e
is

 V
C

C

Y
-

X
-

Y
+

X
+

P
O

R
T

C
 ta

ke
n

up
 b

y
th

e
LC

D
 p

ar
al

le
l

in
te

rf
ac

e

C
3 10

0n
F

S
C

K

V
C

C

G
N

D

M
IS

O

M
O

S
I

R
S

T

1
2

3
4

5
6

C
O

N
1

A
V

R
-I

S
P

-6

M
IS

O
S

C
K

R
S

T

R
S

T

R2
1000

1 2 3 4 5 6

P1
CONN_6

1
2

3
4

5
6

7
8

P
2 CONN_4X2

R
X

T
X

N
R

F
24

L0
1+

 H
ea

de
r

H
C

-0
5

H
ea

de
r

3V
3

G
N

D

T
X

R
X

K
E

Y
S

T
A

T
U

S

R3
2000

V
C

C
M

O
S

I
G

N
D

G
N

D

V
C

C

G
N

D
V

C
C

GND

5V
 -

>
 3

V
3

G
N

D
C

E
S

C
K

M
IS

O

3V
3

C
S

N
M

O
S

I
IR

Q

IR
Q

D

G

S

Q
1

M
O

S
_N

B
T

E
N

R
1

10
00

IC
S

P
 H

ea
de

r

LI
T

E
P

W
M

 P
in

LR
S

T
R

D
W

R
C

/D
LC

S

LI
T

E

C6

22pF

C5

22pF

C4

22pF

C7

22pF

G
N

D

G
N

D

C
ap

ac
ito

r
va

lu
es

de
pe

nd
en

t o
n

cr
ys

ta
l C

L

R4
4700

V
C

C

VCC
VCC

VCC

VCC

GND 1

O
U

T
2

IN
3

U
1

LM
10

84
IT

-3
.3

/N
O

P
B

T
O

-2
20

G
N

D

3V
3

P
W

R
_F

LA
G

V
C

C

S
W

1

R
E

S
E

T

G
N

D
R

S
T

G
N

D

GND

P
W

R
_F

LA
G

107

AV
R

_S
P

I_
P

R
G

_6
N

S

V
C

C

VCC2

S
S

R

240

10pF 10pF

15
0

10K
VCC3

U
1

P
B5

(S
C

K)
17

P
B7

(X
TA

L2
/T

O
S

C
2)

8

P
B6

(X
TA

L1
/T

O
S

C
1)

7

G
N

D
3

G
N

D
5

V
C

C
4

V
C

C
6

A
G

N
D

21

A
R

E
F

20

AV
C

C
18

P
B4

(M
IS

O
)

16
P

B3
(M

O
S

I/O
C

2)
15

P
B2

(S
S/

O
C

1B
)

14
P

B1
(O

C
1A

)
13

P
B0

(IC
P)

12

P
D

7(
A

IN
1)

11
P

D
6(

A
IN

0)
10

P
D

5(
T1

)
9

P
D

4(
X

C
K/

T0
)

2
P

D
3(

IN
T1

)
1

P
D

2(
IN

T0
)

32
P

D
1(

TX
D

)
31

P
D

0(
R

X
D

)
30

A
D

C
7

22
A

D
C

6
19

P
C

5(
A

D
C

5/
S

C
L)

28
P

C
4(

A
D

C
4/

S
D

A)
27

P
C

3(
A

D
C

3)
26

P
C

2(
A

D
C

2)
25

P
C

1(
A

D
C

1)
24

P
C

0(
A

D
C

0)
23

P
C

6(
/R

E
S

E
T)

29

G
N

D
PA

D

JP
1

1
2

3
4

5
6

N
R

F2
4L

01
+

1
2

3
4

5
6

7
8

TM
P

36
V

C
C

1

G
N

D
3

V
O

U
T

2

S
S

R

R1

S
C

R
E

W
_T

E
R

M

1 2
R

L

Y1

C1 C2

LL
-S

15
0V

C

R
2

Q
1 R3

S
TR

IK
E

1 2

R
B

W
H

C
S

 C
on

tro
l M

od
ul

e
S

ch
em

at
ic

M
O

S
I

R
E

S
E

T
S

C
K

M
IS

O
+5 G

N
D

G
N

D

A B C D E

A B C D E

1
2

3
4

5
6

D
at

e:
S

he
et

:

R
E

V:

TI
TL

E
:

D
oc

um
en

t N
um

be
r:

IR
Q

M
O

S
I

C
S

N
V

C
C

M
IS

O
S

C
K

C
E

G
N

D

5V
3.

3V

5V

G
N

D
12

0V
 A

C

G
N

D

3.
3V

IN
D

IC
AT

O
R

 L
E

D

12
V

G
N

D

B Appendix - Copyright Notices

During the creation of this document, we avoided using any copyrighted works.

C Appendix - References

[1] X10 Website www.x10.com

[2] Fuse Calculated http://www.engbedded.com/fusecalc/

[3] TFT 2.8” LCD https://www.adafruit.com/products/1770

[4] 5V Battery Backup http://www.instructables.com/id/
Simple-5v-battery-backup-circuit/

[5] 12V Battery Backup http://electronics.stackexchange.com/questions/96632/
12v-battery-backup-supply-for-gprs-tracker

[6] Capacitor Tut http://www.electronics-tutorials.ws/capacitor/cap 2.html

[7] Diode Ref Sheet http://www.diodes.com/datasheets/ds28002.pdf

[8] Solid State Relay http://electronicdesign.com/components/
electromechanical-relays-versus-solid-state-each-has-its-place

[9] LDO Dropout http://focus.ti.com/download/trng/docs/seminar/Topic%209%20-%
20Understanding%20LDO%20dropout.pdf

[10] ISOCompare http://www.tortech.com.au/isocompare

[11] OSH Park https://oshpark.com/pricing

[12] 4PCB Service http://www.4pcb.com/33-each-pcbs/

[13] Sparkfunhttp://sparkfun.com

[14] Circuit Tutorial http://www.allaboutcircuits.com/vol 5/chpt 2/2.html

[15] Electrical http://homerenovations.about.com/od/electrical/a/artelecbox.htm

[16] GFI Outlet http://diy.stackexchange.com/questions/15684/
what-is-a-gfi-outlet-used-for-and-where-should-i-install-them

[17] EAGLE Cadhttp://www.cadsoftusa.com/download-eagle/freeware/

[18] FreeRouter KiCadhttp://www.freerouting.net/

[19] Nest Website http://nest.com

[20] Forbes Article Nest Acquisition http://www.forbes.com/sites/greatspeculations/2014/
01/17/googles-strategy-behind-the-3-2-billion-acquisition-of-nest-labs/

www.x10.com
http://www.engbedded.com/fusecalc/
https://www.adafruit.com/products/1770
http://www.instructables.com/id/Simple-5v-battery-backup-circuit/
http://www.instructables.com/id/Simple-5v-battery-backup-circuit/
http://electronics.stackexchange.com/questions/96632/12v-battery-backup-supply-for-gprs-tracker
http://electronics.stackexchange.com/questions/96632/12v-battery-backup-supply-for-gprs-tracker
http://www.electronics-tutorials.ws/capacitor/cap_2.html
http://www.diodes.com/datasheets/ds28002.pdf
http://electronicdesign.com/components/electromechanical-relays-versus-solid-state-each-has-its-place
http://electronicdesign.com/components/electromechanical-relays-versus-solid-state-each-has-its-place
http://focus.ti.com/download/trng/docs/seminar/Topic%209%20-%20Understanding%20LDO%20dropout.pdf
http://focus.ti.com/download/trng/docs/seminar/Topic%209%20-%20Understanding%20LDO%20dropout.pdf
http://www.tortech.com.au/isocompare
https://oshpark.com/pricing
http://www.4pcb.com/33-each-pcbs/
http://sparkfun.com
http://www.allaboutcircuits.com/vol_5/chpt_2/2.html
http://homerenovations.about.com/od/electrical/a/artelecbox.htm
http://diy.stackexchange.com/questions/15684/what-is-a-gfi-outlet-used-for-and-where-should-i-install-them
http://diy.stackexchange.com/questions/15684/what-is-a-gfi-outlet-used-for-and-where-should-i-install-them
http://www.cadsoftusa.com/download-eagle/freeware/
http://www.freerouting.net/
http://nest.com
http://www.forbes.com/sites/greatspeculations/2014/01/17/googles-strategy-behind-the-3-2-billion-acquisition-of-nest-labs/
http://www.forbes.com/sites/greatspeculations/2014/01/17/googles-strategy-behind-the-3-2-billion-acquisition-of-nest-labs/

[21] Works with Nest https://nest.com/works-with-nest/

[22] ILI9341 http://www.newhavendisplay.com/app notes/ILI9341.pdf

[23] ILI9341 Adafruit Lib https://github.com/adafruit/Adafruit ILI9341/tree/master/
examples

[24] Adafruit 2.8” TFT https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

[25] ILI9341 Fruit https://github.com/adafruit/Adafruit ILI9341

[26] Bresenham Line Algo https://en.wikipedia.org/wiki/Bresenham%27s line algorithm

D Appendix - WHCS Team

Grant Hernandez is a senior at the University of Central Florida. He will be graduating
with a Bachelor of Science in Computer Engineering this summer. In his spare time, Grant
writes lots of code, reverse engineers binaries, plays in cyber Capture the Flag competitions,
dabbles in computer graphics, and tinkers with embedded systems. He will be attending
the University of Florida in fall 2015 to begin his Ph.D in Computer Engineering with a
security research lab.

Jimmy Campbell is a senior at the University of Central Florida. He will be receiving
a Bachelor of Science in Computer Engineering in August 2015. His interests include em-
bedded programming, mobile development, and web back-end development. Jimmy will

https://nest.com/works-with-nest/
http://www.newhavendisplay.com/app_notes/ILI9341.pdf
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples
https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2
https://github.com/adafruit/Adafruit_ILI9341
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

be taking a full time position with Microsoft as a Software Development Engineer after
graduating.

Joseph Love is currently a senior at the University of Central Florida and will receive his
Bachelor of Science in Electrical Engineering in August of 2015. He is currently working
with Direct Beam Incorporated and plans to pursue his masters in Electrical Engineering
during the Fall of 2015 at UCF with a focus in Electromagnetics.

	Executive Summary
	Project Description
	Motivation
	Overview
	Objectives
	Voice Control
	Light Activation
	Outlet Activation
	Door Access
	Data Collection

	Requirements and Specifications
	Mobile Application
	Radio Module
	Microcontroller
	BlueTooth Module
	Printed Circuit Board
	Power Specifications
	LCD

	Research of Related Products
	Z-Wave
	Belkin
	Apple HomeKit
	Nest Labs
	X10

	Realistic Design Constraints
	Economic Constraints
	Time Limitations
	Political Constraints
	Ethical, Environmental, and Sustainability Constraints
	Manufacturability Constraints
	Safety and Security
	Spectrum Considerations

	System Design
	Base Station
	Control Module
	BlueTooth Capable Phone
	Software

	Summary of Related Standards
	RS-232
	BlueTooth
	SPI
	FR-4
	Android Development Guidelines
	ANSI/NEMA 1-15P, 5-15P, C84

	Hardware and Software Design
	Radio Transceiver
	Operating Principles and Usability of NRF24L01+
	Driver Use Case
	Driver Class Diagram
	Network Library
	Modes of operation
	Join mode detail
	Communicate mode detail
	Idle mode detail
	Leaving mode detail

	Microcontrollers
	Microcontroller Brand
	Base Station Microcontroller
	Control Module' Microcontrollers
	Development Environment
	Microcontroller Additions

	BlueTooth Chip
	RN-41
	HC-05

	LCD
	Capabilities
	ILI9341 Driver
	Choosing where to draw
	LCD State Management
	LCD Performance

	Touchscreen Driver
	Graphics Driver
	Algorithms Necessary
	Character Lookup Table

	UI Library
	View Abstraction

	Android Application
	Development Environment
	Use Case Diagram
	Speech Recognition
	BlueTooth Software Design
	GUI Philosophy
	BlueTooth Listener Class

	Power Hardware
	Design Summary
	Power Consumption
	DC-to-DC Converters vs. Linear Voltage Regulators
	Backup Battery Configuration
	Transformer Choice
	Rectifiers, Diodes, Capacitors
	Rectifier
	Capacitor
	Diodes
	Relay
	Linear Regulators

	Isolation
	Simulation
	Power Through Hole Board
	Schematic Breakdown
	Board Layout

	Base Station
	Software Flow
	Control Module Abstraction
	Subsystems
	NRF24L01+
	HC-05
	LCD
	Touchpanel
	Timers

	Schematic Breakdown
	Board Layout

	Control Module
	Software Flow
	Electronic Strike
	Normally Open or Normally Closed
	Strike vs Deadbolt

	Sensor Data Collection
	Light and Outlet Control
	Schematic Breakdown
	Board Layout

	Printed Circuit Board
	Software Considerations
	EAGLE
	KiCad

	Prototyping
	Point-To-Point Transmission
	Rogers Board Etching Prototyping
	WHCS Proto-Panel
	Materials
	Dimensions
	Sketch

	Manufacturing
	PCB House
	Seeed Studio
	OSH Park

	Parts
	Footprint (SMD vs Through-Hole)

	Construction
	Soldering
	Reflow Oven
	Proto-Panel

	Testing
	Power Supply
	Line Integrity
	Battery Backup

	Base Station
	LCD Control
	LCD and NRF Simultaneous
	UART and Software Serial

	Control Module
	UART Chip Testing/Debugging
	Command Execution

	Door Access
	Android To Base Station Communication
	BlueTerm
	BlueToothListener
	LED activation test

	Demos
	Voice Controlled Light Activation
	LCD Light Activation
	Sensor Query
	Fault Recovery (Loss of Power)
	Remote Door Access

	Project Management
	Budget
	Parts Acquisition
	Milestones
	Project Conclusion
	Final Work Breakdown

	User Manual
	Wiring the boards
	Power Board
	Control Module
	Base Station

	Booting up the modules
	Interacting with the LCD
	Android Application
	Obtaining the Application
	Connecting to WHCS
	Controlling the Control Modules
	Speech Activation
	Changing Individual Control Module Attributes

	Troubleshooting

	Appendix - Complete Schematics
	Appendix - Copyright Notices
	Appendix - References
	Appendix - WHCS Team

