

Our team

Francisco Soriano

CPE - VLSI Track

Declan Carter

CPE - Comprehensive Track

Victoria Moreno

CPE - Comprehensive Track

Table of contents

~~

01.

GPMS Introduction

02.

GPMS Parts/System
Overview

03.

Initial Prototype

04.

Specifications

05.

Administrative Content

06.

Closing Remarks

Motivations

Passion

Immersive Storytelling

How can we combine this with Projection Mapping?

Inspiration

Disney projection mapping advancements

How can we bring these capabilities to normal people?

Proposal

GPMS: A portable system using generative Al for themed projections on any surface/structure

Opportunity

Pitch GPMS to local entertainment venues in Orlando, FL

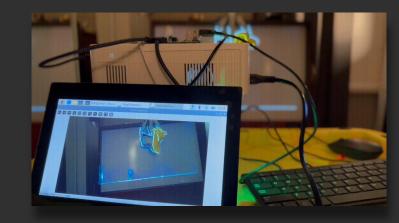
• What does a use case look like?

To make projection mapping using generative Al accessible to everyday consumers

What is GPMS?

A device enabling a simple **GUI** to calibrate and generate unique images for structures

Device consists of:


- Raspberry Pi
- Touch Screen Display
- Projector
- Camera

Connected via **API** to a server running a **generative AI** stack

Basic Goals & Objectives

Projection

Project images onto structures using computer vision

Structure Alignment

Generated image aligns with features on the structure

Interaction

Touchscreen input + generative Al for image creation

User Input Projection

Projector displays images aligned with user input

Power

Configure sufficient power supply for GPMS

Reliable Power Supply

Configure *reliable* power supply for GPMS

Advanced Goals & Objectives

Increased Control

Empower users with greater control over the generated images based on input and preferences.

Image Outlines

Implement slider inputs for users to set edge detection thresholds, fine-tuning the outlines used to generate images.

Image Styles

Add options for users to specify image style, such as animated or realistic, to guide the generation process.

Stretch Goals & Objectives

Emphasize specific structural elements

Area Selection

Enable users to select specific portions of the input image they want to focus on.

Automatic calibration for ease of use

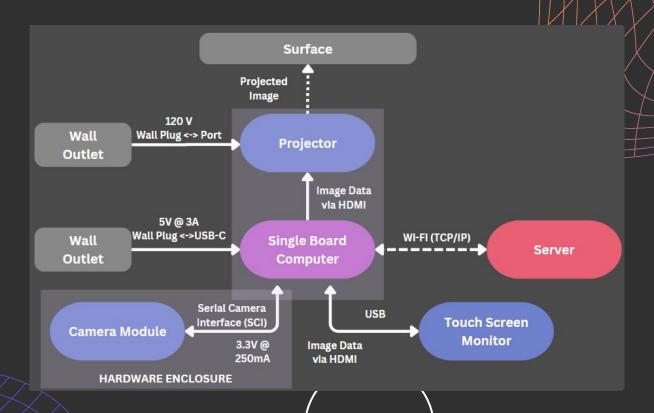
Device to Structure

Automatic device calibration to structure

Advanced Power Supply Unit (PSU)

PSU PCB

Custom PCB with buck-down regulator for voltage/current control


Visual Product Representation

Hardware Block Diagram -**Overview**

Significant Decisions - Computing Options

	Single Board Computer (SBC)	MCU	Development Board
Display	High Fidelity		Simple
Peripherals	X	X	Х
Operating System	X		
Ease of Integration	Simple	Simple Complex Mode	
Price	\$60	~\$1 - \$10	\$10 - \$30

Raspberry Pi 5

Significant Decisions - Computing Options

	Single Board Computer (SBC)	MCU	Development Board
Display	High Fidelity		Simple
Peripherals	Х	Х	X
Operating System	Х		
Ease of Integration	Simple	Complex	Moderate
Price	\$60	~\$1 - \$10	\$10 - \$30

Raspberry Pi 5

Selection justification - simple to use

Significant Decisions - Wireless Com.

	Bluetooth	Wi-Fi
Image Handling Throughput	Low Bandwidth	Higher Bandwidth
Client Server Model Integration	Not Optimal	Optimal
Overall Ease of Integration	No	Yes

Wi-Fi

Significant Decisions - Wireless Com.

	Bluetooth	Wi-Fi
Image Handling Throughput	Low Bandwidth	Higher Bandwidth
Client Server Model Integration	Not Optimal	Optimal
Overall Ease of Integration	No	Yes

Wi-Fi

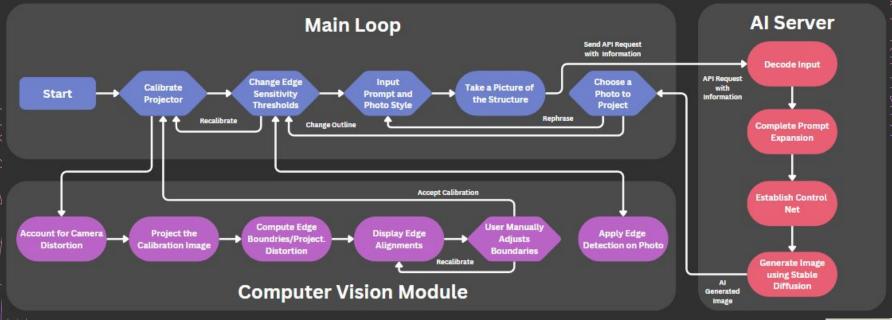
Significant Decisions - Touchscreen

	Resistive Touch	Capacitive Touch	Infrared Touch
Touch Technology	Pressure sensitive	Responds to electrical conductivity	Uses infrared light
Multi-touch Support	No multi-touch support	Excellent multi-touch support	Good multi-touch support
Visibility	Reduced Clarity	Clear	Clear
Cost	Less Expensive	More Expensive	Most Expensive

GeeekPi 10.1 Inch Capacitive
Touchscreen

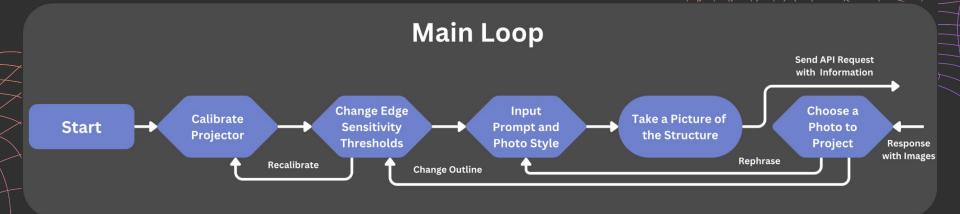
Significant Decisions - Touchscreen

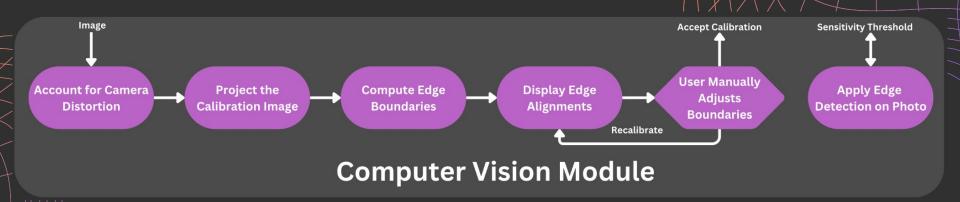
	Resistive Touch	Capacitive Touch	Infrared Touch
Touch Technology	Pressure sensitive	Responds to electrical conductivity	Uses infrared light
Multi-touch Support	No multi-touch support	Excellent multi-touch support	Good multi-touch support
Visibility	Reduced Clarity	Clear	Clear
Cost	Less Expensive	More Expensive	Most Expensive


GeeekPi 10.1 Inch Capacitive
Touchscreen

Selection justification - most suitable/optimal for UI

Software Block Diagram -**Overview**

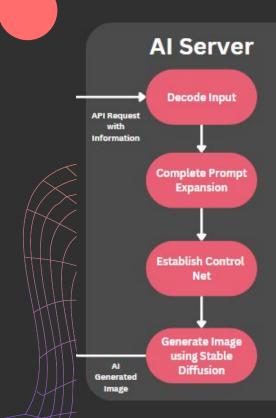



Software Block Diagram -**Application**

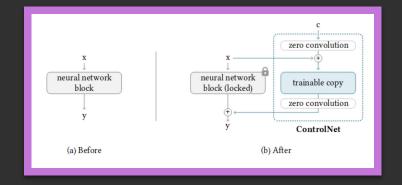
Software Block Diagram -**Computer Vision**

Software Block Diagram - Generative Al Server

Open a designated port on the machine to accept POST requests to the Python server


- Input: Incoming prompt and image capture
- Output: Outgoing selection of Al images

Utilize Stable Diffusion w/ Control Nets



Stable Diffusion with ControlNet

- Stable Diffusion is an Al model that turns text into images
- ControlNet uses reference sketches and images to guide image generation
- ControlNet preserves structure while varying style and details

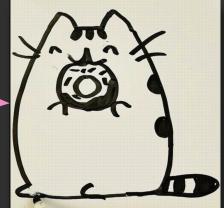
Significant Decisions

	QT	Electron	Flutter
Programming Language	C++	JavaScript (HTML/CSS)	Dart
OpenCV Integration	Easy (built-in support)	Moderate (requires additional libraries)	Moderate (requires additional libraries)
Performance	High	Good	High
Ease of Use	Moderate to complex	Easy (for web developers)	Moderate

QT

	QT	Electron	Flutter
Programming Language	C++	JavaScript (HTML/CSS)	Dart
OpenCV Integration	Easy (built-in support)	Moderate (requires additional libraries)	Moderate (requires additional libraries)
Performance	High	Good	High
Ease of Use	Moderate to complex	Easy (for web developers)	Moderate

QT

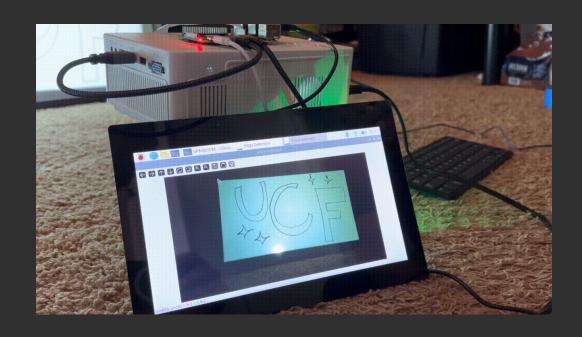


Prototype

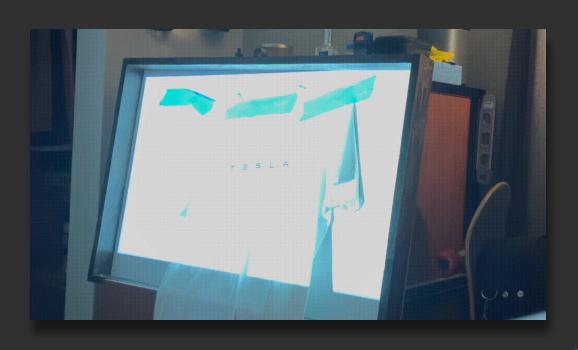
Initial Stable Diffusion Implementation

Stable Diffusion

 Generates images from text descriptions using a compressed diffusion process


Initial Stable Diffusion Implementation

Interior Decoration



Initial Computer Vision Implementation

Initial Computer Vision Implementation

Engineering Specifications

Category	Target	
Size	7 in x 10 in x 8 in	
Weight	~10 pounds	
Elapsed Time	< 5 minutes	
Alignment Accuracy	< 8 mm	
Al Generation Time	< 1.5 minute / image	

Design Standards

HDMI

Provides a dependable/efficient communication channel

TCP

Reliable, acknowledgment drive Transport Protocol

SSL

Provides a secure HTTPS connection

Projector

Resolution for image details

Camera

Resolution, noise, sensitivity, and image quality,

Design Constraints

Economic

Affordable to developers and consumers

Security

When networking on UCF Wifi safety comes first to protect UCF and our sponsor's machine

Time

Limited time due to administrative efforts of SD1 and integration issues

Network Integration

Because the Server exists on UCF's network, you must be on campus to use GPMS

Ethics

Concerns regarding copyright and inappropriate images

Work Distribution

	Francisco Soriano	Declan Carter	Victoria Moreno
Hardware Integration	1st	2nd	
Computer Vision Software Stack		1st	2nd
Ul Interface Design	2nd		1st
Generative Al Pipeline		1st	2nd
Administrative Contributions	1st	2nd	2nd
Prototype Design	1st	1st	1st

Bill of Materials

Item	Price (USD)
Raspberry Pi 5	60.79
Camera	5.00
Monitor	89.99
Projector	63.89
AMD Machine	3244.44
Total Pre Donation	~3,544.37
Total Post Donation	~219.67

Thank You!

Do you have any questions? Let's collaborate!

Our website:

https://maverick.eecs.ucf.edu/seniordesig n/sp2024su2024/g17/

