HIVE: The Grounded Swarm

Isaac Finley, Cooper Fitzgerald, John McClain,
Cameron Nichols, Benjamin Palladino

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract -- HIVE: The Grounded Swarm is an
autonomous robotic fleet with cloud-based computation that
features modular attachment capabilities for an end-user to
customize the use case of each agent on a moment’s notice. To
accomplish this, agents communicate LiDAR and odometry
data from onboard hardware to a server via Wi-Fi to map and
navigate their environment. A combination of CAN and SPI
communication protocols alongside power outputs allows the
end-user to add additional components of choice to modify the
agent’s application. This paper details the design of the
hardware and embedded software used to implement this
fleet.

Index Terms -- Autonomous robots, mobile robots,
adaptive systems, multi-robot systems, cloud computing.

I. INTRODUCTION

Based on trends toward market-wide implementation of
robots in the last decade, combined with the consequences
of the COVID-19 pandemic, robot automation is
unarguably becoming a static component of numerous
industries. With one report from Fortune Business Insights
projecting growth of the autonomous robotics market by
23.7% in 2028 compared to pre-pandemic levels; it is
evident that key market players will increasingly seek
solutions to overcome the existing barriers of implementing
robotic solutions.

Some of the major restraining factors hindering companies
from utilizing such systems are high startup costs, difficulty
deploying robots parallel to current company architecture,
and limited adaptability. HIVE: The Grounded Swarm aims
to address these shortcomings. Firstly, offloading strenuous
calculations and processing to a server reduces the cost and
complexity of onboard hardware which would normally be
the most expensive component of the system. Not only is the
agent itself cheaper, but capital is also saved in labor, as it is
much more time-efficient to alter the needs of a system
through software than to address them through hardware
changes. For hardware that inevitably does need to be
updated, this is where the modular attachment system comes
into play. Traditionally, robotic systems are implemented to

perform a small set of duties to improve a process or solve a
problem. Contradictorily, the problems and needs of
companies are always changing as they grow; leading them
to waste time and money discarding and recreating existing
robotic systems. The agents developed in this project allow
for growth alongside the needs of the company, without
needing to reinvent the wheel every time a system faces
changes.

The agents each feature a set of modular attachment ports
with power and data capabilities that allow users to adapt the
agent, without changing the premise of the entire system, to
new challenges. Given the standard aluminum extrusion used
for the system combined with power and data ports, the
system is apt both mechanically and electrically for a user to
customize its application. The general functionality of the
agent remains constant, as to provide a standard that
companies can easily develop without needing complicated
alterations. Agents come fit with the ability to autonomously
navigate a given indoor environment utilizing onboard
odometry and mapping sensors.

For the sake of fitting within the time constraints of this
project, the team chose to develop one example of a custom
attachment for the scenario of a warehouse operation, a
common use case of autonomous mobile robots. The agents
feature four payload manipulation mechanisms that can lock
on a payload and deliver it to a given location within the
environment. Additionally, while the software developed is
capable of handling multiple agents, budget constraints led to
the development of two agents, which demonstrate the fleet
capabilities of the project without sacrificing additional
capital.

Given these specifications, the final demonstrable products
of this project are two robotic agents that communicate with
a server to translate sensor data into autonomous navigation
of an environment and interaction with a payload.

II. SYSTEM CONCEPT

Fig. 1 depicts the overall integration of the hardware
system. The system begins with power, which consists of a
rechargeable lithium-ion battery. This battery is directly
connected to the input of three onboard voltage regulators
which supply the PCB with three rails; 3.3 V, 5V, and 12 V.
These regulators deliver power not only to the main PCB but
also the attachment modules which are discussed later in the
paper.

The central point of the system is the microcontroller unit
(MCU). As previously mentioned, the computation for the
environment mapping and navigation of the agent is
performed on a server, so this processor serves as the
controller of just the embedded system. Firstly, the MCU
interfaces with the motor drivers, which control the four

motors on the agent. The MCU also interfaces with the
feedback system, which includes a LiDAR, an inertial
measurement unit (IMU), and Hall effect
sensors. Additionally, a status light is used to indicate that
the agent is in use to warn users.

I

Power

Motor Drivers Motors |

;

A4
Attachment SPICAN [€4— MCU
Ports CONVERSION
LIDAR

\
Mouse
MU
Status Light |¢——

Optical

Wheel
Encoders | ¢

Payload
Manipulators

Sensor

Fig. 1. Overall hardware block diagram.

Added attachments will communicate through a CAN bus.
In our case, the solenoids used in the payload manipulator
attachments were not able to directly interface with the CAN
bus, so the ports for these devices feature an additional,
slightly more primitive microcontroller, each fitted with a
CAN/SPI conversion module. Likewise, this same
conversion module is also on the main PCB. Essentially, for
our specific attachments data originates on the SPI bus,
converts to CAN and travels through the CAN bus to the main
MCU, and then is converted back to SPI before being
processed. The mouse optical sensor, although considered
part of the feedback system, was also chosen to be an
attachment in this application. This was done not only to
demonstrate the flexibility of the modular attachment system
but also because the mouse optical sensor would not
necessarily be needed in every application.

Not shown in Fig. 1 is the software breakdown, which was
developed by the computer science students on this
interdisciplinary team. At a high level, the software can be
broken down into four parts. Firstly, the web application
functions as a user interface that can take user commands and
send them to the robotic backend. The robotic backend is
responsible for the majority of heavy lifting, relating to the
concept of computation being offloaded from the physical
agent. Here, tasks are conducted like storing and updating the
mapping environment, as well as path planning. Furthermore,
a Raspberry Pi acts as a router, providing a way for the agent
and robotic backend to communicate. Lastly, there is the

agent software - which is the portion of the software
developed by the hardware side of the team. This software is
responsible for interpreting the commands sent from the
router and using these commands to control the drivetrain and
any potential attachments. Additionally, the agent software
relays sensor data to the router, which then sends this data to
the backend, providing it with the information necessary to
make informed path-planning decisions. This software is
covered in further detail in the embedded software section.

I11. SYSTEM COMPONENTS

The design consisted of five major components, including
the microcontroller, power, feedback, attachment system,
and drivetrain. Each section of the design played a pivotal
role in meeting the overall goals of the project.

A. Main Microcontroller

We came across numerous processors that could have
primitively met the agents’ needs; however, optimizing for
the simultaneous data transmission of multiple sensors and a
diverse set of communication protocols led us to choose the
ESP32-WROOM-32UE microcontroller. Firstly, this unit
features a dual-core processor which provides parallel
processing capabilities to enhance computational efficiency.
This, combined with a processor speed of 240MHz was
particularly important in being able to handle an
overwhelming amount of sensor data while still being able to
control locomotion and uphold communication with the main
server. Secondarily, the ESP32 had an adequate number of
GPIO pins that allowed us to easily connect all peripherals
without sacrificing any pins that were required for pulling
important debugging information during testing.

Support for various communication methods was another
critical component playing into the selection of the ESP32.
Due to the variety of sensors utilized on each agent, it was
necessary to utilize more than one communication method.
The optical sensor communicates through one of three UART
channels. The IMU communicates through 12C, which was
given a single channel. For the attachment system, it was
decided that the MCU would interface through SPI to a CAN
bus, of which the ESP32 featured two channels.

B. Power

Given the nature of an autonomous mobile robot, the only
realistic option for a power source was a battery. The first
step in designing the battery is to understand what loads the
battery needs to provide. (1) explains the exact load that we
expect the agent to require from the 12V, 5V, and 3.3V power
rails to supply the agent and all attachments.

Wil = (12V*4A)+(5V*3A)+(3.3V*3A) (1)

Once the load is understood, then the voltages that are
required are next. After choosing to use a buck voltage
design, the battery must supply above the highest voltage rail
for the entirety of the drain cycle of the battery. Next
considered are the battery types, these were researched with
consideration of voltages, cycle life, current ratings, and cost.
We decided to go with a LiPo battery in a 4-in-series
configuration. This will achieve our required 12 volts at the
minimum capacity requirement and is inexpensive to acquire.
Lastly, the capacity is selected using the total wattage
calculated before and the nominal voltage of the LiPo battery.
(72.9 Watt / 14.8 Volts = ~5 Amps). Then converting the 5A
rating over a 15-minute interval to the common mAh units,
we receive a rating of at least 1,250 mAh. This is why we
chose a 1,500 mAh LiPo battery.

To support the variety of hardware on each agent and the
range of potential attachments an end-user may choose to
utilize, it was necessary to have three stable and robust
voltage rails on the board; namely 3.3, 5, and 12V. The 12V
regulator was responsible for supplying current to the motors,
up to 2.4A at a time; making it arguably the most critical
regulator on the board. For this reason, considerations were
taken to ensure the component was capable of handling this
amount of current while still falling within reasonable
thermal ranges.

Initially, three simplistic linear voltage regulators were
used. Each device had a fixed output and required a small
input and output filtering capacitor. The regulators upheld the
agents for initial testing but overheated too quickly for long-
term use. Moving forward, the AOZ6606PI switching
voltage regulator was then selected for its high-efficiency
ratings and ability to sustain a high output current without
overheating. The variable output capabilities of this regulator
appeared to work for all three voltage levels, however, in
calculation, it was discovered that several of the capacitors
needed for the 5V and 12V regulators needed capacitances in
the mF range, which were only available in large package
sizes.

VIN

CVCC
Ci]—T
I VIN
L % RBST

EN T cBST
AOZ6606P1 X ae
R1

L1
COMP

Re s FB

.. o GND o

3.3uH
AOZ6606PI 3.3V Regulator.

VCC BST

VouT

Cour

—i—

Fig. 2.

As shown in Fig. 2, the AOZ regulator requires 11 passive
components. Given the spacious footprint of the regulator in
its entirety, it would not have been possible to fit the
necessary size capacitors - thus not allowing the regulators to
function as intended. Because the 3.3V regulator had lower
output expectations, the capacitor ratings necessary to
support the system were much less demanding. Another
regulator, the LM2576, was investigated and determined to
be comparable to the latter, yet slightly less efficient. Given
these facts, the team compromised by utilizing the
AOZ6606PI for the 3.3V output, while using the LM2576
through-hole regulator series for the 5V and 12V outputs. The
LM2576 is, similarly, a switching regulator, but has a
footprint that accommodates the necessary size of the higher-
rating filtering capacitors. Moving towards this design
simultaneously allowed for maximum efficiency where
physically viable, while taking the necessary steps to ensure
that higher voltage outputs were both functional and stable.

FEEDBACK
LM2576/ |7
LM2576HV- SUTBDT L1 +5V
REGULATED
W OUTPUT

5.0 n
e 100 uH
3|oND 5| onjorF - 4] Coyr 3A LOAD
5822 | 1000.2E

7V - 40V
(60V for HV) +y

UNREGULATED
D¢ INPUT 1
pl I
:|: 100 uf

Fig. 3.

LM2576 5V regulator circuit.

The most pivotal components in this system are the
capacitors and inductors. According to the datasheet for the
LM2576xx series of voltage regulators, C.. needed to be at
least a 100uF electrolytic capacitor. For the inductor, the
datasheet provides application curves on page 21 based on
maximum input voltage versus maximum load current for
common output voltages, including 5V and 12 V. Therefore,
the inductor chosen was a 100pH inductor. As seen in Fig. 4,
for an input voltage of 16.8V and a maximum load current of
3A for a 5V output, the L100 is what is recommended, which
corresponds to a 100uH inductor.

’
7

&0 ¥ A R S)
40 R . g

inoe’| woand watod [wasgy Wi
of

2

.s!n}ﬂ ’)
18 470

AL Y
/

R
<
e

91” | &:311:-n/ '
BX/ f/’f /:;{ /]
/ ;/;’ AN

7 - 1 |
W3 040506 05 11215 I
MANIMUW LOAD CURRENT (&}

Fig. 4. LM2576 5V Regulator Inductor Graph

MAKIMUM INPUT WOLTASE (¥)

NN

2.5 3

(2) highlights that the ripple current rating of Co,r must be
at least 50% higher than the peak-to-peak inductor ripple

current. Therefore, Cor should lie between 220uF and
1000pF.

Cour>13300(Vinmax))/ (Vout*L) (2)

A 1000uF capacitor was selected for the 5V voltage
regulator as given the use of the 100pH inductor, the equation
above was more than satisfied, and stable operation was
assured. Additionally, the Schottky diode 1N5822 was
chosen based on datasheet recommendations and component
availability.

C. Feedback System

For the software team to effectively allow the agent to
navigate an environment, several onboard devices were
needed to relay important odometry, orientation, and
mapping data.

The integration of an inertial measurement unit, or IMU,
played a pivotal role in ensuring precise navigation and
control. The IMU provides real-time data concerning the
agent’s acceleration, angular velocity, and local magnetic
field, which is necessary for accurate localization of the
agents. Continual monitoring of this information gives the
fleet the ability to operate in the same constrained
environment without interfering with one another. Without
this data, the software would lack awareness regarding the
fleet’s spatial position and orientation which impedes its
ability to effectively navigate them. The IMU selected for this
project was the MinilMU-9 v5 for several reasons. Firstly,
this IMU had one of the lowest operation currents, 70 pA, out
of its competitors; an important aspect for saving battery
energy that is needed in larger quantities for the locomotive
system. The system did have a larger zero rate output, which
is the deviation of the actual output signal from the ideal
output signal in the absence of acceleration; however when
compared to major competitors the IMU had a lower noise
density, zero-G offset, and zero-gauss level, all of which are
crucial to minimizing the cumulative error of the device.

While the IMU provides critical data in determining the
position and orientation of the agents, another sensor was
needed to provide mapping data to the robotic backend.
Options such as ultrasonic, infrared sensors, and overhead
cameras were considered, but ultimately the team chose to
use a LIDAR due to its superior data rate and range, both
important criteria for the software team to optimally navigate
the given environment. The LiDAR creates a full 360-degree
two-dimensional scan of its surroundings, which is then sent
through the attachment communication protocol. Out of the
feedback devices, the LIDAR is most pivotal in the
autonomous navigation of any given agent.

To improve the accuracy of driving, wheel encoders were
implemented in the form of Hall effect sensors. With magnets
being placed equally around the inner surface of each wheel,

the Hall effect sensors are used to more accurately control the
speed of the motors. Rather than just sending velocity
commands from the server, the data provided by the Hall
effect sensors allows the embedded software to correct the
velocity in real time.

Additionally, a mouse optical sensor is to be used to
provide additional odometry data, primarily the linear
velocity of the device. Theoretically, this data could be
gathered from the IMU, but it would be inaccurate and likely
cause drift.

D. Attachments

With the defining principle of these agents being
modularity, they were designed to support a variety of
additional hardware that could change the application of the
agent without altering the primary functionality of the
system. For this reason, it was necessary that the attachment
ports not only supply a variety of robust voltage lines but also
host a versatile communication protocol that could interface
with virtually any peripheral device. The concept is that given
power and data capabilities, virtually any device could
theoretically connect to the agent and interface with the main
MCU.

Initially, it was planned to have all attachments on the
single 12C channel, but it was discovered that an issue could
arise with identical addresses amongst multiple of the same
attachment being connected. To solve this, theoretically, the
devices could be reprogrammed to have a unique address, but
this would complicate the process for the end-user. For this
reason, a CAN protocol was chosen.

CAN buses are proven to ensure reliability and efficiency
in large systems, often being used as the main communication
protocol amongst sensors in automobiles. With CAN,
multiple devices can simultaneously exchange real-time data
without bottlenecking. A data prioritization scheme allows
for the most important bits to reach the MCU first, effectively
creating a hierarchy that upholds the agent’s functionality
without compromising other important data. Many devices
are capable of interfacing with the CAN bus directly;
however, in application, an SPI/CAN conversion module was
used, as the solenoids on the payload manipulators could not
directly interface with the CAN bus. The team decided to use
an MCP2515 stand-alone CAN controller. The MCP2515
includes masks and filters for filtering out unwanted
messages, which reduces the host MCU's overhead, as well
as decreases the complexity necessary in the embedded
system. Likewise, the modules featured an interrupt pin
which can be used to trigger the MCU when a message is
received, another aspect helpful to software efficiency.

As depicted in Fig. 5, the protocol for our scenario begins
with the main MCU interfacing the module via SPI. The
MCP2515 then converts the SPI message into CAN, which

operates on two lines; CAN high, and CAN low. This
message is broadcast across the CAN bus and any device
connected to the two nodes. Then, opposite to the original
broadcast, every other CAN module on the bus converts the
message back through SPI, and to the secondary MCU, for
our specific scenario. The embedded software on this
secondary MCU is what decides whether or not to do
something with the data. For the payload manipulators, the
message sent through the bus will contain relevant bits that
the team decided on to correlate with the solenoids, thus
changing their state, or providing information about their
current state. It is important to reiterate that some devices can
natively interface with the CAN bus. In cases like this, the
SPI/CAN converter as well as secondary microcontroller can
be entirely omitted. Furthermore, if a secondary MCU was
necessary, there are no limitations on the selection of that
component other than relating to specific attachment
specifications, and either SPI or CAN communication
capabilities.

MAIN MCU DEVICE 1 o 00 DEVICE N

o
7]

GPIO
GPIO

SPI/CAN

CONVERTER ATTACHMENT

MCU 1

ATTACHMENT
MCU N

SPI/CAN
CONVERTER

SPIfCAN
CONVERTER

CAN H

CANL

Fig. 5. Topology of the SPI/CAN communication system for N
number of attachments for our specific scenario.

1200 o ~
120 Q -»

The number of nodes on a CAN bus is generally limited by
the strength of the receiver. The MCP2515 can practically
handle 110 unique devices, which leaves an ample amount of
space for any attachments an end-user may select.

To prove the functionality of this system, an example
attachment was developed. For the final demonstration of
this project, our main goal was to navigate a warehouse
setting and interact with payloads, to move them around the
environment. For this reason, we created an attachment of
payload manipulators, similar to how Autonomous Mobile
Robots (AMRs) are used to bring items from point A to
point B. To allow for optimal path planning, we planned on
interacting with the payload vertically rather than
horizontally. By doing this, the combined center of mass of
the agent and payload would be relatively the same as just
the agent alone, allowing for the best path planning
capability. To do this, a mechanical attachment system

needed to be designed to interact with the four legs of the
payload. This was accomplished by designing a payload
that envelops the footprint of the agent. As the agent drives
under the payload, these mechanisms passively interact
with the legs and then a solenoid is used to lock the position
of the mechanism.

E. Drivetrain

Once the team defined the scenario for our robotic fleet
and determined that the agent would utilize wheels to move
around the environment, the next step was to choose the
drivetrain type. To ensure that our robotic solution was as
modular as possible, the team decided to use a holonomic
drivetrain over a nonholonomic one. This drivetrain type
would allow for three degrees of freedom, allowing the end
user to have full control of the agent to best utilize its
attachment system. Finally, it was decided to use a
mecanum drive for the agent as the team thought that it
would be most feasible due to its form factor and overall
performance.

The main disadvantage to this drive-train type was the
cost of the wheels. To overcome this, it was decided to
completely design and manufacture the wheels in-house.
Unlike traditional wheels, mecanum wheels generate a
friction force at a 45-degree angle to the direction of
motion, rather than normal to it. To generate the friction
force in this direction, mecanum wheels have several rollers
around the circumference of the main wheel frame where
their axis of rotation is at a 45-degree angle to the axis of
rotation of the main wheel. To accomplish this, the
mechanical team created two revisions of this wheel. While
the first revision was not successful it did show the team
what needed to be done to develop a successful wheel in
terms of mechanical design and manufacturing. With the
resources at hand, the team decided to utilize FDM 3D
printing to create the parts for the wheels. In this printing,
we used PLA for structural parts and TPU for parts needing
elastic properties.

Both PLA and TPU belong to the thermoplastics family
of materials making them great for 3D printing. PLA has a
higher yield strength than TPU making it a great option for
parts of the wheel that will experience greater amounts of
stress, such as the wheel frames, rods, and bushings. TPU
has a much lower yield stress that allows for more elastic
deformation making it a great option for the wheel’s rollers
and friction caps.

When it came to designing the mecanum wheels, it was
decided to use a wheel frame that is an octagon allowing for
the best balance of roller spacing and size, which ensures
that one or more rollers will be touching the ground at any
point in its rotation. This allows for the greatest roller-to-
ground surface area ratio ensuring that the greatest amount

of friction force is always being created. TPU’s elastic
behaviors also allow for this contact patch to increase as it
compresses due to the weight of the agent.

For mecanum drive to achieve three degrees of freedom,
each wheel must be controlled independently by its motor.
As mentioned above, the wheels themselves generate a
friction force at a 45-degree angle, this means that the
drivetrain must create a net force using a mirrored set of
mecanum wheels to ensure that the agent drives in the
correct position. Utilizing this concept is how mecanum
drive can strafe, for example, to strafe right the right set of
wheels must rotate towards each other while the left set
rotates away from each other. The CAD model of this
drivetrain is featured in Fig 6.

Fig. 6. CAD Model of Agent Drivetrain

Finally, the last portion of the drivetrain design was
motor selection. To do this the team determined a combined
weight threshold of 114.6N for the agent along with a static
friction coefficient of 0.5 for TPU on polished concrete, it
was also assumed that the center of mass of the agent would
be roughly at the center of the agent. With this, the weight
experienced on each of the wheels can be expressed through
Q).

Fweigh= 114.6N/4 =28.65N (3)

With this, (4) shows the friction force generated by each
wheel is equal to:

FFriction:Fweight*0.5=14.32N (4)

The final assumption made is a no-slip condition, this
allows us to set the friction force of the wheel equal to the
tangential force created by the motor. Finally, assuming a
wheel diameter of 100mm the required torque of the motor
can be found through (5):

TMotorzo.loom*14.32 (5)

After converting units for appropriate scale, a motor with
a rated stall torque of 6kg-cm was purchased for each wheel
of the agent.

IV. EMBEDDED SOFTWARE DETAIL

The software contained on each agent consists of many
different parts. This includes classes for motors, mecanum
drive control, and the IMU. The software also features the
main agent control program, which utilizes the
aforementioned classes combined with additional logic and
some external libraries, which allow for full control of the
agent, as well as communicating with the attachment system
and the robot router. To describe the overall functionality of
the agent software, we will first examine the custom classes,
then we will go over the main agent control program, which,
as mentioned earlier, utilizes these classes.

A. IMU Class

The class for IMU control was developed by our team to
combine the usage of the LISSMDL magnetometer with the
LSM6 accelerometer and gyroscope. This class includes the
initialization function, which initializes the sensors and
performs error calculations. The error calculations are
performed by reading the results from all three sensors for
five seconds and then saving the averages of the readings for
all three axes for all three sensors. These error averages are
later used in the functions that return the readings for each
sensor. These functions all begin by calling the appropriate
read function from the libraries that were developed for each
sensor, subtracting the errors from the raw readings, and then
converting these results into meters per second squared,
degrees per second, and gauss, for the accelerometer,
gyroscope, and magnetometer, respectively.

B. Motor Class

The motor class was developed by our team to introduce an
easy method to control each motor and to use the Hall effect
sensors to determine the speed at which each motor is
spinning. This class includes the drive function, which
accepts an integer between -255 and +255, which will
determine the direction the motor spins as well as the PWM
signal that is supplied to the motor driver. This function also
will determine if the motor is saturated, meaning that it is
being instructed to spin at full speed. This is useful to limit
the speed of the other motors so that the agent will drive as
expected. Another function is used to read the current
revolutions per second (RPM) of the motor, and another is
used to set the desired RPM.

C. Mecanum Control Class

The mecanum control class was developed by our team to
easily control each of the four motors using the mecanum
control principle. This class includes the drive function,
which takes three floating point values as input: x, y, and z.
These values represent forward/backward motion, strafing,
and turning, respectively. This function calculates the
necessary speed of each motor. This class also includes a
function that is used to slow down all motors based on the
fastest, saturated motor, if it exists.

D. Main Agent Control

Finally, we have the main agent control program. This
program allows the agent to connect to the robot router’s
hotspot, communicate with the robot router via a WebSocket
connection, interact with the attachment system, drive, and
interface with the additional attached sensors, which include
the mouse optical sensor and the LiDAR. One of these
sensors will soon be implemented instead as an attachment
and will interface with the agent via the CAN bus.

To achieve this functionality, we needed to utilize both
cores of the MCU. Core 0 deals with all of the wireless
aspects of the program. This includes establishing the Wi-Fi
connection to the robot router and keeping the WebSocket
connection alive. The agent needs to be able to receive
commands from and send data to the robot router as fast as
possible over the WebSocket connection, which is why this
is all being done on Core 0 so that the work that is being done
on Core 1 does not slow this process down. Core 1 deals with
the remaining functionality of the agent software, which
includes interfacing with the various sensors, the CAN bus,
and driving the agent.

V. TESTING RESULTS

Given the multitude of components and complexity of
integration, it was important to test individual systems
before combining them.

A. Voltage Regulators

The initial set of regulators used were simple linear
devices. Implementing the devices on a breadboard with a
single input and output filtering capacitor on each regulator,
and inputting a 14V input (an average voltage the battery
would supply), the regulators were found to have the proper
output and could supply power to charge a capacitor.
However, testing the 12V regulator by connecting them to
the motor drivers and driving the agent caused them to
become extremely hot in a matter of minutes. Placing
external heatsinks on these chips helped to dissipate heat,
but not enough to ensure the long-term safety of the device.

Moving forward, the team decided to use switching
regulators. By nature, this type of voltage regulator is better
equipped for high-output currents.

B. Communication

The CAN conversion modules were tested by
interconnecting two ESP32-WROOM-32UE modules by
using the SPI/CAN conversion modules and transmitting data
through the CAN bus. Reading from the ATTINY88 with an
attached computer was difficult, so this is the way we decided
to ensure each SPI/CAN conversion module was fully
operational. Once this was confirmed, we ensured that each
ATTINY88 could send data over the CAN bus, and ensured
that data could be read by making an LED blink by sending
the command over the CAN bus, which can transmit data at
a rate up to 1Mb/s.

C. Attachment

Once communication through the CAN bus is achieved,
there are two attachment modules with their respective
microcontrollers and a standardized cable system to test.

The purpose of the standardized cable system is for the
Attachments to connect to the agent. The ports include the
three power rails 12 V, 5 V, and 3.3 V with a ground as well
as the CAN high and low connections. This is done using 18
AWG wires and two MR-30 connectors per attachment port.
This connector was chosen due to the 30A continuous rating
and its inexpensive cost. After checking continuity on all
connections and running 10A through the connector and wire
chain, no issues were found.

Once the cable system is confirmed, next are the
attachments. The first module is the Payload Manipulator
Attachment using the ATTINY88. The ATTINY88 is the less
powerful microcontroller of our two options and was
confirmed to successfully receive commands from the CAN
bus as well as perform simple GPIO switching. This was best
suited for the Payload Manipulator Attachment which only
requires a single GPIO connection to activate.

For the testing of the mechanical locking mechanism for
the Payload Manipulator Attachment, several revisions of the
design were tested to ensure seamless agent-to-payload
interaction. The main challenges of this component were the
clearance issues that arose due to the relatively close
tolerances between the agent and payload. To avoid collisions
of the attachment system and the payload legs the frame of
the mechanism had to be altered accordingly. The other main
issue with this setup was the fact that the legs and the passive
component of the mechanism had the same cross-sectional
shape (a square). To overcome this the payload legs had to be
fitted with a 3D-printed part that allowed the legs to have
circular cross-sections where the mechanism intercepts the

payload. After implementing these changes we were able to
successfully interact with a payload through teleoperation.

The second attachment is the mouse optical sensor which
can detect the displacement between time frames. This device
was able to be read by the microcontroller for this attachment,
the ESP32-WROOM-32U. Further testing for the
microcontroller was performed to confirm the higher
processing speed capability including additional tests with
the LiDAR device.

D. PCB

A few iterations of the PCB were developed with the
second version, pictured in Fig. 7, becoming the official
design for the agent. Conceptually, the designs were not too
different; but several of the first PCB’s shortcomings were
addressed in the second version.

Fig. 7. Final interaction of the PCB.

Most importantly, more adequate thermal considerations
were taken into account. For the 3.3V regulator, which is an
SMD component, a large two-layer pour for the input and
output pins of the regulators, as well as for the two pins of
each inductor were placed. For the through-hole components,
the 5V and 12V regulators, large copper pours were included
for the inductors, and external heat sinks were placed on the
heat pad of the chip itself. Additionally, a 2-pin JST
connector for a fan was placed. The power section was
arranged so the fan could provide airflow directly over all
three regulators in a manner that doesn’t push heat to other
sections.

On a more functional level, we corrected many traces that
were routed to unusable GPIO pins, as well as strategically
moving certain components to other pins to leave important
communication channels open if necessary. For example, the
hall effect sensors were moved to input-only pins since they
are not a bidirectional device. The team also opted to place
test points for all communication lines, as well as leaving
through-holes for any unused GPIO pins in the case that it
was needed to connect a component for testing.

V1. CONCLUSION

The final design of the agents effectively met our main goal
of creating a modular robotic solution with core functionality.
At this point, the software is still being developed to use all
agent sensor data optimally and efficiently, but the principle
design of the hardware system is fully functional.

VII. BIOGRAPHIES

Isaac Finley is a 23-year old Electrical Engineering student,
who has accepted a position with Black & Veatch as an
Electrical Engineer 1 in the grid substation department after
graduation.

Cooper Fitzgerald is a 20-year-old Electrical Engineering
student. He has accepted a position with L3Harris as an
Electrical Engineer after graduation.

John McClain is a 23-year-old Mechanical Engineering
student. After graduation, he hopes to work in an engaging
field where he can apply the technical concepts learned
through his degree.

Cameron Nichols is a 22-year-old triple-major student,
graduating with majors in Computer Engineering, Computer
Science, and Electrical Engineering, as well as minors in
Intelligent Robotics Systems and Mathematics. He has
accepted a position with Prism Systems, Inc. as a Controls
Engineer where he will be working with robotic systems,
artificial intelligence/machine learning, and various other
types of systems.

Benjamin Palladino is a 22-year-old Electrical Engineering
student. After graduation, Benjamin will be working as
Assistant Electrical Engineering for Burns & McDonnell,
contributing to the design of substations.

REFERENCES

[1] Fortune Business Insights. (2022, January)
Autonomous Mobile Robots Market Size. Retrieved 9
November 2023, World Wide Web:
https://www.fortunebusinessinsights.com/autonomous-
mobile-robots-market-105055

[2] Alpha & Omega Semiconductor. (2018,
November) AOZ6606PI Datasheet. Retrieved 11 November
2023, World Wide Web:
https://faosmd.com/res/data_sheets/AOZ6606PI.pdf

[3] Texas Instruments. (2023, March) LM2576
Datasheet. Retrieved 11 November 2023, World Wide Web:
https://www.ti.com/lit/ds/symlink/Im2576.pdf

