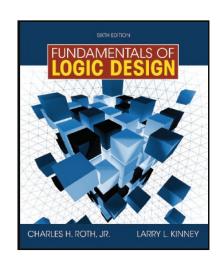
CHAPTER 18

CIRCUITS FOR ARITHMETIC OPERATIONS



This chapter in the book includes:

Objectives Study Guide

- 18.1 Serial Adder with Accumulator
- 18.2 Design of a Parallel Multiplier
- 18.3 Design of a Binary Divider Programmed Exercises Problems

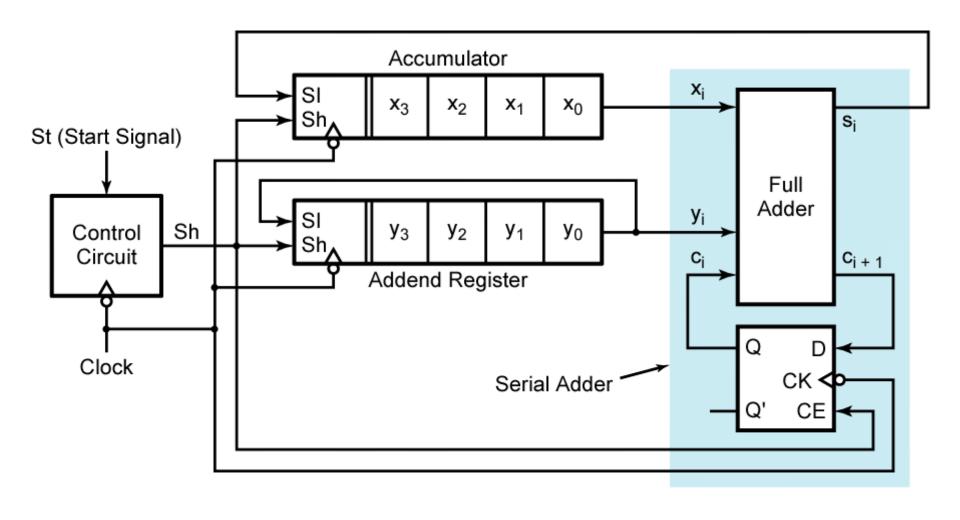
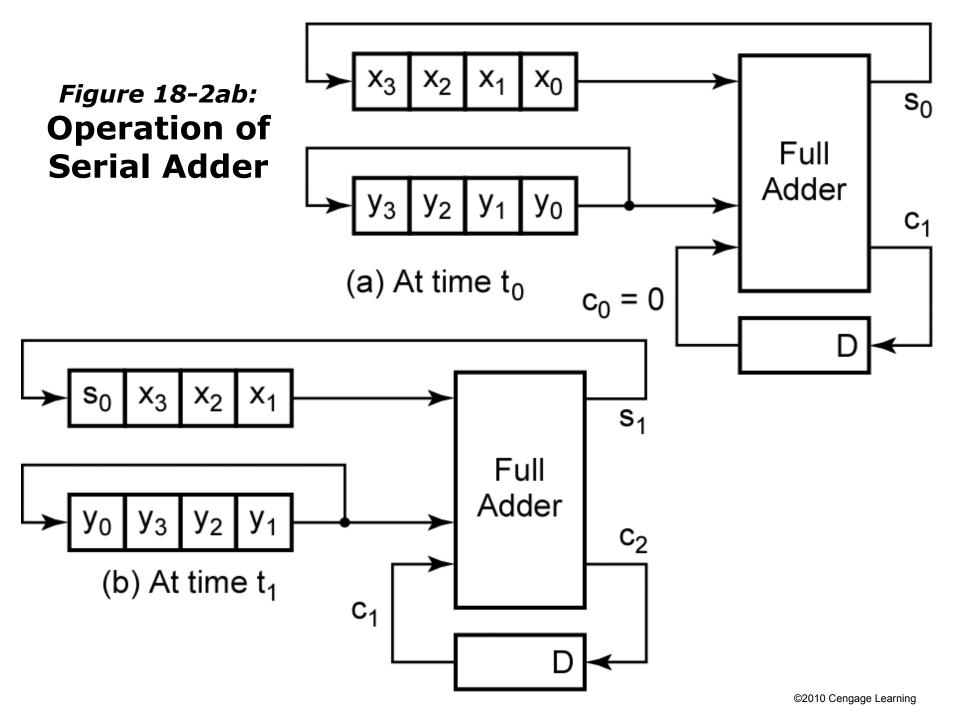
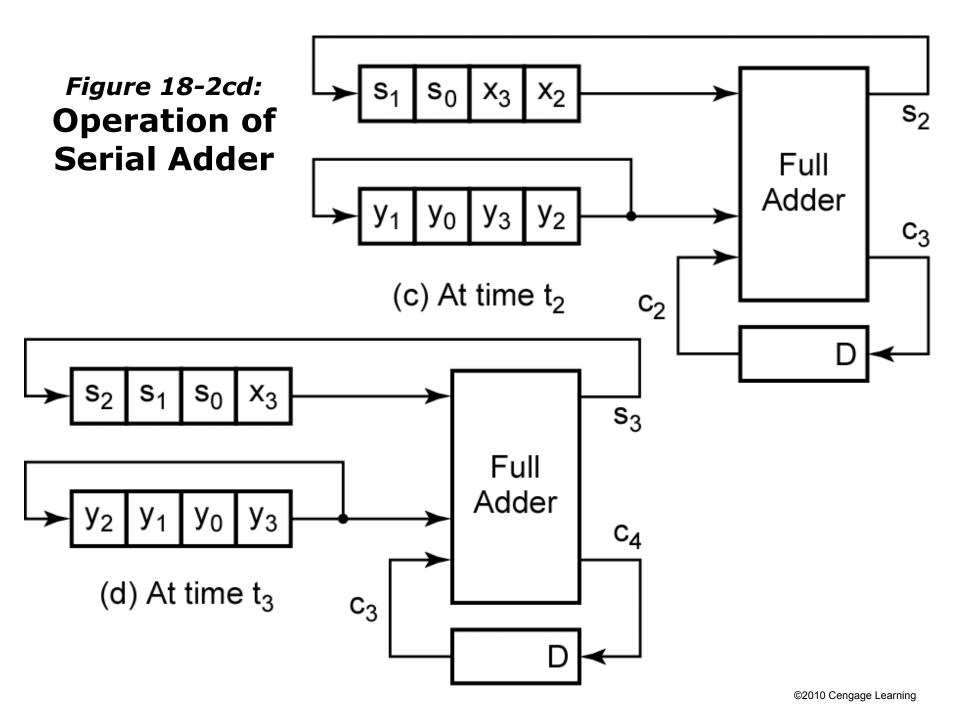


Figure 18-1: Block Diagram for Serial Adder with Accumulator





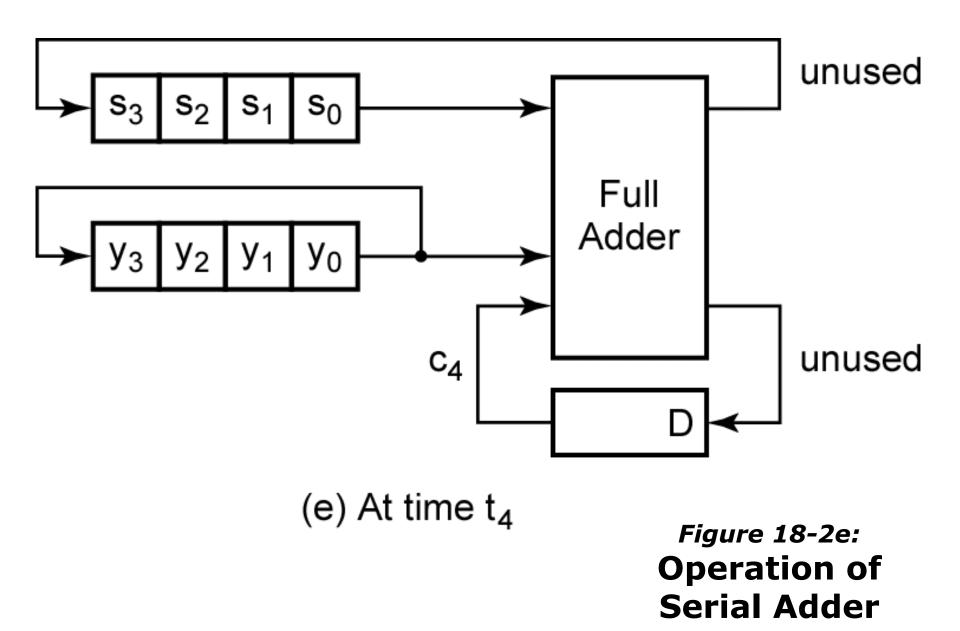


Table 18-1 Operation of Serial Adder

	X	Y	C_i	S_i	C_i^+
$\overline{t_0}$	0101	0111	0	0	1
t_1	0010	1011	1	0	1
t_2	0001	1101	1	1	1
t_3	1000	1110	1	1	0
t_4	1100	0111	0	(1)	(0)

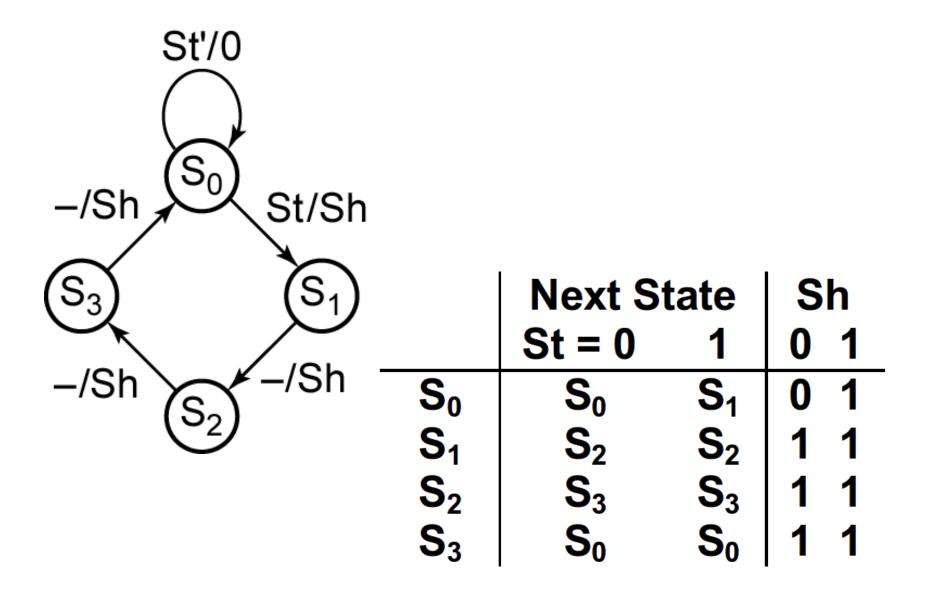


Figure 18-3: State Graph for Serial Adder Control

	AB	$A^{\dagger}B^{\dagger}$			
		0	1		
S ₀	00	00	01		
S_0 S_1	01	10	10		
S_2	10	11	11		
S_3	11	00	00		

Figure 18-4a: Derivation of Control Circuit Equations

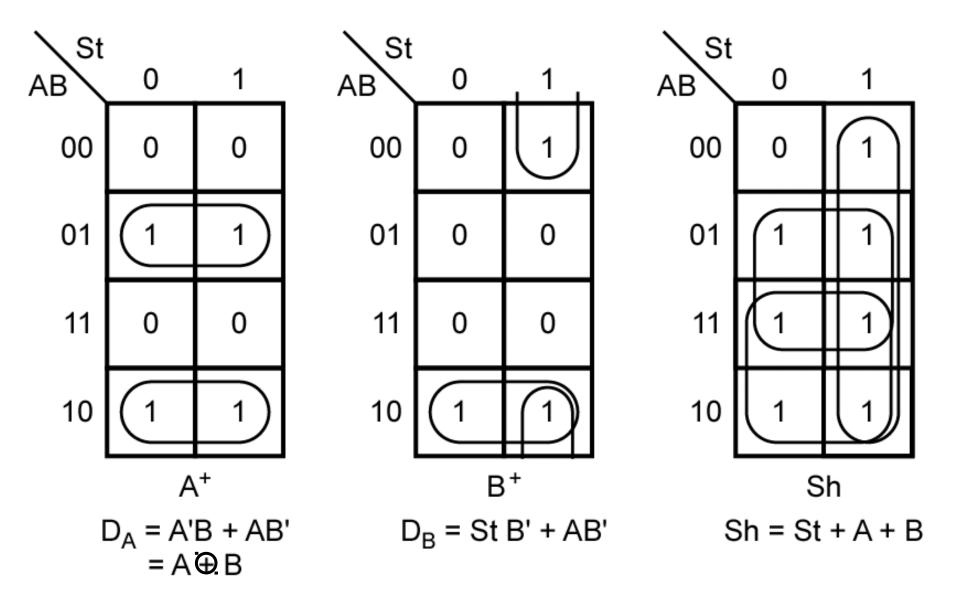


Figure 18-4b: Derivation of Control Circuit Equations

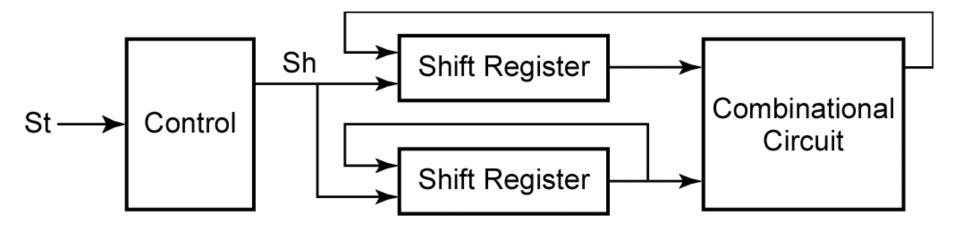


Figure 18-5: Typical Serial Processing Unit

The output bits from the shift register are inputs to a combinational circuit.

The combinational circuit generates at least one output bit which is fed into the input of a shift register.

When the active clock edge occurs, this bit is stored in the first bit of the shift register at the same time the register bits are shifted to the right.

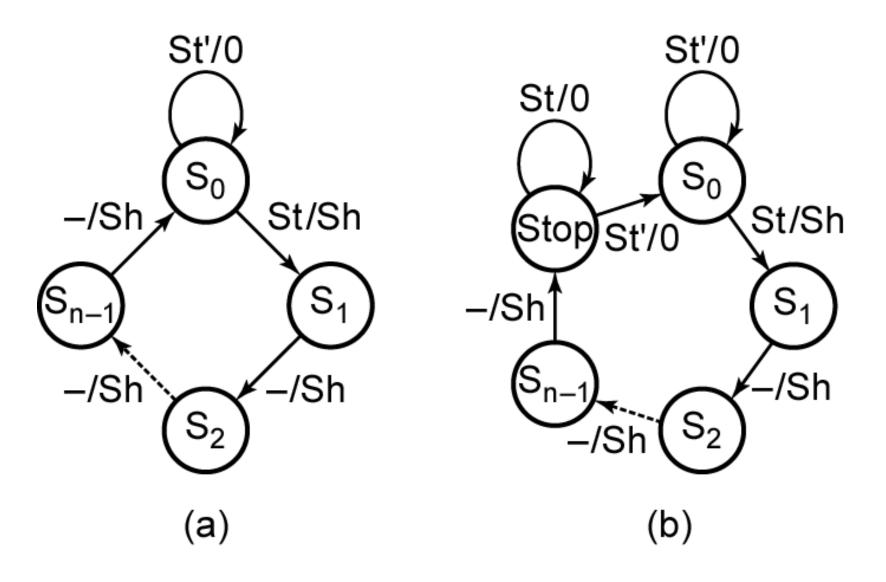


Figure 18-6: State Graphs for Serial Processing Unit

Design of Parallel Multiplier

Multiplication with partial products added in as soon as they are formed:

Multiplicand
$$\longrightarrow$$
 1101 (13)

Multiplier \longrightarrow 1011 (11)

Partial Products \longrightarrow 1000111

Product \longrightarrow 10001111 (143)

Section 18.2 (p. 598)

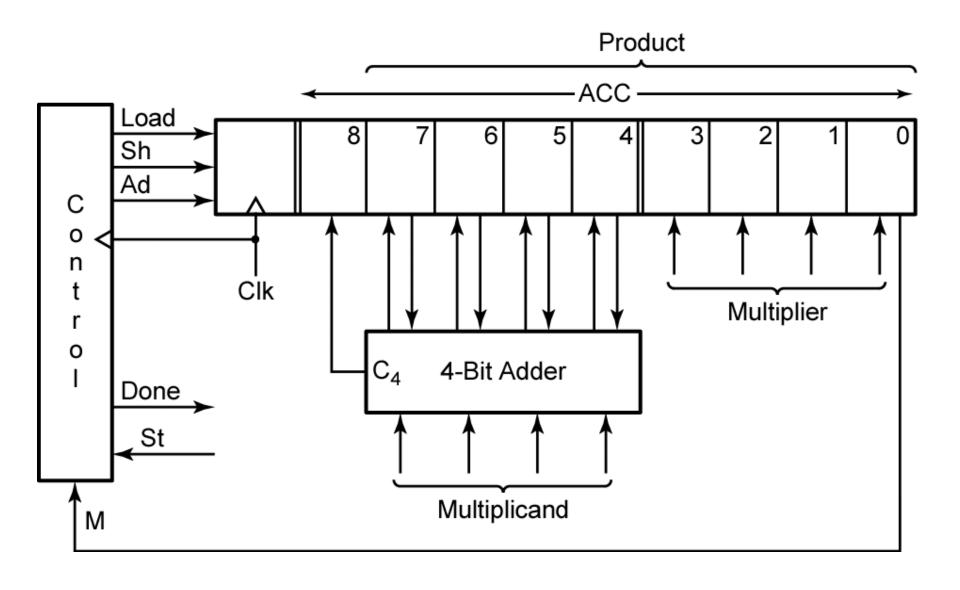


Figure 18-7: Block Diagram for Parallel Binary Multiplier

Parallel Binary Multiplication

initial contents of product register (add multiplicand because
$$M=1$$
) (after addition (add multiplicand because $M=1$) (add multiplicand because $M=1$) (add multiplicand because $M=1$) (after shift (add multiplicand because $M=1$) (after shift (add multiplicand because $M=1$) (add multiplicand b

Section 18.2 (p. 600)

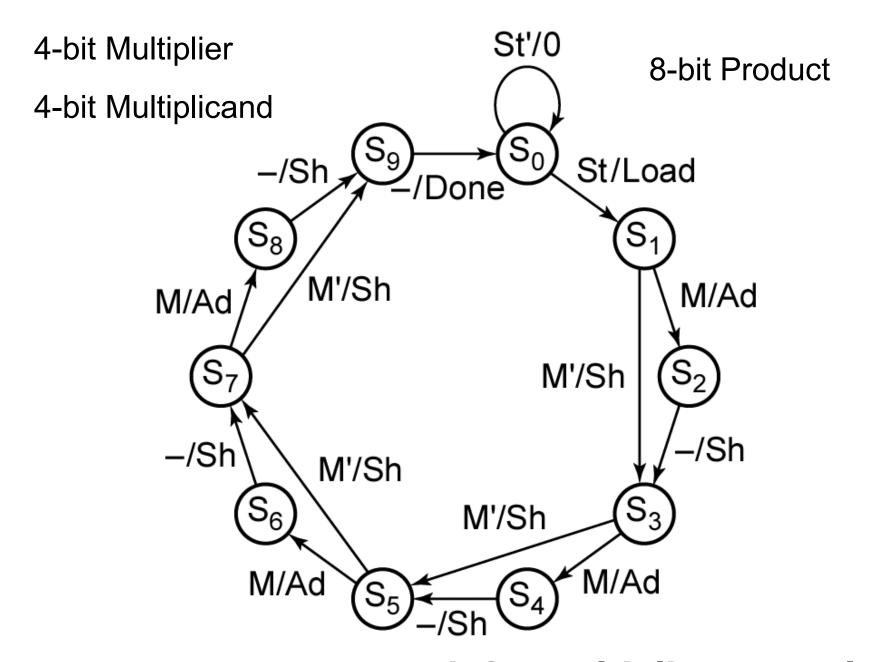


Figure 18-8: State Graph for Multiplier Control

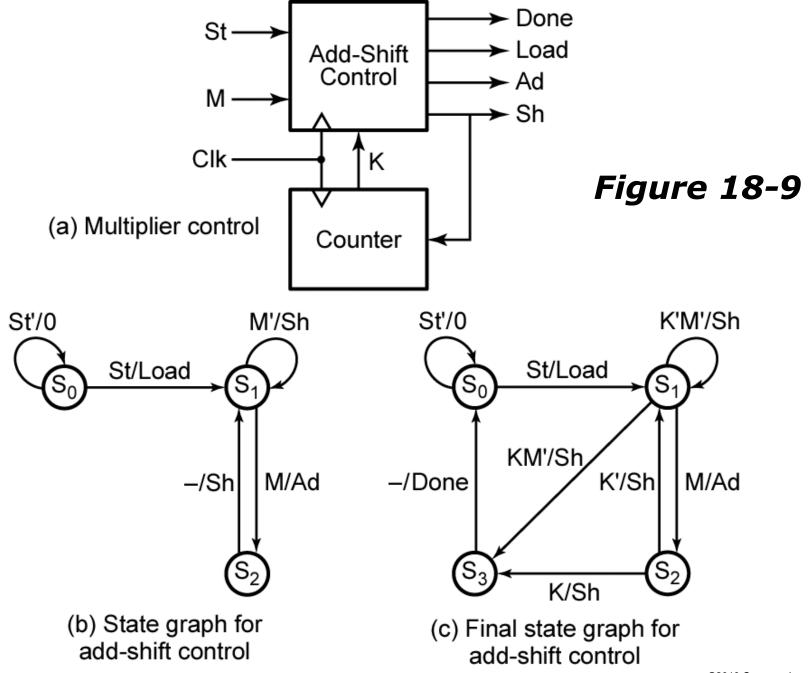


Table 18.2 Operation of a Multiplier Using a Counter

Time	State	Counter	Product Register	St	M	K	Load	Ad	Sh	Done
$\overline{t_0}$	S ₀	00	00000000	0	0	0	0	0	0	0
t ₁	So	00	00000000	1	0	0	1	0	0	0
t_2	S_1	00	000001011	0	1	0	0	1	0	0
t_3	S_2	00	011011011	0	1	0	0	0	1	0
t_4	S_1	01	001101101	0	1	0	0	1	0	0
t_5	S_2	01	100111101	0	1	0	0	0	1	0
t_6	S_1	10	010011110	0	0	0	0	0	1	0
t ₇	S_1	11	001001111	0	1	1	0	1	0	0
t ₈	S_2	11	100011111	0	1	1	0	0	1	0
t ₉	S_3	00	010001111	0	1	0	0	0	0	1

Design of Binary Divider

Example of division process:

divisor
$$101$$
 10000111 dividend 1101 0111 0000 1111 0000 1111 0000 1111 a remainder of 5) 10000 0101 0000 0101 remainder

Section 18.3 (p. 602)

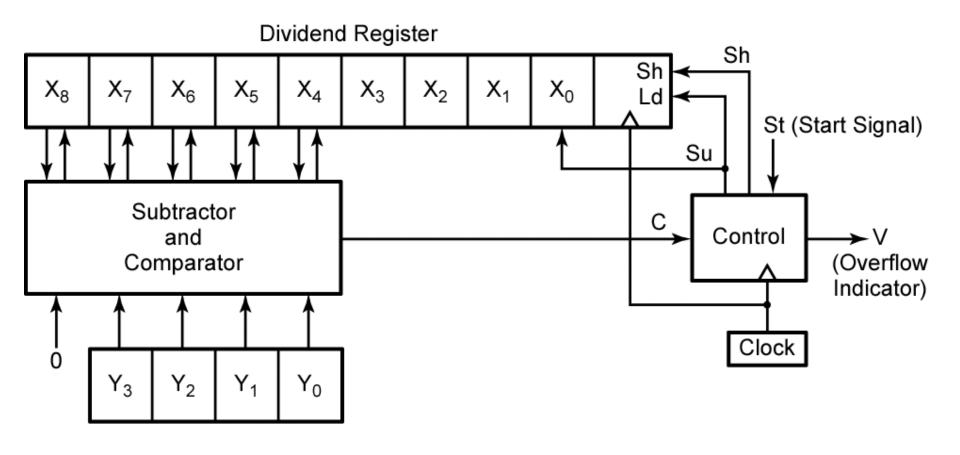


Figure 18-10: Block Diagram for Parallel Binary Divider

```
C = 0, Shift
                            C = 1, Subtract
                            Shift
                            C = 0, Shift
                            C = 1, Subtract
                            Shift
            quotient
remainder
```

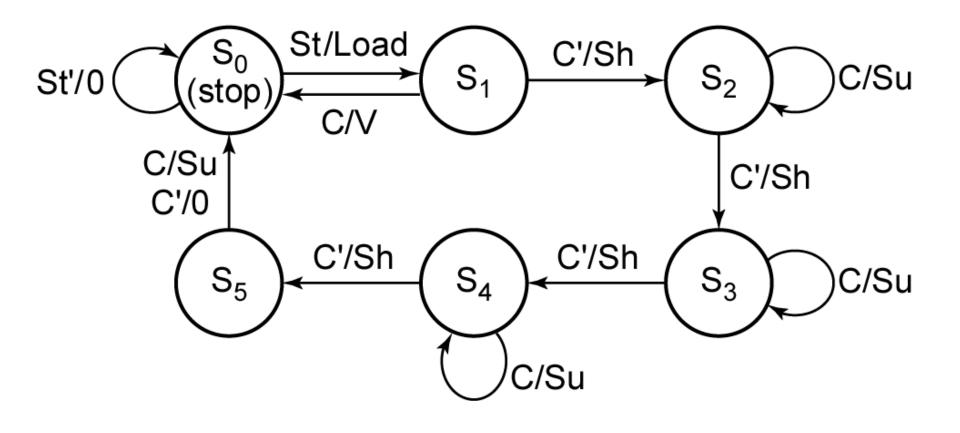
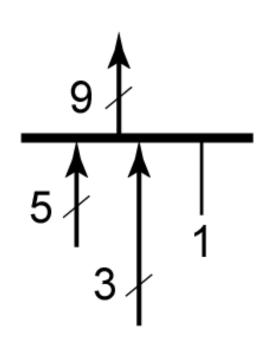
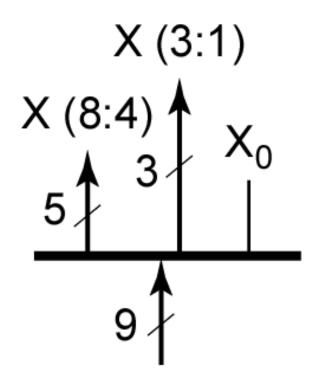


Figure 18-11: State Graph for Divider Control Circuit





Bus Merger

Bus Splitter

Section 18.3 (p. 606)

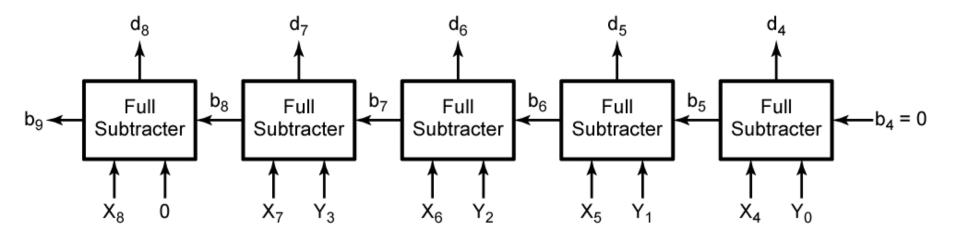


Figure 18-12: Logic Diagram for 5-Bit Subtracter

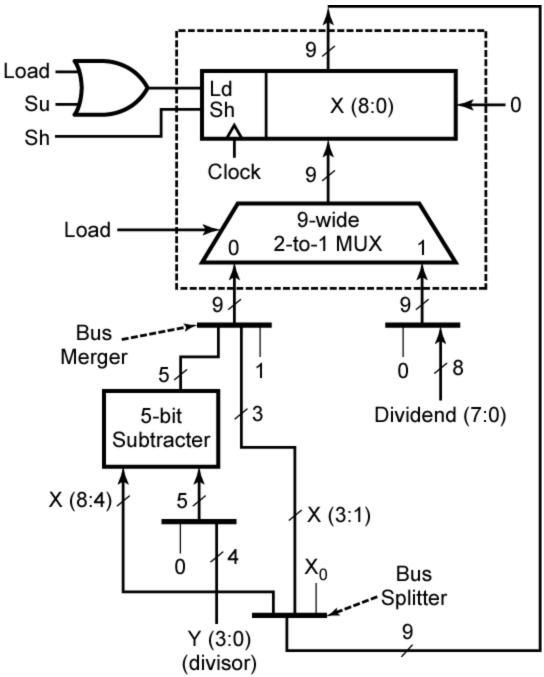


Figure 18-13:
Block Diagram for Divider Using Bus Notation