
HIVE: The Grounded Swarm

Isaac Finley, Cooper Fitzgerald, John McClain,

Cameron Nichols, Benjamin Palladino

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract -- HIVE: The Grounded Swarm is an

autonomous robotic fleet with cloud-based computation that
features modular attachment capabilities for an end-user to
customize the use case of each agent on a moment’s notice. To

accomplish this, agents communicate LiDAR and odometry
data from onboard hardware to a server via Wi-Fi to map and
navigate their environment. A combination of CAN and SPI

communication protocols alongside power outputs allows the
end-user to add additional components of choice to modify the
agent’s application. This paper details the design of the

hardware and embedded software used to implement this
fleet.

Index Terms -- Autonomous robots, mobile robots,

adaptive systems, multi-robot systems, cloud computing.

I. INTRODUCTION

Based on trends toward market-wide implementation of

robots in the last decade, combined with the consequences

of the COVID-19 pandemic, robot automation is

unarguably becoming a static component of numerous

industries. With one report from Fortune Business Insights

projecting growth of the autonomous robotics market by

23.7% in 2028 compared to pre-pandemic levels; it is

evident that key market players will increasingly seek

solutions to overcome the existing barriers of implementing

robotic solutions.
Some of the major restraining factors hindering companies

from utilizing such systems are high startup costs, difficulty

deploying robots parallel to current company architecture,

and limited adaptability. HIVE: The Grounded Swarm aims

to address these shortcomings. Firstly, offloading strenuous

calculations and processing to a server reduces the cost and

complexity of onboard hardware which would normally be

the most expensive component of the system. Not only is the

agent itself cheaper, but capital is also saved in labor, as it is

much more time-efficient to alter the needs of a system

through software than to address them through hardware

changes. For hardware that inevitably does need to be

updated, this is where the modular attachment system comes

into play. Traditionally, robotic systems are implemented to

perform a small set of duties to improve a process or solve a

problem. Contradictorily, the problems and needs of

companies are always changing as they grow; leading them

to waste time and money discarding and recreating existing

robotic systems. The agents developed in this project allow

for growth alongside the needs of the company, without

needing to reinvent the wheel every time a system faces

changes.
The agents each feature a set of modular attachment ports

with power and data capabilities that allow users to adapt the

agent, without changing the premise of the entire system, to

new challenges. Given the standard aluminum extrusion used

for the system combined with power and data ports, the

system is apt both mechanically and electrically for a user to

customize its application. The general functionality of the

agent remains constant, as to provide a standard that

companies can easily develop without needing complicated

alterations. Agents come fit with the ability to autonomously

navigate a given indoor environment utilizing onboard

odometry and mapping sensors.
For the sake of fitting within the time constraints of this

project, the team chose to develop one example of a custom

attachment for the scenario of a warehouse operation, a

common use case of autonomous mobile robots. The agents

feature four payload manipulation mechanisms that can lock

on a payload and deliver it to a given location within the

environment. Additionally, while the software developed is

capable of handling multiple agents, budget constraints led to

the development of two agents, which demonstrate the fleet

capabilities of the project without sacrificing additional

capital.
Given these specifications, the final demonstrable products

of this project are two robotic agents that communicate with

a server to translate sensor data into autonomous navigation

of an environment and interaction with a payload.

II. SYSTEM CONCEPT

Fig. 1 depicts the overall integration of the hardware

system. The system begins with power, which consists of a

rechargeable lithium-ion battery. This battery is directly

connected to the input of three onboard voltage regulators

which supply the PCB with three rails; 3.3 V, 5 V, and 12 V.

These regulators deliver power not only to the main PCB but

also the attachment modules which are discussed later in the

paper.
The central point of the system is the microcontroller unit

(MCU). As previously mentioned, the computation for the

environment mapping and navigation of the agent is

performed on a server, so this processor serves as the

controller of just the embedded system. Firstly, the MCU

interfaces with the motor drivers, which control the four

motors on the agent. The MCU also interfaces with the

feedback system, which includes a LiDAR, an inertial

measurement unit (IMU), and Hall effect

sensors. Additionally, a status light is used to indicate that

the agent is in use to warn users.

 Fig. 1. Overall hardware block diagram.

Added attachments will communicate through a CAN bus.

In our case, the solenoids used in the payload manipulator

attachments were not able to directly interface with the CAN

bus, so the ports for these devices feature an additional,

slightly more primitive microcontroller, each fitted with a

CAN/SPI conversion module. Likewise, this same

conversion module is also on the main PCB. Essentially, for

our specific attachments data originates on the SPI bus,

converts to CAN and travels through the CAN bus to the main

MCU, and then is converted back to SPI before being

processed. The mouse optical sensor, although considered

part of the feedback system, was also chosen to be an

attachment in this application. This was done not only to

demonstrate the flexibility of the modular attachment system

but also because the mouse optical sensor would not

necessarily be needed in every application.
Not shown in Fig. 1 is the software breakdown, which was

developed by the computer science students on this

interdisciplinary team. At a high level, the software can be

broken down into four parts. Firstly, the web application

functions as a user interface that can take user commands and

send them to the robotic backend. The robotic backend is

responsible for the majority of heavy lifting, relating to the

concept of computation being offloaded from the physical

agent. Here, tasks are conducted like storing and updating the

mapping environment, as well as path planning. Furthermore,

a Raspberry Pi acts as a router, providing a way for the agent

and robotic backend to communicate. Lastly, there is the

agent software - which is the portion of the software

developed by the hardware side of the team. This software is

responsible for interpreting the commands sent from the

router and using these commands to control the drivetrain and

any potential attachments. Additionally, the agent software

relays sensor data to the router, which then sends this data to

the backend, providing it with the information necessary to

make informed path-planning decisions. This software is

covered in further detail in the embedded software section.

III. SYSTEM COMPONENTS

The design consisted of five major components, including

the microcontroller, power, feedback, attachment system,

and drivetrain. Each section of the design played a pivotal

role in meeting the overall goals of the project.

A. Main Microcontroller

We came across numerous processors that could have

primitively met the agents’ needs; however, optimizing for

the simultaneous data transmission of multiple sensors and a

diverse set of communication protocols led us to choose the

ESP32-WROOM-32UE microcontroller. Firstly, this unit

features a dual-core processor which provides parallel

processing capabilities to enhance computational efficiency.

This, combined with a processor speed of 240MHz was

particularly important in being able to handle an

overwhelming amount of sensor data while still being able to

control locomotion and uphold communication with the main

server. Secondarily, the ESP32 had an adequate number of

GPIO pins that allowed us to easily connect all peripherals

without sacrificing any pins that were required for pulling

important debugging information during testing.
Support for various communication methods was another

critical component playing into the selection of the ESP32.

Due to the variety of sensors utilized on each agent, it was

necessary to utilize more than one communication method.

The optical sensor communicates through one of three UART

channels. The IMU communicates through I2C, which was

given a single channel. For the attachment system, it was

decided that the MCU would interface through SPI to a CAN

bus, of which the ESP32 featured two channels.

B. Power

Given the nature of an autonomous mobile robot, the only

realistic option for a power source was a battery. The first

step in designing the battery is to understand what loads the

battery needs to provide. (1) explains the exact load that we

expect the agent to require from the 12V, 5V, and 3.3V power

rails to supply the agent and all attachments.

 Wtotal = (12V*4A)+(5V*3A)+(3.3V*3A) (1)

Once the load is understood, then the voltages that are

required are next. After choosing to use a buck voltage

design, the battery must supply above the highest voltage rail

for the entirety of the drain cycle of the battery. Next

considered are the battery types, these were researched with

consideration of voltages, cycle life, current ratings, and cost.

We decided to go with a LiPo battery in a 4-in-series

configuration. This will achieve our required 12 volts at the

minimum capacity requirement and is inexpensive to acquire.

Lastly, the capacity is selected using the total wattage

calculated before and the nominal voltage of the LiPo battery.

(72.9 Watt / 14.8 Volts = ~5 Amps). Then converting the 5A

rating over a 15-minute interval to the common mAh units,

we receive a rating of at least 1,250 mAh. This is why we

chose a 1,500 mAh LiPo battery.
To support the variety of hardware on each agent and the

range of potential attachments an end-user may choose to

utilize, it was necessary to have three stable and robust

voltage rails on the board; namely 3.3, 5, and 12V. The 12V

regulator was responsible for supplying current to the motors,

up to 2.4A at a time; making it arguably the most critical

regulator on the board. For this reason, considerations were

taken to ensure the component was capable of handling this

amount of current while still falling within reasonable

thermal ranges.
Initially, three simplistic linear voltage regulators were

used. Each device had a fixed output and required a small

input and output filtering capacitor. The regulators upheld the

agents for initial testing but overheated too quickly for long-

term use. Moving forward, the AOZ6606PI switching

voltage regulator was then selected for its high-efficiency

ratings and ability to sustain a high output current without

overheating. The variable output capabilities of this regulator

appeared to work for all three voltage levels, however, in

calculation, it was discovered that several of the capacitors

needed for the 5V and 12V regulators needed capacitances in

the mF range, which were only available in large package

sizes.

Fig. 2. AOZ6606PI 3.3V Regulator.

As shown in Fig. 2, the AOZ regulator requires 11 passive

components. Given the spacious footprint of the regulator in

its entirety, it would not have been possible to fit the

necessary size capacitors - thus not allowing the regulators to

function as intended. Because the 3.3V regulator had lower

output expectations, the capacitor ratings necessary to

support the system were much less demanding. Another

regulator, the LM2576, was investigated and determined to

be comparable to the latter, yet slightly less efficient. Given

these facts, the team compromised by utilizing the

AOZ6606PI for the 3.3V output, while using the LM2576

through-hole regulator series for the 5V and 12V outputs. The

LM2576 is, similarly, a switching regulator, but has a

footprint that accommodates the necessary size of the higher-

rating filtering capacitors. Moving towards this design

simultaneously allowed for maximum efficiency where

physically viable, while taking the necessary steps to ensure

that higher voltage outputs were both functional and stable.

Fig. 3. LM2576 5V regulator circuit.

The most pivotal components in this system are the

capacitors and inductors. According to the datasheet for the

LM2576xx series of voltage regulators, CIN needed to be at

least a 100µF electrolytic capacitor. For the inductor, the

datasheet provides application curves on page 21 based on

maximum input voltage versus maximum load current for

common output voltages, including 5 V and 12 V. Therefore,

the inductor chosen was a 100µH inductor. As seen in Fig. 4,

for an input voltage of 16.8V and a maximum load current of

3A for a 5V output, the L100 is what is recommended, which

corresponds to a 100µH inductor.

Fig. 4. LM2576 5V Regulator Inductor Graph

(2) highlights that the ripple current rating of COUT must be

at least 50% higher than the peak-to-peak inductor ripple

current. Therefore, COUT should lie between 220µF and

1000µF.

 COUT≥13300(VIN(MAX))/(VOUT*L) (2)

A 1000µF capacitor was selected for the 5V voltage

regulator as given the use of the 100µH inductor, the equation

above was more than satisfied, and stable operation was

assured. Additionally, the Schottky diode 1N5822 was

chosen based on datasheet recommendations and component

availability.

C. Feedback System

For the software team to effectively allow the agent to

navigate an environment, several onboard devices were

needed to relay important odometry, orientation, and

mapping data.
The integration of an inertial measurement unit, or IMU,

played a pivotal role in ensuring precise navigation and

control. The IMU provides real-time data concerning the

agent’s acceleration, angular velocity, and local magnetic

field, which is necessary for accurate localization of the

agents. Continual monitoring of this information gives the

fleet the ability to operate in the same constrained

environment without interfering with one another. Without

this data, the software would lack awareness regarding the

fleet’s spatial position and orientation which impedes its

ability to effectively navigate them. The IMU selected for this

project was the MiniIMU-9 v5 for several reasons. Firstly,

this IMU had one of the lowest operation currents, 70 µA, out

of its competitors; an important aspect for saving battery

energy that is needed in larger quantities for the locomotive

system. The system did have a larger zero rate output, which

is the deviation of the actual output signal from the ideal

output signal in the absence of acceleration; however when

compared to major competitors the IMU had a lower noise

density, zero-G offset, and zero-gauss level, all of which are

crucial to minimizing the cumulative error of the device.
While the IMU provides critical data in determining the

position and orientation of the agents, another sensor was

needed to provide mapping data to the robotic backend.

Options such as ultrasonic, infrared sensors, and overhead

cameras were considered, but ultimately the team chose to

use a LiDAR due to its superior data rate and range, both

important criteria for the software team to optimally navigate

the given environment. The LiDAR creates a full 360-degree

two-dimensional scan of its surroundings, which is then sent

through the attachment communication protocol. Out of the

feedback devices, the LiDAR is most pivotal in the

autonomous navigation of any given agent.
To improve the accuracy of driving, wheel encoders were

implemented in the form of Hall effect sensors. With magnets

being placed equally around the inner surface of each wheel,

the Hall effect sensors are used to more accurately control the

speed of the motors. Rather than just sending velocity

commands from the server, the data provided by the Hall

effect sensors allows the embedded software to correct the

velocity in real time.
Additionally, a mouse optical sensor is to be used to

provide additional odometry data, primarily the linear

velocity of the device. Theoretically, this data could be

gathered from the IMU, but it would be inaccurate and likely

cause drift.

D. Attachments

With the defining principle of these agents being

modularity, they were designed to support a variety of

additional hardware that could change the application of the

agent without altering the primary functionality of the

system. For this reason, it was necessary that the attachment

ports not only supply a variety of robust voltage lines but also

host a versatile communication protocol that could interface

with virtually any peripheral device. The concept is that given

power and data capabilities, virtually any device could

theoretically connect to the agent and interface with the main

MCU.
Initially, it was planned to have all attachments on the

single I2C channel, but it was discovered that an issue could

arise with identical addresses amongst multiple of the same

attachment being connected. To solve this, theoretically, the

devices could be reprogrammed to have a unique address, but

this would complicate the process for the end-user. For this

reason, a CAN protocol was chosen.
CAN buses are proven to ensure reliability and efficiency

in large systems, often being used as the main communication

protocol amongst sensors in automobiles. With CAN,

multiple devices can simultaneously exchange real-time data

without bottlenecking. A data prioritization scheme allows

for the most important bits to reach the MCU first, effectively

creating a hierarchy that upholds the agent’s functionality

without compromising other important data. Many devices

are capable of interfacing with the CAN bus directly;

however, in application, an SPI/CAN conversion module was

used, as the solenoids on the payload manipulators could not

directly interface with the CAN bus. The team decided to use

an MCP2515 stand-alone CAN controller. The MCP2515

includes masks and filters for filtering out unwanted

messages, which reduces the host MCU's overhead, as well

as decreases the complexity necessary in the embedded

system. Likewise, the modules featured an interrupt pin

which can be used to trigger the MCU when a message is

received, another aspect helpful to software efficiency.
As depicted in Fig. 5, the protocol for our scenario begins

with the main MCU interfacing the module via SPI. The

MCP2515 then converts the SPI message into CAN, which

operates on two lines; CAN high, and CAN low. This

message is broadcast across the CAN bus and any device

connected to the two nodes. Then, opposite to the original

broadcast, every other CAN module on the bus converts the

message back through SPI, and to the secondary MCU, for

our specific scenario. The embedded software on this

secondary MCU is what decides whether or not to do

something with the data. For the payload manipulators, the

message sent through the bus will contain relevant bits that

the team decided on to correlate with the solenoids, thus

changing their state, or providing information about their

current state. It is important to reiterate that some devices can

natively interface with the CAN bus. In cases like this, the

SPI/CAN converter as well as secondary microcontroller can

be entirely omitted. Furthermore, if a secondary MCU was

necessary, there are no limitations on the selection of that

component other than relating to specific attachment

specifications, and either SPI or CAN communication

capabilities.

Fig. 5. Topology of the SPI/CAN communication system for N
number of attachments for our specific scenario.

The number of nodes on a CAN bus is generally limited by

the strength of the receiver. The MCP2515 can practically

handle 110 unique devices, which leaves an ample amount of

space for any attachments an end-user may select.
To prove the functionality of this system, an example

attachment was developed. For the final demonstration of

this project, our main goal was to navigate a warehouse

setting and interact with payloads, to move them around the

environment. For this reason, we created an attachment of

payload manipulators, similar to how Autonomous Mobile

Robots (AMRs) are used to bring items from point A to

point B. To allow for optimal path planning, we planned on

interacting with the payload vertically rather than

horizontally. By doing this, the combined center of mass of

the agent and payload would be relatively the same as just

the agent alone, allowing for the best path planning

capability. To do this, a mechanical attachment system

needed to be designed to interact with the four legs of the

payload. This was accomplished by designing a payload

that envelops the footprint of the agent. As the agent drives

under the payload, these mechanisms passively interact

with the legs and then a solenoid is used to lock the position

of the mechanism.

E. Drivetrain

Once the team defined the scenario for our robotic fleet

and determined that the agent would utilize wheels to move

around the environment, the next step was to choose the

drivetrain type. To ensure that our robotic solution was as

modular as possible, the team decided to use a holonomic

drivetrain over a nonholonomic one. This drivetrain type

would allow for three degrees of freedom, allowing the end

user to have full control of the agent to best utilize its

attachment system. Finally, it was decided to use a

mecanum drive for the agent as the team thought that it

would be most feasible due to its form factor and overall

performance.
The main disadvantage to this drive-train type was the

cost of the wheels. To overcome this, it was decided to

completely design and manufacture the wheels in-house.

Unlike traditional wheels, mecanum wheels generate a

friction force at a 45-degree angle to the direction of

motion, rather than normal to it. To generate the friction

force in this direction, mecanum wheels have several rollers

around the circumference of the main wheel frame where

their axis of rotation is at a 45-degree angle to the axis of

rotation of the main wheel. To accomplish this, the

mechanical team created two revisions of this wheel. While

the first revision was not successful it did show the team

what needed to be done to develop a successful wheel in

terms of mechanical design and manufacturing. With the

resources at hand, the team decided to utilize FDM 3D

printing to create the parts for the wheels. In this printing,

we used PLA for structural parts and TPU for parts needing

elastic properties.
Both PLA and TPU belong to the thermoplastics family

of materials making them great for 3D printing. PLA has a

higher yield strength than TPU making it a great option for

parts of the wheel that will experience greater amounts of

stress, such as the wheel frames, rods, and bushings. TPU

has a much lower yield stress that allows for more elastic

deformation making it a great option for the wheel’s rollers

and friction caps.
When it came to designing the mecanum wheels, it was

decided to use a wheel frame that is an octagon allowing for

the best balance of roller spacing and size, which ensures

that one or more rollers will be touching the ground at any

point in its rotation. This allows for the greatest roller-to-

ground surface area ratio ensuring that the greatest amount

of friction force is always being created. TPU’s elastic

behaviors also allow for this contact patch to increase as it

compresses due to the weight of the agent.
For mecanum drive to achieve three degrees of freedom,

each wheel must be controlled independently by its motor.

As mentioned above, the wheels themselves generate a

friction force at a 45-degree angle, this means that the

drivetrain must create a net force using a mirrored set of

mecanum wheels to ensure that the agent drives in the

correct position. Utilizing this concept is how mecanum

drive can strafe, for example, to strafe right the right set of

wheels must rotate towards each other while the left set

rotates away from each other. The CAD model of this

drivetrain is featured in Fig 6.

Fig. 6. CAD Model of Agent Drivetrain

Finally, the last portion of the drivetrain design was

motor selection. To do this the team determined a combined

weight threshold of 114.6N for the agent along with a static

friction coefficient of 0.5 for TPU on polished concrete, it

was also assumed that the center of mass of the agent would

be roughly at the center of the agent. With this, the weight

experienced on each of the wheels can be expressed through

(3).

 FWeight= 114.6N/4 =28.65N (3)

With this, (4) shows the friction force generated by each

wheel is equal to:

 FFriction=Fweight*0.5=14.32N (4)

The final assumption made is a no-slip condition, this

allows us to set the friction force of the wheel equal to the

tangential force created by the motor. Finally, assuming a

wheel diameter of 100mm the required torque of the motor

can be found through (5):

 TMotor=0.100m*14.32 (5)

After converting units for appropriate scale, a motor with

a rated stall torque of 6kg-cm was purchased for each wheel

of the agent.

IV. EMBEDDED SOFTWARE DETAIL

The software contained on each agent consists of many

different parts. This includes classes for motors, mecanum

drive control, and the IMU. The software also features the

main agent control program, which utilizes the

aforementioned classes combined with additional logic and

some external libraries, which allow for full control of the

agent, as well as communicating with the attachment system

and the robot router. To describe the overall functionality of

the agent software, we will first examine the custom classes,

then we will go over the main agent control program, which,

as mentioned earlier, utilizes these classes.

A. IMU Class

The class for IMU control was developed by our team to

combine the usage of the LIS3MDL magnetometer with the

LSM6 accelerometer and gyroscope. This class includes the

initialization function, which initializes the sensors and

performs error calculations. The error calculations are

performed by reading the results from all three sensors for

five seconds and then saving the averages of the readings for

all three axes for all three sensors. These error averages are

later used in the functions that return the readings for each

sensor. These functions all begin by calling the appropriate

read function from the libraries that were developed for each

sensor, subtracting the errors from the raw readings, and then

converting these results into meters per second squared,

degrees per second, and gauss, for the accelerometer,

gyroscope, and magnetometer, respectively.

B. Motor Class

The motor class was developed by our team to introduce an

easy method to control each motor and to use the Hall effect

sensors to determine the speed at which each motor is

spinning. This class includes the drive function, which

accepts an integer between -255 and +255, which will

determine the direction the motor spins as well as the PWM

signal that is supplied to the motor driver. This function also

will determine if the motor is saturated, meaning that it is

being instructed to spin at full speed. This is useful to limit

the speed of the other motors so that the agent will drive as

expected. Another function is used to read the current

revolutions per second (RPM) of the motor, and another is

used to set the desired RPM.

C. Mecanum Control Class

The mecanum control class was developed by our team to

easily control each of the four motors using the mecanum

control principle. This class includes the drive function,

which takes three floating point values as input: x, y, and z.

These values represent forward/backward motion, strafing,

and turning, respectively. This function calculates the

necessary speed of each motor. This class also includes a

function that is used to slow down all motors based on the

fastest, saturated motor, if it exists.

D. Main Agent Control

Finally, we have the main agent control program. This

program allows the agent to connect to the robot router’s

hotspot, communicate with the robot router via a WebSocket

connection, interact with the attachment system, drive, and

interface with the additional attached sensors, which include

the mouse optical sensor and the LiDAR. One of these

sensors will soon be implemented instead as an attachment

and will interface with the agent via the CAN bus.
To achieve this functionality, we needed to utilize both

cores of the MCU. Core 0 deals with all of the wireless

aspects of the program. This includes establishing the Wi-Fi

connection to the robot router and keeping the WebSocket

connection alive. The agent needs to be able to receive

commands from and send data to the robot router as fast as

possible over the WebSocket connection, which is why this

is all being done on Core 0 so that the work that is being done

on Core 1 does not slow this process down. Core 1 deals with

the remaining functionality of the agent software, which

includes interfacing with the various sensors, the CAN bus,

and driving the agent.

V. TESTING RESULTS

Given the multitude of components and complexity of

integration, it was important to test individual systems

before combining them.

A. Voltage Regulators

The initial set of regulators used were simple linear

devices. Implementing the devices on a breadboard with a

single input and output filtering capacitor on each regulator,

and inputting a 14V input (an average voltage the battery

would supply), the regulators were found to have the proper

output and could supply power to charge a capacitor.

However, testing the 12V regulator by connecting them to

the motor drivers and driving the agent caused them to

become extremely hot in a matter of minutes. Placing

external heatsinks on these chips helped to dissipate heat,

but not enough to ensure the long-term safety of the device.

Moving forward, the team decided to use switching

regulators. By nature, this type of voltage regulator is better

equipped for high-output currents.

B. Communication

The CAN conversion modules were tested by

interconnecting two ESP32-WROOM-32UE modules by

using the SPI/CAN conversion modules and transmitting data

through the CAN bus. Reading from the ATTINY88 with an

attached computer was difficult, so this is the way we decided

to ensure each SPI/CAN conversion module was fully

operational. Once this was confirmed, we ensured that each

ATTINY88 could send data over the CAN bus, and ensured

that data could be read by making an LED blink by sending

the command over the CAN bus, which can transmit data at

a rate up to 1Mb/s.

C. Attachment

Once communication through the CAN bus is achieved,

there are two attachment modules with their respective

microcontrollers and a standardized cable system to test.
The purpose of the standardized cable system is for the

Attachments to connect to the agent. The ports include the

three power rails 12 V, 5 V, and 3.3 V with a ground as well

as the CAN high and low connections. This is done using 18

AWG wires and two MR-30 connectors per attachment port.

This connector was chosen due to the 30A continuous rating

and its inexpensive cost. After checking continuity on all

connections and running 10A through the connector and wire

chain, no issues were found.
Once the cable system is confirmed, next are the

attachments. The first module is the Payload Manipulator

Attachment using the ATTINY88. The ATTINY88 is the less

powerful microcontroller of our two options and was

confirmed to successfully receive commands from the CAN

bus as well as perform simple GPIO switching. This was best

suited for the Payload Manipulator Attachment which only

requires a single GPIO connection to activate.
 For the testing of the mechanical locking mechanism for

the Payload Manipulator Attachment, several revisions of the

design were tested to ensure seamless agent-to-payload

interaction. The main challenges of this component were the

clearance issues that arose due to the relatively close

tolerances between the agent and payload. To avoid collisions

of the attachment system and the payload legs the frame of

the mechanism had to be altered accordingly. The other main

issue with this setup was the fact that the legs and the passive

component of the mechanism had the same cross-sectional

shape (a square). To overcome this the payload legs had to be

fitted with a 3D-printed part that allowed the legs to have

circular cross-sections where the mechanism intercepts the

payload. After implementing these changes we were able to

successfully interact with a payload through teleoperation.
The second attachment is the mouse optical sensor which

can detect the displacement between time frames. This device

was able to be read by the microcontroller for this attachment,

the ESP32-WROOM-32U. Further testing for the

microcontroller was performed to confirm the higher

processing speed capability including additional tests with

the LiDAR device.

D. PCB

A few iterations of the PCB were developed with the

second version, pictured in Fig. 7, becoming the official

design for the agent. Conceptually, the designs were not too

different; but several of the first PCB’s shortcomings were

addressed in the second version.

Fig. 7. Final interaction of the PCB.

Most importantly, more adequate thermal considerations

were taken into account. For the 3.3V regulator, which is an

SMD component, a large two-layer pour for the input and

output pins of the regulators, as well as for the two pins of

each inductor were placed. For the through-hole components,

the 5V and 12V regulators, large copper pours were included

for the inductors, and external heat sinks were placed on the

heat pad of the chip itself. Additionally, a 2-pin JST

connector for a fan was placed. The power section was

arranged so the fan could provide airflow directly over all

three regulators in a manner that doesn’t push heat to other

sections.
On a more functional level, we corrected many traces that

were routed to unusable GPIO pins, as well as strategically

moving certain components to other pins to leave important

communication channels open if necessary. For example, the

hall effect sensors were moved to input-only pins since they

are not a bidirectional device. The team also opted to place

test points for all communication lines, as well as leaving

through-holes for any unused GPIO pins in the case that it

was needed to connect a component for testing.

VI. CONCLUSION

The final design of the agents effectively met our main goal

of creating a modular robotic solution with core functionality.

At this point, the software is still being developed to use all

agent sensor data optimally and efficiently, but the principle

design of the hardware system is fully functional.

VII. BIOGRAPHIES

Isaac Finley is a 23-year old Electrical Engineering student,

who has accepted a position with Black & Veatch as an

Electrical Engineer 1 in the grid substation department after

graduation.

Cooper Fitzgerald is a 20-year-old Electrical Engineering

student. He has accepted a position with L3Harris as an

Electrical Engineer after graduation.

John McClain is a 23-year-old Mechanical Engineering

student. After graduation, he hopes to work in an engaging

field where he can apply the technical concepts learned

through his degree.

Cameron Nichols is a 22-year-old triple-major student,

graduating with majors in Computer Engineering, Computer

Science, and Electrical Engineering, as well as minors in

Intelligent Robotics Systems and Mathematics. He has

accepted a position with Prism Systems, Inc. as a Controls

Engineer where he will be working with robotic systems,

artificial intelligence/machine learning, and various other

types of systems.

Benjamin Palladino is a 22-year-old Electrical Engineering

student. After graduation, Benjamin will be working as

Assistant Electrical Engineering for Burns & McDonnell,

contributing to the design of substations.

REFERENCES

[1] Fortune Business Insights. (2022, January)

Autonomous Mobile Robots Market Size. Retrieved 9

November 2023, World Wide Web:
https://www.fortunebusinessinsights.com/autonomous-

mobile-robots-market-105055

[2] Alpha & Omega Semiconductor. (2018,

November) AOZ6606PI Datasheet. Retrieved 11 November

2023, World Wide Web:

https://aosmd.com/res/data_sheets/AOZ6606PI.pdf

[3] Texas Instruments. (2023, March) LM2576

Datasheet. Retrieved 11 November 2023, World Wide Web:

https://www.ti.com/lit/ds/symlink/lm2576.pdf

