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Abstract -- HIVE: The Grounded Swarm is an 

autonomous robotic fleet with cloud-based computation that 
features modular attachment capabilities for an end-user to 
customize the use case of each agent on a moment’s notice. To 

accomplish this, agents communicate LiDAR and odometry 
data from onboard hardware to a server via Wi-Fi to map and 
navigate their environment. A combination of CAN and SPI 

communication protocols alongside power outputs allows the 
end-user to add additional components of choice to modify the 
agent’s application. This paper details the design of the 

hardware and embedded software used to implement this 
fleet. 

Index Terms -- Autonomous robots, mobile robots, 

adaptive systems, multi-robot systems, cloud computing. 

 

I. INTRODUCTION 

Based on trends toward market-wide implementation of 

robots in the last decade, combined with the consequences 

of the COVID-19 pandemic, robot automation is 

unarguably becoming a static component of numerous 

industries. With one report from Fortune Business Insights 

projecting growth of the autonomous robotics market by 

23.7% in 2028 compared to pre-pandemic levels; it is 

evident that key market players will increasingly seek 

solutions to overcome the existing barriers of implementing 

robotic solutions.  
Some of the major restraining factors hindering companies 

from utilizing such systems are high startup costs, difficulty 

deploying robots parallel to current company architecture, 

and limited adaptability. HIVE: The Grounded Swarm aims 

to address these shortcomings. Firstly, offloading strenuous 

calculations and processing to a server reduces the cost and 

complexity of onboard hardware which would normally be 

the most expensive component of the system. Not only is the 

agent itself cheaper, but capital is also saved in labor, as it is 

much more time-efficient to alter the needs of a system 

through software than to address them through hardware 

changes. For hardware that inevitably does need to be 

updated, this is where the modular attachment system comes 

into play. Traditionally, robotic systems are implemented to 

perform a small set of duties to improve a process or solve a 

problem. Contradictorily, the problems and needs of 

companies are always changing as they grow; leading them 

to waste time and money discarding and recreating existing 

robotic systems. The agents developed in this project allow 

for growth alongside the needs of the company, without 

needing to reinvent the wheel every time a system faces 

changes.  
The agents each feature a set of modular attachment ports 

with power and data capabilities that allow users to adapt the 

agent, without changing the premise of the entire system, to 

new challenges. Given the standard aluminum extrusion used 

for the system combined with power and data ports, the 

system is apt both mechanically and electrically for a user to 

customize its application. The general functionality of the 

agent remains constant, as to provide a standard that 

companies can easily develop without needing complicated 

alterations. Agents come fit with the ability to autonomously 

navigate a given indoor environment utilizing onboard 

odometry and mapping sensors.  
For the sake of fitting within the time constraints of this 

project, the team chose to develop one example of a custom 

attachment for the scenario of a warehouse operation, a 

common use case of autonomous mobile robots. The agents 

feature four payload manipulation mechanisms that can lock 

on a payload and deliver it to a given location within the 

environment. Additionally, while the software developed is 

capable of handling multiple agents, budget constraints led to 

the development of two agents, which demonstrate the fleet 

capabilities of the project without sacrificing additional 

capital. 
Given these specifications, the final demonstrable products 

of this project are two robotic agents that communicate with 

a server to translate sensor data into autonomous navigation 

of an environment and interaction with a payload. 

II. SYSTEM CONCEPT 

Fig. 1 depicts the overall integration of the hardware 

system. The system begins with power, which consists of a 

rechargeable lithium-ion battery. This battery is directly 

connected to the input of three onboard voltage regulators 

which supply the PCB with three rails; 3.3 V, 5 V, and 12 V. 

These regulators deliver power not only to the main PCB but 

also the attachment modules which are discussed later in the 

paper. 
The central point of the system is the microcontroller unit 

(MCU). As previously mentioned, the computation for the 

environment mapping and navigation of the agent is 

performed on a server, so this processor serves as the 

controller of just the embedded system. Firstly, the MCU 

interfaces with the motor drivers, which control the four 



motors on the agent. The MCU also interfaces with the 

feedback system, which includes a LiDAR, an inertial 

measurement unit (IMU), and Hall effect 

sensors.  Additionally, a status light is used to indicate that 

the agent is in use to warn users. 

                      Fig. 1. Overall hardware block diagram. 

Added attachments will communicate through a CAN bus. 

In our case, the solenoids used in the payload manipulator 

attachments were not able to directly interface with the CAN 

bus, so the ports for these devices feature an additional, 

slightly more primitive microcontroller, each  fitted with a 

CAN/SPI conversion module. Likewise, this same 

conversion module is also on the main PCB. Essentially, for 

our specific attachments data originates on the SPI bus, 

converts to CAN and travels through the CAN bus to the main 

MCU, and then is converted back to SPI before being 

processed. The mouse optical sensor, although considered 

part of the feedback system, was also chosen to be an 

attachment in this application. This was done not only to 

demonstrate the flexibility of the modular attachment system 

but also because the mouse optical sensor would not 

necessarily be needed in every application. 
Not shown in Fig. 1 is the software breakdown, which was 

developed by the computer science students on this 

interdisciplinary team. At a high level, the software can be 

broken down into four parts. Firstly, the web application 

functions as a user interface that can take user commands and 

send them to the robotic backend. The robotic backend is 

responsible for the majority of heavy lifting, relating to the 

concept of computation being offloaded from the physical 

agent. Here, tasks are conducted like storing and updating the 

mapping environment, as well as path planning. Furthermore, 

a Raspberry Pi acts as a router, providing a way for the agent 

and robotic backend to communicate. Lastly, there is the 

agent software - which is the portion of the software 

developed by the hardware side of the team. This software is 

responsible for interpreting the commands sent from the 

router and using these commands to control the drivetrain and 

any potential attachments. Additionally, the agent software 

relays sensor data to the router, which then sends this data to 

the backend, providing it with the information necessary to 

make informed path-planning decisions. This software is 

covered in further detail in the embedded software section. 

III. SYSTEM COMPONENTS 

The design consisted of five major components, including 

the microcontroller, power, feedback, attachment system, 

and drivetrain. Each section of the design played a pivotal 

role in meeting the overall goals of the project. 

A. Main Microcontroller 

We came across numerous processors that could have 

primitively met the agents’ needs; however, optimizing for 

the simultaneous data transmission of multiple sensors and a 

diverse set of communication protocols led us to choose the 

ESP32-WROOM-32UE microcontroller. Firstly, this unit 

features a dual-core processor which provides parallel 

processing capabilities to enhance computational efficiency. 

This, combined with a processor speed of 240MHz was 

particularly important in being able to handle an 

overwhelming amount of sensor data while still being able to 

control locomotion and uphold communication with the main 

server. Secondarily, the ESP32 had an adequate number of 

GPIO pins that allowed us to easily connect all peripherals 

without sacrificing any pins that were required for pulling 

important debugging information during testing. 
Support for various communication methods was another 

critical component playing into the selection of the ESP32. 

Due to the variety of sensors utilized on each agent, it was 

necessary to utilize more than one communication method. 

The optical sensor communicates through one of three UART 

channels. The IMU communicates through I2C, which was 

given a single channel. For the attachment system, it was 

decided that the MCU would interface through SPI to a CAN 

bus, of which the ESP32 featured two channels. 

B. Power 

Given the nature of an autonomous mobile robot, the only 

realistic option for a power source was a battery. The first 

step in designing the battery is to understand what loads the 

battery needs to provide. (1) explains the exact load that we 

expect the agent to require from the 12V, 5V, and 3.3V power 

rails to supply the agent and all attachments. 

                 Wtotal = (12V*4A)+(5V*3A)+(3.3V*3A)         (1) 



Once the load is understood, then the voltages that are 

required are next. After choosing to use a buck voltage 

design, the battery must supply above the highest voltage rail 

for the entirety of the drain cycle of the battery. Next 

considered are the battery types, these were researched with 

consideration of voltages, cycle life, current ratings, and cost. 

We decided to go with a LiPo battery in a 4-in-series 

configuration. This will achieve our required 12 volts at the 

minimum capacity requirement and is inexpensive to acquire. 

Lastly, the capacity is selected using the total wattage 

calculated before and the nominal voltage of the LiPo battery. 

(72.9 Watt / 14.8 Volts = ~5 Amps). Then converting the 5A 

rating over a 15-minute interval to the common mAh units, 

we receive a rating of at least 1,250 mAh. This is why we 

chose a 1,500 mAh LiPo battery. 
To support the variety of hardware on each agent and the 

range of potential attachments an end-user may choose to 

utilize, it was necessary to have three stable and robust 

voltage rails on the board; namely 3.3, 5, and 12V. The 12V 

regulator was responsible for supplying current to the motors, 

up to 2.4A at a time; making it arguably the most critical 

regulator on the board. For this reason, considerations were 

taken to ensure the component was capable of handling this 

amount of current while still falling within reasonable 

thermal ranges.  
Initially, three simplistic linear voltage regulators were 

used. Each device had a fixed output and required a small 

input and output filtering capacitor. The regulators upheld the 

agents for initial testing but overheated too quickly for long-

term use. Moving forward, the AOZ6606PI switching 

voltage regulator was then selected for its high-efficiency 

ratings and ability to sustain a high output current without 

overheating. The variable output capabilities of this regulator 

appeared to work for all three voltage levels, however, in 

calculation, it was discovered that several of the capacitors 

needed for the 5V and 12V regulators needed capacitances in 

the mF range, which were only available in large package 

sizes.  

 

Fig. 2.  AOZ6606PI 3.3V Regulator. 

As shown in Fig. 2, the AOZ regulator requires 11 passive 

components. Given the spacious footprint of the regulator in 

its entirety, it would not have been possible to fit the 

necessary size capacitors - thus not allowing the regulators to 

function as intended. Because the 3.3V regulator had lower 

output expectations, the capacitor ratings necessary to 

support the system were much less demanding. Another 

regulator, the LM2576, was investigated and determined to 

be comparable to the latter, yet slightly less efficient. Given 

these facts, the team compromised by utilizing the 

AOZ6606PI for the 3.3V output, while using the LM2576 

through-hole regulator series for the 5V and 12V outputs. The 

LM2576 is, similarly, a switching regulator, but has a 

footprint that accommodates the necessary size of the higher-

rating filtering capacitors. Moving towards this design 

simultaneously allowed for maximum efficiency where 

physically viable, while taking the necessary steps to ensure 

that higher voltage outputs were both functional and stable.  

Fig. 3.  LM2576 5V regulator circuit. 

The most pivotal components in this system are the 

capacitors and inductors. According to the datasheet for the 

LM2576xx series of voltage regulators, CIN needed to be at 

least a 100µF electrolytic capacitor. For the inductor, the 

datasheet provides application curves on page 21 based on 

maximum input voltage versus maximum load current for 

common output voltages, including 5 V and 12 V. Therefore, 

the inductor chosen was a 100µH inductor. As seen in Fig. 4, 

for an input voltage of 16.8V and a maximum load current of 

3A for a 5V output, the L100 is what is recommended, which 

corresponds to a 100µH inductor. 

 

Fig. 4. LM2576 5V Regulator Inductor Graph 

(2) highlights that the ripple current rating of COUT must be 

at least 50% higher than the peak-to-peak inductor ripple 



current. Therefore, COUT should lie between 220µF and 

1000µF. 

                       COUT≥13300(VIN(MAX))/(VOUT*L)                (2) 

A 1000µF capacitor was selected for the 5V voltage 

regulator as given the use of the 100µH inductor, the equation 

above was more than satisfied, and stable operation was 

assured. Additionally, the Schottky diode 1N5822 was 

chosen based on datasheet recommendations and component 

availability. 

C. Feedback System 

For the software team to effectively allow the agent to 

navigate an environment, several onboard devices were 

needed to relay important odometry, orientation, and 

mapping data. 
The integration of an inertial measurement unit, or IMU, 

played a pivotal role in ensuring precise navigation and 

control. The IMU provides real-time data concerning the 

agent’s acceleration, angular velocity, and local magnetic 

field, which is necessary for accurate localization of the 

agents. Continual monitoring of this information gives the 

fleet the ability to operate in the same constrained 

environment without interfering with one another. Without 

this data, the software would lack awareness regarding the 

fleet’s spatial position and orientation which impedes its 

ability to effectively navigate them. The IMU selected for this 

project was the MiniIMU-9 v5 for several reasons. Firstly, 

this IMU had one of the lowest operation currents, 70 µA, out 

of its competitors; an important aspect for saving battery 

energy that is needed in larger quantities for the locomotive 

system. The system did have a larger zero rate output, which 

is the deviation of the actual output signal from the ideal 

output signal in the absence of acceleration; however when 

compared to major competitors the IMU had a lower noise 

density, zero-G offset, and zero-gauss level, all of which are 

crucial to minimizing the cumulative error of the device. 
While the IMU provides critical data in determining the 

position and orientation of the agents, another sensor was 

needed to provide mapping data to the robotic backend. 

Options such as ultrasonic, infrared sensors, and overhead 

cameras were considered, but ultimately the team chose to 

use a LiDAR due to its superior data rate and range, both 

important criteria for the software team to optimally navigate 

the given environment. The LiDAR creates a full 360-degree 

two-dimensional scan of its surroundings, which is then sent 

through the attachment communication protocol. Out of the 

feedback devices, the LiDAR is most pivotal in the 

autonomous navigation of any given agent. 
To improve the accuracy of driving, wheel encoders were 

implemented in the form of Hall effect sensors. With magnets 

being placed equally around the inner surface of each wheel, 

the Hall effect sensors are used to more accurately control the 

speed of the motors. Rather than just sending velocity 

commands from the server, the data provided by the Hall 

effect sensors allows the embedded software to correct the 

velocity in real time. 
Additionally, a mouse optical sensor is to be used to 

provide additional odometry data, primarily the linear 

velocity of the device. Theoretically, this data could be 

gathered from the IMU, but it would be inaccurate and likely 

cause drift.  

D. Attachments 

With the defining principle of these agents being 

modularity, they were designed to support a variety of 

additional hardware that could change the application of the 

agent without altering the primary functionality of the 

system. For this reason, it was necessary that the attachment 

ports not only supply a variety of robust voltage lines but also 

host a versatile communication protocol that could interface 

with virtually any peripheral device. The concept is that given 

power and data capabilities, virtually any device could 

theoretically connect to the agent and interface with the main 

MCU. 
Initially, it was planned to have all attachments on the 

single I2C channel, but it was discovered that an issue could 

arise with identical addresses amongst multiple of the same 

attachment being connected. To solve this, theoretically, the 

devices could be reprogrammed to have a unique address, but 

this would complicate the process for the end-user. For this 

reason, a CAN protocol was chosen. 
CAN buses are proven to ensure reliability and efficiency 

in large systems, often being used as the main communication 

protocol amongst sensors in automobiles. With CAN, 

multiple devices can simultaneously exchange real-time data 

without bottlenecking. A data prioritization scheme allows 

for the most important bits to reach the MCU first, effectively 

creating a hierarchy that upholds the agent’s functionality 

without compromising other important data. Many devices 

are capable of interfacing with the CAN bus directly; 

however, in application, an SPI/CAN conversion module was 

used, as the solenoids on the payload manipulators could not 

directly interface with the CAN bus. The team decided to use 

an MCP2515 stand-alone CAN controller. The MCP2515 

includes masks and filters for filtering out unwanted 

messages, which reduces the host MCU's overhead, as well 

as decreases the complexity necessary in the embedded 

system. Likewise, the modules featured an interrupt pin 

which can be used to trigger the MCU when a message is 

received, another aspect helpful to software efficiency. 
As depicted in Fig. 5, the protocol for our scenario begins 

with the main MCU interfacing the module via SPI. The 

MCP2515 then converts the SPI message into CAN, which 



operates on two lines; CAN high, and CAN low. This 

message is broadcast across the CAN bus and any device 

connected to the two nodes. Then, opposite to the original 

broadcast, every other CAN module on the bus converts the 

message back through SPI, and to the secondary MCU, for 

our specific scenario. The embedded software on this 

secondary MCU is what decides whether or not to do 

something with the data. For the payload manipulators, the 

message sent through the bus will contain relevant bits that 

the team decided on to correlate with the solenoids, thus 

changing their state, or providing information about their 

current state. It is important to reiterate that some devices can 

natively interface with the CAN bus. In cases like this, the 

SPI/CAN converter as well as secondary microcontroller can 

be entirely omitted. Furthermore, if a secondary MCU was 

necessary, there are no limitations on the selection of that 

component other than relating to specific attachment 

specifications, and either SPI or CAN communication 

capabilities. 

 

Fig. 5. Topology of the SPI/CAN communication system for N 
number of attachments for our specific scenario. 

The number of nodes on a CAN bus is generally limited by 

the strength of the receiver. The MCP2515 can practically 

handle 110 unique devices, which leaves an ample amount of 

space for any attachments an end-user may select.  
To prove the functionality of this system, an example 

attachment was developed. For the final demonstration of 

this project, our main goal was to navigate a warehouse 

setting and interact with payloads, to move them around the 

environment. For this reason, we created an attachment of 

payload manipulators, similar to how Autonomous Mobile 

Robots (AMRs) are used to bring items from point A to 

point B. To allow for optimal path planning, we planned on 

interacting with the payload vertically rather than 

horizontally. By doing this, the combined center of mass of 

the agent and payload would be relatively the same as just 

the agent alone, allowing for the best path planning 

capability. To do this, a mechanical attachment system 

needed to be designed to interact with the four legs of the 

payload. This was accomplished by designing a payload 

that envelops the footprint of the agent. As the agent drives 

under the payload, these mechanisms passively interact 

with the legs and then a solenoid is used to lock the position 

of the mechanism. 

E. Drivetrain 

Once the team defined the scenario for our robotic fleet 

and determined that the agent would utilize wheels to move 

around the environment, the next step was to choose the 

drivetrain type. To ensure that our robotic solution was as 

modular as possible, the team decided to use a holonomic 

drivetrain over a nonholonomic one. This drivetrain type 

would allow for three degrees of freedom, allowing the end 

user to have full control of the agent to best utilize its 

attachment system. Finally, it was decided to use a 

mecanum drive for the agent as the team thought that it 

would be most feasible due to its form factor and overall 

performance. 
The main disadvantage to this drive-train type was the 

cost of the wheels. To overcome this, it was decided to 

completely design and manufacture the wheels in-house. 

Unlike traditional wheels, mecanum wheels generate a 

friction force at a 45-degree angle to the direction of 

motion, rather than normal to it. To generate the friction 

force in this direction, mecanum wheels have several rollers 

around the circumference of the main wheel frame where 

their axis of rotation is at a 45-degree angle to the axis of 

rotation of the main wheel. To accomplish this, the 

mechanical team created two revisions of this wheel. While 

the first revision was not successful it did show the team 

what needed to be done to develop a successful wheel in 

terms of mechanical design and manufacturing. With the 

resources at hand, the team decided to utilize FDM 3D 

printing to create the parts for the wheels. In this printing, 

we used PLA for structural parts and TPU for parts needing 

elastic properties. 
Both PLA and TPU belong to the thermoplastics family 

of materials making them great for 3D printing. PLA has a 

higher yield strength than TPU making it a great option for 

parts of the wheel that will experience greater amounts of 

stress, such as the wheel frames, rods, and bushings. TPU 

has a much lower yield stress that allows for more elastic 

deformation making it a great option for the wheel’s rollers 

and friction caps. 
When it came to designing the mecanum wheels, it was 

decided to use a wheel frame that is an octagon allowing for 

the best balance of roller spacing and size, which ensures 

that one or more rollers will be touching the ground at any 

point in its rotation. This allows for the greatest roller-to-

ground surface area ratio ensuring that the greatest amount 



of friction force is always being created. TPU’s elastic 

behaviors also allow for this contact patch to increase as it 

compresses due to the weight of the agent. 
For mecanum drive to achieve three degrees of freedom, 

each wheel must be controlled independently by its motor. 

As mentioned above, the wheels themselves generate a 

friction force at a 45-degree angle, this means that the 

drivetrain must create a net force using a mirrored set of 

mecanum wheels to ensure that the agent drives in the 

correct position. Utilizing this concept is how mecanum 

drive can strafe, for example, to strafe right the right set of 

wheels must rotate towards each other while the left set 

rotates away from each other. The CAD model of this 

drivetrain is featured in Fig 6. 

Fig. 6. CAD Model of Agent Drivetrain 

Finally, the last portion of the drivetrain design was 

motor selection. To do this the team determined a combined 

weight threshold of  114.6N for the agent along with a static 

friction coefficient of 0.5 for TPU on polished concrete, it 

was also assumed that the center of mass of the agent would 

be roughly at the center of the agent. With this, the weight 

experienced on each of the wheels can be expressed through 

(3). 

                           FWeight= 114.6N/4 =28.65N              (3) 

With this, (4) shows the friction force generated by each 

wheel is equal to: 

                           FFriction=Fweight*0.5=14.32N               (4) 

The final assumption made is a no-slip condition, this 

allows us to set the friction force of the wheel equal to the 

tangential force created by the motor. Finally, assuming a 

wheel diameter of 100mm the required torque of the motor 

can be found through (5): 

                            TMotor=0.100m*14.32                      (5) 

After converting units for appropriate scale, a motor with 

a rated stall torque of 6kg-cm was purchased for each wheel 

of the agent. 

IV. EMBEDDED SOFTWARE DETAIL 

The software contained on each agent consists of many 

different parts. This includes classes for motors, mecanum 

drive control, and the IMU. The software also features the 

main agent control program, which utilizes the 

aforementioned classes combined with additional logic and 

some external libraries, which allow for full control of the 

agent, as well as communicating with the attachment system 

and the robot router. To describe the overall functionality of 

the agent software, we will first examine the custom classes, 

then we will go over the main agent control program, which, 

as mentioned earlier, utilizes these classes. 

A. IMU Class 

The class for IMU control was developed by our team to 

combine the usage of the LIS3MDL magnetometer with the 

LSM6 accelerometer and gyroscope. This class includes the 

initialization function, which initializes the sensors and 

performs error calculations. The error calculations are 

performed by reading the results from all three sensors for 

five seconds and then saving the averages of the readings for 

all three axes for all three sensors. These error averages are 

later used in the functions that return the readings for each 

sensor. These functions all begin by calling the appropriate 

read function from the libraries that were developed for each 

sensor, subtracting the errors from the raw readings, and then 

converting these results into meters per second squared, 

degrees per second, and gauss, for the accelerometer, 

gyroscope, and magnetometer, respectively. 

B. Motor Class 

The motor class was developed by our team to introduce an 

easy method to control each motor and to use the Hall effect 

sensors to determine the speed at which each motor is 

spinning. This class includes the drive function, which 

accepts an integer between -255 and +255, which will 

determine the direction the motor spins as well as the PWM 

signal that is supplied to the motor driver. This function also 

will determine if the motor is saturated, meaning that it is 

being instructed to spin at full speed. This is useful to limit 

the speed of the other motors so that the agent will drive as 

expected. Another function is used to read the current 

revolutions per second (RPM) of the motor, and another is 

used to set the desired RPM. 

 

 



C. Mecanum Control Class 

The mecanum control class was developed by our team to 

easily control each of the four motors using the mecanum 

control principle. This class includes the drive function, 

which takes three floating point values as input: x, y, and z. 

These values represent forward/backward motion, strafing, 

and turning, respectively. This function calculates the 

necessary speed of each motor. This class also includes a 

function that is used to slow down all motors based on the 

fastest, saturated motor, if it exists. 

D. Main Agent Control 

Finally, we have the main agent control program. This 

program allows the agent to connect to the robot router’s 

hotspot, communicate with the robot router via a WebSocket 

connection, interact with the attachment system, drive, and 

interface with the additional attached sensors, which include 

the mouse optical sensor and the LiDAR. One of these 

sensors will soon be implemented instead as an attachment 

and will interface with the agent via the CAN bus. 
To achieve this functionality, we needed to utilize both 

cores of the MCU. Core 0 deals with all of the wireless 

aspects of the program. This includes establishing the Wi-Fi 

connection to the robot router and keeping the WebSocket 

connection alive. The agent needs to be able to receive 

commands from and send data to the robot router as fast as 

possible over the WebSocket connection, which is why this 

is all being done on Core 0 so that the work that is being done 

on Core 1 does not slow this process down. Core 1 deals with 

the remaining functionality of the agent software, which 

includes interfacing with the various sensors, the CAN bus, 

and driving the agent. 

V. TESTING RESULTS 

Given the multitude of components and complexity of 

integration, it was important to test individual systems 

before combining them. 

A. Voltage Regulators 

The initial set of regulators used were simple linear 

devices. Implementing the devices on a breadboard with a 

single input and output filtering capacitor on each regulator, 

and inputting a 14V input (an average voltage the battery 

would supply), the regulators were found to have the proper 

output and could supply power to charge a capacitor. 

However, testing the 12V regulator by connecting them to 

the motor drivers and driving the agent caused them to 

become extremely hot in a matter of minutes. Placing 

external heatsinks on these chips helped to dissipate heat, 

but not enough to ensure the long-term safety of the device. 

Moving forward, the team decided to use switching 

regulators. By nature, this type of voltage regulator is better 

equipped for high-output currents.  

B. Communication 

The CAN conversion modules were tested by 

interconnecting two ESP32-WROOM-32UE modules by 

using the SPI/CAN conversion modules and transmitting data 

through the CAN bus. Reading from the ATTINY88 with an 

attached computer was difficult, so this is the way we decided 

to ensure each SPI/CAN conversion module was fully 

operational. Once this was confirmed, we ensured that each 

ATTINY88 could send data over the CAN bus, and ensured 

that data could be read by making an LED blink by sending 

the command over the CAN bus, which can transmit data at 

a rate up to 1Mb/s. 

C. Attachment 

Once communication through the CAN bus is achieved, 

there are two attachment modules with their respective 

microcontrollers and a standardized cable system to test. 
The purpose of the standardized cable system is for the 

Attachments to connect to the agent. The ports include the 

three power rails 12 V, 5 V, and 3.3 V with a ground as well 

as the CAN high and low connections. This is done using 18 

AWG wires and two MR-30 connectors per attachment port. 

This connector was chosen due to the 30A continuous rating 

and its inexpensive cost. After checking continuity on all 

connections and running 10A through the connector and wire 

chain, no issues were found. 
Once the cable system is confirmed, next are the 

attachments. The first module is the Payload Manipulator 

Attachment using the ATTINY88. The ATTINY88 is the less 

powerful microcontroller of our two options and was 

confirmed to successfully receive commands from the CAN 

bus as well as perform simple GPIO switching. This was best 

suited for the Payload Manipulator Attachment which only 

requires a single GPIO connection to activate. 
 For the testing of the mechanical locking mechanism for 

the Payload Manipulator Attachment, several revisions of the 

design were tested to ensure seamless agent-to-payload 

interaction. The main challenges of this component were the 

clearance issues that arose due to the relatively close 

tolerances between the agent and payload. To avoid collisions 

of the attachment system and the payload legs the frame of 

the mechanism had to be altered accordingly. The other main 

issue with this setup was the fact that the legs and the passive 

component of the mechanism had the same cross-sectional 

shape (a square). To overcome this the payload legs had to be 

fitted with a 3D-printed part that allowed the legs to have 

circular cross-sections where the mechanism intercepts the 



payload. After implementing these changes we were able to 

successfully interact with a payload through teleoperation. 
The second attachment is the mouse optical sensor which 

can detect the displacement between time frames. This device 

was able to be read by the microcontroller for this attachment, 

the ESP32-WROOM-32U. Further testing for the 

microcontroller was performed to confirm the higher 

processing speed capability including additional tests with 

the LiDAR device.  

D. PCB  

A few iterations of the PCB were developed with the 

second version, pictured in Fig. 7, becoming the official 

design for the agent. Conceptually, the designs were not too 

different; but several of the first PCB’s shortcomings were 

addressed in the second version.  

 

Fig. 7. Final interaction of the PCB. 

Most importantly, more adequate thermal considerations 

were taken into account. For the 3.3V regulator, which is an 

SMD component, a large two-layer pour for the input and 

output pins of the regulators, as well as for the two pins of 

each inductor were placed. For the through-hole components, 

the 5V and 12V regulators, large copper pours were included 

for the inductors, and external heat sinks were placed on the 

heat pad of the chip itself. Additionally, a 2-pin JST 

connector for a fan was placed. The power section was 

arranged so the fan could provide airflow directly over all 

three regulators in a manner that doesn’t push heat to other 

sections.  
On a more functional level, we corrected many traces that 

were routed to unusable GPIO pins, as well as strategically 

moving certain components to other pins to leave important 

communication channels open if necessary. For example, the 

hall effect sensors were moved to input-only pins since they 

are not a bidirectional device. The team also opted to place 

test points for all communication lines, as well as leaving 

through-holes for any unused GPIO pins in the case that it 

was needed to connect a component for testing.  

VI. CONCLUSION 

The final design of the agents effectively met our main goal 

of creating a modular robotic solution with core functionality. 

At this point, the software is still being developed to use all 

agent sensor data optimally and efficiently, but the principle 

design of the hardware system is fully functional.  
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